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Abstract

This paper studies the identification of structural parameters in dynamic games
when we replace the assumption of Markov Perfect Equilibrium (MPE) with weaker
conditions such as rational behavior and rationalizability. The identification of players’
time discount factors is of especial interest. I present identification results for a simple
two-periods/two-players dynamic game of market entry-exit. Under the assumption of
level-2 rationality (i.e., players are rational and they know that they are rational), a
exclusion restriction and a large-support condition on one of the exogenous explanatory
variables are sufficient for point-identification of all the structural parameters.

Keywords: Identification, Empirical dynamic discrete games, Rational behavior, Ra-
tionalizability.



1 Introduction

Structural econometric models of individual or firm behavior typically assume that agents

are rational in the sense that they maximize expected payoffs given their subjective beliefs

about uncertain events. Empirical applications of game theoretic models have used stronger

assumptions than rationality. Most of these studies apply the Nash equilibrium solution,

or some of its refinements, to explain agents’ strategic behavior. The Nash equilibrium

(NE) concept is based on assumptions on players’ knowledge and beliefs which are more

restrictive than rationality. Though there is not a set of necessary conditions to generate the

NE outcome, the set of sufficient conditions typically includes the assumption that players’

actions are common knowledge. For instance, Aumann and Brandenburger (1995) show

that mutual knowledge of payoff functions and of rationality, and common knowledge of the

conjectures (actions), imply that the conjectures form a NE. This assumption on players’

knowledge and beliefs may be unrealistic in some applications. Therefore, it is relevant to

study whether the principle of revealed preference can identify the parameters in players’

payoffs under weaker conditions than NE. For instance, we would like to know if rationality

is sufficient for identification. It is also relevant to study the identification power of other

assumptions which are stronger than rationality but weaker than NE, such as common

knowledge rationality: i.e., everybody knows that players are rational; everybody knows that

everybody knows that players are rational, etc. Common knowledge rationality is closely

related to the solution concepts iterated strict dominance and rationalizability (see chapter

2 in Fudenberg and Tirole, 1991).

The paper by Andres Aradillas-Lopez and Elie Tamer (2008) is the first study that deals

with these interesting identification issues. The authors study the identification power of

rational behavior and rationalizability in three classes of static games which have received

significant attention in empirical applications: binary choice games, with complete and with

incomplete information, and auction games with independent private values. Their paper

contributes to the literature on identification of incomplete econometric models, i.e., models
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that do not provide unique predictions on the distribution of endogenous variables (see also

Tamer, 2003, and Haile and Tamer, 2003). Aradillas-Lopez and Tamer’s paper shows that

standard exclusion restrictions and large-support conditions are sufficient to identify struc-

tural parameters despite the non-uniqueness of the model predictions. Though structural

parameters can be point-identified, the researcher still faces an identification issue when he

uses the estimated model to perform counterfactual experiments. Players’ behavior under

the counterfactual scenario is not point-identified. This problem also appears in models with

multiple equilibria. However, a nice feature of Aradillas-Lopez and Tamer’s approach is that,

at least for the class of models that they consider, it is quite simple to obtain bounds of the

model predictions under the counterfactual scenario.

The main purpose of this paper is to study the identification power of rational behavior

and rationalizability in a class of empirical games that has not been analyzed in Aradillas-

Lopez and Tamer’s paper: dynamic discrete games. Dynamic discrete games are of interest

in economic applications where agents interact over several periods of time and make de-

cisions that affect their future payoffs. In static games of incomplete information, players

form beliefs on the probability distribution of their opponents’ actions. In dynamic games,

players should also form beliefs on the probability distribution of players’ future actions,

including their own future actions, and on the distribution of future exogenous state vari-

ables. The most common equilibrium concept in applications of dynamic games is Markov

Perfect Equilibrium (MPE). As in the case of NE, the concept of MPE is based on strong

assumptions on players’ knowledge and believes. MPE assumes that players maximize ex-

pected intertemporal payoffs and have rational expectations, and that players’ strategies are

common knowledge. In this paper, I maintain the assumption that every player knows his

own strategy function and has rational expectations on his own future actions. However,

I relax the assumption that players’ strategies are common knowledge. I study the identi-

fication of structural parameters, including players’ time discount factors, when we replace

the assumption of common knowledge strategies with weaker conditions such as rational
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behavior.

I present identification results for a simple two-periods/two-players dynamic game of

market entry-exit. Under the assumption of level-2 rationalizability (i.e., players are rational

and they know that they are rational), a exclusion restriction and a large-support condition

on one of the exogenous explanatory variables are sufficient for point-identification of all the

structural parameters, including time discount factors.

