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Abstract

In this paper, we study semiparametric estimation for a single–index panel data

model where the nonlinear link function varies among the individuals. We propose

using the so–called refined minimum average variance estimation based on a local

linear smoothing method to estimate both the parameters in the single–index and

the average link function. As the cross–section dimension N and the time series

dimension T tend to infinity simultaneously, we establish asymptotic distributions for

the proposed parametric and nonparametric estimates. In addition, we provide two

real–data examples to illustrate the finite sample behavior of the proposed estimation

method in this paper.

Keywords: Asymptotic distribution, local linear smoother, minimum average variance

estimation, panel data, semiparametric estimation, single–index models.
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1. Introduction

During the last two decades or so, there exists a huge literature on parametric lin-

ear and nonlinear panel data modeling as the double–index models enable researchers

to extract information that may be difficult to obtain through purely cross–section

or time–series data models. We refer to the books by Baltagi (1995), Arellano (2003)

and Hsiao (2003) for an overview of statistical inference and econometric analysis of

parametric panel data models. As in both the cross–section and time–series analy-

sis, however, parametric models may be misspecified and estimators obtained from

such misspecified parametric models are often inconsistent. To address such issues,

some nonparametric and semiparametric models have been proposed, see Li and Sten-

gos (1996), Ullah and Roy (1998), Abrevaya (1999), Hjellvik, Chen and Tjøstheim

(2004), Cai and Li (2008), Henderson, Carroll and Li (2008) and Mammen, Støve and

Tjøstheim (2009) for example.

There is a growing interest in using single–index models in both the cross–sectional

and time series cases (see, for example, Härdle, Hall and Ichimura 1993; Carroll et

al. 1997; Xia et al. 2002; Yu and Ruppert 2002; Xia 2006; Gao 2007). So far as we

know, however, there is little study in the theoretical and empirical analysis of single–

index models for panel data. Single–index models search for a linear combination of

the multi–dimensional covariate {Xit} which can capture most information about the

relationship between the response variable {Yit} and covariate {Xit}. For a real data,

there may exist individual effects. For example, in the US cigarette demand data set

given in Section 5, there are state-specific effects such as religion, race, education and

tourism. To reflect the individual effects, we assume that the nonlinear link function

g(·) varies across the individuals. The model we study in this paper is given as follows:

Yit = gi(θ
>
0 Xit) + εit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (1.1)

where g(·) is an unknown link function and θ0 is a p×1 vector of unknown parameters.

For identifiability, we require ‖θ0‖ = 1 throughout the paper.

This paper is interested in the case that the cross–section dimension N and the

time–series dimension T tend to infinity simultaneously. Model (1.1) is call a single–

index panel data model with heterogeneous link functions and it is more flexible

than a homogeneous single–index panel data model. In this paper, we assume that
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{Xit, εit, t ≥ 1} is stationary α–mixing for each i. It is well–known that α–mixing

dependence is one of the weakest mixing conditions for weakly dependent processes

and it can be satisfied for some stationary time series and Markov chains under certain

conditions. This means that we can apply model (1.1) to the dynamic panel data

case, which will be discussed in Section 4.

In Section 2, we extend the so–called refined minimum average (conditional) vari-

ance estimation (RMAVE) method for the time series case to estimate the parameter

θ0 in model (1.1). The RMAVE was introduced by Xia et al. (2002) and its asymptotic

distribution was established by Xia (2006) in the time series case. As there are two

indices involved in our case and the nonlinear link functions are heterogeneous, the

establishment of our asymptotic theory is much more complicated than that for the

time series case. We show, in Section 3, that under certain regularity conditions, the

RMAVE of θ0 is asymptotically normal with
√
NT rate of convergence as N, T →∞

simultaneously. This is called the joint limiting distribution (see Phillips and Moon

1999 for detail). Meanwhile, since the link functions gi(·) vary across the sections, it

is reasonable to study a nonparametric estimate of the average link function of the

form

g(x) =
1

N

N∑
i=1

gi(x). (1.2)

In Section 3, we also establish an asymptotic distribution for the local linear estimate

of g(x).

When {Xit} contains lagged values of Yit, (1.1) becomes a dynamic panel data

model. Section 4 discusses some conditions that ensure {Yit, t ≥ 1} to be a geometri-

cally ergodic time series for each i. In this case, the stationarity and mixing conditions

and thus the asymptotic properties in Section 3 still hold for such a dynamic model.

