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Abstract
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1. Introduction

This paper considers the selection of regressors and estimation of the number of structural

changes in multivariate regression models in the possible presence of multiple structural

changes. Many methods for the selection of regressors have been proposed in the econometric

and statistical literature, and it is often the case in practical analyses that the regressors

are selected using either testing procedures or model selection criteria. The former methods

select the regressors by testing the significance of the coefficients of the regressors and deleting

the insignificant coefficients from the models, while the model selection criteria choose the

regressors that minimize the given risk functions. The representative model selection criteria

in econometric analysis are the Akaike information criterion (AIC) by Akaike (1973), the Cp

criterion by Mallows (1973) and the Bayesian information criterion (BIC) by Schwarz (1978)

among others. See Burnham and Anderson (2002) and Konishi and Kitagawa (2008) for a

general treatment of the model selection criteria.

In addition to the selection of the regressors, we need to consider the possibility of struc-

tural changes when we investigate data covering a relatively long sample period. In such a

case we usually test for structural changes. Various tests for structural changes have been

proposed in the literature, and the most commonly used tests in recent practical analyses are

the sup-type test of Andrews (1993) and the exponential and average-type tests of Andrews,

Lee and Ploberger (1996) among others. These tests assume the null hypothesis of no changes

against the alternative of (multiple) change(s), whereas Bai and Perron (1998) and Bai (1999)

proposed tests for the null of ` breaks against the alternative of ` + 1 breaks for univariate

models. These tests are extended to multivariate models by Qu and Perron (2007), who give

a comprehensive treatment on the issue of the estimation, inference, and computation in a

system of equations with multiple structural changes. Their treatment is general enough in

that less restrictive assumptions are placed on the error term and that models such as vector

autoregressions (VAR), seemingly unrelated regressions and panel data models are included

in their setup as special cases. See Perron (2006) for a review of the testing and estimation

of structural changes.

Once the evidence of structural breaks is found, the next step is to estimate the number
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of breaks. Bai (1997b, 1999), Bai and Perron (1998) and Qu and Perron (2007) proposed to

implement tests for structural changes sequentially and proved that the estimated number of

structural changes is consistent by letting the significance level go to zero. Alternatively, in

the statistical literature, the model selection criteria have been proposed to select the number

of breaks. For independent normal random variables with mean shifts, Yao (1988) and Zhang

and Siegmund (2007) derived the modified BIC and Ninomiya (2005) proposed to modify the

AIC, while Liu, Wu and Zidek (1997) considered the modified BIC in regression models

with i.i.d. regressors. According to these works, the penalty terms of these new criteria are

different from those of the corresponding classical criteria because of the irregularity in the

change points. Although these results are of interest from a statistical point of view, they

cannot be directly applied to economic data because while economic time series variables

are typically serially correlated, in the above papers, assumptions such as i.i.d. observations

and regressors are made. Exceptions are Ninomiya (2006) and Hansen (2009). The former

considered the modified AIC in finite order autoregressive models, but derived under the

assumption of known variance. Hansen (2009) established the modified Mallows’ Cp criterion

but with only a single break being allowed.

In this paper we develop the model selection criteria in multivariate models allowing lagged

dependent variables as regressors in the possible presence of multiple structural changes in

both the coefficients and the variance matrices. Our criteria have an advantage over the

existing ones in that (i) multivariate models are considered, (ii) serial correlation is taken

into account in models by allowing serially correlated regressors, including lagged dependent

variables, (iii) structural changes in the variance matrices are allowed. We theatrically derive

the AIC, Cp criterion and BIC in models with structural changes and show that the penalty

terms should be modified compared with those of the corresponding classical ones. We confirm

by Monte Carlo simulations that this modification of the penalty terms is very important to

correctly select the regressors and the number of structural changes in finite samples.

The rest of this paper is organized as follows. We explain the model and assumptions in

Section 2. Section 3 establishes the modified AIC, the modified Cp criterion and the modified

BIC with multiple structural breaks and discusses the consistency of these criteria. In Section

4, we investigate the finite sample performance of our model selection criteria via simulations.

2



Concluding remarks are provided in Section 5.

2. Model and Assumptions

Let us consider the following n-dimensional regression model with m structural changes (m+1

regimes):

yt = Φjxjt + εt (j = 1, · · · , m + 1 and t = Tj−1 + 1, · · · , Tj) (1)

where yt and xjt are n×1 and pxj ×1 vectors of observations, respectively, εt is an error term

and Φj is an n × pxj unknown coefficient matrix in the jth regime. Typically, the regressor

xjt includes a constant but trending regressors are not allowed in our model. We use the

term pφj
= npxj to denote the number of unknown coefficients in each regime, so that the

total number of coefficients is given by pall
φ =

∑m+1
j=1 pφj

=
∑m+1

j=1 npxj . Similarly, by allowing

structural changes in the variance matrix of εt, the number of unknown variance components

in each regime is pσ = n(n + 1)/2 and that in all regimes is given by pall
σ = (m + 1)pσ =

(m+1)n(n+1)/2. We set T0 = 0 and Tm+1 = T , so that the total number of observations is

T . In model (1) there are m structural changes (m + 1 regimes) with change points given by

T1, · · · , Tm. We allow the lagged dependent variables as regressors and in that case, the initial

observations of yt for t ≤ 0 are assumed to be given. Thus, model (1) includes a VAR model

as a special case. Note that the different regressors and the different orders of the lagged

dependent variables are allowed depending on the regimes. The main purpose of this paper

is to derive the model selection criteria to choose the regressors among the p̄x candidates for

regressors and to estimate the number of structural changes m. In what follows, while we will

continue using “choose the number px among the p̄x regressors,” we, however, imply “choose

the regressors x1t, x2t, · · · , xm+1t for all the regimes among the p̄x candidates for regressors.”

Model (1) can be rewritten as yt = (x′jt⊗In)φj +εt for the jth regime where φj = vec(Φj)

is a pφj
×1 vector. We denote the true value of a parameter with superscript 0. For example,

φ0
j and T 0

j denote the true value of φj in the jth regime and the true jth break point,

respectively. Hence, the data generating process is given by

yt = (x′jt ⊗ In)φ0
j + εt.
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The following assumptions are supposed mainly for the derivation of the modified AIC

and the modified Cp criterion.

Assumption A1 (a) There exists a positive integer l0 > 0 such that for all l > l0, the

minimum eigenvalues of (1/l)
∑T 0

j−1+l

t=T 0
j−1+1

xjtx
′
jt and (1/l)

∑T 0
j

t=T 0
j −l

xjtx
′
jt are bounded away

from zero (j = 1, · · · , m0 + 1). (b)
∑l

t=k xjtx
′
jt is invertible for l− k > k0 for some 0 < k0 <

∞. (c) supj,t E‖xjt‖4+δ < ∞ for some δ > 0.

Assumption A2 When the lagged dependent variables are allowed as regressors, all the

characteristic roots associated with the lag polynomials are inside the unit circle.

Assumption A3 (a) εt = (Σ0
j )

1/2ηt for T 0
j−1 + 1 ≤ t ≤ T 0

j (j = 1, · · · , m0 + 1), where

Σ0
j is a symmetric and positive definite unknown matrix and {ηt} is a martingale differ-

ence sequence with respect to Ft = σ{ηt, ηt−1, · · · , zt+1, zt, · · · , } with E[ηtη
′
t|Ft−1] = In for

all t. (b) supt E‖ηt‖4+δ < ∞ for some δ > 0. (c) E[ηitηjtηkt] = 0 (i, j, k = 1, · · · , n).

(d) (1/∆T 0
j )tr

{[∑T 0
j

t=T 0
j−1+1

(ηtη
′
t − In)

]2
}

p−→ κ4j, where κ4 is some positive number and

∆T 0
j = T 0

j − T 0
j−1 (j = 1, · · · , m0 + 1).

Assumption A4 φ0
j+1 − φ0

j = vT δj and Σ0
j+1 − Σ0

j = vT Ψj, where (δj , Ψj) 6= 0 (j =

1, · · · , m0), Σ0
j → Σ0 as T →∞ for all j and vT is a sequence of positive numbers such that

vT → 0 and
√

TvT /(log T )2 →∞.

Assumption A5 0 = λ0 < λ0
1 < ... < λ0

m0 < λm0+1 = 1, where T 0
j = [Tλ0

j ] (j = 0, · · · , m0+

1).

Assumption A6 The following weak law of large numbers and the functional central limit

theorems hold (j = 1, · · · , m0):

1
∆T 0

j

T 0
j∑

t=T 0
j−1+1

(
xjtx

′
jt ⊗ (Σ0

j )
−1
) p−→ Q1j ,

1
∆T 0

j+1

T 0
j+1∑

t=T 0
j +1

(
xj+1tx

′
j+1t ⊗ (Σ0

j+1)
−1
) p−→ Q2j ,

vT

T 0
j∑

t=T 0
j −[vv−2

T ]

(ηtη
′
t − In) ⇒ ξ1j(v), vT

T 0
j +[vv−2

T ]∑
t=T 0

j +1

(ηtη
′
t − In) ⇒ ξ2j(v),
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vT

T 0
j∑

t=T 0
j −[vv−2

T ]

(
xjt ⊗ (Σ0

j )
−1/2

)
ηt ⇒ Q

1/2
1j ζ1j(v), vT

T 0
j +[vv−2

T ]∑
t=T 0

j +1

(
xj+1t ⊗ (Σ0

j+1)
−1/2

)
ηt ⇒ Q

1/2
2j ζ2j(v)

for v ≥ 0, where Q1j and Q2j are positive definite matrices,
p−→ and ⇒ signify conver-

gence in probability and weak convergence of the associated probability measures, respectively,

each entry of ξ1j(v) and ξ2j(v) is a (nonstandard) Brownian motion process on [0,∞) with

V ar(vec(ξ1j(1)) = Ω1j and V ar(vec(ξ2j(1)) = Ω2j, while each element of ζ1j(v) and ζ2j(v)

is a standard Brownian motion process on [0,∞), and ξ1j(v), ξ2j(v), ζ1j(v) and ζ2j(v) are

independent of each other.

The above assumptions satisfy or are similar to the conditions provided by the existing

literature. For detailed explanations, see Bai (1997a) and Bai and Perron (1998) for the

univariate case and Bai (2000) and Qu and Perron (2007) for the multivariate case. Note

that we do not allow serial correlation in the error term to derive the model selection criteria.

This is more restrictive as compared to the assumptions in Qu and Perron (2007). However,

since the lagged dependent variables are allowed as regressors and some elements of xjt can

be the lagged values of the other elements, Assumption A3 may not be too restrictive for

practical purposes. We should also note that the regressor xjt is not necessarily homogeneous

in all the regimes. In other words, the regime-wise heteroskedastic regressors are allowed in

our model. It is known that the assumption of heteroskedasticity in xjt and the shrinking

shifts in Assumption A4 result in the asymmetric limiting distributions of the break point

estimators. This asymmetry will make the modified AIC and the modified Cp criterion take

relatively complicated forms.

We estimate model (1) by the quasi-maximum likelihood (QML) method, conditional

on the initial values if the lagged dependent variables are allowed as regressors. Let φ =

[φ′1, φ
′
2, · · · , φ′m+1]

′, σ = [vec(Σ1)′, vec(Σ2)′, · · · , vec(Σm+1)′]′, θ = [φ′, σ′]′ and T = [T1, T2, · · · , Tm]′.

Then, given the number of breaks and the regressors, the log-likelihood function, denoted by

`m,px(T , θ|y, x), becomes

`m,px(T , θ|y, x) = −nT

2
log 2π −

m+1∑
j=1

∆Tj

2
log |Σj |
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−1
2

m+1∑
j=1

Tj∑
t=Tj−1+1

{yt − (x′jt ⊗ In)φj}′Σ−1
j {yt − (x′jt ⊗ In)φj}, (2)

where ∆Tj = Tj − Tj−1 and the subscripts m and px signify that the log-likelihood function

depends on the number of structural changes and the selected regressors, respectively. The

maximum likelihood estimators (MLE) of θ and T for given m and px are obtained by

maximizing (2) over {(λ1, · · · , λm); |λj+1 − λj | ≥ ε for j = 1, · · · , m} for small ε > 0 and

are denoted by θ̂ and T̂ , respectively.

Under Assumptions A1-A6, Qu and Perron (2007) showed that the MLEs of φj and Σj

have the standard asymptotic distributions as in the case of known break points, whereas the

limiting distributions of the break date estimators are given by, for j = 1, · · · , m0,

v2
T (T̂j − T 0

j ) d−→ argmax
v

BI
j (v) (3)

where the superscript I denotes the dependency on the indicator function given by I(v ≤ 0),

BI
j (v) =

{
B1j(v) = √

ω1jW1j(|v|)− |v|
2 γ1j : v ≤ 0

B2j(v) = √
ω2jW2j(v)− v

2γ2j : v > 0,
(4)

ω1j =
1
4
vec(A1j)′Ω1jvec(A1j)+δ′jQ1jδj , γ1j =

1
2
tr(A2

1j)+δ′jQ1jδj , A1j = (Σ0
j )
−1/2Ψj(Σ0

j )
−1/2,

ω2j =
1
4
vec(A2j)′Ω2jvec(A2j)+δ′jQ2jδj , γ2j =

1
2
tr(A2

2j)+δ′jQ2jδj , A2j = (Σ0
j+1)

−1/2Ψj(Σ0
j+1)

−1/2,

and W1j(v) and W2j(v) are independent standard Brownian motions on [0,∞).

Before moving to the derivation of the model selection criteria, we give the following

lemma.