2 Dynamic discrete games

2.1 Model and basic assumptions

There are two firms which decide whether to operate or not in a market. I use the indexes

i ∈ {1, 2} and j ∈ {1, 2} to represent a firm and its opponent, respectively. Time is discrete

an indexed by t ∈ {1, 2, ..., T}, where T is the time horizon. Let Yit ∈ {0, 1} be the indicator
of the event "firm i is active in the market at period t". Every period t the two firms decide

simultaneously whether to be active in the market or not. A firm makes this decision to

maximize its expected and discounted profits Et

³PT−t
s=0 δ

s
iΠi,t+s

´
, where δi ∈ (0, 1) is the

firm’s discount factor and Πit is its profit at period t. The decision to be active in the market

has implications not only on a firm’s current profits but also on its expected future profits.

More specifically, there is an entry cost that should be paid only if a currently active firm

was not active at previous period. Therefore, a firm’s incumbent status (or lagged entry

decision) affects current profits. The one-period profit function is:

Πit =

⎧⎨⎩ Zi ηit + γit Yi,t−1 + αit Yjt − εit if Yit = 1

0 if Yit = 0
(1)

Yjt represents the opponent’s entry decision. Zi is a vector of time-invariant, exogenous

market and firm characteristics that affect firm i’s profits. ηit, γit and αit are parameters.

The parameter γit ≥ 0 represents firm i’s entry cost at period t. The parameter αit ≤ 0
captures the competitive effect. At period t, firms know the variables {Y1,t−1, Y2,t−1,Z1,Z2}
and the parameters {η1t,η2t,γ1t, γ2t, α1t, α2t}. For the sake of simplicity, I also assume that
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firms know without any uncertainty future values of the parameters {η,γ, α}. The vector
θ represents the whole sequence of parameters form period 1 to T . The variable εit is

private information of firm i at period t. A firm has uncertainty on the current value of his

opponent’s ε, and on future values of both his own and his opponent’s ε0s. The variables

ε1t and ε2t are independent of (Z1,Z2), independent of each other, and independently and

identically distributed over time. Their distribution functions, H1 and H2, are absolutely

continuous and strictly increasing with respect to the Lebesgue measure on R.

2.2 Rational forward-looking behavior

The literature on estimation of dynamic discrete games has applied the concept of Markov

Perfect Equilibrium (MPE). This equilibrium concept assumes that: (1) players’ strategy

functions depend only on payoff relevant state variables; (2) players are forward looking,

maximize expected intertemporal payoffs, have rational expectations, and know their own

strategy functions; and (3) players’ strategy functions are common knowledge. The concept

of rational behavior that I consider here maintains assumptions (1) and (2), but it relaxes

condition (3).

Let Xt be the vector with all the payoff-relevant and common knowledge state variables

at period t: Xt ≡ (Yi,t−1, Yj,t−1,Zi,Zj). The information set of player i is {Xt, εit}. Let
σit(Xt, εit) be a strategy function for player i at period t. This is a function from the support

of (Xt, εit) into the binary set {0, 1}. Associated with any strategy function σit we can define
a probability function Pit(Xt) that represents the probability of Yit = 1 conditional on Xt

and on player i following strategy σit. That is, Pit(Xt) ≡
Z
I {σit (Xt, εit) = 1} dHi (εit),

where I{.} is the indicator function. It will be convenient to represent players’ behavior and
beliefs using these conditional choice probability (CCP) functions. The CCP function Pjt(Xt)

represents firm i’s beliefs on the probability that firm j will be active in the market at period

t if current state is Xt. I use Pj to represent the sequence of CCPs {Pjt(.) : t = 1, 2, ..., T}.
Therefore, Pj contains firm i’s beliefs on his opponent’s current and future behavior.
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A strategy function σit(Xt, εit) is rational if for every possible value of (Xt, εit) the action

σit(Xt, εit) maximizes player i’s expected and discounted sum of current and future payoffs,

given his beliefs on the opponent’s strategies.

For the rest of the paper, I concentrate on a two-period version of this game: T = 2.

