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1 Introduction

This paper is based on the hypothesis that individual decisions are guided by

hedonic utility. An individual who faces several alternatives will choose the

one that promises the greatest pleasure, or happiness. Then, given that the

properties of a hedonic utility function determine individual behavior, and

individual behavior determines biological fitness, evolutionary forces will have

shaped our utility during the long time in which the modern human being

evolved.

In this sense, hedonic utility can be considered as a reward system that

induces individuals to make optimal choices, a view which is supported both

by theory and evidence from neuroscience.1 As Kupfermann, Kandel, and

Iversen (2000, p. 1007) express it: “Pleasure is unquestionably a key factor

in controlling the motivated behaviors of humans”. For the economist, the

interesting question is then about the properties of the evolutionary optimal

reward system, and how these properties adapt to the environment in which

individuals make choices.

The present paper reconsiders and solves a general model of the evolution

of utility suggested by Robson (2001a), which predicts how cardinal proper-

ties of utility functions should adapt to the decision environment. It turns

out that the optimal utility function will be steep in regions where decisions

have to be made frequently, and where wrong decisions would lead to large

losses in fitness. In those regions, even small changes in consumption will

cause large changes in happiness. The evolution of context specific utility

functions is then shown to be optimal whenever the decisions which our an-

cestors had to take arrived in distinct choice situations. The model can also

be extended to incorporate learning about evolutionary relevant attributes

of available options.

The general model suggests several applications. Concerning intertempo-

ral decisions, evolution may have endowed us with different utility functions

for short-run and for long-run decisions. The model therefore provides an evo-

1The somatic marker hypothesis by Damasio (1994) states that decision alternatives
are evaluated according to emotions attributed to them. Bechara, Damasio, and Damasio
(2000) survey several studies that support this claim. In an experiment with monkeys,
Padoa-Schioppa and Assad (2006) identify neurons in the orbitofrontal cortex whose state
represents the value of alternatives in choice situations. The orbitofrontal cortex is gen-
erally considered to be responsible “for linking food and other types of reward to hedonic
experience” (Kringelbach 2005).
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lutionary justification for the “multiple-selves” approach to time discounting

(see Frederick, Loewenstein, and O’Donoghue (2002) for an overview), where

dynamic inconsistency arises from a conflict between different decision mech-

anisms. This view has been corroborated by the results of McClure, Laibson,

Loewenstein, and Cohen (2004), who show that different parts of the human

brain are active in short-run and in long-run decisions. The present model

predicts that conflict between the “myopic” and the “farsighted” mechanism

is more likely to occur if the decision-maker is adapted to small payoffs in

the short-run. It also sheds light on the evolutionary role of precommitment

as introduced by Strotz (1955).

In the context of attitudes towards risk, the model highlights an influ-

ence of environmental randomness which has not yet been discussed by the

literature. Risk attitudes will not only be influenced by the technology that

converts consumption into fitness, as in Robson (1996) and (2001b), but also

by the distribution according to which opportunities arise for the decision

maker.2 The model then offers an immediate evolutionary rationale for S-

shaped value functions as in prospect theory (Kahneman and Tversky 1979).

Most interestingly, it identifies the individual’s reference point with the peak

of the density that describes the availability of alternatives. This provides a

clear prediction of the reference point even in highly stochastic environments.

The contributions by Rayo and Becker (2007a) and (2007b) also deal with

the evolution and adaption of hedonic utility. In their model, optimal hap-

piness derived from income is a step function with a unique jump, which can

be interpreted as the aspiration level an agent wants to achieve. The aspi-

ration level can then be shown to adjust over time and in accordance with

income levels of a peer group, given that payoffs are correlated over time

and across individuals. This offers an evolutionary explanation for habit for-

mation and peer comparisons, phenomena frequently observed in happiness

surveys.3 The present paper addresses different questions, making use of a

different model. While the underlying adaption mechanisms share similar-

ities – in the sense that utility adjusts to the decision environment like an

2The literature, including Cooper and Kaplan (1982), Robson (1996), Bergstrom (1997)
and Curry (2001) has also highlighted the role of aggregate risk, which makes deviations
from standard expected utility maximization evolutionarily optimal.

3Samuelson (2004) shows that relative consumption effects can be an evolutionary op-
timal way for the decision-maker to utilize information about the state of nature contained
in the consumption of others.
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eye to the ambient brightness (Frederick and Loewenstein 1999) – the model

outlined below derives utility as a tool to make reasonable comparisons be-

tween any pair of alternatives, as opposed to identifying only the best out of

a large set. For the purpose of the paper, this turns out to be the appropriate

starting point.

The paper is organized as follows. The general model and its solution are

presented in section 2. Section 3 is devoted to the evolution of intertemporal

preferences. Section 4 is concerned with attitudes towards risk. Section 5

concludes. More formal material can be found in the Appendix.

2 A General Model

2.1 Description

The model in this section has been suggested by Robson (2001a). It has

been solved there for an approximate evolutionary criterion, the probability

of mistakes criterion. In the following, it will be solved under the correct

objective, the expected loss criterion.

Assume an agent repeatedly has to make choices between alternatives

from a set X = [a, b], which are identified with fitness. Thus, alternative

x ∈ X yields fitness x, where fitness could simply be thought of as the

number of offspring.4 When making a decision, the agent does not face the

whole set X, but only two alternatives that are independently drawn from

X according to the same random distribution. The agent has to choose

one of these alternatives. It will be assumed throughout that the random

distribution can be represented by a bounded density f with finitely many

discontinuities. The corresponding distribution function is denoted by F .

The distribution F represents the agent’s environment by describing the

availability of different alternatives. For example, during good times, in

fertile geographical regions, or under a favorable climate, large fitness alter-

natives will be available with greater probability than otherwise. Changes in

the environment can later be modeled through changing distributions. For

the moment, the distribution is considered as fixed.

The agent is endowed with a hedonic utility function that assigns a level

4The case where alternatives are not directly equated with fitness levels is considered
later in this section.
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of pleasure or happiness to each element in X. The alternative that promises

larger pleasure will be chosen. The question now is: which utility function

leads to the largest expected fitness? It is motivated by the idea that evolu-

tion will eventually have “discovered” and selected this optimal function.