Lemma 1 Let BI
j (v) be defined as in (4). Then,

E
[
max

v
BI

j (v)
]

=
r2
1j + r1jr2j + r2

2j

r1j + r2j
, (5)

E

[
aI

j

∣∣∣∣argmax
v

BI
j (v)

∣∣∣∣] = 2

{(
a2

γ2j

)
r2
2j(2r1j + r2j)
(r1j + r2j)2

+
(

a1

γ1j

)
r2
1j(r1j + 2r2j)
(r1j + r2j)2

}
, (6)

E

[
aI

j argmax
v

Bj(v)
]

= 2

{(
a2

γ2j

)
r2
2j(2r1j + r2j)
(r1j + r2j)2

−
(

a1

γ1j

)
r2
1j(r1j + 2r2j)
(r1j + r2j)2

}
, (7)

where aI
j = a1 if v ≤ 0 and aI

j = a2 if v > 0, r1j = ω1j/γ1j and r2j = ω2j/γ2j.
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Although the above three expectations are generally expressed using complicated forms,

they can be written in a simpler manner in special cases. For example, when a1 = γ1j and

a2 = γ2j , (6) and (7) become

E

[
aI

j

∣∣∣∣argmax
v

BI
j (v)

∣∣∣∣] = 2
r2
1j + r1jr2j + r2

2j

r1j + r2j
,

E

[
aI

j argmax
v

BI
j (v)

]
= 2

(r2j − r1j)(r2
1j + 3r1jr2j + r2

2j)
(r1j + r2j)2

.

In addition, if xjt is homoskedastic across the regimes, BI
j (v) has a symmetric distribution

with ω1j = ω2j = ωj and γ1j = γ2j = γj so that the expectations reduce to

E
[
max

v
BI

j (v)
]

=
3
2
rj , E

[
aI

j

∣∣∣∣argmax
v

BI
j (v)

∣∣∣∣] = 3rj , E

[
aI

j argmax
v

BI
j (v)

]
= 0,

where rj = r1j = r2j . Moreover, if r1j = r2j = 1 as in the case of the Gaussian error, then

we have

E
[
max

v
BI

j (v)
]

=
3
2
, E

[
aI

j

∣∣∣∣argmax
v

BI
j (v)

∣∣∣∣] = 3, E

[
aI

j argmax
v

BI
j (v)

]
= 0,

which are the same as obtained in Ninomiya (2005). Lemma 1 will be used to derive the

modified AIC and the modified Cp criterion in the next section.

3. Derivation of Model Selection Criteria

In this section we derive the three model selection criteria, AIC, Cp criterion and BIC, taking

structural changes into account. More precisely, let p̄x and m̄ be the largest number of regres-

sors and the largest number of structural changes, respectively, which we have to prespecify.

We propose to choose px and m among the p̄x candidates for regressors and 0 ≤ m ≤ m̄,

respectively, based on the derived model selection criteria, where though we conventionally

state “choose px,” we imply that we select an optimal set of regressors x1t, x2t, · · · , xm+1t

among the p̄x candidates. Note that all of the following three criteria are designed to choose

the model that minimizes them.

3.1. Akaike information criterion
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Akaike information criterion (AIC) is defined as the unbiased estimator of (−2) times the

expected log-likelihood given by Ey[Ey∗ [`m,px(T̂ , θ̂|y∗, x∗)]], which is in turn equivalent to 2

times the Kullback-Leibler (KL) information, where y∗ and x∗ have the same distribution as y

and x but are independent of y and x, and Ey and Ey∗ are expectation operators with respect

to y and y∗, respectively. See, for example, Burnham and Anderson (2002) and Konishi and

Kitagawa (2008). Note that T̂ and θ̂ are based not on y∗ but on y. Since we choose the

model that minimizes the AIC, we can interpret the chosen model as optimal in the sense

that it minimizes the KL information.

Akaike (1973) proposed to estimate the expected log-likelihood by the empirical log-

likelihood but he also showed that the empirical log-likelihood is the biased estimator of

the expected log-likelihood in finite samples. As in Akaike (1973) we consider the following

criterion that depends on the number of structural changes m and the selected regressors,

which we conventionally denote as px:

AIC(m, px) = −2`m,px(T̂ , θ̂|y, x) + 2bm,px(T̂ , θ̂), (8)

where bm,px(T̂ , θ̂) = Ey[`m,px(T̂ , θ̂|y, x) − Ey∗ [`m,px(T̂ , θ̂|y∗, x∗)]] corresponds to the bias.

Since the first term on the right hand side of (8) is the maximized log-likelihood obtained by

the QML estimation, we only need to evaluate the bias term explicitly.

In order to calculate the bias, we decompose bm,px(T̂ , θ̂) into four parts as follows:

bm,px(T̂ , θ̂) = Ey

[
`m,px(T̂ , θ̂|y, x)− Ey∗

[
`m,px(T̂ , θ̂|y∗, x∗)

]]
= Ey

[
`m,px(T̂ , θ̂|y, x)− `m,px(T 0, θ0|y, x)

]
+Ey

[
`m,px(T 0, θ0|y, x)− Ey∗

[
`m,px(T 0, θ0|y∗, x∗)

]]
+Ey

[
Ey∗

[
`m,px(T 0, θ0|y∗, x∗)

]
− Ey∗

[
`m,px(T 0, θ̂|y∗, x∗)

]]
+Ey

[
Ey∗

[
`m,px(T 0, θ̂|y∗, x∗)

]
− Ey∗

[
`m,px(T̂ , θ̂|y∗, x∗)

]]

= bm,px,1 + bm,px,2 + bm,px,3 + bm,px,4, say. (9)

As in the literature we evaluate bm,px,1 to bm,px,4 up to the O(1) terms for the true values

of m and px and obtain the modified AIC.
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Proposition 1 Under Assumptions A1-A6 with m = m0 and px = p0
x, the bias terms bm,px,1,

bm,px,2, bm,px,3 and bm,px,4 are, up to the O(1) terms, given by

bm,px,1 =
pall

φ

2
+

m+1∑
j=1

κ4j

4
+

m∑
j=1

r2
1j + r1jr2j + r2

2j

r1j + r2j
,

bm,px,2 = 0, bm,px,3 =
m+1∑
j=1

κ4j

4
+

pall
φ

2
, bm,px,4 =

m∑
j=1

r2
1j + r1jr2j + r2

2j

r1j + r2j
.

Proposition 1 suggests that the modified AIC should be defined as

MAIC(m, px) = −2`m,px(T̂ , θ̂|y, x) + 2pall
φ +

m+1∑
j=1

κ̂4j + 4
m∑

j=1

r̂2
1j + r̂1j r̂2j + r̂2

2j

r̂1j + r̂2j
, (10)

where ˆ denotes the consistent estimator of the corresponding parameter. The estimators of

the parameters are given by κ̂4j = tr(Ω̂j),

r̂1j =
1
4vec(Â1j)′Ω̂jvec(Â1j) + δ̂′jQ̂1j δ̂j

1
2tr(Â2

1j) + δ̂′jQ̂1j δ̂j

, and r̂2j =
1
4vec(Â2j)′Ω̂j+1vec(Â2j) + δ̂′jQ̂2j δ̂j

1
2tr(Â2

2j) + δ̂′jQ̂2j δ̂j

,

where Ω̂j =
1

∆T̂j

T̂j∑
t=T̂j−1+1

vec(η̂tη̂
′
t − In)vec(η̂tη̂

′
t − In)′, δ̂j = φ̂j+1 − φ̂j ,

Â1j = Σ̂−1/2
j

(
Σ̂j+1 − Σ̂j

)
Σ̂−1/2

j , Â2j = Σ̂−1/2
j+1

(
Σ̂j+1 − Σ̂j

)
Σ̂−1/2

j+1 , Σ̂j =
1

∆T̂j

T̂j∑
t=T̂j−1+1

ε̂tε̂
′
t

Q̂1j =
1

∆T̂j

T̂j∑
t=T̂j−1+1

(xjtx
′
jt ⊗ Σ̂−1

j ) and Q̂2j =
1

∆T̂j+1

T̂j+1∑
t=T̂j+1

(xjtx
′
jt ⊗ Σ̂−1

j+1)

with ε̂t = yt − (x′jt ⊗ In)φ̂j for T̂j−1 + 1 ≤ t ≤ T̂j (j = 1, · · · , m).

Although (10) is expressed in a complicated form, the modified AIC can be simplified in

several interesting cases. For example, when there are no weakly exogenous regressors and

model (1) is a pure VAR model, the limiting distributions of the break point estimators are

symmetric with ω1j = ω2j = ωj and γ1j = γ2j = γj as shown by Bai (2000). In this case,

r1j = r2j = rj so that

MAIC(m, px) = −2`m,px(T̂ , θ̂|y, x) + 2pall
φ +

m+1∑
j=1

κ̂4j + 6
m∑

j=1

r̂j .

9



When ηt is Gaussian, it can be shown that κ4j = n(n + 1) = 2pσ for all j. In ad-

dition, we have ω1j = γ1j and ω2j = γ2j because vec(A1j)′Ω1jvec(A1j)/2 = tr(A2
1j) and

vec(A2j)′Ω2jvec(A2j)/2 = tr(A2
2j) as shown in Remark 5 of Qu and Perron (2007). As a

result, r1j = r2j = 1 so that the modified AIC reduces to

MAIC(m, px) = −2`m,px(T̂ , θ̂|y, x) + 2(pall
φ + pall

σ ) + 6m. (11)

Even if ηt is not Gaussian but if there are no changes in the variance matrices, the

modified AIC takes a simple form. In this case, BI
j (s) becomes as given by (4) with ω1j =

γ1j = δ′jQ1jδ1j and ω2j = γ2j = δ′jQ2jδj . Again, we have r1j = r2j = 1, so that the modified

AIC reduces to

MAIC(m, px) = −2`m,px(T̂ , θ̂|y, x) + 2pall
φ + 6m (12)

where we omit κ4 because this term is common for all the models in this case.

In any case we can see that the penalty term of the modified AIC is different from the

classical one, which is 2 times the number of unknown coefficients given by 2pall
φ . In order

to see the intuitive meaning of the penalty term of the modified AIC, we first consider the

case where m is prefixed and one additional regressor is included in each regime. In this

case, the third and fourth terms on the right hand side of (10) are basically the same except

for the changes in the estimators of κ4j , r1j and r2j while the second term is increased by

2(m+1)n because the difference between the number of unknown coefficients in the two cases

is 2
∑m+1

j=1 n(pxj +1)−2
∑m+1

j=1 npxj = 2(m+1)n. Since (m+1)n is the number of additional

unknown coefficients, the penalty on the additional regressors is the same as in the classical

case.

Next, let us consider the case where the number of structural changes is increased from

m− 1 to m. For ease of exposition, consider the case where the additional break is found in

the last regime with pxm+1 regressors. From (10) the penalty term is increased by

2
(

pxm+1 +
κ̂4,m+1

2
+ 2

r̂2
1m + r̂1mr̂2m + r̂2

2m

r̂1m + r̂2m

)
. (13)

The first term in the parentheses of (13) is interpreted as the penalty on the additional

regressors, while the second term corresponds to the penalty on the increased number of

10



unknown variance components. That is, when the number of structural changes increases,

we need to estimate the variance matrix in the additional new regime given by Σm+1 and

κ̂4,m+1/2 can be interpreted as the penalty on Σm+1. In fact, when ηt is Gaussian, κ4,m+1/2

becomes equal to n(n + 1)/2, which is the same as the number of unknown components, pσ,

in Σm+1.

On the other hand, the third term in the parentheses of (13) can be interpreted as the

penalty on searching for an additional break because this term does not appear when the

mth break point, T 0
m, is known but does appear when we estimate it, as is understood from

the proof of Proposition 1. When we estimate the additional unknown break, we look for the

break point that maximizes the log-likelihood; further, the maximizing point is not necessarily

the true break date. In general, the maximization is possibly attained at a point different

from the true break date in finite samples. In other words, the uncertainty of the break

point always leads to a larger log-likelihood (or a smaller model selection criterion) and the

third term of (13) can be interpreted as the penalty on this uncertainty. In fact, we can see

from (3) and Lemma 1 that the third term in the parentheses of (13) is an approximation

of E[γI
j v2

T |T̂m − T 0
m|], which can be seen as a measure of the uncertainty of the mth break

point, where γI
j = γ1j for v ≤ 0 and γI

j = γ2j for v > 0. Thus, the more uncertain or more

volatile the break point estimator, the heavier the penalty imposed on the modified criterion.

As is seen in (11) and (12), this penalty becomes equal to 6 (= 2 × 3) in special cases such

as when the error is Gaussian and when there are no breaks in the variance matrix, because

E[γI
j v2

T |T̂m−T 0
m|] = 3 in these cases. We also note that the third term of (13) is an increasing

function of r1j = ω1j/γ1j and r2j = ω2j/γ2j , both of which become larger when the break

point estimator is more volatile (for larger ω1j and ω2j). Since this penalty on the uncertainty

is positive, the modified AIC will choose a smaller number of structural changes than the

classical AIC. This property will be confirmed by the simulations in a later section.

3.2. Mallows’ Cp criterion

Mallows (1973) focused on the prediction of the conditional mean of a univariate model and

proposed as a measure of adequacy for prediction the scaled sum of squared forecast errors.

In this subsection we extend the Mallows’ Cp criterion to multivariate models with multiple

11



structural changes by introducing a multivariate version of the scaled sum of square forecast

errors. The model minimizing the modified Cp criterion is optimal from the viewpoint of the

minimization of the risk function based on the forecast errors.

Let µ0
t = (x′jt ⊗ In)φ0

j be the conditional mean of yt for T 0
j−1 + 1 ≤ t ≤ T 0

j and µ̂t =

(x′jt ⊗ In)φ̂j be its estimator for T̂j−1 + 1 ≤ t ≤ T̂j (j = 1, · · · , m + 1). As suggested by

Mallows (1973) we adopt as a measure of adequacy of prediction the trace of the scaled

residual variance matrix given by

Jm,px =
m+1∑
j=1

tr

Σ0−1
j

T 0
j∑

t=T 0
j−1+1

(
µ̂t − µ0

t

) (
µ̂t − µ0

t

)′ .