Let Pj ≡ {Pj1(.), Pj2(.)} be firm i’s beliefs on the probabilities that firm j will be active

at periods 1 and 2. At the last period, firms play a static game, and the definition of a

rational strategy is the same as in a static game. Therefore, σi2(X2, εi2) is a rational strategy

function for firm i at period 2 if σi2 (X2, εi2) = I
n
εi2 ≤ ∆

Pj
i2 (X2)

o
, where the threshold

function ∆
Pj
i2 (X2) is the difference between the expected payoff of being in the market and

the payoff of not being in the market at period 2. That is,

∆
Pj
i2 (X2) ≡ Zi ηi2 + γi2 Yi1 + αi2 Pj2(X2) (2)

Now, consider the game at period 1. The strategy function σi1(X1, εi1) is rational if σi1 (X1, εi1) =

I
n
εi1 ≤ ∆

Pj
i1 (X1)

o
, where the threshold function∆Pj

i1 (X1) represents the difference between

the expected value of firm i if he is active at period 1 minus its value if it is not active, given

that firm i behaves optimally in the future and that he believes that his opponent’s CCP

function is Pj. That is,

∆
Pj
i1 (X1) ≡ Ziηi1 + γi1Yi0 + αi1 Pj1(X1) + δi Pj1(X1)

h
V
Pj
i2 (1, 1)− V

Pj
i2 (0, 1)

i
+ δi (1− Pj1(X1))

h
V
Pj
i2 (1, 0)− V

Pj
i2 (0, 0)

i (3)

where V
Pj
i2 (X2) is firm i’s value function at period 2 averaged over εi2, i.e., V

Pj
i2 (X2) ≡Z

max {0 ; Ziηi2 + γi2Yi1 + αi2 Pj2(X2)− εi2} dHi (εi2). According to this definition of ra-

tional strategy function, we say that the CCP functions Pi1(.) and Pi2(.) are rational for firm

i if, given beliefs Pj, we have that:

Pit(Xt) = Hi

³
∆
Pj
it (Xt)

´
for t = 1, 2 (4)

At the last period, the game is static and it has the same structure as in Aradillas-Lopez

and Tamer (2008). Therefore, the derivation of rationalizability bounds on Pi2(X2), and the
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conditions for set- and point-identification of {ηi2, γi2, αi2} are the same as in that paper.
Section 2.3 discusses two important properties of the threshold functions ∆Pj

it (Xt). Section

2.4 derives rationalizability bounds on Pi1(X1). Section 3 shows how these bounds can be

used to identify the parameters {δi,ηi1, γi1, αi1}.

2.3 Two important properties of the threshold functions

The assumption of rationality (or of level-k rationality) implies informative bounds on play-

ers’ behavior only if the effect of beliefs Pj on the threshold function ∆
Pj
i1 (X1) is bounded

with probability one. Otherwise, the best response probability of an arbitrarily pessimistic

(optimistic) rational player would be zero (one) with probability one. In Aradillas-Lopez and

Tamer’s static game this condition holds if the parameters take finite values. In our finite

horizon dynamic model this condition is also necessary and sufficient. If the parameters

{δi,ηi1,ηi2, γi1, γi2, αi1, αi2} take finite values, then there are two finite constants, clowi and

chighi , such that for any belief Pj and any finite value of X1 the threshold function ∆
Pj
i1 (X1)

is bounded by these constants: ∆
Pj
i1 (X1) ∈

h
clowi , chighi

i
. For an infinite horizon dynamic

game (i.e., T =∞), we also need the discount factor δi to be smaller than one.
The recursive derivation of rationality bounds in Aradillas-Lopez and Tamer’s static game

is particularly simple because the expected payoff function is strictly monotonic in beliefs

Pj. This monotonicity condition is not really needed for identification, but it simplifies

the analysis and, likely, the estimation procedure. In our two-period game, ∆Pj
i2 (X2) is

a non-increasing function of Pj2 (Xt) if and only if αi2 ≤ 0. However, the monotonicity

of ∆Pj
i1 (X1) with respect to Pj1 (X1) does not follow simply from the restrictions αi1 ≤ 0

and αi2 ≤ 0. Restrictions on other parameters, or on beliefs, are needed to satisfy this

monotonicity condition. At period 1 we have that:

∂∆
Pj
i1 (X1)

∂Pj1 (X1)
= αi1 + δi

³
V
Pj
i2 (1, 1)− V

Pj
i2 (0, 1)− V

Pj
i2 (1, 0) + V

Pj
i2 (0, 0)

´
(5)

It is clear that αi1 ≤ 0 is not sufficient for ∆Pj
i1 to be a non-increasing function of Pj1 (X1).

