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Abstract

A problem of Parallel Contests is raised and modeled. The equilib-
ria in final situations of parallel contests are analyzed and characterized
and the behaviours of contestants with different abilities’ parameters are
explained. Given that the values of the prizes in the two contests are
different, in equilibrium a group of strong players prefer entering into the
contest with a higher prize. However, except the group of stronger ones,
in equilibrium others will enter into both contests because they obtain
equal expected revenue from the two contests, though these weak ones do
not have equal probabilities to enter into the two parallel contests. Under
the condition of rationalizability, this paper characterizes the respective
distributions of contestants’ abilities in the two parallel contests, proves
the existence of the equilibrium in parallel contests and completes the
analysis of the parallel contests from the perspective of contestants.
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1 Introduction

In real world it is easy to observe numerous cases in which there exists compe-
tition among contest designers. For instance, in sporting contests two or more
tournaments are hold closely in time or even synchronously. Facing this situa-
tion, since one player’s energy and preparation time are limited, it may not be
a good strategy to participate two different tournaments in a very short period.
Therefore, one prefers to choose one tournament to enter even if time schedule

∗We wish to thank Prof. Elmar Wolfstetter and discassants for helpful comments in
the seminar of Department of Economics, Humboldt-University at Berlin. Email contact:
heng.qiao@uni-konstanz.de (Heng Qiao), erwin.amann@uni-due.de (Erwin Amann)
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permits participation of both. Similar cases happen to lots of economic envi-
ronments, such as the competition of two or more employers in a same industry.
One can also find examples in research contests.

Theoretically, Gradstein and Konrad (1999)[2] focus on the optimal struc-
ture of multiple-round contests with identical individuals. Moldovanu and Sela
(2006)[5] introduce more complicated model to deal with the optimal archi-
tecture of contests, involving one-stage and two-stage contests. Fullerton and
McAfee (1999)[1] investigate the optimal number of contestants in a research
tournament model with heterogeneous contestants and also consider the optimal
design of tournment. Moldovanu and Sela (2006)[5] point to the significance of
analyzing competition among contest designers. However, it is rare to find a
paper dealing with the above problem of parallel contests.

Here we introduce a whole picture of the parallel contests. Assume that
there are two parallel contests denoted by contest 1 and contest 2, which are
both open for all potential contestants. The designers of the two contests have
their own objective function, represented by their utility functions respectively,
which are usually the expected total efforts or the expected highest efforts in
their contests. A standard process of the parallel contest is that firstly the
two designers decide the prizes’ values of the two contest and declare them to
all contestants. After knowing the values of the prizes, players make an entry
decision between the two contests. A Player competes with others within one
of the contests. Finally according to the normal winning rule of contests, each
of the two designers claims that the player with a maximal effort in the specific
contest wins the prize. And the designers also obtain the realized revenue (or
efforts) from the players.

In this paper we focus only on the entry choice of players into the two parallel
contests, i.e. the problem that given the value of the two prizes, how contestants
will choose one of the two contests to enter. We analyze and characterize the
equilibrium in equilibrium of the parallel contests.

Now we compare the information settings of one- and multiple-stage contests
with that of parallel contests. Firstly, in a one-stage contest the two typical as-
sumptions are (1) that the types of contestants are drawn from an interval
according to a distribution (iid), which is common knowledge and (2) that the
total number of players is also common knowledge. These common knowledges
allow the rationalizability in one-stage contest. Secondly, in a contest with
more than one stage, or called elimination tournaments, without lose of gener-
ality, in a typical two stage contest n, contestants are split into t parallel and
symmetric sub-contests. The number of players in each subcontest is common
knowledge. Using oder statistics, the distribution function at the second stage
can be derived and is also common knowledge. Therefore, from the perspective
of information setting, the structure of one-stage contests and tournaments are
essentially similar, because the number of players and distribution functions are
all common knowledge.

In a parallel contest, i.e., a competition between two contests with different
settings, we also assume that the number and the distribution of total population
are common knowledge. However, the types’ distribution before all players’
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entry into parallel contests transforms into two different distributions in the
parallel contests after all players’ entry into the two contests. And generally
the above transformation of distributions can not be directly derived without
an analysis of the equilibrium bidding strategies in the two contests. This is
the prominent feature in the information structure of parallel contests, which is
distinguished from typical one-stage contests and tournaments.

This paper assume that the numbers of players and the distributions in
the parallel contests are also common knowledge, because without the above
assumption a player can not make a rational decision on her entry choices be-
tween the two contests except certain special case when the prizes in the parallel
contests are equal. In other words, these common knowledges allow the ratio-
nalizability in parallel contests.

The rest of this paper is organized as follows. In Section 2 we introduce a
grand contest as the basis of all following contest models. The eqilibrium bid
function and payoff function are derived and some basic results are proved. In
Section 3 we introduce some assumptions for parallel contests. An important
concept, Final Situation, is defined. In Section 4 the parallel contests are ana-
lyzed qualitatively and then quantitatively. An equilibrium situaiton of parallel
contests in final situation is characterized. Section 5 concludes.