We include two empirical examples in Section 5 to illustrates the applicability of the

proposed models and estimation method. One is the US cigarette demand data for

46 states from 1963 to 1992, to which we fit a single index model whose covariates

Xit contain a lagged value of Yit. We compare our RMAVE results with the ordinary

least squares (OLS) estimation results for a linear panel data model from Baltagi,

Griffin and Xiong (2000), and find that our estimated covariate coefficients are more

significant than the OLS estimates. We then discuss an empirical application to a

climatic date set from the UK by examining the relationship between the monthly
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average maximum temperatures and the number of millimeters of rainfall and hours

of sunshine duration. The heterogenous link functions used allow us to take into

account the state or station specific effects.

The rest of the paper is organized as follows. In Section 2, we develop the de-

tailed algorithm of a RMAVE method. Section 3 establishes the asymptotic theory

for both the parameter estimator and nonparametric estimate. Section 4 discusses

the conditions for a dynamic single-index model to be geometrically ergodic, which

ensures that the asymptotic properties in Section 3 are still valid for the dynamic

model. Sections 5 includes a brief discuss on the bandwidth selection problem and

two real data exmples. Section 6 concludes this paper. Some technical lemmas and

the detailed proofs of the main results are given in Appendices A and B.

2. Semiparametric estimation method

In this section, we develop a RMAVE method to estimate both the parameter θ0

in the single–index and the averaged link function defined in Section one. As the link

functions are heterogeneous, the RMAVE method originally studied in Xia (2006) for

the time series case will need to be extended substantially to deal with our case.

Given θ>Xit = u, define

σ2
θ,i(u) = E

[(
Yit − gi(θ>Xit)

)2
|θ>Xit = u

]
(2.1)

for 1 ≤ i ≤ N . Note that

E
(
Yit − gi(θ>Xit)

)2
= Eu

[
σ2
θ,i(u)

]
. (2.2)

Based on (2.1) and (2.2), the estimator of θ0 can be obtained by minimizing

N∑
i=1

E
(
Yit − gi(θ>Xit)

)2
=

N∑
i=1

Eu
[
σ2
θ,i(u)

]
.

As the link functions gi(·) are unknown for the single–index panel data case, we

estimate them by the local linear method. It is well–known that the local linear fitting

has advantages over the Nadaraya–Watson kernel method, such as high asymptotic

efficiency, design adaption and automatic boundary correction (see Fan and Gijbels

1996 for example). For Xit close to the point x, by Taylor expansion, we have

Yit − gi(θ>Xit) = Yit − gi(θ>x)− g′i(θ>x)θ>(Xit − x).
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Let θ̂1 be an initial estimator of θ0. Based on the above local linear approximation,

we describe the detailed algorithm as follows.

Step 1. Let θ = θ̂1. Calculate

 ais

bis

 =


1

T

T∑
t=1

Kh(θ
>Xits)

 1

θ>Xits


 1

θ>Xits


>

−1

×


1

T

T∑
t=1

Kh(θ
>Xits)

 1

θ>Xits

Yit
 , (2.3)

where h is a bandwidth, K(·) is a kernel function, Kh(·) = 1
h
K(·/h), and Xits =

Xit −Xis.

Step 2. Obtain

θ̃ =

{
N∑
i=1

T∑
t=1

T∑
s=1

Kh(θ
>Xits)b

2
isXitsX

>
its/f̂

θ
i (θ>Xis)

}+

×
{

N∑
i=1

T∑
t=1

T∑
s=1

Kh(θ
>Xits)bisXits(Yit − ais)/f̂ θi (θ>Xis)

}
, (2.4)

where f̂θ,i(θ
>Xis) = 1

T

T∑
t=1

Kh(θ
>Xits), θ = θ̂1, and A+ stands for the pseudoin-

verse of A.

Step 3. Update θ with θ = θ̃/‖θ̃‖. Repeat Step 1 and Step 2 until convergence.

We denote the final estimate by θ̂. In order to implement the above algorithm, we

need to choose a suitable initial estimator of θ0 and an optimal bandwidth h. Such

issues will be discussed in Sections 3 and 4 below.

Let ĝi(x) = ai,x, where ai,x is defined as ais in (2.3) with θ and Xis replaced by θ̂

and x, respectively. As in Hjellvik, Chen and Tjøstheim (2004), the nonparametric

estimate of g(x) is defined as

ĝ(x) =
1

N

N∑
i=1

ĝi(x).