Let ε̂t = yt−µ̂t for T̂j−1+1 ≤ t ≤ T̂j as defined before and ε̃t = yt−µ̃t with µ̃t = (x′jt⊗In)φ̂j

for T 0
j−1 + 1 ≤ t ≤ T 0

j . That is, ε̂t is the residual from the ML estimation while ε̃t is the

residual when we forecast the conditional mean by (xjt ⊗ In)φ̂j in the true regimes. Since

yt = µ0
t + εt = µ̂t + ε̂t = µ̃t + ε̃t, Jm,px becomes

Jm,px =
m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

(εt − ε̂t)′Σ0−1
j (εt − ε̂t)

=
m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

ε′tΣ
0−1
j εt − 2

m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

(yt − µ̂t)′Σ0−1
j εt +

m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

ε̂′tΣ
0−1
j ε̂t

= −
m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

ε′tΣ
0−1
j εt + 2

m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

(µ̂t − µ0
t )
′Σ0−1

j εt

−
m+1∑
j=1

 T̂j∑
t=T̂j−1+1

ε̂′tΣ
0−1
j ε̂t −

T 0
j∑

t=T 0
j−1+1

ε̂′tΣ
0−1
j ε̂t

+
m+1∑
j=1

T̂j∑
t=T̂j−1+1

ε̂′tΣ
0−1
j ε̂t

= Jm,px,1 + Jm,px,2 + Jm,px,3 +
m+1∑
j=1

T̂j∑
t=T̂j−1+1

ε̂′tΣ
0−1
j ε̂t, say. (14)

Following Mallows’ (1973) original work, the modified Cp criterion is defined as

MCp(m, px) =
m+1∑
j=1

T̂j∑
t=T̂j−1+1

ε̂′tΣ̂
−1
t,m̄,p̄x

ε̂t + E[Jm,px,1 + Jm,px,2 + Jm,px,3]

12



where Σ̂t,m̄,p̄x is the estimator of the variance matrix based on the most general model using

m = m̄ and px = p̄x. For a univariate case (n = 1) with no structural changes, Mallows (1973)

showed that E[Jm,px,1 +Jm,px,2 +Jm,px,3] = 2px−T and hence the modified Cp criterion takes

a well known form by ignoring −T . For our model (1) with structural changes, it is easy to

see that E[Jm,px,1] = −nT , which is common for all the models and can be ignored. On the

other hand, it can be shown that the dominant term in Jm,px,3 is of order v−1
T while Jm,px,2

is Op(1). As can be seen in the proof of Proposition 2 we have

vT Jm,px,3 = −
m∑

j=1

1(T̂j < T 0
j )tr(A1j)v2

T (T̂j − T 0
j ) + 1(T̂j > T 0

j )tr(A2j)v2
T (T̂j − T 0

j ) + op(1)

d−→ −
m∑

j=1

tr(AI
j ) argmax

v
BI

j (v) = J̄m,px,3, say, (15)

where AI
j = A1j when v ≤ 0 and AI

j = A2j when v > 0. Then, the natural candidate for

the modified Cp criterion would be MCp(m, px) =
∑m+1

j=1

∑T̂j

t=T̂j−1+1
ε̂′tΣ̂

−1
t,m̄,p̄x

ε̂t + E[J̄m,px,3].

However, this criterion may not be informative for the choice of models. For example,

when xjt is homoskedastic in all the regimes, argmaxv BI
j (v) has a symmetric distribu-

tion, which implies E[J̄m,px,3] = 0. In this case, the modified criterion consists of only∑m+1
j=1

∑T̂j

t=T̂j−1+1
ε̂′tΣ̂

−1
t,m̄,p̄x

ε̂t, which is always minimized when we choose the most general

model.

In order to avoid the above problem we need to evaluate the second dominant term in

Jm,px,3, which would be of the same order as is Jm,px,2. The problem here is that the second

dominant term in Jm,px,3 will be obtained by the higher order expansion of v2
T (T̂j−T 0

j ), which

is tedious to derive in practice. We might construct a new criterion by ignoring the whole

term of Jm,px,3 but such a criterion may not be optimal from the viewpoint of a measure of

adequacy for prediction.

Because of the above reason, we do not construct the modified Cp criterion under Assump-

tions A1-A6. Instead, we consider the same criterion under more restrictive assumptions; we

impose restrictions on the breaks in the variance matrices such that Σ0
j+1 − Σ0

j = v2
T Ψj . In

other words, we allow only those breaks that are smaller than the ones supposed in Assump-

tion A4. Note that by changing the assumption, the limiting distributions of the break point

estimators are not affected by the breaks in the variance matrices but depend only on the
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breaks in the coefficients, whereas a measure of prediction given by Jm,px still depends on

the breaks in the variance matrices through Jm,px,3.

Proposition 2 Under Assumptions A1-A6 with Σ0
j+1 − Σ0

j = v2
T Ψj and with m = m0 and

px = p0
x, the expectations of the first three terms of Jm,px are given by, up to the O(1) terms,

E[Jm,px,1] = −nT, E[Jm,px,2] = 2pall
φ + 6m, E[Jm,px,3] =

3
2

m∑
j=1

(
tr(A1j)

γ1j
− tr(A2j)

γ2j

)
,

where γ1j = δ′jQ1jδj and γ2j = δ′jQ2jδj in this case.

Proposition 2 suggests that the modified Cp criterion should be given by, ignoring the

O(1) terms,

MCp(m, px) =
m+1∑
j=1

T̂j∑
t=T̂j−1+1

ε̂′tΣ̂
−1
t,m̄,p̄x

ε̂t + 2pall
φ + 6m +

3
2

m∑
j=1

(
tr(Â1j)

γ̂1j
− tr(Â2j)

γ̂2j

)
. (16)

Note that the last penalty term might be negative depending on the asymmetric property

of the limiting distributions of the break point estimators. In the symmetric case the last

penalty term disappears so that the modified Cp criterion reduces to

MCp(m, px) =
m+1∑
j=1

T̂j∑
t=T̂j−1+1

ε̂′tΣ̂
−1
t,m̄,p̄x

ε̂t + 2pall
φ + 6m. (17)

For example, the two sided Brownian motions BI
j (v) (j = 1, · · · , m0) become symmetric when

there are no structural changes in the variance matrices, when (1) is a pure VAR model and

when xjt is homogeneous across the regimes.

From (16) we can see that the penalty term of the modified Cp criterion is different

from the classical criterion. As in the case of the modified AIC, the second term on the

right hand side of (16) is the penalty on the additional regressors while the third term

can be interpreted as the penalty on the uncertainty associated with estimating the break

points. The last term of (16) is related with the breaks in the variance matrices and the

asymmetry of the break point estimators. From the proof of Proposition 2 we can see that

the last penalty term is an approximation of −
∑m

j=1 tr(Aj)E[v2
T (T̂j − T 0

j )] where we used

the fact that A1j = A2j = (Σ0)−1/2Ψ(Σ0)−1/2 = Aj , say, asymptotically. This implies
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that the additional positive penalty is imposed when Ψj > 0 and E[v2
T (T̂j − T 0

j )] < 0 (or

Ψj < 0 and E[v2
T (T̂j − T 0

j )] > 0) and vice versa. To interpret this property, let us assume

that Σ0
j for j = 1, · · · , m + 1 are known. In this case, the contribution to Jm,px from

the jth regime should be given by tr[Σ0−1
j

∑T 0
j

t=T 0
j−1+1

(µ̂t − µ0
t )(µ̂t − µ0

t )
′] but we need to

replace T 0
j with T̂j for j = 1, · · · , m in practice. That is, the actual contribution is given

by tr[Σ0−1
j

∑T̂j

t=T̂j−1+1
(µ̂t − µ0

t )(µ̂t − µ0
t )
′]. In this case, if Ψj > 0, or equivalently, Σ0−1

j is

larger than Σ0−1
j+1 in terms of the matrix, and if T̂j tends to be smaller than T 0

j , then the

contribution to Jm,px from the jth regime decreases more than expected. In order to adjust

the smaller contribution from the jth regime, we need an additional positive penalty. On the

other hand, if, again, Σ0−1
j is relatively large but if the distribution of T̂j is skewed to the

right, the contribution to Jm,px from the jth regime is larger than expected and hence we

need to reduce this contribution by a negative penalty. Thus, the last term of (16) can be

interpreted as the penalty on the overweight or underweight on the forecast errors caused by

the asymmetry of the break point estimators.

We should keep in mind that the modified Cp criterion given by (16) is optimal from

the viewpoint of minimizing the risk function based on the prediction errors only in the case

where the magnitude of structural changes in the variance matrices is negligibly small as

compared to the magnitude of shifts in the coefficients.

3.3. Bayesian information criterion

Schwarz (1978) considered the problem of model selection in the Bayesian framework, in

which a model is selected based on the posterior probability. In this subsection, we derive the

modified BIC for models with structural changes using the Laplace approximation technique

as explained in Konishi and Kitagawa (2008). The model selected by the modified BIC is

optimal from the viewpoint of the maximization of the posterior probability.

Let M(m, px, T ) be a model for given m, px and T , P (M(m, px, T )) be the prior proba-

bility of a given model, fM (y|θ, x) be the probability density function (pdf) of y conditional

on θ and x for a given model M = M(m, px, T ) and πM (θ) be the prior pdf for θ. Then, the

15



posterior probability of model M(m, px, T ) is given by

P (M(m, px, T )|y, x) =
gM (y|x)P (M(m, px, T ))∑
gM (y|x)P (M(m, px, T ))

, (18)

where the summation is taken by over models M(m, px, T ) and gM (y|x) is the marginal

distribution of y conditional on x defined as gM (y|x) =
∫

fM (y|θ, x) πM (θ)dθ. We adopt

the model that maximizes the posterior probability (18), but the maximization of (18) is

equivalent to the maximization of the numerator on the right hand side of (18) because

the denominator is common for all the models. Thus, we consider the maximization of

gM (y|x)P (M(m, px, T )), or equivalently, the minimization of

−2 log {gM (y|x)P (M(m, px, T ))} = −2 log gM (y|x)− 2 log P (M(m, px, T )) . (19)

In order to evaluate (19), we make the following assumptions.

Assumption A7 (a) The conditional pdf of y, fM (y|θ, x), is Gaussian. (b) The priors for

φ1, · · · , φm+1 and Σ−1
1 , · · · , Σ−1

m+1 are noninformative. (c) The prior probability of M(m, px, T )

is given by P (M(m, px, T )) = αm,T /Tm where 0 < α < αm,T < ᾱ < ∞.

Note that we do not have to assume shrinking shifts in the Bayesian framework. Instead,

we make assumptions on the priors. Assumption A7 (a) states that we base our analysis on a

Gaussian distribution. We can interpret Assumption A7 (b) such that we do not have a priori

information on the distributional property of the parameters. Note that the noninformative

priors for the reciprocal of the variance matrices are sometimes considered in the Bayesian

framework. Assumption A7 (c) is motivated from the following three examples:

• (Example 1) Let us first consider the continuous time framework with 0 < t < T . For a

given m, let S1, S2, · · · , Sm be m candidates for the break dates that are independently

uniformly distributed on (0, T ). Then, the pdf of Sj is 1/T for j = 1, · · · , m. In this case

the break points T1, T2, · · · , Tm correspond to the order statistics S(1), S(2), · · · , S(m)

where S(j) is the jth smallest value among S1, S2, · · · , Sm. As a result, the joint pdf of

T1, T2, · · · , Tm is given by m!/Tm. This motivates us to assume that for discrete time

t = 1, 2, · · · , T the joint probability function of T1, T2, · · · , Tm is proportional to 1/Tm
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and given by m!/
∏m

j=1(1− j/T )/Tm. With the assumption that the prior probability

of m is given by 1/(m̄+1) (the uniform prior for m = 0, 1, · · · , m̄), the prior probability

of a given model becomes αm,T /Tm where αm,T = {m!/(m̄ + 1)}/
∏m

j=1(1− j/T ).

• (Example 2) Let us again consider the continuous time framework as in Example 1 and

suppose that the prior for m is a Poisson process with mean Tβ where the prior for

β is noninformative (β > 0). In this case, the pdf of T1, T2, · · · , Tm conditional on m

is given by m!/Tm (Theorem 2.3.1 in Ross, 1996) and hence the prior probability of a

given model becomes
∫∞
0 e−Tβ(Tβ)m/m!(m!/Tm)dβ = m!/Tm+1. This motivates us to

assume the prior given in Assumption A7 (c) in the discrete time framework.

• (Example 3) Suppose that the probability of the occurrence of structural change at

each time is given by a Binomial distribution with parameter ρ, for which the prior

is uniform on (0, 1). In this case, the prior probability of a given model becomes∫ 1
0 ρm(1 − ρ)mdρ = m!/

∏m
j=1{1 − (j − 1)/T}/(T + 1)/Tm, which is of the same form

as in Assumption A7 (c).

Let the MLE of θ = [φ′, σ′]′ for a given set of break points T be θ̌ = [φ̌′, σ̌′]′ where

φ̌ = [φ̌1, φ̌2, · · · , φ̌m+1]′ and σ̌ = [vec(Σ̌1)′, vec(Σ̌2)′, · · · , vec(Σ̌m+1)′]′. Note that θ̂ is the

global MLE with T = T̂ whereas θ̌ is obtained for an arbitrary given T . Thus, θ̌ is different

from θ̂ in general and they are the same only in the case where T = T̂ .

While the second term on the right hand side of (19) is given by 2m log T − 2 log αm,T ,

we need to evaluate the first term to obtain the modified BIC.

Proposition 3 Under Assumption A7, the logarithm of the marginal pdf of y given x is

expressed as

log gM (y|x) = `m,px(T , θ̌|y, x)−
m+1∑
j=1

pφj
+ pσ

2
log(Tj − Tj−1) + Op(1). (20)

Proposition 3 suggests that, since the second term on the right hand side of (19) is given
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by 2m log T + O(1) from Assumption A7 (c), we should minimize

−2 log {gM (y|x)P (M(m, px, T ))}

= −2`m,px(T , θ̌|y, x) +
m+1∑
j=1

(
pφj

+ pσ

)
log(Tj − Tj−1) + 2m log T + Op(1).