2 Basic Model and Analysis

2.1 Description of the basic model

First we introduce a general one-stage contest with the participation of all con-
testants, which is often called a grand contest in contests literature. The set of
contestants is K = {1, 2, ..., k}. Each player i makes an effort xi. All players’
efforts are submitted simultaneously. An effort xi causes a cost, denoted by
ciγ (xi) [4], where γ : R+ → R+ is a strictly increasing function with γ(0) = 0,
and where ci > 0 is an ability parameter and also seen as the type of this
contestant. Note that a low ci means that i has a high ability and vice versa.

The ability of contestant i is her private information (also her type). Abilities
are drawn independently of each other from an interval [m, 1] according to the
distribution functions Fj , which is common knowledge. (in parallel contests,
j = 1, 2 and in a grand contest we neglect the subscript j). We assume that
any distribution function in this paper has continuous densities, when they are
strictly larger than 0. In order to avoid infinite bids caused by zero costs, we
assume that m, the type with the highest possible ability, is strickly positive.

In this paper we only consider the single-prize case. In a contest with a
single prize Vj , the payoff of contestant i, who has ability ci and exerts an effort
xi is either Vj − ciγ(xi) if i wins prize vj , or −ciγ(xi) if i does not win a prize,
i.e.,

Ri =

{
Vj − ciγ(xi), if i wins the prize;
−ciγ(xi), if i wins nothing.
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Note Ri as the payoff of contestant i. Here we consider the case of linear
cost functions, i.e. the cost functions are linear in effort, γ(xi) = xi. Each
contestant i chooses her effort in order to maximize expected utility, given the
other competitors’ actions and the values of the prizes. In a grand contest with
only one prize V , it is known that there exists a symmetric equilibrium bid
function, denoted by xi = b(ci). Then contestant ci’s payoff can be written as

Ri = max
xi

V (1− F (b−1(xi)))k−1 − cixi

2.2 Analysis

Now we first analyze the basic static model. Assume that the set of all the
contestants is K = {1, 2, ..., k}. Abilities are drawn independently from an
interval [m, 1] according to distribution functions F , which means that if all k
contestants enter into a grand contest, any of them knows her own ability but
looks any other one’s ability as a variable randomly drawn from the distribution
F .

Let y denote the inverse of b, i.e. y(x) = b−1(xi). Using strict monotonicity
and symmetry, the first-order condition (FOC) is:

1 = −(k − 1)V (1− F (y))k−2F ′(y)y′
1
y

Since a contestant with the lowest possible ability c = 1 never wins a prize
(note: he can win a second prize, if more than one prizes are assumed. However
here single prize is assumed for each contests in the beginning of analysis), the
optimal effort of this type is always zero, which yields the boundary condition
y(0) = 1. Denote

G(y) = (k − 1)V
∫ 1

y

1
t
(1− F (t))k−2F ′(t)dt

The solution to the above differential equation with the boundary condition
is given by ∫ 0

x

dt = −G(y)

Then we have x = G(y) = G(b−1(xi)) and therefore b ≡ G, which defines
the equilibrium bid function.

b(ci) = (k − 1)V
∫ 1

ci

1
t (1− F (t))k−2dF (t)

= −V
∫ 1

ci

1
t d(1− F (t))k−1

= −V

{
(1−F (t))k−1

t

∣∣∣1
ci

−
∫ 1

ci
(1− F (t))k−1d 1

t

}
= V (1−F (ci))

k−1

ci
+ V

∫ 1

ci
(1− F (t))k−1d 1

t

Furthermore, we obtain the expression of the expected payoff

4



R(ci) = V (1− F (ci))k−1 − cib(ci)
= −ciV

∫ 1

ci
(1− F (t))k−1d 1

t

= ciV
∫ 1

ci

(1−F (t))k−1

t2 dt

Lemma 1 (Type) According to the equilibrium bidding function, a contestant
with a higher type (or lower ability) bids less, i.e. the equilibrium bid decreases
in the type of the contestant. And the payoff of a contestant also decreases in
her type.

Proof of the Lemma
From the expression of the bidding function, we have

b′(ci) = −V (k − 1)
1
ci

(1− F (ci))k−2dF (ci) < 0

Then we have the result in this Lemma that the equilibrium bid decreases
in the type of the contestant. In the following we prove that the payoff of
a contestant decreases in her type. Firstly, we get the first derivative of the
revenue,

R′(ci) = V

∫ 1

ci

(1− F (t))k−1

t2
dt− ciV

(1− F (ci))k−1

c2
i

Then we obtian the second derivative of the revenue function, i.e.