Without any restrictions on the set of admissible functions, the problem

is trivial. Any strictly increasing utility function ensures that the better of

any two alternatives will correctly be identified. This is, on the other hand,

not a realistic assumption. Happiness cannot be perceived in arbitrarily fine

shades, due to limitations of human sensory abilities.5 This constraint can

be modeled by assuming that utility can only take discrete, albeit extremely

many values. In the following, the set of admissible utility functions is thus

restricted to the set of increasing step functions with N ∈ N jumps, each

corresponding to a utility increment of size 1/N . As a result, the agent

cannot distinguish two alternatives located on the same step of the utility

function. Any choice between such alternatives will have to be random and

a mistake can occur. Clearly, different step utility functions will then lead to

different levels of expected fitness.

The size of N measures the degree of the perceptual constraint, which

vanishes as N →∞,6 while the assumption of utility increments of size 1/N

ensures that utility is normalized to the interval [0, 1] for all values of N . In

the following, results will be derived for the limiting case where N → ∞,

motivated by the presumption that perceptual constraints do exist but are

small. Also, the optimal limiting utility function turns out to be continuous.

It is thus an easy-to-deal-with approximation for a step function with a huge

number of steps.

The problem of finding the optimal step utility function is equivalent to

the problem of locating N thresholds in the set X, where two alternatives can

only be distinguished if there is at least one threshold between them.7 When-

ever two alternatives are drawn from in between two neighboring thresholds,

the agent will choose the worse one with probability 1/2. Robson (2001a)

has analyzed the problem of locating the thresholds to minimize the proba-

bility of such mistakes, obtaining a simple and intuitive solution, which will

be replicated below. The appropriate evolutionary criterion, however, is the

5See, for example, Gardner and Martin (2000).
6The assumption of a large but finite N is analogous to the limited perception constraint

by Rayo and Becker (2007a).
7This representation of the problem is in fact the one used by Robson (2001a).
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maximization of expected fitness, or, equivalently, the minimization of the

expected loss due to wrong decisions.

2.2 Solution

The problem is solved here in three stages. First, the density f is approxi-

mated by a sequence of step densities with finitely many steps, (f̂S)S∈N, in

a way that ensures uniform convergence to f as the number of steps grows

to infinity, i.e. as S → ∞. The technical details of the approximation are

given in the Appendix, Section 6.1. Second, the problem of optimal threshold

location is solved for these step densities, yielding utility functions for the

limit as N → ∞.8 Finally, the behavior of these functions is examined as

the step densities converge to f .

To obtain the utility of an alternative x ∈ X for a fixed profile of N

thresholds, the number of thresholds below x has to be multiplied by 1/N .

Denote then by θN,S(x) the number of thresholds below x given that N

thresholds have been located to maximize expected fitness under the step

density f̂S. The resulting utility is given by UN,S(x) = θN,S(x)/N . For

comparison, let ϑN,S(x) be the number of thresholds below x if the probability

of mistakes is minimized, yielding utility VN,S(x) = ϑN,S(x)/N . The main

result of this section, proven in the Appendix, Section 6.2, can now be stated

as follows:

Theorem 2.1. For each x ∈ X

V (x) := lim
S→∞

lim
N→∞

VN,S(x) =

∫ x

a

f(y)dy = F (x),

and

U(x) := lim
S→∞

lim
N→∞

UN,S(x) = c

∫ x

a

f(y)2/3dy,

where c = (
∫ b

a f(y)2/3dy)−1 is a normalizing constant.

The limiting utility function V (x), which follows from minimizing the

probability of mistakes, equals the distribution function F (x). The same

8It is easy to show that an optimal solution to the problem exists for any number
of thresholds N . Let T = {t ∈ [a, b]N |a ≤ t1 ≤ ... ≤ tN ≤ b} be the domain of the
optimization, where tk denotes the position of the k-th smallest threshold in [a, b]. Clearly,
T is compact. Since the loss function as defined in the Appendix is continuous, the
statement follows from the Weierstrass Theorem. Should there be several solutions, the
following results hold for any selection of them.



A General Model 6

result has been obtained by Robson (2001a), who solves for the optimal

threshold positions directly.9 Intuitively, when only the mistake probability

is concerned, many thresholds should be allocated to regions of X where

decisions have to be made with large probability, i.e. where the density f(x)

is large. Avoiding mistakes in this region is particularly beneficial. The

limiting utility function will then be steep in this region, resembling the

distribution function.

Evolution maximizes expected fitness, for which the size of mistakes mat-

ters as well. As the distance between two neighboring thresholds varies, both

the mistake probability and the average size of a mistake between these two

thresholds are affected in the same direction. The overall expected fitness loss

between two thresholds then depends on the cube of the distance between

them, making strong variations in the distances between thresholds undesir-

able. The evolutionary optimal distribution of thresholds is thus more even

than indicated by the first result. In particular, this implies that the slope

of U(x) will not vary as much as the slope of F (x), which is achieved by the

concave transformation of f(x) in the definition of U(x).10

Besides Theorem 2.1, the threshold model delivers an intuitive interpre-

tation for the slope of a utility function. Since a large slope derives from a

dense allocation of thresholds, one can think of marginal utility as the degree

of attention devoted to the respective alternative. Marginal utility will be

large in areas where correct decisions are especially important. The curvature

properties of a utility function then correspond to changes in attention.

2.3 Extensions

The analysis above proceeded under the assumption that choices are made

between fitness levels. In reality, however, choice is between consumption

bundles, and we do unquestionably derive utility directly from consumption

of various goods, rather than from their fitness value.11

To capture this, assume that the individual makes pairwise choices be-

tween alternatives from a set Y ⊆ R, which are independently drawn ac-

cording to a distribution function G. The alternatives are then mapped to

9When the mistakes probability is minimized, the problem can be solved without the
detour via step densities. This approach is not transferable to the case of loss minimization.