It is not difficult to see that the first term on the right hand side of the above equation domi-

nates the other terms and hence we only have to consider the minimization of−`m,px(T , θ̌|y, x)

as long as T is sufficiently large. Since minT −`m,px(T , θ̌|y, x) = −`m,px(T̂ , θ̂|y, x), we replace

T and θ̌ with the MLEs T̂ and θ̂ and propose the following modified BIC:

MBIC1(m, px) = −2`m,px(T̂ , θ̂|y, x) +
m+1∑
j=1

(
pφj

+ pσ

)
log(T̂j − T̂j−1) + 2m log T. (21)

Since log(T̂j − T̂j−1) = log T + log(λ̂j − λ̂j−1) = log T + Op(1), we may also simplify the

modified BIC (21) as

MBIC2(m, px) = −2`m,px(T̂ , θ̂|y, x) +
(
pall

φ + pall
σ + 2m

)
log T. (22)

It is not difficult to interpret the penalty terms of the two modified BICs. The second

term on the right hand side of (21) and (pall
φ + pall

σ ) log T of (22) are the penalty on the

additional unknown coefficients and variance components while 2m log T can be interpreted

as the penalty on the uncertainty of the break points.

Since the penalty of the classical BIC on the unknown coefficients is given by pall
φ log T ,

we can see from (21) that MBIC1 will tend to choose more regressors than the classical BIC

for a given m ≥ 1. We also note that the modified BIC (22) takes a form similar to Yao’s

(1988) BIC, which is given by

MBICy(m, px) = −2`m,px(T̂ , θ̂|y, x) + (pall
φ + pall

σ + m) log T. (23)

On comparing the penalty term, we can see that our modified BIC will tend to choose less

number of structural changes than Yao’s BIC.3

3Yao (1988) obtained the modified BIC by treating T1, T2, · · · , Tm as unknown parameters; counting the
total number of unknown parameters in the model, which equals pall

φ + pall
σ + m; and inserting this number

into the formula of the classical BIC. Since we treat the change points in a different way, our modified BIC
does not coincide with Yao’s BIC.
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3.4. Consistency

In this subsection we investigate whether or not the model selection criteria derived in this

paper can choose the appropriate regressors and the true number of structural changes. It is

well known that the BIC can consistently choose the true lag length for time series models with

no structural changes while the AIC and the Cp criterion tend to choose longer lags than

the true one. See, for example, Shibata (1976), Hannan (1980) and Hannan and Deistler

(1988). Thus, we expect that the modified BIC can consistently choose the regressors while

the modified AIC and the modified Cp criterion may choose a larger set of regressors than

the true ones. In addition, since our two modified BICs take a form similar to Yao’s (1988)

BIC, which is proved to consistently estimate the number of breaks for a local level Gaussian

model, we expect that our modified BIC may have the same property.

In the following, we conventionally use the statement “px > p0
x,” which means that the

true regressors are included in each regime and there are extra regressors at least in one

regime. On the other hand, “px < p0
x” implies that some true regressors are excluded at

least from one regime irrespective of whether or not the extra regressors are included in some

regimes. In the case of “px = p0
x” each regime includes only the true regressors. Then,

{px < p0
x} ∪ {px > p0

x} ∪ {px = p0
x} covers all the possible choices of the regressors.

To investigate the consistency of the estimated px and m, let MIC(m, px) be a general

expression of the model selection criterion defined as follows:

MIC(m, px) = −2`m,px(T̂ , θ̂|y, x) +
m+1∑
j=1

(pφj
+ pσ)g1(T ) + mg2(T ), (24)

where g1(T ) and g2(T ) are sequences of positive non-decreasing numbers. Suppose that

m0 ≤ m̄ and that p̄x includes all the true regressors. Let m̂ and p̂x be chosen such that the

MIC is minimized over 0 ≤ m ≤ m̄ and among the p̄x regressors.

Proposition 4 Assume that Assumptions A1-A6 hold. (i) If g1(T ) →∞ while gi(T )/(Tv2
T ) →

0 for i = 1 and 2, then P (m̂ = m0 and p̂x = p0
x) → 1 as T →∞.

(ii) If g2(T ) → ∞ and g2(T )/(Tv2
T ) → 0 while g1(T ) = O(1), then P (m̂ = m0 and p̂x ≥

p0
x) → 1 as T →∞.

(iii) If gi(T ) = O(1) for i = 1 and 2, then P (m̂ ≥ m0 and p̂x ≥ p0
x) → 1 as T →∞.
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Proposition 4(i) implies that the divergence of g1(T ) guarantees the consistency of both

m̂ and p̂ irrespective whether or not g2(T ) goes to infinity. Intuitively, this is because the

consistency of m̂ (p̂) requires the divergence of the penalty term when the extra breaks (extra

regressors) are included. Since the coefficient associated with g1(T ) increases when either the

extra regressors or the extra breaks are included, we have Proposition 4(i). In the case of (ii)

the penalty term does not diverge when the extra regressors are included and hence there is

a positive probability of p̂x > p0
x. (iii) can be interpreted similarly.

From Proposition 4(i) we can see that m̂ and p̂x based on the modified BICs are consistent.

Of interest is that both the classical BIC and Yao’s (1988) BIC also have the consistent

property. On the other hand, the estimators based on the modified AIC are not consistent

but they tend to be greater than m0 and p0
x with positive probability from Proposition 4(iii).

Similarly, we deduce that the modified Cp criterion does not deliver consistent estimators of

m and px. Therefore, we can say that the modified BICs have more plausible property than

the modified AIC and the modified Cp criterion, at least asymptotically. However, as we will

see in the next section, this is not always the case in finite samples.

4. Finite Sample Property

In this section we investigate the finite sample property of the model selection criteria de-

veloped in the previous section. We consider univariate AR(1), AR(2) and MA(1) processes

generated by εt ∼ i.i.d.N(0, 1) possibly with structural changes as the data generating pro-

cess (DGP) and examine the performance of the modified criteria by estimating the lag length

py as well as the number of breaks m.

In the case of no breaks, the DGP is given by

DGP0 : yt = φ1yt−1 + φ2yt−2 + εt − θ1εt−1 : 1 ≤ t ≤ T,

where the sets of the parameters are summarized in the first panel of Table 1. DGP0AR1a

corresponds to the AR(1) case with weak positive serial correlation while yt is moderately

serially correlated for DGP0A1b. DGP0AR2a-b are the AR(2) cases with real valued char-

acteristic roots, whereas DGP0AR2c-d have complex roots. We choose these parameters so
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that φ1 + φ2 = 0.3 (the case of weak serial correlation) or 0.7 (the case of moderate serial

correlation). Similarly, we consider two DGPs for the MA(1) case (DGP0MA1a-b).

A process with one time break is generated by

DGP1 :
{

yt = c1 + φ11yt−1 + φ21yt−2 + εt − θ11εt−1 : 1 ≤ t ≤ [T/2]
yt = c2 + φ12yt−1 + φ22yt−2 + εt − θ12εt−1 : [T/2] + 1 ≤ t < T,

where the sets of the parameters are given in the second panel of Table 1. For the AR(1)

(DGP1AR1a-b) and AR(2) (DGP1AR2a-d) cases, the sum of the AR coefficients changes

from 0.7 to 0.3 or 0.3 to 0.7. The MA(1) case (DGP1MA1a-b) has similar structural changes.

The DGP with two time breaks is given by

DGP2 :


yt = c1 + φ11yt−1 + φ21yt−2 + εt − θ11εt−1 : 1 ≤ t ≤ [T/3]
yt = c2 + φ12yt−1 + φ22yt−2 + εt − θ12εt−1 : [T/3] + 1 ≤ t < [2T/3]
yt = c3 + φ13yt−1 + φ23yt−2 + εt − θ13εt−1 : [2T/3] + 1 ≤ t < T,

where the sets of the parameters are summarized in the last panel of Table 1. For DGP2AR1a,

AR2a, AR2c and MA1a, serial correlation is weakened by the first break but the process

returns to the first regime after the second break (the first and third regimes have the same

parameters). DGP2AR1b, AR2b, AR2d and MA1b correspond to the case where the level of

the process goes down and the process becomes less persistent gradually because of structural

changes.

We set T = 120 or 300 while the trimming parameter ε is set as 0.05 or 0.15. All

computations are carried out by using the GAUSS matrix language with 5,000 replications.4

We estimate the AR(py) model including a constant with structural changes and select

the lag length py and the number of breaks m based on the modified AIC in (12), the modified

Cp criterion in (17) and the two modified BICs in (21) and (22), with a restriction such that

the lag lengths are the same in all the regimes. We set p̄y = 4 and m̄ = 5 so that we choose

a model from among 0 ≤ py ≤ 4 and 0 ≤ m ≤ 5.

To see the effect of our modification, we also estimate py and m by the classical model

selection criteria and Yao’s (1988) modified BIC. In addition, we compare the finite sample

performance of the model selection criteria with that of the sequential testing procedure.
4We need to efficiently calculate the maximized likelihood for the case of multiple structural changes to

save computational time. The method is explained in Bai and Perron (1998, 2003) and we made use of the
program provided by them.
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Since we do not know the true lag length, we first estimate the number of breaks by the

testing procedure that is robust to heteroskedasticity and autocorrelation, and then estimate

the lag length using the estimated number of breaks. More precisely, following the suggestion

by Bai and Perron (2006), we first test for the null of no breaks using the UDmax test at

the 5% significance level allowing different second moments of the regressors as well as the

heterogeneity of the variances. Since py is unknown, we regress yt on a constant in each regime

and construct the test statistic using the autocorrelation and heteroskedasticity consistent

(HAC) estimate of the variance of the error terms with the prewhitening method. If the null

hypothesis is rejected, we continuously use the supF (` + 1|`) test constructed in the same

way as the UDmax test until it cannot reject the hypothesis. Once the number of breaks

is estimated, the lag length is estimated using the Wald test by the general to specific rule.

This robust testing procedure is denoted by “Sq(rb)”.

We also consider the hybrid of the modified criteria with the testing procedure; we first

estimate py and m by the modified criteria and using the estimated lag length, estimate the

number of breaks with the testing procedure.5 Note that we do not use the HAC estimates

of the variance to construct the test statistics in this case because the lag length is estimated.

The hybrid method is denote by “Sq(MIC).” For example, “Sq(MAIC)” signifies that the

lag length is selected by the modified AIC while the number of breaks is estimated by the

testing procedure.

Table 2a reports the frequencies of selecting the true model for the case of no breaks. The

entries for the AR(1) and AR(2) cases are the frequencies of p̂y = 1 and m̂ = 0, respectively.

We focus only on the estimation of the number of breaks for the MA(1) case and the entries in

this case correspond to the frequencies of m̂ = 0 irrespective of any values of p̂y, because any

finite order lags are incorrect. From the panels DGP0AR1a-b, we can see that the classical

AIC and Cp criterion rarely choose the true model for the AR(1) case while the classical

BIC has a better finite sample property when T = 300, although its performance is not

necessarily satisfactory when T = 120. This poor finite sample performance of the classical

criteria is dramatically improved by our modification; in particular, the modified BICs have
5We also conducted simulations for the hybrid of the classical model selection criteria, such as AIC and

BIC, with the testing procedure, but the performance is poor and we do not report the results.
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a high probability of selecting the true model, as expected from Proposition 4. The problem

of the classical criteria is that they tend to choose large number of structural changes. For

example, in the case of DGP0AR1a with T = 120 and ε = 0.05 the probabilities for AIC,

BIC and Cp when m̂ = 5 and p̂ = 0 are 0.456, 0.403 and 0.475, respectively. This tendency

to over-estimate is well corrected by including the penalty term on the additional breaks.

Comparing the modified criteria with the robust testing procedure and the hybrid methods,

we find that our modified criteria work better when T = 120. Further, while the hybrid

methods perform better than the modified AIC and the modified Cp criterion in some cases,

they are not as good as the modified BICs in this case. We also note that all the methods

perform better for larger T and larger ε, but the modified criteria are not as sensitive to the

value of ε as the testing procedure and the hybrid method. In particular, when T = 120 and

ε = 0.05, the sequential testing procedure and the hybrid method do not work well.

For the AR(2) case with DGP0AR2a, it is difficult for all the methods to choose the true

model. This is because the coefficient associated with yt−2 is so small that shorter lags tend

to be selected. Because the penalty of the modified AIC and the modified Cp criterion is

not as heavy as that of the modified BICs, the former two methods choose the true model

with a higher probability. For the other AR(2) case (DGP0AR2b-d) and the MA(1) case

(DGP0MA1a-b), the overall performance is similar to the AR(1) case.

Table 2b reports the result for the case of one time break. As in the case of no breaks, the

classical criteria do not perform well because they tend to choose larger breaks; this tendency

to over-estimate is fixed by our modification. In this case, while the hybrid method with

the modified BICs tends to choose the true model more frequently than the modified BICs

for the AR(1) and AR(2) cases, the relation is reversed for the MA(1) case. However, the

performance of both the methods is not satisfactory for DGP1AR2a-b.

The result for the case of two time breaks is summarized in Table 2c. As a whole, it seems

difficult to choose the true model for the AR(1) and AR(2) cases, especially, when T = 120.

The modified AIC works best among the modified criteria but its performance is dominated

by the hybrid method in many cases. On the other hand, the modified BICs work better

than the hybrid method for the MA(1) case, although both perform quite well in this case.
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To summarize our simulation results, we can say that the modified BICs perform relatively

well when m0 ≤ 1 and ε = 0.05, while the hybrid method with the modified BICs, that is,

the sequential testing procedure with the lag order selected by the modified BICs, may be

recommended if one is confident that the distance between the two consecutive break fractions

is not so close, such as ε = 0.15, or if it is believed that the model has more than one break

with a high probability.