R′′(ci) = −V (1−F (ci))
k−1

c2
i

− V −(k−1)ci(1−F (ci))
k−2F ′(ci)−(1−F (ci))

k−1

c2
i

= V (k−1)(1−F (ci))
k−2F ′(ci)

ci

> 0

Therefore, the revenue function is convex. We assume that there exists a
continuous interval in the definitional domain of function (1−F (t))k−1

t2 . Using
the Mean-Value Theorem for integration, there exists a number in this specific
domain such that ci < cs < 1 and from the first derivative of the function, we
then have

R′(ci) = V (1−F (cs))k−1

c2
s

(1− ci)− V (1−F (ci))
k−1

ci

= V (1−F (cs))k−1

cs

(1−ci)
cs

− V (1−F (ci))
k−1

ci

Since the function (1−F (t))k−1

t2 is decreasing in its variable t and ci < cs, we
have

(1− F (cs))k−1

cs
<

(1− F (ci))k−1

ci

When (1−ci)
cs

≤ 1 or ci + cs ≥ 1, we obtain R′(ci) ≤ 0. Additionally, when
ci + cs < 1, from the convexity of the revenue function, we can also conclude
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that in the definitional domain of the distribution function, the revenue function
is decreasing in the type of contestant. �

This Lemma implies that the grand contest is a typical and usually-used
mechanism, in which the strong contestants exert more effort and also obtain
more payoff. In other words, this mechanism provides incentives for stronger
participants to exert more and get more.

Lemma 2 (Number of players) In equilibrium, a contestant’s payoff decreases
in the total number of the contestants. But the equilibrium bid increases in the
total number of the contest.

Proof of Lemma 2
From the expression of b(ci), we have

∂bj(ci)
∂k = Vj

ci
(1− F (ci))k−1 ln(1− F (ci) + Vj

∫ 1

ci
(1− F (t))k−1 ln(1− F (t))d 1

t

= Vj

ci
(1− F (ci))k−1 ln(1− F (ci) + Vj (1− F (t))k−1 ln(1− F (t)) 1

t

∣∣1
ci

−Vj

∫ 1

ci

1
t d

[
(1− F (t))k−1 ln(1− F (t))

]
= Vj

ci
(1− F (ci))k−1 ln(1− F (ci) + Vj limt→1(1− F (t))k−1 ln(1− F (t)) 1

t

−Vj

ci
(1− F (ci))k−1 ln(1− F (ci)− Vj

∫ 1

ci

1
t d

[
(1− F (t))k−1 ln(1− F (t))

]
= Vj limt→1

ln(1−F (t))
t(1−F (t))1−k − Vj

∫ 1

ci

1
t d

[
(1− F (t))k−1 ln(1− F (t))

]
=

1
1−F (t) [−F ′(t)]

(1− F (t))1−k + t(1− k)(1− F (t))−k [−F ′(t)]
−Vj

∫ 1

ci

1
t d

[
(1− F (t))k−1 ln(1− F (t))

]
=

[−F ′(t)] (1− F (t))k−1

(1− F (t)) + t(1− k) [−F ′(t)]
− Vj

∫ 1

ci

1
t d

[
(1− F (t))k−1 ln(1− F (t))

]
= −Vj

∫ 1

ci

1
t d

[
(1− F (t))k−1 ln(1− F (t))

]
≥ 0

In the above deduction, l’Hopital’ rule are applied. Notice that limt→1 F ′(t) ≥
0. Then differentiating the expression of the contestant’s revenue under the in-
tegral sign by the variable “k”, we have

dR(ci)
dk

= ciV

∫ 1

ci

(1− F (t))k−1 ln(1− F (t)
t2

dt ≤ 0

Since ln(1−F (t) ≤ 0 when t ∈ [m, 1), we know that the above expression is
less than or equal to zero, and then we obtain the result in Lemma. �

From the the above Lemma, the holder of the contest hope more contestants
to participate when her aim is to maximize the expected total efforts or the
expected maximal effort. Therefore, the grand contest is a standard contest,
which is highly accordant to the intuition of a normal contest. Based on this
model, we will analyse the extended model of Parallel Contests.
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3 Parallel Contests

Following the introduction of the parallel contests in the first section, the total
number of players is n and the prizes in the two parallel contests are V1 and
V2, respectively. We use vector (kj , Vj , Fj) to describe a situation in one of the
parallel contests j, j = 1, 2, in which Vj denotes the prize, kj denotes the number
of contestants and all players hold the belief that their abilities are drawn from
the distribution Fj . Each of the contestants will make a decision to enter into
one of the two parallel contests. The basic rules of the contestants are listed
below.

1. A contestant can choose one and only one of the two contests to enter;

2. A contestant knows the two abilities’ distributions of the parallel contests
in final situation, i.e. F1 and F2;

3. A contestant knows the final number of participants in the parallel con-
tests.

Then the above three assumptions indicate that for any contestant the vec-
tors (kj , Vj , Fj), j = 1, 2, of the parallel contests are common knowledge, which
suffice the rationalizability of the game. According to the analysis of the basic
contest model in the previous section, given the vector (kj , Vj , Fj) of a contest
j, there exists equilibrium in contest j, which can be explicitly derived. So
the equilibrium bidding function and equilibrium revenue of contestants in the
two parallel contests can be explicitly derived. More specifically, all contestants
hold the belief that it is available to observe and compute the vector (kj , Vj , Fj)
in any situation of both parallel contests for all players. This belief allows all
contestants making a rational decision in this game. In other words, the vector
(kj , Vj , Fj) implies the indispensable information in the information structure
of parallel contests, based on which contestants can make a rational decision
on her entry problem. Since contestants’ entry decision can change the vectors
(kj , Vj , Fj), j = 1, 2, of the parallel contests, every contestant faces a strategic
entry choice, which is interacting with all other contestants’ entry choices.