10Clearly, U(x) and V (x) coincide for a uniform fitness distribution.
11See Robson (2001a, p. 16) for evolutionary arguments why preferences over consump-

tion are likely to dominate preferences defined on reproductive value.
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fitness through a function ψ : Y → [a, b]. This again induces a distribution

of fitness levels in X, for which an optimal utility function can be derived

as above. The utility assigned to alternative y ∈ Y then becomes U(ψ(y)),

which will simply be denoted by U(y) (or V (y), respectively) with some abuse

of notation.

For Theorem 2.1 to be applicable, the induced distribution of fitness levels

needs to to be representable by a bounded density f(x) with finitely many

discontinuities. This requirement is not very restrictive and can be ensured

by various different joint assumptions on Y , ψ and G. For example, make

the following (strong) assumption.

Assumption 2.1. Y = [d, e], ψ is continuously differentiable with ψ′(y) > 0

for all y ∈ Y , ψ(d) = a and ψ(e) = b, and the distribution on Y can be

represented by a continuous density g.

Assumption 2.1 is by no means necessary for the theorem to be applicable,

but it ensures that the induced fitness density f(x) is continuous, producing

continuously differentiable utility functions. These functions, defined on Y ,

are

U(y) = c

∫ ψ(y)

a

f(x)2/3dx

for the expected loss criterion and

V (y) = F (ψ(y)) = G(y)

for the probability of mistakes criterion. Closer inspection of U(y) reveals

the following result:

Proposition 2.2. Under Assumption 2.1, the function U(y) is continuously

differentiable with

U ′(y) = c g(y)2/3ψ′(y)1/3.

Proof. Derive the induced fitness distribution function F (x) first. Since ψ

is strictly increasing, F (x) = G(ψ−1(x)) holds. Therefore, F (x) is continu-

ously differentiable under Assumption 2.1, with derivative F ′(x) = f(x) =

g(ψ−1(x))(∂ψ−1(x)/∂x) = g(ψ−1(x))/ψ′(ψ−1(x)). Hence

U ′(y) = c ψ′(y)f(ψ(y))2/3 = c g(y)2/3ψ′(y)1/3.
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The proposition shows that the slope of U(y) at y corresponds to a nor-

malized weighted geometric mean of the slope of the distribution function

G(y) and of the slope of the fitness function ψ(y). The utility function U(y)

therefore represents an intermediate case between the actual fitness function

ψ(y) (properly normalized) and the distribution function G(y). Intuitively,

utility should again be steep in regions of Y where decisions have to be made

often. However, since the size of mistakes – measured in fitness – matters as

well, utility should also inherit properties of the fitness function ψ. Specifi-

cally, when ψ is steep somewhere, thresholds should be spaced closely there,

because a wrong decision is severely damaging even if the two alternatives

at choice are very close to each other. On the other hand, mistakes are not

very damaging in regions where ψ is almost flat and all alternatives yield

very similar fitness levels.

U(y) is twice differentiable at each y ∈ Y where g(y) and ψ′(y) are dif-

ferentiable and g(y) > 0, with

U ′′(y) =
2

3
c

(
ψ′(y)

g(y)

)1/3

g′(y) +
1

3
c

(
g(y)

ψ′(y)

)2/3

ψ′′(y).

The second derivative of U(y) therefore corresponds to a weighted average

(with varying weights) between the second derivatives of G and ψ. If, for

example, the fitness function ψ is concave, utility can still be convex if G is

convex.

So far, the assumption of a one-dimensional set of alternatives Y ⊆ R has

been made. The model can be extended to higher-dimensional sets Y ⊆ Rn,

though, as long as there is a single-valued fitness function ψ : Y → [a, b] and

a distribution function G on Y that induce a bounded fitness density f(x)

with finitely many discontinuities.12 As above, the optimal utility from an

alternative y = (y1, ..., yn) ∈ Y becomes

U(y1, ..., yn) = c

∫ ψ(y1,...,yn)

a

f(x)2/3dx.

Clearly, the resulting indifference curves coincide with fitness isoquants. Un-

12The combination of a multi-dimensional set of alternatives and a single-valued fitness
function is referred to as a “fitness landscape” in biology (Wright 1932).
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der the respective differentiability conditions,

∂U(y)

∂yi
= c

∂ψ(y)

∂yi
f(ψ(y))2/3

holds for all i = 1, ..., n. Marginal utility is jointly determined by the density

at bundle y’s induced fitness level, f(ψ(y)), and by the partial derivative of

the fitness function, ∂ψ(y)/∂yi. Thus, it again reflects the importance of

bundle y and specifically of its i’th component in decisions.13

2.4 Hedonic Adaption

A choice situation as described above consists of a set of alternatives Y , a

fitness function ψ, and a distribution function G. For this situation (Y,ψ, G),

an optimal utility function U : Y → [0, 1] can be obtained. If the decision

situations that our ancestors faced varied systematically during a human

lifetime, evolution will have selected individuals whose utility functions ac-

commodate to change. Hence an adaption mechanism can be thought of as a

family of utility functions together with a rule, which specifies what function

becomes active at what point in time.

Consider first the case of a changing environment modeled through a

changing distribution function as discussed in Section 2.1. In general, adap-

tion of utility will have to be triggered by perceivable changes in the environ-

ment, which were (and might still be) correlated with changes in G, which is

itself not directly observable. For example, an accumulation of large payoffs

by oneself or others will generally indicate that the environment has devel-

oped in a favorable way, and hedonic adaption will occur.14 Realized payoffs

are, however, not the only possible trigger. If, for example, the nature of

decision problems changed systematically with individual age, utility should

be expected to differ between age groups. Hedonic adaption to changes in G

will mostly be discussed in the application in Section 4.

Apparently, choice situations can also differ with respect to the set of

available alternatives Y . Hunter-gatherers are frequently confronted with

typical hunt decisions, involving the choice between different hunting strate-

13Second partial derivatives can also be examined. The local curvature properties of U
are again influenced by those of the fitness function and of the distribution function.