5. Conclusion

This paper developed the model selection criteria to select the regressors and the number of

structural changes in multivariate regression models, including a VAR model as a special case.

We derived the modified AIC, the modified Cp criterion and the modified BICs. The penalty

terms of these criteria are determined not in ad hoc ways but based on the risk functions given

for the criteria. We showed that the modified BICs can consistently estimate the number of

structural changes and the regressors while the modified AIC and the modified Cp criterion

tend to choose a larger model with a positive probability. The consistency of the modified

BICs is a plausible theoretical property and by reflecting this nice nature, the modified BICs

perform well in finite samples. Because it is important to consistently estimate the number

of breaks and given the simulation results, the modified BICs and the hybrid method are

recommended to be implemented for practical analyses.

Appendix

Since all the model selection criteria are derived when m = m0 and p = p0, we omit the

superscript 0 for notational convenience.

Proof of Lemma 1: In this proof we omit a subscript j for notational convenience. For

example, B1j(v) is abbreviated as B1(v). As explained in Appendix B of Bai (1997a),

maxv≤0 B1(v) and maxv>0 B2(v) are distributed as exponential distributions with param-

eters γ1/ω1 and γ2/ω2, respectively, and hence

P
(
max

v
BI(v) ≤ b

)
= P

(
max

{
max
v≤0

B1(v), max
v>0

B2(v)
}
≤ b

)
= P

(
max
v≤0

B1(v) ≤ b

)
P

(
max
v>0

B2(v) ≤ b

)
24



=
(
1− e−(γ1/ω1)b

)(
1− e−(γ2/ω2)b

)
,

where the second equality holds because B1(v) and B2(v) are independent. Then, the prob-

ability density function of maxv BI(v) is given by

f(b) = (γ1/ω1)e−(γ1/ω1)b + (γ2/ω2)e−(γ2/ω2)b − {(γ1/ω1) + (γ2/ω2)} e−{(γ1/ω1)+(γ2/ω2)}b.

Carrying out the integration
∫
b>0 bf(b)db and letting r1 = ω1/γ1 and r2 = ω2/γ2, we obtain

(5).

Next, let v̂ = argmaxv BI(v). By change of variable with s = (γ2
1/ω1)v as in Qu and

Perron (2007) we can see that

v̂ =
ω1

γ2
1

argmax
s

B̃I(s), where B̃I(s) =
{

W1(|s|)− |s|
2 : s ≤ 0√

rωW2(s)− s
2rγ : s > 0,

where rω = ω2/ω1 and rγ = γ2/γ1. Then, it is sufficient to calculate E[argmaxs B̃I(s)1(s ≤ 0)]

and E[argmaxs B̃I(s)1(s > 0)] in order to obtain (6) and (7).

Following Appendix B of Bai (1997a) it can be shown that the probability density function

(pdf) of ŝ = argmaxs B̃I(s) is given by

g(s) =


−1

2Φ
(
−1

2

√
|s|
)

+
(

rγ

rω
+ 1

2

)
e(1/2){(rγ/rω)+(rγ/rω)2}|s|Φ

(
−
(

rγ

rω
+ 1

2

)√
|s|
)

: s ≤ 0

− (rγ/
√

rω)2

2 Φ
(
− (rγ/

√
rω)

2

√
s
)

+
(
rγ + (rγ/

√
rω)2

2

)
e(1/2)(rγ+rω)sΦ

(
−
(√

rω + (rγ/
√

rω)
2

)√
s
)

: s > 0

,

which is obtained based on the result on an additive process by Bhattacharya and Brockwell

(1976),6 where Φ(·) denotes a cumulative distribution function of a standard normal random

variable. By carrying out the integration we obtain∫ 0

−∞
sg(s)ds = −2rγ(rγ + 2rω)

(rγ + rω)2
= −2r1(r1 + 2r2)

(r1 + r2)2
,∫ ∞

0
sg(s)ds =

2r2
ω(rω + 2rγ)

r2
γ(rγ + rω)2

=
2
rγ

r2
2(2r1 + r2)

r1(r1 + r2)2
,

where the second equalities of the above two integrals are obtained by using rω = (r2/r1)rγ .

Noting that

E

[
aI

j

∣∣∣∣argmax
s

B̃I(s)
∣∣∣∣] = a2

∫ ∞

0
sg(s)ds− a1

∫ 0

−∞
sg(s)ds,

6This result is obtained by replacing φ and ξ in Bai (1997a) with rω and rγ , respectively. Note that there
are typos in equation (B.1) and the definition of g(x) in Bai (1997a). The first term on the right hand side of
g(x) for x < 0 must have a negative sign.
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E

[
aI

j argmax
s

B̃I(s)
]

= a2

∫ ∞

0
sg(s)ds + a1

∫ 0

−∞
sg(s)ds,

(6) and (7) are established.�

Proof of Proposition 1: In this proof we restrict our analysis on the set given by {Tj |Tj =

T 0
j + cv−2

T , −M ≤ c ≤ M} for some large M (j = 1, · · · , m) because T̂j − Tj = Op(v−2
T )

as shown by Qu and Perron (2007). We first evaluate bm,px,1. Since Ey[`m,px(T 0, θ0|y, x)] =

−(nT/2) log(2π)− (1/2)
∑m+1

j=1 ∆T 0
j log |Σ0

j | − (nT/2), we can see that

`m,px(T̂ , θ̂|y, x)− E
[
`m,px(T 0, θ0|y, x)

]
= R11 + R12, (25)

where R11 = −
m+1∑
j=1

(
∆T̂j

2
log |Σ̂j | −

∆T 0
j

2
log |Σ0

j |

)
,

R12 = −
m+1∑
j=1

∆T̂j

2

(
log |Σ̂j | − log |Σ0

j |
)
−

m+1∑
j=1

∆T̂j −∆T 0
j

2
log |Σ0

j |.

By expanding log |Σ̂j | around log |Σ0
j |, R11 is expressed as

R11 = −
m+1∑
j=1

∆T̂j

2

[
tr
{

Σ0−1
j

(
Σ̂j − Σ0

j

)}
− 1

2
tr
{

Σ0−1
j

(
Σ̂j − Σ0

j

)
Σ0−1

j

(
Σ̂j − Σ0

j

)}]
+ op(1)

= −
m+1∑
j=1

∆T̂j

2

[
tr
{

Σ0−1
j

(
Σ̂j − Σ̃j

)}
+ tr

{
Σ0−1

j

(
Σ̃j − Σ0

j

)}
−1

2
tr
{

Σ0−1
j

(
Σ̂j − Σ0

j

)
Σ0−1

j

(
Σ̂j − Σ0

j

)}]
+ op(1), (26)

where Σ̃j =
∑T 0

j

t=T 0
j−1+1

ε̃tε̃
′
t/∆T̂j with ε̃t = yt − (x′t ⊗ In)φ̂j for T 0

j−1 + 1 ≤ t ≤ T 0
j .

For T̂j < T 0
j , the first term in the square brackets on the right hand side of (26) becomes

−
m+1∑
j=1

∆T̂j

2
tr
{

Σ0−1
j

(
Σ̂j − Σ̃j

)}

= −1
2

m∑
j=1

T 0
j∑

t=T̂j+1

{
εt − (x′t ⊗ In)(φ̂j+1 − φ0

j )
}′

Σ0−1
j+1

{
εt − (x′t ⊗ In)(φ̂j+1 − φ0

j )
}

−
{

εt − (x′t ⊗ In)(φ̂j − φ0
j )
}′

Σ0−1
j

{
εt − (x′t ⊗ In)(φ̂j − φ0

j )
}

= −1
2

m∑
j=1

T 0
j∑

t=T̂j+1

tr
(
Σ0−1

j+1εtε
′
t

)
− tr

(
Σ0−1

j εtε
′
t

)
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−2(φ̂j+1 − φ0
j )
′

T 0
j∑

t=T̂j+1

(
xt ⊗ Σ0−1

j+1

)
εt + (φ̂j+1 − φ0

j )
′

T 0
j∑

t=T̂j+1

(
xtx

′
t ⊗ Σ0−1

j+1

)
(φ̂j+1 − φ0

j ) + op(1).

Since φ̂j+1 − φ0
j = (φ0

j+1 − φ0
j ) + (φ̂j+1 − φ0

j+1) = vT δj + Op(1/
√

T ) and

Σ0−1
j = Σ0−1

j+1 + Σ0−1
j+1(Σ

0
j+1 − Σ0

j )Σ
0−1
j+1 + Σ0−1

j+1(Σ
0
j+1 − Σ0

j )Σ
0−1
j (Σ0

j+1 − Σ0
j )Σ

0−1
j+1

= Σ0−1
j+1 + vT Σ0−1/2

j+1 A2jΣ
0−1/2
j+1 + v2

T Σ0−1/2
j+1 A2

2jΣ
0−1/2
j+1 + O(v3

T ),

we can see that, for T̂j < T 0
j ,

−
m+1∑
j=1

∆T̂j

2
tr
{

Σ0−1
j

(
Σ̂j − Σ̃j

)}
=

1
2

m∑
j=1

tr

vT A1j

T 0
j∑

t=T̂j+1

ηtη
′
t

− v2
T (T 0

j − T̂j)tr
(
A2

1j

)

+2vT δ′j

T 0
j∑

t=T̂j+1

(
xt ⊗ Σ0−1

j

)
εt − v2

T δ′j

T 0
j∑

t=T̂j+1

(
xtx

′
t ⊗ Σ0−1

j

)
δj + op(1). (27)

Similarly, the second and third terms in the square brackets on the right hand side of (26)

are expressed as

−
m+1∑
j=1

∆T̂j

2
tr
{

Σ0−1
j (Σ̃j − Σ0

j )
}

= −1
2

m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

{
εt − (x′t ⊗ In)(φ̂j − φ0

j )
}′

Σ0−1
j

{
εt − (x′t ⊗ In)(φ̂j − φ0

j )
}

+
nT

2

=
1
2

m+1∑
j=1

(φ̂j − φ0
j )

T 0
j∑

t=T 0
j−1+1

(
xtx

′
t ⊗ Σ0−1

j

)
(φ̂j − φ0

j )−
1
2

m+1∑
j=1

tr


T 0

j∑
t=T 0

j−1+1

(
ηtη

′
t − In

)+ op(1).

(28)

m+1∑
j=1

∆T̂j

4
tr
{

Σ0−1
j

(
Σ̂j − Σ0

j

)
Σ0−1

j

(
Σ̂j − Σ0

j

)}
=

m+1∑
j=1

1
4∆T 0

j

tr


 T 0

j∑
t=T 0

j−1+1

(ηtη
′
t − In)


2+op(1).

(29)

On the other hand, R12 becomes, for T̂j < T 0
j ,

R12 =
1
2

m∑
j=1

(T 0
j − T̂j)

(
log |Σ0

j | − log |Σ0
j+1|

)
27



=
1
2

m∑
j=1

T 0
j∑

t=T̂j+1

tr (−vT A1j) +
v2
T (T 0

j − T̂j)
2

tr
(
A2

1j

)
+ op(1), (30)

where the last equality is obtained by expanding log |Σ0
j+1| around log |Σ0

j |.

Then, by combining (27)–(30), we have, for T̂j < T 0
j ,

R11 + R12 +
1
2

m+1∑
j=1

tr


T 0

j∑
t=T 0

j−1+1

(
ηtη

′
t − In

)
=

1
2

m+1∑
j=1

(φ̂j − φ0
j )

T 0
j∑

t=T 0
j−1+1

(
xtx

′
t ⊗ Σ0−1

j

)
(φ̂j − φ0

j ) +
m+1∑
j=1

1
4∆T 0

j

tr


 T 0

j∑
t=T 0

j−1+1

(ηtη
′
t − In)


2

+
m∑

j=1

tr

vT

2
A1j

T 0
j∑

t=T̂j+1

(
ηtη

′
t − In

)−
v2
T

4
(T 0

j − T̂j)tr
(
A2

1j

)

+vT δ′j

T 0
j∑

t=T̂j+1

(
xt ⊗ Σ0−1

j

)
εt −

v2
T

2
δ′j

T 0
j∑

t=T̂j+1

(
xtx

′
t ⊗ Σ0−1

j

)
δj + op(1)

d−→ 1
2

m+1∑
j=1

χ2
pφj

+
m+1∑
j=1

κ4j

4
+

m∑
j=1

max
v

BI
j (v), (31)

where χ2
pφj

(j = 1, · · · , m + 1) are independent chi-square distributions with pφj
degrees of

freedom. Since the same convergence holds for T̂j > T 0
j and the expectation of the left hand

side of (31) equals bm,px,1, we can see using Lemma 1 that, up to the O(1) terms,

bm,px,1 =
pall

φ

2
+

m+1∑
j=1

κ4j

4
+

m∑
j=1

r2
1j + r1jr2j + r2

2j

r1j + r2j
.