Given the three assumptions above, we discuss the equilibrium concept in
this paper. In game theory, an equilibrium is defined as a solution, in which no
player can benefit from changing her own strategy unilaterally. Similarly, in an
Equilibrium of parallel contests, no player can obtain more payoff by unilaterally
changing her entry choice between the two contests. Then a Final Situation in
parallel contests is defined by a situation vector (kj , Vj , Fj) in equilibrium. In
other words, a final situation is represented by a vector when any participant
in one contest do not have incentive to enter the other contest.

Now we discuss the characteristics of the equilibrium concept in parallel
contests. Firstly we compare it with the equilibrium concepts in a single-stage
contest and a multiple-stage contest. Generally in a single-stage contest model,
a contestant’s payoff can be represented by certain von Neumann-Morgenstern
utility function, which is depending on the contestant’s own strategy and others’
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strategies. In a multiple-stage contest, such as the two-stage contest in Moldl-
vanu and Sela (2006)[5], the symmetric equilibrium bidding function in the first
stage and the sub-game-perfect equilibrium bidding function in the second stage
can be derived explicitly. Given the number of contestants ( the total number
and the numbers in each contests ), values of prizes and the distribution of con-
testants’ abilities (for all contestants) as common knowledge, the payoff function
in each stage can be expressed by a formular by the use of certain techniques,
such as Order Statistics.

In parallal contests, a contestant can not rationally make a optimal decision
on his entry choice until she can specify the vector (kj , Vj , Fj) in the equilibrium
of final situation. In most cases the equilibrium in final situation is not unique.
It is easy to conclude that when the vector (kj , Vj , Fj) is given as common
knowledge, the equilibrium concept in this paper is Nash Equilibrium, i.e. the
equilibrium concept here is self-enforcing and the result of a dynamic process.
However, when any parameter in the vector (kj , Vj , Fj) is not given as common
knowledge, contestants can not make an entry decision rationally, the game of
parallel contests will not satisfy the condition of rationalizability and, therefore,
the concept of Nash equilibrium can not apply to such a game. However, it will
be much interesting to apply some methodology of irrationality to that case.
Additionally, in the former case, i.e. when the equilibrium in parallel contests
is accordant to Nash Equilibrium, it is still more complicated than the usually
used concept of equilibrium, because it indicates an equilibrium between the
two equilibria of the parallel contests.

Later on we will prove the existence of equilibrium in parallel contests. Here
we discuss the characteristics of the final situation, given the existence of equi-
librium. Note that the equilibrium in final situation means that no one will
change her entry decision even when she is permitted to enter the other con-
test. One possible way of the existence of equilibrium is that the two prizes
of the parallel contests are equal and then the two vectors (kj , Vj , Fj) of final
situation in the parallel contests will be the same, i.e. (n

2 , V, F ). Though this is
an equilibrium, we are more interested in the case when the two prizes of the
parallel contests are different, i.e. when some or all parameters (kj , Vj , Fj) of
the parallel contests are different.

Since the equilibrium in final situation is based on the rationality of the
entry decision of all players into the parallel contests, there are two possible
ways for the existence of equilibrium. In the equilibrium of a final situation a
player either finds that the payoff of one contest is definitely higher than that
of the other one, or she finds that the payoffs of the parallel contests are equal.
More specifically, in the former case, when a contestant with type c finds that
the payoff in contest 1 is definitely higher than that in contest 2, she will choose
to enter into contest 1 rather than contest 2. Then she has no incentive to
change her decision in the final situation. In the later case, if in equilibrium
the payoff from the two contests are equal for a player with type c, she also
has no incentive to change her previous entry decision. Though in this case
the eqilibrium in final situation is a Nash equilibrium, this equilibrium is much
sensitive to the change of the vector (kj , Vj , Fj), because a small change of
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any parameter may break the equivalence of the two payoff from the contests,
which will give some contestants an incentive to change their entry decisions.
For example, a change of entry decision by player with type c will change the
number of contests in the two contests and then make others having incentives
to change. Therefore, it can be concluded that the equilibrium in final situation
is unique only when the former case applies to every possible ability along the
interval [m, 1]. In other words, if all possible contestant only strictly prefers one
of the contests, the equilibrium must be a unique one. However, if there exists
any contestant, whose payoff of the two contests are equal, the equilibrium in
final situation will not be unique.

The following Lemma shows a basic result.