14This is essentially the adaption mechanism at work in Rayo and Becker (2007a) and
(2007b), where realized payoffs contain information about the state of nature.
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gies (which animal to hunt, which technique to use). The choice between

different foraging strategies appears as a different decision problem, which

can clearly be distinguished from the first one. Yet another choice situation

will have involved the long-run choice between different areas of habitation.

If individuals can distinguish these situations, evolution should have endowed

them with context specific utility functions, each one tailored to a particular

decision problem, and activated by the recognition of the respective choice

situation. Within each of these context specific choice mechanisms, hedonic

adaption to the environment occurs as described above. Section 3 contains

an application of this idea to intertemporal decision-making.

2.5 Discussion

Kahneman, Wakker, and Sarin (1997) (KWS) distinguish two notions of he-

donic utility: “instant utility” is the pain or pleasure that an individual

experiences during a temporally extended outcome, while “remembered util-

ity” refers to the individual’s retrospective hedonic evaluation of the experi-

ence.15 They show that the latter is an accurate predictor of behavior: after

individuals have first been exposed to different treatments and have learned

about their implications, they choose to repeat the treatment for which they

report the largest level of remembered utility. Surprisingly, this level differs

systematically from reports on instant utility during the initial treatments,

indicating substantial flaws in memory. The model at hand might help to

shed light on this puzzle. It will be argued that instant and remembered

utility perform different tasks and have thus been shaped by different evolu-

tionary forces.

Assume that an agent finds itself in an entirely new decision environment

(Y,ψ, G). For example, unfamiliar plants become available at a new location,

and the consequences of consuming them are still unknown. It thus takes an

initial phase of experimentation during which the new alternatives are ex-

plored. Formally, the agent collects information (not necessarily consciously)

about fitness relevant characteristics of the new options and hence about the

function ψ.16 This information subsequently finds its way into an optimally

15Temporally extended outcomes are treatments that last up to several minutes. KWS
report on several studies where individuals were exposed to short films, medical treatments,
and varying temperatures.

16Note that actual fitness implications need not be observable. Through consumption,
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adapted hedonic utility function. By construction, this utility function deter-

mines decisions, and thus corresponds to what KWS call remembered utility.

If an individual is asked to assess alternatives during later choice situations, it

“remembers” their fitness relevant characteristics and evaluates them accord-

ingly. From this perspective, the expression “remembered utility” might be

misleading, as optimal decision-makers will remember fitness relevant char-

acteristics and report a current evaluation of them, rather than a recollection

of previous hedonic experience.

This interpretation offers a first idea as to the evolutionary role of instant

utility. Any initial phase of experimentation must involve substantial dan-

gers due to the novelty of alternatives. It is then clearly expedient to have a

warning system that keeps track of all relevant information during the con-

sumption of temporally extended outcomes. The main purpose of instant

utility might thus be to give “a ’stop’ signal” (KWS, p. 379) early enough to

prevent enduring damage to the individual. Naturally, this warning system

should only account for acute dangers and will not be able to judge overall

fitness adequately. Therefore, instant and remembered utility will only be

vaguely correlated, and it is no flaw if individuals do not remember past

hedonic experiences correctly. Reports or physiological measurements of he-

donic values will only provide suitable predictions for behavior if they are

elicited in a framing that resembles an actual choice situation.

3 Intertemporal Preferences

3.1 A Discrete Time Model

To apply the results of Section 2 to intertemporal preferences, the following

model allows alternatives to differ both in payoff v ∈ [0, 1] and in waiting

time t ∈ {0, 1, ..., T}, after which the payoff is realized. Assume that the

fitness of an alternative y = (t, v), evaluated at the point in time where the

choice is made, is given by the exponential function ψ(t, v) = δtv, where

0 < δ < 1 is a discount factor. There are various reasons for discounting

delayed payoffs in such a way. If, for example, there is a constant hazard

that the payoff vanishes while the agent waits for it, as in Sozou (1998) or

Dasgupta and Maskin (2005), the expected fitness of an alternative can be

the agent will rather learn about characteristics such as nutritiousness or health impacts.
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expressed as above. Alternatively, population growth (Hansson and Stuart

1999, Robson and Samuelson 2007) or declining fertility (Rogers 1994) can

be reasons for exponential fitness discounting.

Alternatives are drawn as follows. First, a waiting time is drawn according

to strictly positive probabilities pt, t = 0, ..., T . Conditional on t, a payoff v

is then chosen according to a distribution function Gt(v) with continuous

density gt(v). Issues related to returns on investment can be captured by the

assumption that the densities gt vary with t in a systematic way. This setup

will be referred to as the discrete time model in the following. Lemma 3.1,

proven in the Appendix, characterizes the induced fitness distribution.

Lemma 3.1. In the discrete time model, fitness levels are distributed in

X = [0, 1] according to the density

f(x) =
t̂(x)∑

t=0

pt

δt
gt

( x

δt

)
,

where t̂(x) is the largest waiting time t for which x ≤ δt holds.

Observe that the fitness density f(x) is left-continuous with possible

downwards jumps at the points x = δt for t = 1, ..., T . A jump occurs

because slightly larger fitness levels than x are no longer attainable with a

waiting time of t̂(x) if x = δt, i.e. t̂(x) is a step function with downwards

jumps at x = δt, t = 1, ..., T . The following sections will repeatedly make

use of different versions of the discrete time model.

3.2 Multiple Selves

The idea of context specific utility functions as an optimal solution in the

presence of separable decision situations has been introduced in Section 2.4.

Consider then a modified version of the discrete time model, where the agent

is faced with two possible choice situations. The first one involves short-run

alternatives with waiting time t = 0 and payoffs v that are drawn from [0, 1]

according to the density g0. The second situation involves alternatives with

waiting times t ∈ {1, 2}, where t = 1 occurs with probability 0 < p < 1 and

t = 2 occurs with probability 1− p. Payoffs are drawn from [0, 1] conditional

on waiting time according to the densities g1 and g2. The type of decision

situation (short-run vs. long-run) is revealed to the agent before the actual
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choice, so that an optimal utility function can be activated. Hence a function

U(0, v) evolves independently from U(t, v) for t = 1, 2. These two functions,

or decision mechanisms, can be interpreted as the “multiple selves” pro-

posed by Winston (1980), Schelling (1984) and Ainslie and Haslam (1992).17

In a recent study, McClure, Laibson, Loewenstein, and Cohen (2004) find

that there are actually two different neural systems involved in intertempo-

ral decision-making. Functional magnetic resonance imaging reveals that the

limbic system is especially active when immediate payoffs are evaluated, while

the lateral prefrontal cortex is relatively more engaged in long-run decisions.