We also need the value function V
Pj
i2 (Yi1, Yj1) to be not "too" super-modular. That is,
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V
Pj
i2 (1, 1) − V

Pj
i2 (0, 1) − V

Pj
i2 (1, 0) + V

Pj
i2 (0, 0) should be either negative (i.e., V

Pj
i2 is sub-

modular) or positive but not larger than −αi1/δi (i.e., V
Pj
i2 is super-modular but not "too

much"). In order to derive sufficient conditions, it is important to take into account that

V
Pj
i2 (X2) ≡ Gi(Ziηi2+γi2Yi1+αi2 Pj2(X2)) where the function Gi(a) is Eεi(max{0; a− εi}).
This function has the following properties: it is continuously differentiable; its first derivative

isHi(a) ∈ (0, 1); it is convex; lima→−∞Gi(a) = 0; lima→+∞Gi(a)−a = 0; and for any positive
constant b, we have that Gi(a+b)−Gi(a) < b. There are different sets of sufficient conditions

for ∂∆Pj
i1 (X1) /∂Pj1 (X1) ≤ 0. For instance, a simple set of conditions is αi1 ≤ 0, αi2 ≤ 0,

and αi1 − 2δiαi2 ≤ 0. Other set of conditions is αi1 ≤ 0, αi2 ≤ 0, firm i believes that ceteris

paribus it is more likely that the opponent’s will be active at period 2 if it was active at

period 1 (i.e., Pj2(Yi1, 1) ≥ Pj2(Yi1, 0) for Yi1 = 0, 1), and αi1− δiαi2 ≤ 0. For the rest of the
paper, I assume that ∆Pj

i1 (X1) is non-increasing in Pj1 (X1).

2.4 Bounds with forward-looking rationality

Let k ∈ {0, 1, 2, ...} be the index of the level of rationality of both players. I define PL,k
it (Xt)

and PU,k
it (Xt) as the lower and the upper bound, respectively, for player i’s CCP at period

t under level-k rationality. Level-0 rationality does not impose any restriction and therefore

PL,0
it (Xt) = 0 and PU,0

it (Xt) = 1 for any state Xt. For the last period, t = 2, the derivation

of the probability bounds is exactly the same as in the static model. Therefore, for k ≥ 1:

PL,k
i2 (X2) = Hi

³
Zi ηi2 + γi2 Yi1 + αi2 P

U,k−1
j2 (X2)

´
PU,k
i2 (X2) = Hi

³
Zi ηi2 + γi2 Yi1 + αi2 P

L,k−1
j2 (X2)

´ (6)

The rest of this subsection derives a recursive formula for the probability bounds at

period 1. Let Πk
j be the set of player j’s CCPs (at periods 1 and 2) which are consistent

with level-k rationality. By definition, level-k rationality bounds at period 1 are PL,k
i1 (X1) =
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Hi

³
∆L,k

i1 (X1)
´
and PU,k

i1 (X1) = Hi

³
∆U,k

i1 (X1)
´
, where:

∆L,k
i1 (X1) ≡ min

Pj∈Πk−1
j

n
∆
Pj
i1 (X1)

o
∆U,k

i1 (X1) = max
Pj∈Πk−1

j

n
∆
Pj
i1 (X1)

o (7)

Given the monotonicity of ∆Pj
i1 (X1) with respect to Pj, the minimum and the maximum

of ∆Pj
i1 (X1) are reached at the boundaries of the set Πk

j . More specifically, it is possible to

show that the value of (Pj1, Pj2) that minimizes ∆
Pj
i1 (X1) is:n

PU,k−1
j1 (X1) ; P

U,k−1
j2 (1, 1) ; PU,k−1

j2 (1, 0) ; PL,k−1
j2 (0, 1) ; PL,k−1

j2 (0, 0)
o

(8)

That is, the most pessimistic belief for firm i (i.e., the one that minimizes ∆Pj
i1 ) is such

that the probability that the opponent is active at period 1 takes its maximum value, and

when firm i decides to be active (inactive) at period 1, the probability that the opponent

is active at period 2 takes its maximum (minimum) value. Similarly, the value of (Pj1, Pj2)

that maximizes ∆Pj
i1 (X1) is:n

PL,k−1
j1 (X1) ; P

L,k−1
j2 (1, 1) ; PL,k−1

j2 (1, 0) ; PU,k−1
j2 (0, 1) ; PU,k−1

j2 (0, 0)
o

(9)

Firm i’s most optimistic belief (i.e., the one that maximizes ∆Pj
i1 ) is such that the probability

that the opponent is active at period 1 takes its minimum value, and when firm i decides to

be active (inactive) at period 1, the probability that the opponent is active at period 2 takes

its minimum (maximum) value.

Therefore, we have the following recursive formulas for the bounds∆L,k
i1 (X1) and∆

U,k
i1 (X1).