Lemma 3 When V1 6= V2, the abilities’ distribution function in the grand con-
test F is different from the abilities’ distribution functions in the equilibrium of
the parallel contests, i.e. F1 and F2, which are also different between each other.

Proof of this Lemma
We prove this Lemma by contradiction. Firstly, we assume that the distri-

butions in equilibrium remain the same, i.e. still F , in the parallel contests. For
any of the contests j (j = 1, 2 ), any contestant with a type ci chooses her effort
xi to maxmize her payoff, i.e.

max
xi

{Vj(1− F (ci))kj−1 − cixi}

From previous analysis, we have the equilibrium bid function,

bj(ci) = (k1 − 1)Vj

∫ 1

ci

1
t
(1− F (t))kj−2F ′(t)dt

and the contestant’s payoff expression

Rj(ci) = ciVj

∫ 1

ci

(1− F (t))kj−1

t2
dt

Based on the above analysis, firstly we discuss the numbers of the partici-
pants in the two contests. In the final situation of the parallel contests, if there
are equal numbers of contestants existing in both contests, from the above equi-
librium bid function and payoff expression, any contestant has an incentive to
enter the contest with a higher prize, because it provides higher payoff. There-
fore, as mentioned at the beginning of the proof, if we assume that the distribu-
tion remains the same in equilibrium, the number of participants in the contest
with a higher prize must be larger than that in the contest with a lower one,
i.e. without loss of generality, if we assume V1 > V2, then we obtain k1 ≥ k2.

In a final situation any contestant ci in one contest has no incentive to enter
the other, i.e.

R1(ci) = R2(ci)
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Then we have

ciV1

∫ 1

ci

(1− F (t))k1−1

t2
dt = ciV2

∫ 1

ci

(1− F (t))k2−1

t2
dt

Then for any ci, we have∫ 1

ci

(1− F (t))k1−1 − V2
V1

(1− F (t))k2−1

t2
= 0

which means that for any ci the numerator under the integral sign also
equals zero or (1 − F (t))k1−k2 equals a constant. This is not possible except
that k1 = k2, which contradicts the assumption that in equilibrium F remains
the same in the parallel contests and also proves that the abilities’ distributions
in both contests are different between each other except the case when k1 = k2.
�

4 Analysis of Parallel Contests

In this section, we will characterize the equilibrium of parallel contests and
firstly, we consider the entry problem from the perspective of contestants. Since
the equilibrium in final situation comes from the rational entry decision of all
contestants, in a final situation if any contestant with type ci has chosen contest
1 to enter, the following condition needs to be fulfilled.

U1,ci(V1, k1, F1) ≥ U2,ci(V2, k2 + 1, F2)

which means that the payoff of the contestant’s entering contest 1 is larger
or at least equal to that of his entering contest 2, when there will be the number
of k2 + 1 contestants, competing with each other in contest 2. Then we have

ciV1

∫ 1

ci

(1− F1(t))k1−1

t2
dt ≥ ciV2

∫ 1

ci

(1− F2(t))k2

t2
dt

Similarly, if any contestant with type ci has chosen contest 2 to enter, the
following condition needs to be fulfilled

U2,ci
(V2, k2, F2) ≥ U1,ci

(V1, k1 + 1, F1).

4.1 The relations among distribution functions

We assume that the total number of the contestants is n. Before their entry
into the parallel contests, all the n contestants’ abilities are drawn from the
interval [m, 1] according to the distribution (i.i.d.) F . After the n contestants
choose contests to enter, we assume that in the final situation, there are k1

contestants in contest 1 and k2 contestants in contest 2. In the parallel contests,
the contestants’ abilities are drawn from the interval [m, 1] according to the
distributions F1 and F2, respectively.
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Now we discuss the general relations among the three distributions, F , F1

and F2. We know that F (ci) = P (c ≤ ci) represents the probability when the
random variable c is less than ci. Then n · F (ci) implies the expected number
of contestants whose types are less than ci. We assume that all the contestants
n enter the two contests, i.e. n = k1 + k2. We have

n · F (ci) = k1 · F1(ci) + k2 · F2(ci)

This result can also be extended to a specific interval [c1, c2] ∈ [m, 1], i.e.

n · [F (c2)− F (c1)] = k1 · [F1(c2)− F1(c1)] + k2 · [F2(c2)− F2(c1)]

Intuitively, the above result impies that the expected number of contestants
in a certain interval before contestants’ entry into the parallel contests is equiv-
alent to the expected total number of contestants in the same interval in the two
parallel contests. In the special case when k1 = k2 = n

2 , we obtain the following
expression:

2F (ci) = F1(ci) + F2(ci)

4.2 Qualitative Analysis of the entry process

Now we analyze a conceived process in which all players enter into the parallel
contests. This process is not a real one, because we assume that at first all
players enter into contest 1. From the previous section we know that it is
easy to identify if an equilibrium is unique in parallel contests. Because all
equilibriua share the same characteristics as they are defined, i.e. a situation
when all players do not have incentive to change their entry decision, what is
more important is to find a equilibrium no matter by a conceived way or in the
spontaneous way.