We next evaluate bm,px,3 because bm,px,2 = 0 is obvious. Since

Ey∗ [`m,px(T 0, θ̂|y∗, x∗)] = −nT

2
log(2π)−

m+1∑
j=1

∆T 0
j

2
log |Σ̂j | −

1
2

m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

tr
(
Σ̂−1

j Σ0
j

)

−1
2

m+1∑
j=1

∆T 0
j (φ̂j − φ0

j )
′
(
Ey∗ [x∗t x

∗′
t ]⊗ Σ̂−1

j

)
(φ̂j − φ0

j ),

28



we can see that

Ey∗ [`m,px(T 0, θ0|y∗, x∗)]− Ey∗ [`m,px(T 0, θ̂|y∗, x∗)]

=
m+1∑
j=1

∆T 0
j

2

(
log |Σ̂j | − log |Σ0

j |
)
− nT

2
+

1
2

m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

tr
(
Σ̂−1

j Σ0
j

)

+
1
2

m+1∑
j=1

∆T 0
j (φ̂j − φ0

j )
′
(
Ey∗ [x∗t x

∗′
t ]⊗ Σ̂−1

j

)
(φ̂j − φ0

j )

=
m+1∑
j=1

∆T 0
j

4
tr
{

Σ0−1
j (Σ̂j − Σ0

j )Σ
0−1
j (Σ̂j − Σ0

j )
}

+
1
2

m+1∑
j=1

∆T 0
j (φ̂j − φ0

j )
′
(
Ey∗ [x∗t x

∗′
t ]⊗ Σ̂−1

j

)
(φ̂j − φ0

j ) + op(1)

d−→
m+1∑
j=1

κ4j

4
+

1
2

m+1∑
j=1

χ2
pφj

, (32)

where the second equality is obtained by expanding log |Σ̂j | around log |Σ0
j | and by using the

relation

tr
(
Σ̂−1

j Σ0
j

)
= n− tr

{
Σ0−1

j (Σ̂j − Σ0
j )
}

+ tr
{

Σ0−1
j (Σ̂j − Σ0

j )Σ̂
−1
j (Σ̂j − Σ0

j )
}

,

which holds because

Σ̂−1
j = Σ0−1

j − Σ0−1
j (Σ̂j − Σ0

j )Σ
0−1
j + Σ0−1

j (Σ̂j − Σ0
j )Σ̂

−1
j (Σ̂j − Σ0

j )Σ
0−1
j .

From (32), we have, up to the O(1) terms,

bm,px,3 = Ey

[
Ey∗ [`m,px(T 0, θ0|y∗, x∗)]− Ey∗ [`m,px(T 0, θ̂|y∗, x∗)]

]
=

m+1∑
j=1

κ4j

4
+

pall
φ

2
.

For bm,px,4, we write

Ey∗ [`m,px(T 0, θ̂|y∗, x∗)]− Ey∗ [`m,px(T̂ , θ̂|y∗, x∗)] = R41 + R42 + R43,

where R41 =
m+1∑
j=1

∆T̂j −∆T 0
j

2
log |Σ̂j |,

R42 =
1
2

m+1∑
j=1

T̂j∑
t=T̂j−1+1

{
y∗t − (x∗′t ⊗ In)φ̂j

}′
Σ̂−1

j

{
y∗t − (x∗′t ⊗ In)φ̂j

}
,
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R43 = −1
2

m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

{
y∗t − (x∗′t ⊗ In)φ̂j

}′
Σ̂−1

j

{
y∗t − (x∗′t ⊗ In)φ̂j

}
.

Similarly to the evaluation of R12, by the Taylor expansion of log |Σ̂j+1|, R41 can be

expressed as, for T̂j < T 0
j ,

R41 =
m∑

j=1

T̂j − T 0
j

2

(
log |Σ̂j | − log |Σ̂j+1|

)
=

1
2

m∑
j=1

(T 0
j − T̂j)

[
tr
{

Σ̂−1
j

(
Σ̂j+1 − Σ̂j

)}
−1

2
tr
{

Σ̂−1
j

(
Σ̂j+1 − Σ̂j

)
Σ̂−1

j

(
Σ̂j+1 − Σ̂j

)}]
+ op(1). (33)

On the other hand, R42 + R43 becomes, for T̂j < T 0
j ,

R42 + R43

= Ey∗

1
2

m∑
j=1

T 0
j∑

t=T̂j+1

{
ε∗t − (x∗′t ⊗ In)(φ̂j+1 − φ0

j )
}′

Σ̂−1
j+1

{
ε∗t − (x∗′t ⊗ In)(φ̂j+1 − φ0

j )
}

−
{

ε∗t − (x∗′t ⊗ In)(φ̂j − φ0
j )
}′

Σ̂−1
j

{
ε∗t − (x∗′t ⊗ In)(φ̂j − φ0

j )
}]

=
1
2

m∑
j=1

(T 0
j − T̂j)v2

T δ′j

(
E[x∗t x

∗′
t ]⊗ Σ̂−1

j+1

)
δj − (T 0

j − T̂j)tr
{

Σ̂−1
j

(
Σ̂j+1 − Σ̂j

)
Σ̂−1

j Σ0
j

}
+(T 0

j − T̂j)tr
{

Σ̂−1
j

(
Σ̂j+1 − Σ̂j

)
Σ̂−1

j+1

(
Σ̂j+1 − Σ̂j

)
Σ̂jΣ0

j

}
+ op(1). (34)

Thus, by combining (33) and (34), we have, for T̂j < T 0
j ,

Ey∗ [`m,px(T 0, θ0|y∗)]− Ey∗ [`m,px(T 0, θ̂|y∗)]

=
m∑

j=1

v2
T (T 0

j − T̂j)
{

1
2
δ′j

(
E[x∗t x

∗′
t ]⊗ Σ̂−1

j

)
δj +

1
4
tr
(
A2

1j

)}
+ op(1)

d−→
m∑

j=1

γI
j

2

∣∣∣∣argmax
v

BI
j (v)

∣∣∣∣ ,
where γI

j = γ1j when v ≤ 0 and γI
j = γ2j when v > 0. Since the same convergence holds for

T̂j > T 0
j , we have, by Lemma 1,

bm,px,4 = Ey

[
Ey∗ [`m,px(T 0, θ0|y∗)]− Ey∗ [`m,px(T 0, θ̂|y∗)]

]
=

m∑
j=1

r2
1j + r1jr2j + r2

2j

r1j + r2j

(35)
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up to the O(1) terms.�

Proof of Proposition 2: E[Jm,px,1] = −nT is obvious. For Jm,px,2 we expand it as, for

T̂j < T 0
j ,

Jm,px,2 = 2
m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

{
(µ̂t − µ̃t) + (µ̃t − µ0

t )
}′ Σ0−1

j εt

= 2
m∑

j=1

T 0
j∑

t=T̂j+1

{
(x′t ⊗ In)(φ̂j+1 − φ̂j)

}′
Σ0−1

j εt

+2
m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

{
(x′t ⊗ In)(φ̂j − φ0

j )
}′

Σ0−1
j εt

= 2
m∑

j=1

vT δ′j

T 0
j∑

t=T̂j+1

(
xt ⊗ Σ0−1

j

)
εt − vT δ′j

T 0
j∑

t=T̂j+1

(
xtx

′
t ⊗ Σ0−1

j

)
δj

+vT δ′j

T 0
j∑

t=T̂j+1

(
xtx

′
t ⊗ Σ0−1

j

)
δj

+2
m+1∑
j=1

(φ̂j − φ0
j )
′

T 0
j∑

t=T 0
j−1+1

(
xtx

′
t ⊗ Σ0−1

j

)
(φ̂j − φ0

j ) + op(1)

d−→
m∑

j=1

{
2 max

v
BI

j (v) + γI
j

∣∣∣∣argmax
v

BI
j (v)

∣∣∣∣}+ 2
m+1∑
j=1

χ2
pφj

,

where, under the assumption of Σj+1 − Σj = v2
T Ψj , γI

j = γ1j = δ′jQ1jδj when v ≤ 0 and

γI
j = γ2j = δ′jQ2jδj when v > 0, BI

j (v) is defined as (4) with ω1j = γ1j = δ′jQ1jδj and ω2j =

γ2j = δ′jQ2jδj because only the changes in the coefficients affect the limiting distributions

of the break points in this case. Note that the same convergence holds for T̂j > T 0
j . From

Lemma 1 we can see that

E
[
2 max

v
BI

j (v)
]

= E

[
γI

j

∣∣∣∣argmax
v

BI
j (v)

∣∣∣∣] = 3

in this case. Hence, we obtain E[Jm,px,2] = 6m + 2pall
φ up to the O(1) terms.
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Similarly, using Σ0
j+1 − Σ0

j = v2
T Ψj , Jm,px,3 is expressed as, for T̂j < T 0

j ,

Jm,px,3 = −
m+1∑
j=1

 T̂j∑
t=T̂j−1+1

ε̂′tΣ
0−1
j ε̂t −

T 0
j∑

t=T 0
j−1+1

ε̂′tΣ
0−1
j ε̂t


= −

m∑
j=1

T 0
j∑

t=T̂j+1

ε̂′t(Σ
0−1
j+1 − Σ0−1

j )ε̂t

=
m∑

j=1

T 0
j∑

t=T̂j+1

{
εt − (x′t ⊗ In)(φ̂j+1 − φ0

j )
}′

{
v2
T Σ0−1/2

j A1jΣ
0−1/2
j − v4

T Σ0−1/2
j A2

1jΣ
0−1/2
j

}{
εt − (x′t ⊗ In)(φ̂j+1 − φ0

j )
}

=
m∑

j=1

tr

v2
T A1j

T 0
j∑

t=T̂j+1

ηtη
′
t

+ op(1)

⇒ −
m∑

j=1

tr(AI
j ) argmax

v
BI

j (v), (36)

and the same convergence holds for T̂j > T 0
j . Then, from Lemma 1 we can see, up to the

O(1) term, that

E[Jm,px,3] = E

− m∑
j=1

tr(AI
j ) argmax

v
BI

j (v)

 =
m∑

j=1

3
2

(
tr(A1j)

γ1j
− tr(A2j)

γ2j

)
.

The limiting distribution in (15) is obtained similarly to (36) under Assumption A4. �

Proof of Proposition 3: We first note that the logarithm of gM (y|x) can be expressed as

log gM (y|x) = log
∫

exp {`m,px(T , θ|y, x)}πM (θ)dθ (37)

where dθ = dφdΣ−1 with dφ = dφ1dφ2 · · · dφm+1 and dΣ−1 = dΣ−1
1 dΣ−1

2 · · · dΣ−1
m+1 from

Assumption A7 (b). We expand the log likelihood as

`m,px(T , θ|y, x) = `m,px(T , θ̌|y, x)−
[
`m,px(T , φ̌, σ|y, x)− `m,px(T , φ, σ|y, x)

]
−
[
`m,px(T , θ̌|y, x)− `m,px(T , φ̌, σ|y, x)

]
= `m,px(T , θ̌|y, x) + L1(φ, σ) + L2(σ), say. (38)

32



Since φ appears only in L1 while both L1 and L2 depend on σ, we first evaluate the integral

of exp(L1) with respect to φ and next obtain the integral of
∫

exp(L1)dφ exp(L2) with respect

to Σ−1.

From the direct calculation we can see that

L1(φ, σ) = −1
2

m∑
j=1

(φj − φ̌j)′
Tj∑

t=Tj−1+1

(
xjtx

′
jt ⊗ Σ−1

j

)
(φj − φ̌j) =

m+1∑
j=1

(
−1

2
qj

)
, say,

where we used the fact that
∑Tj

t=Tj−1+1 (xjt ⊗ In) yt =
∑Tj

t=Tj−1+1

(
xjtx

′
jt ⊗ In

)
φ̌j from the

first order condition on the maximization. Using this expression we can see that∫
eL1(φ,σ)dφ =

m+1∏
j=1

∫
e−qj/2dφj

=
m+1∏
j=1

∫
(2π)−pxj /2

∣∣∣∣∣∣
Tj∑

t=Tj−1+1

(
xjtx

′
jt ⊗ Σ−1

j

)∣∣∣∣∣∣
1/2

e−qj/2dφj

×(2π)pxj /2

∣∣∣∣∣∣
Tj∑

t=Tj−1+1

(
xjtx

′
jt ⊗ Σ−1

j

)∣∣∣∣∣∣
−1/2

=
m+1∏
j=1

(2π)pxj /2(∆Tj)
−pφj

/2 ∣∣Σ̌j,x

∣∣−n/2 |Σj |−pxj /2 , (39)

where Σ̌j,x = (∆Tj)−1
∑Tj

t=Tj−1+1 xjtx
′
jt. The last equality holds because the integrand on

the right hand side of the second equality is the pdf of a pxj dimensional normal distribution.

For L2(σ) we can see that

L2(σ) =
nT

2
+

m+1∑
j=1

{
∆Tj

2
log |Σ̌j |/|Σj | −

1
2
tr
(
SjΣ−1

j

)}
(40)

where Sj =
∑Tj

t=Tj−1+1 ε̌tε̌
′
t. Using (39) and (40) we have

∫ ∫
eL1(φ,σ)+L2(σ)dφdΣ−1 = enT/2

m+1∏
j=1

(2π)pxj /2
∣∣Σ̌j,x

∣∣−n/2 (∆Tj)
−pφj

/2 ∣∣Σ̌j

∣∣∆Tj/2

×
∫ ∣∣∣Σ−1

j

∣∣∣(∆Tj−pxj )/2
e−(1/2)tr(SjΣ

−1
j )dΣ−1

j . (41)
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Note that ∫ ∣∣∣Σ−1
j

∣∣∣(∆Tj−pxj )/2
e−(1/2)tr(SjΣ

−1
j )dΣ−1

j

=
∫ ∣∣∣Σ−1

j

∣∣∣(∆T ∗j −n−1)/2
e−(1/2)tr(SjΣ

−1
j )

2n∆T ∗j /2πn(n−1)/4
∣∣∣S−1

j

∣∣∣∆T ∗j /2∏n
i=1 Γ

[
1
2(∆T ∗

j + 1− i)
]dΣ−1

j

×2n∆T ∗j /2πn(n−1)/4
∣∣∣S−1

j

∣∣∣∆T ∗j /2
n∏

i=1

Γ
[
1
2
(∆T ∗

j + 1− i)
]

= 2n∆T ∗j /2πn(n−1)/4∆T
−n∆T ∗j /2

j

∣∣Σ̌j

∣∣−∆T ∗j /2
n∏

i=1

Γ
[
1
2
(∆T ∗

j + 1− i)
]

,

where ∆T ∗
j = ∆Tj−pxj +n+1 and the last equality holds because the integrand on the right

hand side of the first equality is the pdf of the Wishart distribution. Then, the logarithm of

(41) becomes

log
∫ ∫

eL1(φ,σ)+L2(σ)dφdΣ−1 =
nT

2
+

m+1∑
j=1

{
n∆T ∗

j

2
log 2−

n(∆T ∗
j + pxj )
2

log ∆Tj

+
n∑

i=1

log Γ
[
1
2
(∆T ∗

j + 1− i)
]}

+ Op(1).