For k ≥ 1:
∆L,k

i1 (X1) = Zi ηi1 + γi1 Yi0 + αi1 P
U,k−1
j1 (X1)

+ δi
h
PU,k−1
j1 (X1) W

L,k
i2 (1) +

³
1− PU,k−1

j1 (X1)
´
WL,k

i2 (0)
i

∆U,k
i1 (X1) = Zi ηi1 + γi1 Yi0 + αi1 P

L,k−1
j1 (X1)

+ δi
h
PL,k−1
j1 (X1) W

U,k
i2 (1) +

³
1− PL,k−1

j1 (X1)
´
WU,k

i2 (0)
i (10)
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where,

WL,k
i2 (1) ≡ Gi

³
Ziηi2 + γi2 + αi2P

U,k−1
j2 (1, 1)

´
−Gi

³
Ziηi2 + αi2P

L,k−1
j2 (0, 1)

´
WL,k

i2 (0) ≡ Gi

³
Ziηi2 + γi2 + αi2P

U,k−1
j2 (1, 0)

´
−Gi

³
Ziηi2 + αi2P

L,k−1
j2 (0, 0)

´
WU,k

i2 (1) ≡ Gi

³
Ziηi2 + γi2 + αi2P

L,k−1
j2 (1, 1)

´
−Gi

³
Ziηi2 + αi2P

U,k−1
j2 (0, 1)

´
WU,k

i2 (0) ≡ Gi

³
Ziηi2 + γi2 + αi2P

L,k−1
j2 (1, 0)

´
−Gi

³
Ziηi2 + αi2P

U,k−1
j2 (0, 0)

´
(11)

For instance, for level-1 rationality we have:

∆L,1
i1 (X1) = Zi ηi1 + γi1 Yi0 + αi1 + δi [Gi (Ziηi2 + γi2 + αi2)−Gi (Ziηi2)]

∆U,1
i1 (X1) = Zi ηi1 + γi1 Yi0 + δi [Gi (Ziηi2 + γi2)−Gi (Ziηi2 + αi2)]

(12)

An important implication of the monotonicity in Pj of the threshold function ∆
Pj
i1 is

that the sequence of lower bounds {∆L,k
i1 (X1) : k ≥ 1} is non-decreasing and the sequence

of upper bounds {∆U,k
i1 (X1) : k ≥ 1} is non-increasing. That is, for any value of X1 and any

k ≥ 1:
∆L,k+1

i1 (X1) ≥ ∆L,k
i1 (X1)

∆U,k+1
i1 (X1) ≤ ∆U,k

i1 (X1)

(13)

The bounds become sharper when we increase the level of rationality.

3 Identification

Suppose that we have a random sample of many (infinite) independent markets at peri-

ods 1 and 2. For each market in the sample we observe a realization of the variables

{Yi0, Yi1, Yi2,Zi : i = 1, 2}. The realizations of the unobservable variables {εit} are inde-
pendent across markets. We are interested in using this sample to estimate the vector of

structural parameters θ ≡ {δi,ηit,γit, αit : i = 1, 2; t = 1, 2}.
Let P 0

it(Xt) be the true conditional probability function Pr(Yit = 1|Xt) in the population.

And let θ0 be the true value of θ in the population. I consider the following assumptions on

the DGP. For any player i ∈ {1, 2} and any period t ∈ {1, 2}:
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(A1) the reduced-form probability P 0it(Xt) is identified at any point in the support of Xt;

(A2) the variance-covariance matrix V ar(Zi, Yi,t−1) has full rank;

(A3) the distribution function Hi is known to the researcher;

(A4) α0it ≤ 0, and θ0 belongs to a compact set Θ.

Assumptions (A1) and (A3) imply that the population threshold function ∆0
it(Xt) ≡

H−1
i (P 0

it(Xt)) is identified at any point in the support of Xt. I use ∆0
it(Xt) instead of P 0it(Xt)

in the analysis below.

Level-k rationality implies the following restrictions on the threshold functions evaluated

at the true θ0:

∆L,k
it

¡
Xt,θ

0
¢ ≤ ∆0

it(Xt) ≤ ∆U,k
it

¡
Xt,θ

0
¢

(14)

Note that, by the monotonicity in k of the rationalizability bounds, if a value of θ satisfies

the restrictions for level-k rationality, then it also satisfies the restrictions for any level k0

smaller than k. Let Θk be the identified set of parameters for level-k rational players. By

definition:

Θk =
n
θ ∈ Θ : ∆L,k

it (Xt,θ) ≤ ∆0
it(Xt) ≤ ∆U,k

it (Xt,θ) for any (i, t,Xt)
o

(15)

In the context of dynamic games, the discount factor δi is a particularly interesting

parameter. Does the identified set Θk include the whole interval (0, 1) for the discount

factor, or can we rule out some values for that parameter? For instance, can we rule out

that players are myopic (i.e., δi = 0)? Consider the case of level-1 rationality. Given the

restriction ∆0
i1(X1) ≤ ∆U,1

i1

¡
X1,θ

0
¢
, and assuming that γ0i2 − α0i2 ≥ 0, it is straightforward

to show that:

δ0i ≥ sup
X1

½
∆0

i1(X1)− Ziη
0
i1 − γ0i1Yi0

Gi (Ziη0i2 + γ0i2)−Gi (Ziη0i2 + α0i2)

¾
(16)

This expression illustrates several aspects on the identification of δ0i . Level-1 rationality

implies informative restrictions on the set of parameters, such that Θ1 does not contain

the whole parameter space. In particular, given some values of the other parameters, we
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can guarantee that the lower bound on δ0i (the RHS of the inequality) is strictly positive.