First Step: The Original Situation
We consider here a conceived situation, in which all n contestants enter the

contest 1 and no one enters contest 2. In this situation, we have the revenue
curve in contest 1:

R1(ci) = ciV1

∫ 1

ci

(1− F (t))n−1

t2

However, the revenue curve (where the payoff-axis is vertical and the ability-
axis is horisontal) in contest 2 is a horizontal line, whose intersection with the
payoff-axis is V2, which means that any contestant can get a payoff of V2 by
exerting a very little effort, if only she is the only participant in contest 2. The
comparison of the payoffs in the two contests shows an incentive for those, whose
payoff in contest 1 is less than V2, to enter contest 2. Superficially, this situation
is not a real one, because it is easy to be broken when any player enters contest
2 and at the same time the distribution in contest 1 changes from F to be F1.
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Notice that by the assumption of our parallel contests model, this change of
distribution is observable for all contestants.

Second Step: Effects when more players enter contest 2.
Here we discuss the behaviour of contestants with different abilities, in the

process when more players come from contest 1 into contest 2, i.e. when k1,
the number of players in contest 1 decreases while k2, the number of players in
contest 2 increases.

We assume that c2max is the lowest type of contestant, who will enter contest
2 (or c2max is the strongest contestant who will enter contest 2).

It is easy to prove the following results of the change of distributions (More
specifically in the proof of these results, the continuous distribution functions
can be seen as discrete distribution functions and the results are obvious).

In Contest 1:

• For a strong contestant, i.e. one with a lower type clow ≤ c2max, F1(clow)
increases. It impies that more strongers stay in contest 1.

• But for a contestant with a higher type chigh ≥ c2max, F1(chigh) decreases.
It implies that more weakers enter into contest 2. We can say that the
payoff of weakers in contest 1 increases .

We can not predict the payoff of strongers, because their winning probability
decreases owing to the increase of the average ability in contest 1, while k1

decreases. Intuitively, because no stronger ci < c2max will leave contest 1, we
can not predict that the strongers will bid less aggressive for the prize in contest
1.

It is easy to prove that R′′1 , the second derivative in contest 1, decreases.
This indicates the revenue curve in contest 1 changes to be less convex when ci

changes to be larger and larger.
In Contest 2: When k2, the number of players in contest 2 increases, we

have the following results about the change of distribution F2(ci).

• For player with type ci, if one with a type less than ci enters into contest
2, F2(ci) increases. The payoff of ci decreases.

• For player with type ci, if one with a type larger than ci enters into contest
2, F2(ci) decreases. It is hard to predict the change of payoff of ci.

Therefore, the entry of players with middle abilities can decrease the pay-
off of weak ones. However, weak players can play much less influence on
those stronger, because weak ones can play influence on strongers’ revenue only
through the change of the total number of players in a contest.

The Third Step: The Equilibrium in the Final Situation
As assumed, the distribution functions of the two contests are common

knowledge. Here, we also assume that there exist enough contestants and discuss
the equilibrium in final situation. The contestants in contest 1 have incentive
to enter contest 2, until for any type ci, her payoff in contest 2 approaches to be
equal with that in contest 1, because if the payoffs between the two contests are

12



different, the movement of contestants between the two contests will continue
until no one has an incentive to change their decision.

We denote a contestant with type c2max as the contestant with the lowest
type, who has an incentive to enter contest 2. In other words, c2max is the
lowest type in contest 2, which represents the strongest player in contest 2. It
is easy to know that in equilibrium the players will obtain equal payoffs from
the two contests, except some strong players, who only exist in contest 1. More
specifically, we have the following results.

• When ci < c2max, we have that R2(ci) < R1(ci), which means that the
contestant with type ci will only enter contest 1 and has no incentive to
enter contest 2.

• When ci ≥ c2max, we have that R1(ci) = R2(ci). (We will discuss this
critical type in later subsection.)

And the relation between the distributions of the two contests are

1. When ci < c2max, we have F2(ci) = 0;

2. When ci ≥ c2max, we have F2(ci) ≥ 0

4.3 An approximate result

In this subsection we prove a basic result, which will be used in later analysis.

Lemma 4 When the total number of the contestants is large enough and the
difference of the two prizes is not so large, we have the following approximate
result: In equilibrium, the numbers of the players in the parallel contests are
equal, i.e. k1 = k2, or approximately equal.

Proof of the Lemma
When the number of all the contestants is large enough, we can approxi-

mately ignore the difference between one’s payoff in a contest with k contestants
and the payoff in a contest with k+1 contestants. This approximation simplifies
the proof process.

For the parallel contests with prizes V1 and V2, i.e. contest 1 and contest 2,
we denote the abilities’ distributions are F1 and F2, respectively. Without loss
of generality, we assume that V1 > V2. In equilibrium of final situation, for any
ci ∈ (c2max, 1] we have R1(ci) = R2(ci), i.e.