The model thus offers an evolutionary rationale for the existence of mul-

tiple selves and explains “why either type of agent emerges when it does”

(Frederick, Loewenstein, and O’Donoghue 2002, p. 376). The crucial as-

sumption behind the result is that the individual either faces two short-run or

two long-run alternatives. In the first place, this captures the intuition that

most decisions are between similar options, rather than between arbitrary

alternatives, projects, or bundles of goods. More importantly, it involves the

implicit assumption that choices are irreversible. An initial choice between

two alternatives (1, v1) and (2, v2) appears as a choice between (0, v1) and

(1, v2) one period later. If the initial choice could be reconsidered, short-

and long-run decisions would no longer be separate. Irreversibility appears

as a realistic assumption for many day-to-day decisions in hunter-gatherer

societies. In particular, most of the examples that economists refer to in the

discussion of preference reversals rely on the existence of money, credit and

bank accounts, such as the premature spending of savings (Strotz 1955) or

the effect of credit cards on savings (Laibson 1999). On the other hand, “all

illiquid assets provide a form of commitment” (Laibson 1999, p. 444), and

storage is necessarily illiquid in hunter-gatherer societies.18 Irreversibility of

decisions will be assumed for the rest of this subsection, but the assumption

will be dispensed with in Section 3.3.

The fitness of short-run alternatives is distributed in [0, 1] according to

the density fS(x) = g0(x). In long-run decisions, fitness levels are distributed

17See also Thaler and Shefrin (1981), Elster (1985), Read (2001) and Fudenberg and
Levine (2006).

18For example, storage in primitive societies takes the form of somatic capital or in-
tergenerational transfers (Robson and Kaplan 2007), which makes any savings decision
irreversible.
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in [0, δ] according to

fL(x) =

{
(p/δ) g1(x/δ) if x > δ2

(p/δ) g1(x/δ) + ((1− p)/δ2) g2(x/δ2) if x ≤ δ2.

The utility function used to evaluate short-run alternatives is thus given

by U(0, v) = cS

∫ v

0 fS(x)2/3dx, while U(t, v) = cL

∫ δtv

0 fL(x)2/3dx obtains for

t = 1, 2. Now consider two long-run alternatives:

Definition 3.2. The decision between y1 = (1, v1) and y2 = (2, v2) creates

regret if (i) U(1, v1) ≤ U(2, v2), and (ii) U(0, v1) > U(1, v2).

Regret refers to a case in which the agent initially prefers the alternative

with the larger waiting time, but, after one period has passed and the earlier

alternative has moved to the presence, would prefer to reverse the decision.

The main proposition in this section states that regret will arise whenever

the agent is accustomed to sufficiently small payoffs in the short run. To be

able to formalize “sufficiently small”, it makes use of the following definition.

Definition 3.3. Let h(v; λ) be a family of continuous densities on [0, 1],

parameterized by λ > 0, that satisfies for all y > 0

lim
λ→∞

∫ y

0 h(v; λ)2/3dv
∫ 1

0 h(v; λ)2/3dv
= 1.

According to the definition, raising λ shifts probability mass to the left, in

the sense that the whole relative area under the function h(v; λ)2/3 eventually

concentrates below y as λ →∞, for any strictly positive y. This property is

satisfied by several common distributions, such as the truncated exponential

or a triangular distribution.19 It is now possible to state the following result,

which is proven in the Appendix:

Proposition 3.4. Assume that g1(v) > 0 for all v ∈ [0, 1]. Then for any

v1, v2 ∈ (0, 1) with v1 ≤ δv2, there exists a value λ̄(v1, v2) ∈ R such that the

decision between y1 = (1, v1) and y2 = (2, v2) creates regret if g0(v) = h(v; λ)

for any λ > λ̄(v1, v2).

19For the truncated exponential distribution with h(v; λ) = (λe−λv)/(1−e−λ), it follows
that (

∫ y
0 h(v; λ)2/3dv)/(

∫ 1
0 h(v; λ)2/3dv) = (1− e−

2
3 λy)/(1− e−

2
3 λ), which satisfies Defini-

tion 3.3. It is straightforward to check the analogous property for a triangular distribution
with h(v; λ) = 2(λ + 1)− 2(λ + 1)2v if v ≤ 1/(λ + 1) and h(v; λ) = 0 otherwise.
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If the agent is mostly confronted with small payoffs in short-run decisions,

it will experience large levels of pleasure U(0, v) even if v is small. This is

a direct implication of the general insights derived in Section 2. Conflict

between the farsighted and the myopic self is then more likely to occur.

While the individual preferred the alternative with longer waiting time in

the original decision, the earlier alternative becomes exceptionally tempting

as soon as it has moved to the presence and is evaluated according to short-

run utility.20 Immediate payoffs will indeed tend to be smaller than delayed

payoffs, during our ancestors’ times as well as today, due to natural growth,

interest, or because more important decisions are generally taken well in

advance. These are the basic conditions that favor regret.

3.3 Dynamic Inconsistency and Precommitment

Regret as considered so far is of purely seductive nature. The agent would

like to reverse the initial decision, but is not able to do so by assumption.

As argued before, however, irreversibility of decisions is a much less plausible

assumption for today’s world than for the environment of our ancestors. If

the modern individual is given the chance to reconsider its choice, regret will

translate into a decision reversal. Dynamically inconsistent behavior is the

result of maladaption to a world in which decisions have become increasingly

reversible.