Using the Stirling’s formula, the sum of the logarithms of the Gamma functions becomes
n∑

i=1

log Γ
[
1
2
(∆T ∗

j + 1− i)
]

=
n

2
log(2π) +

n∑
i=1

(
∆T ∗

j − i

2
log

∆T ∗
j + 1− i

2
−

∆T ∗
j + 1− i

2
+

ϑi

6(∆T ∗
j + 1− i)

)

=
(

n∆T ∗
j

2
− n(n + 1)

4

)
(log ∆Tj − log 2)− nT

2
+ O(1),

where 0 < ϑi < 1. The second equality holds because
∑n

i=1(∆T ∗
j − i)/2 = n∆T ∗

j /2− n(n +

1)/4,
∑n

i=1(∆T ∗
j + 1− i) = nT + O(1) and

log(∆T ∗
j + 1− i) = log ∆Tj + log

(
1 +

−pxj + n + 2− i

∆Tj

)
= log ∆Tj + O

(
1

∆Tj

)
.

Thus, we have

log
∫ ∫

eL1(φ,σ)+L2(σ)dφdΣ−1 =
m+1∑
j=1

{
−

npxj

2
− n(n + 1)

4

}
log ∆Tj + Op(1)

= −
m+1∑
j=1

pφj
+ pσ

2
log ∆Tj + Op(1). (42)
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From (37), (38) and (42) we finally have

log gM (y|x) = `m,px(T , θ̌|y, x)−
m+1∑
j=1

pφj
+ pσ

2
log ∆Tj + Op(1).�

Proof of Proposition 4: (i) We will show that MIC(m, px)−MIC(m0, p0
x) →∞ if m 6= m0

or px 6= p0
x. Let T̂ 0 and θ̂0 be the MLEs when m = m0 and px = p0

x. Then,

MIC(m, px)−MIC(m0, p0
x) = −2

[
`m,px(T̂ , θ̂|y, x)− `m0,p0

x
(T 0, θ0|y, x)

]
(43)

+2
[
`m0,p0

x
(T̂ 0, θ̂0|y, x)− `m0,p0

x
(T 0, θ0|y, x)

]
+ op(Tv2

T ).

When m < m0 or px < p0
x, there exists at least one regime in which the estimators of the

coefficients are inconsistent. In this case, the first term on the right hand side of (43) is

greater than cTv2
T for some c > 0 with a large probability as shown in the proof of Theorem

6 of Bai (2000), while the second term is shown to be Op(1) in the same way as Lemma 13

of Bai (2000). As a result, the left hand side of (43) diverges to infinity as T →∞.

When m > m0 and px > p0
x, we rewrite (43) as

MIC(m, px)−MIC(m0, p0
x) = −2

[
`m,px(T̂ , θ̂|y, x)− `m0,px

(T̂ ∗, θ̂∗|y, x)
]

(44)

−2
[
`m0,px

(T̂ ∗, θ̂∗|y, x)− `m0,p0
x
(T̂ 0, θ̂0|y, x)

]
+c1g1(T ) + (m−m0)g2(T ),

where T ∗ and θ∗ are the MLEs of T and θ when m = m0 and px > p0
x, and c1 is the difference

of the number of the unknown parameters, which is positive. Since px > p0
x, the model with

m = m0 and px may be seen as the true model with the zero coefficients associated with the

additional regressors. Then, the first term on the right hand side of (44) can be seen as the

likelihood ratio test statistic for m, which is Op(1). On the other hand, the second term is

the likelihood ratio test statistic for the extra regressors, which is Op(1). As a result, the left

hand side of (44) goes to infinity when m > m0 and px > p0
x because c1g1(T ) →∞.

In exactly the same manner we can see that the left hand side of (44) diverges to infinity

when m = m0 and px > p0
x and when m > m0 and px = p0

x because c1 is positive in both the

cases. Thus, we have (i).
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Similarly, in the case of (ii), the left hand side of (44) goes to infinity when m > m0 and

px ≥ p0
x because (m−m0)g2(T ) → ∞, while it does not diverge when m = m0 and px ≥ p0

x

because c1g1(T ) = O(1). Hence, we have (ii).

In the case of (iii) we have the same equality as (43) with the op(Tv2
T ) term replaced by

the Op(1) term and thus the left hand side of (43) goes to infinity when m < m0 or px < p0
x.

On the other hand, we can see that (44) does not go to infinity when m ≥ m0 and px ≥ p0
x

because g1(T ) and g2(T ) are O(1). As a result, we have P (m ≥ m0 and px ≥ p0
x) → 1.�
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Table 1. The Parameter Setting for Simulations

No Break
φ1 φ2 θ1

DGP0AR1a 0.3 0.0 0.0
DGP0AR1b 0.7 0.0 0.0
DGP0AR2a 0.2 0.1 0.0
DGP0AR2b 0.4 0.3 0.0
DGP0AR2c 0.7 −0.4 0.0
DGP0AR2d 1.3 −0.6 0.0
DGP0MA1a 0.0 0.0 0.3
DGP0MA1b 0.0 0.0 0.7

One Time Break
c1 c2 φ11 φ12 φ21 φ22 θ11 θ12

DGP1AR1a 1.0 0.0 0.7 0.3 0.0 0.0 0.0 0.0
DGP1AR1b 0.0 1.0 0.3 0.7 0.0 0.0 0.0 0.0
DGP1AR2a 1.0 0.0 0.4 0.2 0.3 0.1 0.0 0.0
DGP1AR2b 0.0 1.0 0.2 0.4 0.1 0.3 0.0 0.0
DGP1AR2c 1.0 0.0 1.3 0.7 −0.6 −0.4 0.0 0.0
DGP1AR2d 0.0 1.0 0.7 1.3 −0.4 −0.6 0.0 0.0
DGP1MA1a 1.0 0.0 0.0 0.0 0.0 0.0 0.7 0.3
DGP1MA1b 0.0 1.0 0.0 0.0 0.0 0.0 0.3 0.7

Two Time Breaks
c1 c2 c3 φ11 φ12 φ13 φ21 φ22 φ23 θ11 θ12 θ13

DGP2AR1a 1.0 0.0 1.0 0.7 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0
DGP2AR1b 1.0 0.0 −1.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
DGP2AR2a 1.0 0.0 1.0 0.4 0.2 0.4 0.3 0.1 0.3 0.0 0.0 0.0
DGP2AR2b 1.0 0.0 −1.0 0.4 0.3 0.2 0.3 0.2 0.1 0.0 0.0 0.0
DGP2AR2c 1.0 0.0 1.0 1.3 0.7 1.3 −0.6 −0.4 −0.6 0.0 0.0 0.0
DGP2AR2d 1.0 0.0 −1.0 1.3 1.0 0.7 −0.6 −0.5 −0.4 0.0 0.0 0.0
DGP2MA1a 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.3 0.7
DGP2MA1b 1.0 0.0 −1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.3 0.1
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Table 2a. The frequencies of Selecting the True Model (No break)

T 120 300 120 120 T 120 300 120 120
ε 0.05 0.05 0.15 0.15 ε 0.05 0.05 0.15 0.15

DGP0AR1a DGP0AR1b
AIC 0.000 0.000 0.047 0.066 AIC 0.000 0.000 0.024 0.040
BIC 0.156 0.794 0.529 0.908 BIC 0.540 0.827 0.756 0.907
Cp 0.000 0.000 0.052 0.070 Cp 0.000 0.000 0.027 0.042
MAIC 0.517 0.559 0.608 0.652 MAIC 0.438 0.473 0.583 0.613
MBICy 0.724 0.964 0.768 0.968 MBICy 0.916 0.970 0.933 0.976
MBIC1 0.780 0.970 0.795 0.973 MBIC1 0.923 0.973 0.942 0.979
MBIC2 0.801 0.973 0.804 0.974 MBIC2 0.954 0.979 0.955 0.980
MCp 0.538 0.683 0.662 0.730 MCp 0.512 0.660 0.669 0.717
Sq(MAIC) 0.336 0.574 0.609 0.680 Sq(MAIC) 0.223 0.478 0.580 0.644
Sq(MBICy) 0.427 0.810 0.722 0.912 Sq(MBICy) 0.346 0.696 0.788 0.891
Sq(MBIC1) 0.445 0.811 0.735 0.912 Sq(MBIC1) 0.345 0.696 0.787 0.891
Sq(MBIC2) 0.448 0.811 0.737 0.912 Sq(MBIC2) 0.346 0.696 0.788 0.891
Sq(MCp) 0.313 0.580 0.614 0.693 Sq(MCp) 0.197 0.488 0.570 0.663
Sq(rb) 0.228 0.556 0.631 0.774 Sq(rb) 0.083 0.308 0.543 0.719

DGP0AR2a DGP0AR2b
AIC 0.000 0.000 0.008 0.037 AIC 0.000 0.000 0.024 0.078
BIC 0.001 0.073 0.020 0.151 BIC 0.062 0.893 0.460 0.945
Cp 0.000 0.000 0.008 0.039 Cp 0.000 0.000 0.029 0.082
MAIC 0.108 0.286 0.159 0.362 MAIC 0.347 0.479 0.539 0.639
MBICy 0.039 0.183 0.053 0.188 MBICy 0.584 0.966 0.700 0.969
MBIC1 0.054 0.191 0.061 0.193 MBIC1 0.688 0.966 0.730 0.970
MBIC2 0.062 0.193 0.064 0.194 MBIC2 0.747 0.970 0.754 0.970
MCp 0.197 0.412 0.213 0.432 MCp 0.504 0.696 0.662 0.753
Sq(MAIC) 0.043 0.275 0.160 0.377 Sq(MAIC) 0.127 0.462 0.524 0.684
Sq(MBICy) 0.011 0.143 0.049 0.178 Sq(MBICy) 0.162 0.618 0.587 0.876
Sq(MBIC1) 0.015 0.147 0.054 0.181 Sq(MBIC1) 0.181 0.619 0.599 0.876
Sq(MBIC2) 0.017 0.147 0.056 0.181 Sq(MBIC2) 0.185 0.619 0.603 0.876
Sq(MCp) 0.063 0.334 0.189 0.408 Sq(MCp) 0.147 0.474 0.557 0.694
Sq(rb) 0.011 0.119 0.069 0.243 Sq(rb) 0.009 0.041 0.186 0.346
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Table 2a. (Continued)

T 120 300 120 120 T 120 300 120 120
ε 0.05 0.05 0.15 0.15 ε 0.05 0.05 0.15 0.15

DGP0AR2c DGP0AR2d
AIC 0.003 0.005 0.136 0.136 AIC 0.000 0.001 0.098 0.117
BIC 0.888 0.960 0.911 0.967 BIC 0.877 0.957 0.915 0.966
Cp 0.002 0.004 0.159 0.143 Cp 0.000 0.001 0.110 0.124
MAIC 0.594 0.595 0.683 0.680 MAIC 0.523 0.572 0.650 0.673
MBICy 0.945 0.978 0.947 0.980 MBICy 0.955 0.977 0.959 0.978
MBIC1 0.936 0.978 0.946 0.980 MBIC1 0.940 0.976 0.957 0.979
MBIC2 0.953 0.981 0.954 0.981 MBIC2 0.965 0.980 0.966 0.980
MCp 0.586 0.713 0.732 0.756 MCp 0.550 0.703 0.715 0.750
Sq(MAIC) 0.227 0.595 0.683 0.711 Sq(MAIC) 0.124 0.528 0.645 0.703
Sq(MBICy) 0.309 0.780 0.856 0.917 Sq(MBICy) 0.175 0.701 0.829 0.910
Sq(MBIC1) 0.309 0.780 0.856 0.917 Sq(MBIC1) 0.175 0.701 0.828 0.910
Sq(MBIC2) 0.309 0.780 0.856 0.917 Sq(MBIC2) 0.175 0.701 0.829 0.910
Sq(MCp) 0.196 0.588 0.672 0.719 Sq(MCp) 0.109 0.524 0.634 0.708
Sq(rb) 0.627 0.870 0.882 0.898 Sq(rb) 0.451 0.861 0.886 0.898

DGP0MA1a DGP0MA2b
AIC 0.009 0.010 0.179 0.176 AIC 0.071 0.194 0.427 0.478
BIC 0.902 0.967 0.942 0.980 BIC 0.983 0.997 0.988 0.998
Cp 0.009 0.010 0.210 0.188 Cp 0.074 0.184 0.502 0.503
MAIC 0.822 0.817 0.892 0.894 MAIC 0.886 0.900 0.936 0.934
MBICy 0.994 0.998 0.995 0.999 MBICy 0.998 1.000 0.999 1.000
MBIC1 0.992 0.999 0.997 1.000 MBIC1 0.992 0.999 0.998 1.000
MBIC2 1.000 1.000 1.000 1.000 MBIC2 1.000 1.000 1.000 1.000
MCp 0.919 0.970 0.982 0.987 MCp 0.955 0.984 0.991 0.993
Sq(MAIC) 0.500 0.820 0.902 0.926 Sq(MAIC) 0.173 0.834 0.932 0.961
Sq(MBICy) 0.741 0.920 0.964 0.969 Sq(MBICy) 0.389 0.871 0.957 0.971
Sq(MBIC1) 0.741 0.920 0.964 0.969 Sq(MBIC1) 0.388 0.871 0.956 0.971
Sq(MBIC2) 0.742 0.920 0.965 0.969 Sq(MBIC2) 0.389 0.871 0.957 0.971
Sq(MCp) 0.429 0.845 0.925 0.952 Sq(MCp) 0.125 0.835 0.938 0.965
Sq(rb) 0.664 0.885 0.940 0.970 Sq(rb) 0.958 0.997 0.999 1.000
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Table 2b. The frequencies of Selecting the True Model (One Time break)