V1

∫ 1

ci

(1− F1(t))k1−1

t2
dt = V2

∫ 1

ci

(1− F2(t))k2−1

t2

Then ∫ 1

ci

(1− F1(t))k1−1 − V2
V1

(1− F2(t))k2−1

t2
= 0

13



Since for any ci ∈ (m, 1) the above expression holds, we can make sure that
for any t

(1− F1(t))k1−1 − V2

V1
(1− F2(t))k2−1 = 0 (1)

Rearranging the above expression, we obtain that

(1− F1(t))k1−1

(1− F2(t))k2−1
=

V2

V1
> 0

However, because limt→1(1 − Fi(t))ki−1 = 0, for any i = 1, 2, using the
l’Hopital’ rule to the left part of the above expression, we then get the following
two results which contridict the the above inequality.

When k1 > k2, we obtain

limt→1
(1− F1(t))k1−1

(1− F2(t))k2−1
= limt→1

(k1 − 1) · · · (k1 − k2 + 1)(1− F1(t))k1−k2

(k2 − 1)!F ′
2(t)

= 0

Similar to this result, when k1 < k2, this expression will approach infinite.
These results are all contradictory against the previous expression, which

indicates that the above limit should be a finite constant
V2

V1
. �

Though we easily obtain the approximate result, we must still pay much
attention to the situation when the assumption of this Lemma does not hold.
In an interesting situation, when the value of the prize V1 is suffciently lager
than that of V2, or the ratio of them can be seen as approaching infinite, it is
easy to obtain that in equilibrium much more contestants enter contest 1 than
contest 2. In other words, except that V2 is infinitely small comparing to V1,
this approximate result, shown in the above Lemma, holds.

4.4 Quantitative Analysis of the entry process

From results in previous subsections, for ci ≥ c2max we have the following set
of equalities. 

2F (ci) = F1(ci) + F2(ci)
(1− F1(ci))k−1

(1− F2(ci))k−1
=

V2

V1

The second equality can be written as

(1− F1(ci))
(1− F2(ci))

= k−1

√
V2

V1

We label k−1

√
V2
V1

as C.
Therefore, we obtain the solution of the equations
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F1(ci) =

2F (ci)C − C + 1
C + 1

F2(ci) =
2F (ci) + C − 1

C + 1
Comparing the two distribution functions, we have

(1− F1(ci))− (1− F2(ci)) = −2(1− C)(1− F (ci)) < 0

This means that for any contestant with type ci > c2max, it is with a higher
probability for her to win in contest 2 than in contest 1. However, she obtains
equal payoffs from the two contests, because V1 > V2. In the special case when
C = 1, i.e. V1 = V2, the possibilities for her to win in both contests are equal.
Additionally, from the previous group of equalities, we obtain the derivative for
any type ci ≥ c2max:

dF1(ci)
dF2(ci)

=
V2

V1

(1− F2(ci))k−2

(1− F1(ci))k−2

Then we have

dF1(ci)
dci

dF2(ci)
dci

(1− F2(ci))
(1− F1(ci))

=
dF1(ci)
dF2(ci)

(1− F2(ci))
(1− F1(ci))

=
V2

V1

(1− F2(ci))k−1

(1− F1(ci))k−1
= 1

We rewrite it as

r1 =
F ′

1

1− F1
=

F ′
2

1− F2
= r2

in which r1 and r2 denote the hazard rates of the distributions F1 and F2,
respectively.

Denote C1 and C2 as the variables with the distributions F1 and F2, respec-
tively. Using the results in the appendix of the paper (Moldovanu and Sela,
2006 [5] ), esp. Theorem 5 , we have the following Lemma.

Lemma 5 In equilibirum, for any contestant with type ci ≥ c2max, we have
r1 = r2. Then the following results hold.

1. The variable C1 is equal to C2 in the hazerd rate order, i.e. C1 =hr C2 .

2. The variable C1 is equal to C2 in the usual stochastic order, i.e. C1 =st C2.

3. E [C1] = E [C2].
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This Lemma indicates that in equilibrium a player with type ci ≥ c2max

obtians equal expected payoff from any of the two contests. This is a critical
result, which implies that the equilibrium in final situation is not unique. When
the total number of contestants is large enough, for a certain individual with type
ci ≥ c2max, one can not say which contest is optimal for her. No matter which
contest she finally enters, the two choices, entering contest 1 and entering contest
2, bring the contestants with type ci ≥ c2max the same payoff in equilibrium.
However, this does not mean that any equilibrium permits contestants to make
decision irrationally, since irrationality will break the basic condition of a Nash
Equilibrium. Intuitively the equilibrium is a stable situation, i.e. from the
perspective of the balance of the numbers of contests and abilities of contestants
between the parallel contests.

As a short review and conclusion of this subsection, though in equilibrium
those players with ci ≥ c2max obtain the same payoff in both contests, we can
not say that for players with ci ≥ c2max, contest 1 can be seen as a mechanism
equal to contest 2. The reason is that in contest 1 those strong players ci < c2max

play a deterrent influence on entry into contest 1, and specifically the existence
of strong participants changes the distribution in contest 1.