Dasgupta and Maskin (2005) argue that reversals are the consequence of

adaption to a world in which the relative fitness of two alternatives actually

changed as time went by.21 The advantage of the present approach is that

it sheds light on the often observed awareness of future inconsistent behav-

ior and the farsighted self’s urge to constrain the myopic self.22 Successful

precommitment makes long-run decisions irreversible and thus preserves the

advantage of maintaining specialized decision mechanisms. One should there-

fore expect some degree of “sophistication” (Strotz 1955) to co-evolve with

multiple selves. The coexistence of potentially conflicting decision mecha-

20The model therefore explains why temptation (Gul and Pesendorfer 2001) can arise.
21They assume that payoffs can always realize earlier than expected. If early realization

does not occur, the later alternative becomes relatively less fit. Sozou (1998) also discusses
the evolution of non-exponential discounting, but the model does not explain dynamic
inconsistency as considered here.

22Frederick, Loewenstein, and O’Donoghue (2002), for example, pose the question why
“farsighted selves often attempt to control the behaviors of myopic selves, but never the
reverse” (p. 376).
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nisms and the ability to foresee future choice inconsistencies is then not at

all paradoxical: context specific utility functions make better choices pos-

sible, and self-constraints prevent wrong utility functions from interfering

later.

4 Attitudes Towards Risk

Some first implications for the curvature properties of optimal utility func-

tions follow immediately. Assume again that individuals choose directly be-

tween fitness levels from X = [a, b], which are drawn and offered accord-

ing to a density f(x). Under the assumption that f is differentiable, the

Arrow-Pratt coefficients of absolute risk-aversion RAU and RAV for the two

functions U and V can then easily be calculated:

Corollary 4.1. If f(x) is differentiable and f(x) > 0,

RAV (x) = −f ′(x)

f(x)
and RAU(x) = −2

3

f ′(x)

f(x)
.

Both U(x) and V (x) will be locally concave (convex) where f(x) is strictly

decreasing (increasing). This corresponds to areas where choices involve al-

ternatives with small payoffs more (less) often than alternatives with large

payoffs. Assume, for example, that X = [0, b], b > 0, and alternatives are

drawn from X according to a truncated exponential distribution with rate

parameter λ > 0, so that f(x) = (λe−λx)/(1− e−λb) is strictly decreasing in

x. The parameter λ measures how frequently choices involve small fitness

levels. As λ grows, probability mass is shifted towards smaller alternatives.

It now follows that RAV = λ and RAU = 2
3λ, i.e. both U(x) and V (x) exhibit

constant absolute risk-aversion. Risk-aversion is, however, still decreasing in

the sense that a decrease in λ, which corresponds to a shift of probability

mass to larger payoffs, reduces risk-aversion.

Assume now that f(x) is single-peaked with peak in the interior of X.

This appears as a sensible description of both hunter-gatherers’ environment

and today’s decision situations, where most opportunities involve middle-

sized rather than extremely small or large payoffs.

Corollary 4.2. If f is continuous and single-peaked with peak at x̂ ∈ (a, b),

then both U(x) and V (x) are S-shaped with inflection point x̂.
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A utility function as described in the corollary resembles the value func-

tion used in prospect theory.23 Two main insights derive from this analysis.

First, it delivers an evolutionary foundation for the “principle of diminish-

ing sensitivity” to payoffs (Tversky and Kahneman 1992). It has been the

main argumentation in Section 2 that an individual’s hedonic sensitivity will

decline towards payoffs that are rarely encountered, and thus towards the

extremes under reasonable assumptions.24 Second, x̂ can be interpreted as

the decision maker’s reference point. Decisions among alternatives close to

x̂ are most likely, and the agent will be accustomed to this level. Hence even

though the agent’s payoff fluctuates over time, the reference point does not

adjust to any newly experienced payoff. It will remain fixed as long as the

density f(x) remains the same. Adjustments of the reference point should

therefore not be expected in response to random payoff realizations, but only

to systematic changes of the environment, which in turn might be indicated

by an accumulation of previously uncommon payoffs.

An additional feature of prospect theory is loss aversion, the fact that

losses relative to the reference point seem to have a larger impact on indi-

viduals than gains of the same size. This has inspired the conjecture that

gains and losses are evaluated by separate neural mechanisms, a hypothesis

which was not confirmed by the results of Tom, Fox, Trepel, and Poldrack

(2007). Instead, they find a neural correlate of behavioral loss aversion in a

single neural system, which in addition is known to be responsible for hedo-

nic experiences.25 Within this system, “the (negative) slope of the decrease

in activity for increasing losses was greater than the slope of the increase in

activity for increasing gains in a majority of participants” (p. 517).

The apparent existence of a single hedonic evaluation mechanism for gains

and losses is in line with the approach in this section. Obtaining the necessary

downward kink of the value function in the present framework requires a

downward jump of the fitness density at its peak. What may appear as a

rather ad hoc assumption arises naturally under reasonable circumstances.

Reconsider the discrete time model from Section 3, with just two time periods

23Rayo and Becker (2007a) show that their step function can become S-shaped if evo-
lution cannot incorporate all relevant information into the happiness function.

24As shown before, hedonic sensitivity is also influenced by the fitness function ψ. Con-
cavity of ψ, for example, constitutes a reason for risk-aversion. Except if this effect is
strong, utility will still be S-shaped under an S-shaped distribution function G.

25This system includes parts of the prefrontal cortex and the striatum.
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Figure 1: Single-peaked fitness density f(x) (black) with downward jump at δ, based on
short-run alternatives that induce the fitness density g0(x) and long-run alternatives that
induce the fitness density g1(x/δ) (both gray).

(T = 1). To capture the idea that instantaneous payoffs are usually smaller

than later payoffs, for example due to natural growth, assume that g0(v) is

strictly decreasing while g1(v) is strictly increasing in v. It then immediately

follows that the induced fitness density f(x) is decreasing in x for x > δ. If,

in addition, g1(v) is increasing strongly enough, f(x) will be increasing in x

for x ≤ δ. The density f(x) is then single-peaked with a downward jump at

the peak x̂ = δ (see Figure 1), and U(0, v) has a kink at its reference point.