T 120 300 120 120 T 120 300 120 120
ε 0.05 0.05 0.15 0.15 ε 0.05 0.05 0.15 0.15

DGP1AR1a DGP1AR1b
AIC 0.000 0.000 0.082 0.099 AIC 0.000 0.000 0.062 0.092
BIC 0.263 0.804 0.672 0.924 BIC 0.195 0.782 0.612 0.911
Cp 0.000 0.000 0.097 0.105 Cp 0.000 0.000 0.080 0.099
MAIC 0.362 0.475 0.514 0.656 MAIC 0.303 0.443 0.457 0.639
MBICy 0.509 0.935 0.550 0.946 MBICy 0.425 0.924 0.479 0.936
MBIC1 0.439 0.892 0.450 0.903 MBIC1 0.359 0.869 0.377 0.879
MBIC2 0.306 0.840 0.305 0.841 MBIC2 0.242 0.802 0.243 0.803
MCp 0.282 0.645 0.333 0.713 MCp 0.247 0.626 0.284 0.697
Sq(MAIC) 0.375 0.586 0.504 0.698 Sq(MAIC) 0.367 0.580 0.460 0.687
Sq(MBICy) 0.556 0.825 0.678 0.923 Sq(MBICy) 0.534 0.826 0.633 0.915
Sq(MBIC1) 0.571 0.819 0.673 0.918 Sq(MBIC1) 0.561 0.819 0.626 0.908
Sq(MBIC2) 0.577 0.819 0.673 0.918 Sq(MBIC2) 0.566 0.819 0.623 0.906
Sq(MCp) 0.280 0.568 0.435 0.685 Sq(MCp) 0.270 0.559 0.394 0.673
Sq(rb) 0.437 0.568 0.409 0.616 Sq(rb) 0.437 0.567 0.394 0.599

DGP1AR2a DGP1AR2b
AIC 0.000 0.000 0.032 0.131 AIC 0.000 0.000 0.022 0.116
BIC 0.001 0.294 0.034 0.500 BIC 0.000 0.240 0.021 0.438
Cp 0.000 0.000 0.040 0.143 Cp 0.000 0.000 0.028 0.125
MAIC 0.102 0.416 0.214 0.634 MAIC 0.064 0.358 0.161 0.586
MBICy 0.012 0.395 0.031 0.422 MBICy 0.005 0.325 0.012 0.350
MBIC1 0.035 0.413 0.046 0.428 MBIC1 0.016 0.334 0.020 0.343
MBIC2 0.012 0.255 0.015 0.258 MBIC2 0.004 0.185 0.005 0.187
MCp 0.162 0.598 0.148 0.653 MCp 0.114 0.557 0.099 0.600
Sq(MAIC) 0.128 0.498 0.201 0.665 Sq(MAIC) 0.112 0.457 0.155 0.621
Sq(MBICy) 0.094 0.480 0.105 0.578 Sq(MBICy) 0.090 0.451 0.080 0.544
Sq(MBIC1) 0.170 0.555 0.163 0.649 Sq(MBIC1) 0.172 0.527 0.133 0.612
Sq(MBIC2) 0.227 0.546 0.216 0.635 Sq(MBIC2) 0.235 0.528 0.187 0.608
Sq(MCp) 0.191 0.537 0.229 0.657 Sq(MCp) 0.196 0.503 0.184 0.609
Sq(rb) 0.097 0.375 0.151 0.542 Sq(rb) 0.094 0.370 0.133 0.544
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Table 2b. (Cotinued)

T 120 300 120 120 T 120 300 120 120
ε 0.05 0.05 0.15 0.15 ε 0.05 0.05 0.15 0.15

DGP1AR2c DGP1AR2d
AIC 0.000 0.003 0.142 0.171 AIC 0.000 0.002 0.142 0.179
BIC 0.786 0.956 0.857 0.979 BIC 0.750 0.955 0.833 0.978
Cp 0.001 0.004 0.178 0.184 Cp 0.000 0.002 0.179 0.192
MAIC 0.457 0.550 0.636 0.696 MAIC 0.424 0.536 0.618 0.685
MBICy 0.741 0.991 0.748 0.993 MBICy 0.691 0.990 0.696 0.992
MBIC1 0.676 0.983 0.711 0.987 MBIC1 0.625 0.980 0.659 0.987
MBIC2 0.520 0.984 0.520 0.984 MBIC2 0.463 0.983 0.462 0.983
MCp 0.437 0.710 0.597 0.776 MCp 0.420 0.710 0.575 0.773
Sq(MAIC) 0.419 0.647 0.656 0.743 Sq(MAIC) 0.407 0.649 0.645 0.739
Sq(MBICy) 0.595 0.841 0.841 0.934 Sq(MBICy) 0.584 0.845 0.820 0.933
Sq(MBIC1) 0.585 0.838 0.832 0.931 Sq(MBIC1) 0.578 0.842 0.813 0.930
Sq(MBIC2) 0.588 0.840 0.831 0.934 Sq(MBIC2) 0.576 0.845 0.810 0.933
Sq(MCp) 0.313 0.625 0.610 0.740 Sq(MCp) 0.296 0.626 0.597 0.735
Sq(rb) 0.381 0.112 0.045 0.071 Sq(rb) 0.392 0.104 0.039 0.062

DGP1MA1a DGP1MA1b
AIC 0.020 0.063 0.341 0.405 AIC 0.018 0.062 0.351 0.398
BIC 0.939 0.983 0.972 0.992 BIC 0.939 0.980 0.969 0.991
Cp 0.030 0.073 0.422 0.437 Cp 0.032 0.070 0.421 0.431
MAIC 0.782 0.805 0.904 0.907 MAIC 0.789 0.805 0.899 0.903
MBICy 0.995 0.999 0.997 0.999 MBICy 0.995 0.998 0.997 0.999
MBIC1 0.980 0.998 0.995 0.999 MBIC1 0.982 0.996 0.995 0.999
MBIC2 1.000 1.000 1.000 1.000 MBIC2 0.999 1.000 0.999 1.000
MCp 0.933 0.970 0.990 0.991 MCp 0.937 0.971 0.990 0.992
Sq(MAIC) 0.684 0.854 0.932 0.947 Sq(MAIC) 0.678 0.862 0.932 0.944
Sq(MBICy) 0.868 0.922 0.968 0.966 Sq(MBICy) 0.866 0.920 0.967 0.966
Sq(MBIC1) 0.842 0.915 0.964 0.965 Sq(MBIC1) 0.841 0.915 0.962 0.964
Sq(MBIC2) 0.869 0.922 0.969 0.966 Sq(MBIC2) 0.866 0.920 0.967 0.966
Sq(MCp) 0.622 0.863 0.936 0.954 Sq(MCp) 0.619 0.873 0.940 0.955
Sq(rb) 0.906 0.962 0.975 0.984 Sq(rb) 0.903 0.959 0.975 0.987
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Table 2c. The frequencies of Selecting the True Model (Two Time breaks)

T 120 300 120 120 T 120 300 120 120
ε 0.05 0.05 0.15 0.15 ε 0.05 0.05 0.15 0.15

DGP2AR1a DGP2AR1b
AIC 0.000 0.000 0.173 0.210 AIC 0.000 0.000 0.211 0.238
BIC 0.132 0.613 0.332 0.781 BIC 0.056 0.719 0.349 0.892
Cp 0.000 0.000 0.201 0.219 Cp 0.000 0.000 0.240 0.254
MAIC 0.154 0.376 0.216 0.633 MAIC 0.214 0.479 0.315 0.703
MBICy 0.056 0.326 0.062 0.330 MBICy 0.080 0.689 0.126 0.696
MBIC1 0.036 0.176 0.030 0.176 MBIC1 0.103 0.581 0.102 0.580
MBIC2 0.005 0.055 0.005 0.054 MBIC2 0.027 0.385 0.029 0.381
MCp 0.047 0.324 0.027 0.319 MCp 0.091 0.539 0.072 0.576
Sq(MAIC) 0.132 0.367 0.152 0.562 Sq(MAIC) 0.148 0.558 0.239 0.701
Sq(MBICy) 0.179 0.483 0.195 0.693 Sq(MBICy) 0.152 0.736 0.264 0.882
Sq(MBIC1) 0.190 0.470 0.193 0.677 Sq(MBIC1) 0.212 0.732 0.289 0.875
Sq(MBIC2) 0.187 0.459 0.189 0.658 Sq(MBIC2) 0.211 0.732 0.275 0.876
Sq(MCp) 0.091 0.299 0.100 0.452 Sq(MCp) 0.111 0.507 0.189 0.654
Sq(rb) 0.140 0.226 0.141 0.286 Sq(rb) 0.157 0.387 0.229 0.508

DGP2AR2a DGP2AR2b
AIC 0.000 0.000 0.059 0.224 AIC 0.000 0.000 0.047 0.219
BIC 0.000 0.043 0.002 0.078 BIC 0.000 0.016 0.002 0.034
Cp 0.000 0.000 0.074 0.247 Cp 0.000 0.001 0.056 0.237
MAIC 0.032 0.254 0.064 0.457 MAIC 0.042 0.216 0.052 0.339
MBICy 0.000 0.005 0.001 0.007 MBICy 0.000 0.004 0.001 0.005
MBIC1 0.002 0.008 0.001 0.008 MBIC1 0.005 0.011 0.002 0.009
MBIC2 0.000 0.001 0.000 0.001 MBIC2 0.000 0.001 0.000 0.001
MCp 0.026 0.159 0.011 0.130 MCp 0.029 0.132 0.008 0.101
Sq(MAIC) 0.047 0.166 0.041 0.305 Sq(MAIC) 0.039 0.155 0.036 0.238
Sq(MBICy) 0.052 0.202 0.036 0.325 Sq(MBICy) 0.022 0.110 0.015 0.152
Sq(MBIC1) 0.084 0.233 0.052 0.361 Sq(MBIC1) 0.047 0.161 0.030 0.211
Sq(MBIC2) 0.105 0.245 0.075 0.375 Sq(MBIC2) 0.075 0.168 0.048 0.211
Sq(MCp) 0.075 0.156 0.054 0.243 Sq(MCp) 0.058 0.174 0.041 0.235
Sq(rb) 0.036 0.225 0.066 0.452 Sq(rb) 0.032 0.216 0.052 0.408
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Table 2c. (Continued)

T 120 300 120 120 T 120 300 120 120
ε 0.05 0.05 0.15 0.15 ε 0.05 0.05 0.15 0.15

DGP2AR2c DGP2AR2d
AIC 0.000 0.003 0.246 0.300 AIC 0.000 0.003 0.253 0.302
BIC 0.311 0.872 0.357 0.911 BIC 0.161 0.469 0.131 0.473
Cp 0.000 0.004 0.307 0.321 Cp 0.001 0.005 0.306 0.327
MAIC 0.243 0.510 0.409 0.749 MAIC 0.170 0.432 0.192 0.603
MBICy 0.085 0.624 0.083 0.627 MBICy 0.034 0.166 0.027 0.161
MBIC1 0.087 0.564 0.089 0.571 MBIC1 0.062 0.162 0.034 0.155
MBIC2 0.011 0.247 0.010 0.247 MBIC2 0.005 0.036 0.003 0.035
MCp 0.156 0.667 0.135 0.722 MCp 0.060 0.347 0.029 0.325
Sq(MAIC) 0.162 0.587 0.284 0.761 Sq(MAIC) 0.146 0.388 0.121 0.508
Sq(MBICy) 0.235 0.727 0.362 0.908 Sq(MBICy) 0.198 0.490 0.153 0.621
Sq(MBIC1) 0.233 0.724 0.359 0.905 Sq(MBIC1) 0.195 0.486 0.150 0.616
Sq(MBIC2) 0.232 0.716 0.354 0.896 Sq(MBIC2) 0.190 0.487 0.145 0.618
Sq(MCp) 0.123 0.546 0.238 0.727 Sq(MCp) 0.101 0.356 0.100 0.472
Sq(rb) 0.028 0.001 0.002 0.001 Sq(rb) 0.024 0.021 0.003 0.031

DGP2MA1a DGP2MA1b
AIC 0.018 0.067 0.520 0.581 AIC 0.007 0.028 0.445 0.497
BIC 0.950 0.983 0.989 0.996 BIC 0.855 0.957 0.963 0.990
Cp 0.051 0.090 0.607 0.626 Cp 0.024 0.040 0.527 0.532
MAIC 0.754 0.800 0.936 0.951 MAIC 0.717 0.750 0.906 0.937
MBICy 0.942 0.998 0.946 1.000 MBICy 0.885 0.997 0.892 0.998
MBIC1 0.873 0.995 0.900 0.999 MBIC1 0.795 0.994 0.815 0.998
MBIC2 0.598 1.000 0.598 1.000 MBIC2 0.586 0.995 0.586 0.995
MCp 0.939 0.975 0.955 0.995 MCp 0.799 0.966 0.767 0.992
Sq(MAIC) 0.623 0.853 0.965 0.977 Sq(MAIC) 0.609 0.836 0.905 0.972
Sq(MBICy) 0.870 0.931 0.978 0.986 Sq(MBICy) 0.813 0.928 0.937 0.984
Sq(MBIC1) 0.815 0.917 0.972 0.983 Sq(MBIC1) 0.774 0.912 0.927 0.982
Sq(MBIC2) 0.853 0.932 0.970 0.986 Sq(MBIC2) 0.793 0.928 0.921 0.984
Sq(MCp) 0.532 0.856 0.956 0.980 Sq(MCp) 0.491 0.846 0.849 0.978
Sq(rb) 0.920 0.967 0.991 0.995 Sq(rb) 0.813 0.911 0.961 0.980
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