Expression (16) also illustrates that we can rule out some values of the discount factor in

the interval (0, 1) only if we impose further restrictions: either restrictions on the other

parameters, or exclusion and support restrictions on the observable explanatory variables.

The rest of the paper presents sufficient conditions for point identification of the pa-

rameters in θ0. To prove point identification one should establish that for any vector

θ 6= θ0 there are values of Xt with positive probability mass such that the inequality

∆L,k
it (Xt,θ) ≤ ∆0

it(Xt) ≤ ∆U,k
it (Xt,θ) does not hold: i.e., either ∆

L,k
it (Xt,θ) > ∆0

it(Xt)

or ∆U,k
it (Xt,θ) < ∆0

it(Xt). The following exclusion restriction and large-support assumption

is key for the point identification results that I present below.

(A5) There is a variable Zi ⊂ Zi such that η0i1 6= 0, η0i2 6= 0, and conditional on any value
of the other variables in (Zi,Zj), denoted by Z(−i ), the random variable {Zi |Z(−i )} has
unbounded support.

THEOREM 1 (Point identification under level-1 rationalizability). Suppose that players

are level-1 rational and assumptions (A1)-(A5) hold. Let η0i1 and η0i2 be the parameters

associated with the exclusion restrictions in assumption (A5). Then, η0i1 and η0i2 are point-

identified.

PROOF: For notational simplicity, I omit in this proof the subindex i, but it should be

understood that all variables and parameters are player i’s. First, I prove the identification

of η02 . Suppose that θ is such that η2 6= η02 . Given θ and an arbitrary value of (Z(− ), Y1),

let Z∗ be the value of Z that makes the lower bound function evaluated at θ equal to the

upper bound function evaluated at θ0, i.e., ∆L,1
2 (Z∗,Z(− ), Y1;θ) = ∆U,1

2 (Z
∗,Z(− ), Y1;θ

0).

Given the form of these functions, this value is:

Z∗ ≡ ¡η2 − η02
¢−1 ¡

Z(− )

£
η02(− ) − η2(− )

¤
+ Y1

£
γ02 − γ2

¤− α2
¢

(17)

Z∗ is a finite value that belongs to the support of Z . Suppose that η2 > η02 . Then, for
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values of Z greater than Z∗ we have that:

∆L,1
2 (X2,θ) = Zη2 + γ2Y1 + α2 > Zη

0
2 + γ02Y1 = ∆U,1

2 (X2,θ
0) (18)

what contradicts the restrictions imposed by level-1 rationality. By assumption (A5), the

probability Pr(Z > Z∗|Z(− ), Y1) is strictly positive. Since the previous argument can be

applied for any possible value of (Z(− ), Y1), the result holds with a positive probability mass

Pr(Z > Z∗). Therefore, we can reject any value of η2 strictly greater than η02 . Similarly,

if η2 < η02 , then for values of Z smaller than Z∗ we have that ∆L,1
2 (X2,θ) > ∆U,1

2 (X2,θ
0).

We can reject any value of η2 strictly smaller than η02 . Hence, η
0
2 is identified.

Now, consider the identification of η01 . Note that the proof below does not assume that

η02 is known. Identification of η
0
1 does not require η

0
2 to be identified. Given the form of

the functions ∆L,1
1 and ∆U,1

1 , we have that:

∆L,1
1 (X1,θ)−∆U,1

1 (X1,θ
0) = Z (η1 − η01) + Y0 (γ1 − γ01) + α1

+ δ [G (Zη2 + γ2 + α2)−G (Zη2)]
− δ0

£
G
¡
Zη02 + γ02

¢−G
¡
Zη02 + α02

¢¤ (19)

Suppose that θ is such that η1 > η01 . By the properties of function G(.), the values

δ [G (Zη2 + γ2 + α2)−G (Zη2)] and δ0
£
G
¡
Zη02 + γ02

¢−G
¡
Zη02 + α02

¢¤
are bounded within

the intervals [0, δ (γ2 + α2)] and [0, δ0 (γ02 − α02)], respectively. Since the parameter space Θ

is a compact set, it is clear that both δ (γ2 + α2) and δ0 (γ02 − α02) are finite values. This

implies that, for any arbitrary value of (Z(− ), Y1), we can always find a finite value of Z ,

say Z̄ , such that for Z > Z̄ we have that ∆L,1
1 (X1,θ)−∆U,1

1 (X1,θ
0) > 0, what contradicts

the restrictions imposed by level-1 rationality. By assumption (A5), the probability Pr(Z >