In addition to discounting, there are other interpretations of the model that

should be pointed at. An alternative (0, v) could represent a project with

payoff v that an agent can carry out by itself, while the project (1, v) requires

the help of a collaborator who receives a share 1 − δ of the payoff. Similar

conclusions could be derived from other models in which alternatives differ

with respect to a binary characteristic.
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5 Conclusions

Under the assumption that human decisions are motivated by the pursuit of

happiness, this paper derives optimal hedonic utility functions as situation-

specific tools for evolutionary success. If utility can only be perceived in

discrete shades, different utility functions are differently well adapted to a

choice situation. Evolution will select a function which is steep in regions

where decisions have to be made frequently and errors are especially harmful.

If these characteristics differ between choice situations, hedonic utility will

adapt. Application of this insight yields evolutionary explanations for well-

documented patterns of risk attitudes and for time inconsistent preferences.

The general model of hedonic adaption reveals that the slope of util-

ity can be interpreted as the degree of attention devoted to the respective

area. The central result then confirms the intuition that maximal fitness

can be attained by allocating attention according to cost-benefit considera-

tions. This economic argument might provide explanations for several behav-

ioral patterns that present anomalies for the standard economic approach,

among them what has been described as “mental accounting” (Thaler 1999)

or “choice bracketing” (Read, Loewenstein, and Rabin 1999). Both theories

are related to the multiple selves approach to time discounting (Shefrin and

Thaler 1988), and the present results might help to understand why differ-

ent accounts or brackets exist and under which circumstances they become

active.

6 Appendix

6.1 Approximation of f

Assume without loss of generality that f is left-continuous and consider a

step density f̂S that approximates f as follows. Let yi, i = 1, ..., D − 1, be

the points (in increasing order) where f is discontinuous, and define y0 := a

and yD := b, where D ≥ 1. Hence X can be partitioned into D intervals

on which f is continuous. Each of these intervals is then decomposed into

S ≥ 1 steps of equal length, so that there are S · D steps altogether. For

i = 1, ..., SD − 1, let π(i) = )i/S* be the largest integer smaller or equal to
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Figure 2: A left-continuous density f (gray) with one discontinuity (D = 2) is approxi-
mated by a left-continuous step density (black) with 6 steps (S = 3).

i/S. Then define x0 := a, xSD := b and for each i = 1, ..., SD − 1,

xi := yπ(i) + (i− π(i) · S)

(
yπ(i)+1 − yπ(i)

S

)
.

Now let X0 := ∅ and for i = 1, ..., SD define Xi := {x ∈ X|x ≤ xi}\
⋃i−1

j=0 Xj.

Clearly, f is continuous on each step Xi, i = 1, ..., SD. Denote by L(Xi) :=

xi − xi−1 the length of step Xi. Now define

f̂S :=
SD∑

i=1

IXifi

where IXi is the indicator function of Xi, and fi := (1/L(Xi))
∫ xi

xi−1
f(y)dy is

a value taken by f(x) somewhere on Xi (by continuity of f on Xi), which

makes sure that f̂S is again a density. Since f is continuous and bounded

on each of the D intervals defined above, it also follows that f̂S converges

uniformly to f as S →∞. The approximation is illustrated in Figure 2.
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6.2 Proof of Theorem 2.1

Given a density f , the expected fitness loss due to wrong decisions can be

written as follows. Assume a first alternative x ∈ [tk, tk+1] has been drawn

from between two neighboring thresholds (or a boundary, respectively) that

are located at positions tk and tk+1, where tk ≤ tk+1. Then

L(x|tk, tk+1) =

∫ tk+1

tk

1

2
|y − x|f(y)dy

is the expected loss conditional on x. The unconditional expected loss be-

tween tk and tk+1 becomes

L(tk, tk+1) =

∫ tk+1

tk

L(x|tk, tk+1)f(x)dx.

The overall loss of a threshold allocation is obtained by adding this expression

for all intervals between thresholds (and the boundaries).

Now consider the step density f̂S as defined in section 2 and examine two

neighboring thresholds at tk, tk+1 ∈ Xi for some i ∈ {1, ..., SD}. It follows

that

L(tk, tk+1) =
1

6
(fi)

2(tk+1 − tk)
3.

Consider first the problem of optimal threshold positions under the con-

straint that exactly Ni thresholds are allocated to step i = 1, ..., SD. When-

ever fi = 0 on some step i, Ni = 0 will clearly be optimal. All following

arguments then apply unaltered by simply passing over this step. Hence for

the moment assume fi > 0 and Ni ≥ 1 for all i = 1, ..., SD. Whenever

Ni ≥ 3, all thresholds in Xi must clearly be equidistant. This follows from

observing that the distance between two thresholds enters the loss as a cu-

bic term. Hence whenever Ni ≥ 2, the thresholds span Ni − 1 intervals of

length li in the interior of Xi, where the dependency of li on the whole profile

N1, ..., NSD is omitted for notational simplicity. There is one additional in-

terval between a and the first threshold, and one additional interval between

the last threshold and b. Furthermore, for each i = 1, ..., SD− 1 there is one

interval between the last threshold in Xi and the first threshold in Xi+1. A

simple example is given in Figure 3(a).

Let N1(N), ..., NSD(N) describe the optimal number of thresholds on each

step if N thresholds are available altogether, which satisfies
∑SD

i=1 Ni(N) =
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Figure 3: (a) Step density with 2 steps, N = 7, N1 = 3, N2 = 4. (b) A threshold is
moved from step X2 to step X1 as described in the proof.

N .26 As N → ∞, clearly Ni(N) → ∞ for at least one step i, which implies

limN→∞ li = 0. Assume that one interior threshold is removed from Xi,

while all other thresholds remain unchanged. This increases the loss by
1
6(fi)2(2li)3 − 2

6(fi)2(li)3 = (fi)2(li)3, which goes to zero as N → ∞. This

implies that the distance between any two neighboring thresholds (or the

boundaries a or b respectively) has to go to zero as N →∞. If it did not for

two thresholds tk and tk+1, relocating an interior threshold from Xi to the

interval (tk, tk+1) would eventually (for large enough N) decrease the overall

loss. Hence, Ni(N) → ∞ as N → ∞ for all i = 1, ..., SD. Furthermore,

limN→∞(Ni(N)− 1)li = L(Xi).