4.5 A Critical Type

As defined in the previous subsection, the type c2max is the lowest type (or
with the highest ability), having an incentive to enter into contest 2 in equilib-
rium. Now we analyze the contestant with this critical type. As shown in the
above subsection, she can get equal payoff from both contests, i.e. R2(c2max) =
R1(c2max) and has the highest possibility of winning the prize V2, i.e. F2(c2max) =
0.

c2maxV2

∫ 1

c2max

(1− F2(t))k2−1

t2
dt = c2maxV1

∫ 1

c2max

(1− F1(t))k1−1

t2
dt

Then we rewrite it as

V2

∫ 1

c2max

(1− F2(t))k2−1

t2
dt = V1

∫ 1

c2max

(1− F1(t))k1−1

t2
dt

Since F2(c2max)) = 0, we differentiate the above equality by c2max and
obtain,

V2
1

c2
2max

= V1
(1− F1(c2max))k−1

c2
2max

Rearranging it, then we get

(1− F1(c2max)) = k−1

√
V2

V1
= C
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Therefore, we have that F1(c2max) = 1 − C or c2max = F−1
1 (1 − C). When C

approaches 1, c2maxapproaches the smallest type m, which implies that when the
values of the two prizes in contests are close enough, the behaviour of contestants
in the two contests will approach to be the same.

The smaller C is, the larger c2max will be. This implies that when the
difference of the two prizes is larger, the critical point will also be larger, i.e. in
equilibrium there will be more efficient competitors only in contest 1 and less
players are indifferent between the two contests.

4.6 The Existence of Equilibrium of Parallel Contests

In this subsection we prove that for any type of contestant in equilibrium, no one
can gain by changing her entry choices between the two contests. Remember
that in previous subsections the total number of contestants is assumed to be
large enough and, therefore, it is approximate that the change of one player’s
payoffs in contest 1, which is incurred by the event that any other player moves
from one contest to the other, is so small that the difference of payoffs can be
ignored, i.e.

ciV1

∫ 1

ci

(1− F1(t))k1−1

t2
dt ≈ ciV1

∫ 1

ci

(1− F1(t))k1

t2
dt

However, in this subsection we release this assumption and assume that in
equilibrium the number of players in contest 1 is k1 and that in contest 2 is
k2. In the following we prove that no one wants to change her entry choice in
equilibrium. It is easy to prove that in equilibrium all player with type ci <
c2max will enter contest 1. Now we prove that for player with type ci ≥ c2max,
the results in previous subsections still holds.

When the player is in contest 1:
Her payoff in contest 1 is that:

ciV1

∫ 1

ci

(1− F1(t))k1−1

t2
dt

If this player will enter contest 2 and others will not change, her payoff will
be

ciV2

∫ 1

ci

(1− F2(t))k2

t2
dt

From previous subsection we have the equality in equilibrium

ciV1

∫ 1

ci

(1− F1(t))k1−1

t2
dt = ciV2

∫ 1

ci

(1− F2(t))k2−1

t2
dt

Therefore, we obtain

ciV1

∫ 1

ci

(1− F1(t))k1−1

t2
dt > ciV2

∫ 1

ci

(1− F2(t))k2

t2
dt
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This inequality implies that a player in contest 1 will prefer staying in contest
1 rather than entering into contest 2.

When the player is in contest 2: Similarly, we obtain

ciV1

∫ 1

ci

(1− F1(t))k1

t2
dt < ciV2

∫ 1

ci

(1− F2(t))k2−1

t2
dt

This implies that a player in contest 2 will also prefer staying in contest 2 rather
than entering into contest 1.

We conclude with the following proposition.

Proposition 1 No matter how many players paticipate in parallel contests,
there exist equilibria in final situations, which are normally not unique. These
equilibria are based on each player’s rational entry decision into the parallel
contests.

5 Conclusion

From the perspective of the contestants, this paper analyses the entry choice be-
tween the two parallel contests. In the entry process, contestants with different
types (or abilities) have different behaviours. Specifically, a group of contestants
with higher abilities prefers entering the contest with a higher prize because they
have a higher expected payoff in the contest with higher prize, which can even
be higher than the lower prize itself. Therefore, in equilibrium we can not find
any of these strong players existing in the contest with a lower prize. However,
other players face other incentives. Surprisingly, if we assume that the number
of players and distributions of types in the two contests are common knowledge,
in equilibrium these weaker players can obtian equal revenue from any of the
parallel contests. This results from the rational decision of contestants.

As described in the Introduction, the whole picture of parallel contests as a
competition among contest designers is not yet addressed here. The analysis of
parallel contests in this paper only discusses one central problem, i.e. the entry
choice of players between the two parallel contests and the characterization of
the equilibrium in final situation. The results and research avenue in this paper
will be helpful for a further analysis of the whole model of parallel contests
and relative mechanism problems, which is interesting from its theoretical and
practical aspects.
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