Z̄ |Z(− ), Y0) is strictly positive. Therefore, we can reject any value of η1 strictly greater than

η01 . We can apply a similar argument to show that we can reject any value of η1 strictly

smaller than η01 . Hence, η
0
1 is identified. Q.E.D. ¥

Point identification of all the parameters of the model requires at least level-2 rationality.

Furthermore, in this dynamic game, at least two additional conditions are needed. First,

the identification the discount factor requires the last period entry cost, γ0i2, to be strictly

12



positive. If this parameter is zero, the dynamic game becomes static at period 1, and the

discount factor does not play any role in the decisions of rational players. Second, the

parameters η0i1 and η0i2 , in assumption (A5), should have the same sign.

THEOREM 2 (Point identification under level-2 rationalizability). Suppose that: assump-

tions (A1)-(A5) hold; players are level-2 rational; the parameters η0i1 and η0i2 , in assumption

(A5), have the same sign; and γ0i2 > 0. Then, all the structural parameters in θ
0 are point-

identified.

PROOF: Aradillas-Lopez and Tamer (2008) show that, under the conditions of this Theorem,

all the parameters in the static game are identified. Therefore, this proof considers that the

vector (η0i2, γ
0
i2, α

0
i2) is known and it concentrates on the identification of (δ

0
i ,η

0
i1, γ

0
i1, α

0
i1).

The proof goes through four cases which cover all the possible values of θ 6= θ0.

Case (i): Suppose that θ is such that ηi1 6= η0i1 . Theorem 1 shows that we can reject this

value of θ.

Case (ii): Suppose that θ is such that ηi1 = η0i1 , but ηi1(− ) 6= η0i1(− ) or/and γi1 6= γ0i1.

I prove here that, given that θ, there is a set of values of X1, with positive probability

mass, such that ∆L,2
i1 (X1,θ) > ∆U,2

i2

¡
X1,θ

0
¢
, what contradicts the restrictions of level-2

rationality. By definition:

∆L,2
i1 (θ)−∆U,2

i2

¡
θ0
¢
= Zi (ηi1 − η0i1) + Yi0 (γi1 − γ0i1) + αi1P

U,1
j1 (X1,θ)− α0i1P

L,1
j1 (X1,θ

0)

+ δi
h
PU,1
j1 (X1,θ) W

L,2
i2 (1) +

³
1− PU,1

j1 (X1,θ)
´
WL,2

i2 (0)
i

− δ0i

h
PL,1
j1 (X1,θ

0) WU,2
i2 (1) +

³
1− PL,1

j1 (X1,θ
0)
´
WU,2

i2 (0)
i

(20)

Given θ, let (Zi(− ), Yi0) be a vector such that Zi(− ) (ηi1 − η0i1) + Yi0 (γi1 − γ0i1) > 0. By

the non-collinearity assumption in (A2) and the exclusion restriction in (A5), for any pair

(Zi , Zj ) the set of values (Zi(− ), Yi0) satisfying the previous inequality has positive proba-

bility mass. Now, given the monotonicity of the probabilities PL,1
j1 , P

U,1
j1 , P

L,1
j2 and PU,1

j2 with

respect to Zj , and given that sign
¡
η0j1

¢
= sign

¡
η0j2

¢
, we can find values of Zj large enough

(or small enough, depending on the sign of the parameter) such that these probabilities are
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arbitrarily close to zero. That is the case both for the probabilities evaluated at θ and for

those evaluated at θ0 because in both cases the values of ηj1 and ηj2 are the true ones, η
0
j1

and η0j2 . Therefore, for these values of Zj we have that:

∆L,2
i1 (θ)−∆U,2

i2

¡
θ0
¢ ' Zi(− ) (ηi1 − η0i1) + Yi0 (γi1 − γ0i1)
+

¡
δi − δ0i

¢
[Gi (Ziη

0
i2 + γ0i2)−Gi (Ziη

0
i2)]

(21)

By the definition of the function Gi(.), as Zi η
0
i 2 goes to −∞, both Gi (Ziη

0
i2 + γ0i2) and

Gi(Ziη
0
i2) go to zero. Therefore, for these pairs of (Zi , Zj ) we have that ∆L,2

i1 (θ) −
∆U,2

i2

¡
θ0
¢ ' Zi(− ) (ηi1 − η0i1) + Yi0 (γi1 − γ0i1) > 0, , what contradicts the restrictions of

level-2 rationality. Thus, η0i1(− ) and γ0i1 are identified.