Now consider a stronger necessary condition for optimality of Ni(N), i =

1, ..., SD, where N is assumed to be large enough to imply Ni(N) ≥ 3 for

all i = 1, ..., SD. After taking one interior threshold out of step Xi, keep

only the first and the last threshold in Xi fixed, and rearrange the remaining

thresholds in between to make them equidistant again. This increases the

loss by
1

6
(fi)

2(li)
3(Ni − 1)3

[
1

(Ni − 2)2
− 1

(Ni − 1)2

]
.

26The dependency of Ni, i = 1, ..., SD, on N will sometimes be omitted for notational
simplicity in the following.
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Similarly, keep the first and last threshold in Xj, j ,= i, fixed, add the addi-

tional threshold in between, and rearrange to equidistant positions (as illus-

trated in Figure 3(b)). This decreases the loss by

1

6
(fj)

2(lj)
3(Nj − 1)3

[
1

(Nj − 1)2
− 1

(Nj)2

]
.

The condition for this not to decrease the overall loss can be rearranged to

(
Nj

Ni − 1

)2 (
Nj − 1

Ni − 2

)2 (
2Ni − 3

2Nj − 1

)
≥

(
fj

fi

)2 [
(Nj − 1)lj
(Ni − 1)li

]3

. (1)

If the same argument is repeated for the relocation of a threshold from step

j to step i, one obtains

(
Nj − 1

Ni

)2 (
Nj − 2

Ni − 1

)2 (
2Ni − 1

2Nj − 3

)
≤

(
fj

fi

)2 [
(Nj − 1)lj
(Ni − 1)li

]3

. (2)

As N →∞, the identical RHS of (1) and (2) converges to (fj/fi)2(L(Xj)/L(Xi))3

from the above considerations. Denote the LHS of (1) by aij(N) and the

LHS of (2) by bij(N). Since Ni, Nj → ∞ as N → ∞, it follows that

limN→∞(aij(N)/bij(N)) = 1. It then follows by a straightforward argument

that limN→∞ aij(N) = limN→∞ bij(N) = (fj/fi)2(L(Xj)/L(Xi))3 must hold,

since otherwise either (1) or (2) would be violated for large N . Given ex-

istence of this limit, it also holds that limN→∞ aij(N) = limN→∞ bij(N) =

limN→∞(Nj/Ni)3, so that the limit optimality condition becomes

lim
N→∞

Nj(N)

Ni(N)
=

(
fj

fi

)2/3 (
L(Xj)

L(Xi)

)
(3)

for all i, j = 1, ..., SD, i ,= j.

By fixing i and adding (3) for all j = 1, ..., SD, it follows that

lim
N→∞

Ni(N)

N
=

f 2/3
i L(Xi)∑SD

j=1 f2/3
j L(Xj)

for all i = 1, ..., SD. This condition now also applies to steps where fi = 0.

Now examine UN,S(x) := θN,S(x)/N . Denote by σS(x) the number of the
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step on which x is located, i.e. x ∈ XσS(x). It now follows that

US(x) := lim
N→∞

θN,S(x)

N
=

∑σS(x)−1
i=1 f2/3

i L(Xi) + γ(x, S)f 2/3
σS(x)

∑SD
j=1 f2/3

j L(Xj)

where γ(x, S) = x− xσS(x)−1 is the distance between x and the lower end of

the step on which it is located. Observe that f2/3
i is a value taken by the

function f(x)2/3 somewhere on Xi, because fi is taken by f(x) somewhere

on Xi. Furthermore, f(x)2/3 is Riemann-integrable since it is bounded and

has finitely many discontinuities on [a, b]. We thus obtain

U(x) := lim
S→∞

US(x) = c

∫ x

a

f(y)2/3dy,

where c = (
∫ b

a f(y)2/3dy)−1 is a normalizing constant.

The result on V (x) stated in Theorem 2.1 follows easily by repeating

all previous steps for the probability of mistakes, where the probability of a

mistake between two thresholds tk, tk+1 ∈ Xi is P(tk, tk+1) = 1
2(fi)2(tk+1 −

tk)2, analogously to L(tk, tk+1) above. Hence for this case, the technique used

here yields the same result that Robson (2001a) obtained.

6.3 Proofs for Section 3

Proof of Lemma 3.1. Conditional on having drawn t ∈ {0, 1, ..., T}, the

fitness levels are distributed in [0, δt] according to the distribution function

Ft(x) = Gt(x/δt). Unconditionally, fitness levels are thus distributed in [0, 1]

according to the distribution function

F (x) =
t̂(x)∑

t=0

pt Gt

( x

δt

)
+

T∑

t=t̂(x)+1

pt,

where t̂(x) is the largest waiting time t for which x ≤ δt still holds. For

waiting times larger than t̂(x), even the best attainable fitness level will be

smaller than x. It then follows immediately that F (x) is differentiable every-

where except (possibly) at the points x = δt for t = 1, ..., T , with derivative

f(x) as given in the Lemma.

Proof of Proposition 3.4. The condition that v1 ≤ δv2, or ψ(1, v1) ≤
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ψ(2, v2), implies that U(1, v1) ≤ U(2, v2), which is condition (i) in the def-

inition of regret. The assumption that g1(v) > 0 for all v ∈ [0, 1] implies

that fL(x) > 0 for all x ∈ [0, δ]. This in turn implies that 0 < U(1, v2) < 1,

because 0 < v2 < 1. Optimal short-run utility is given by

U(0, y) =

∫ y

0 h(v; λ)2/3dv
∫ 1

0 h(v; λ)2/3dv
.

According to Definition 3.3, limλ→∞ U(0, y) = 1 for all y > 0. Therefore,

there exists a λ̄(v1, v2) such that U(0, v1) > U(1, v2) for all λ > λ̄(v1, v2),

which is condition (ii) in the definition of regret.
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