Case (iii): Suppose that θ is such that ηi1 = η0i1 and γi1 = γ0i1 but αi1 6= α0i1. Now,

∆L,2
i1 (θ)−∆U,2

i2

¡
θ0
¢
= αi1P

U,1
j1 (X1,θ)− α0i1P

L,1
j1 (X1,θ

0)

+ δi
h
PU,1
j1 (X1,θ) W

L,2
i2 (1) +

³
1− PU,1

j1 (X1,θ)
´
WL,2

i2 (0)
i

− δ0i

h
PL,1
j1 (X1,θ

0) WU,2
i2 (1) +

³
1− PL,1

j1 (X1,θ
0)
´
WU,2

i2 (0)
i (22)

Suppose that αi1 > α0i1. There are values of Zj large enough (or small enough) such that

the probabilities PL,1
j1 , P

U,1
j1 , P

L,1
j2 and PU,1

j2 are arbitrarily close to one. For these values:

∆L,2
i1 (θ)−∆U,2

i2

¡
θ0
¢ ' αi1 − α0i1 +

¡
δi − δ0i

¢
[Gi (Ziη

0
i2 + γ0i2 + α0i2)−Gi (Ziη

0
i2 + α0i2)]

(23)

As Zi η
0
i 2 goes to −∞, Gi (Ziη

0
i2 + γ0i2 + α0i2) and Gi (Ziη

0
i2 + α0i2) go to zero. Therefore, for

these pairs of (Zi , Zj ) we have that ∆
L,2
i1 (θ)−∆U,2

i2

¡
θ0
¢ ' αi1 − α0i1 > 0, what contradicts

the restrictions of level-2 rationality. Similarly, when αi1 < α0i1 we can show that there is a

set of values of X1, with positive probability mass, such that ∆
U,2
i1 (X1,θ) < ∆L,2

i2

¡
X1,θ

0
¢
,

what also contradicts the restrictions of level-2 rationality. Thus, α0i1 is identified.

Case (iv): Suppose that θ is such that ηi1 = η0i1, γi1 = γ0i1, and αi1 = α0i1, but δi 6= δ0i .

Then,

∆L,2
i1 (θ)−∆U,2

i2

¡
θ0
¢
= α0i1

h
PU,1
j1 (X1,θ)− PL,1

j1 (X1,θ
0)
i

+ δi
h
PU,1
j1 (X1,θ) W

L,2
i2 (1) +

³
1− PU,1

j1 (X1,θ)
´
WL,2

i2 (0)
i

− δ0i

h
PL,1
j1 (X1,θ

0) WU,2
i2 (1) +

³
1− PL,1

j1 (X1,θ
0)
´
WU,2

i2 (0)
i (24)
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Suppose that δi > δ0i . There are values of Zj large enough (or small enough) such that the

probabilities PL,1
j1 , P

U,1
j1 , P

L,1
j2 and PU,1

j2 are arbitrarily close to zero. For these values:

∆L,2
i1 (θ)−∆U,2

i2

¡
θ0
¢ ' ¡

δi − δ0i
¢
[Gi (Ziη

0
i2 + γ0i2)−Gi (Ziη

0
i2)] > 0 (25)

what contradicts the restrictions of level-2 rationality. Now, consider the difference between

∆U,2
i1 (θ) and ∆L,2

i2

¡
θ0
¢
. We have that:

∆U,2
i1 (θ)−∆L,2

i2

¡
θ0
¢
= α0i1

h
PL,1
j1 (X1,θ)− PU,1

j1 (X1,θ
0)
i

+ δi
h
PL,1
j1 (X1,θ) W

U,2
i2 (1) +

³
1− PL,1

j1 (X1,θ)
´
WU,2

i2 (0)
i

− δ0i

h
PU,1
j1 (X1,θ

0) WL,2
i2 (1) +

³
1− PU,1

j1 (X1,θ
0)
´
WL,2

i2 (0)
i (26)

Suppose that δi < δ0i . There are values of Zj large enough (or small enough) such that the

probabilities PL,1
j1 , P

U,1
j1 , P

L,1
j2 and PU,1

j2 are arbitrarily close to zero. For these values:

∆U,2
i1 (θ)−∆L,2

i2

¡
θ0
¢ ' ¡

δi − δ0i
¢
[Gi (Ziη

0
i2 + γ0i2)−Gi (Ziη

0
i2)] < 0 (27)

what contradicts the restrictions of level-2 rationality. Thus, δ0i is identified. Q.E.D. ¥
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