An asymptotic distribution of ĝ(x), as T,N → ∞ simultaneously, is established

in Section 3 below.
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3. Asymptotic theory

In this section, we establish asymptotic distributions for θ̂ and ĝ(·). Before giv-

ing some regularity assumptions, we introduce following notation. Define µθ,i(u) =

E(Xit|θ>Xit = u) and νθ,i(x) = µθi (θ
>x) − x. We then introduce the following as-

sumptions.

A1. K(·) is a symmetric and continuous kernel function with some bounded support,

and its derivative is bounded. Furthermore,
∫
K(u)du = 1.

A2 (i). Let Xi = {Xit, t ≥ 1} and εi = {εit, t ≥ 1}. Suppose that {Xi, εi}, i ≥ 1,

are independent.

(ii). For each i, {(Xit, εit), t ≥ 1} is a stationary sequence of α–mixing random

vectors with E(εit|θ>Xit) = 0, max
i
E
[
|εit|2+δ

]
< ∞, max

i
E
[
‖Xit‖2+δ

]
< ∞

and mixing coefficient αi(·) satisfying max
i
αi(t) = O(t−κ) for κ > (2+δ)

δ
.

A3 (i). Let fθ,i(·) be the density function of {θ>Xit, t ≥ 1}. Suppose that fθ,i(·) is

continuous and its derivatives of up to the third order are bounded. Uniformly

for θ in a neighborhood of θ0,

min
i

inf
‖x‖≤CNT

fθ,i(θ
>x) > 0,

where CNT = C(NT )
1

2+δ for some C > 0.

(ii). For 1 ≤ i ≤ N , each of the link functions gi(·) has bounded derivatives of

up to the third order.

(iii). µθ,i(·) is continuous and has bounded derivatives of up to the second order.

A4. The bandwidth h satisfies NTh→∞, NTh6 → 0, αT,h/h→ 0, NTα2
T,hh

2 → 0,

αT,h(NT )1/(2+δ) → 0 and (NT )1+(p+κ+2)/(2+δ)ακ−pT,h h
−1−p → 0, where αT,h =√

log T
Th

and κ is as defined in A2(ii) above.

Remark 3.1. A1 is a set of some mild conditions on the kernel function, which have

been used by many authors in the time series case (see Fan and Yao 2003; Gao 2007 for

example). In A2, we assume that (Xi, εi), i ≥ 1, are cross–sectional independence (see

Cai and Li 2008 for example) and each time series is α–mixing, which can be satisfied
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by many linear and nonlinear time series models (see, for example, Auestad and

Tjøstheim 1990, Chen and Tsay 1993 for example). A3 is about some commonly–used

conditions in single–index models (see Xia 2006 for example). In A4, the condition

αT,h/h → 0 implies Th3 → ∞. On the other hand, NTα2
T,hh

2 → 0 implies Nh → 0.

Therefore, T � h−3 � N3, which indicates that the limiting theory in this paper

holds under the condition that the rate of T tending to infinity is faster than that of

N3. This is a rigorous condition and is due to the fact that we use individual time

series to estimate the individual–specific link functions gi(·) (1 ≤ i ≤ N) and use the

pooled data to estimate the index parameter θ0.

Note that (NT )1+(p+κ+2)/(2+δ)ακ−pT,h h
−1−p → 0 is close to αT,h(NT )1/(2+δ) → 0 as

κ → ∞. In addition, if δ → ∞, αT,h(NT )1/(2+δ) → 0 is close to αT,h → 0, which

is a conventional condition for uniform consistency of nonparametric kernel–based

statistics in the time series case. When T ∼ N4 and h ∼ (NT )−θ, it can be shown

that NTh → ∞, NTh6 → 0, αT,h/h → 0 and NTα2
T,hh

2 → 0 are all satisfied when

1
6
< θ < 1

5
.

Before stating an asymptotic distribution for θ̂ defined in Section 2, we introduce

some notation. Let Wit =
(
Xit − µθ0,i(θ>0 Xit)

)
g′i(θ

>
0 Xit)εit. By A2 (ii), we know that

for each i,

Λi,T :=
1

T
Var

[
T∑
t=1

Wit

]
= E

[
Wi1W

>
i1

]
+ 2

T∑
t=2

(
1− (t− 1)

T

)
E
[
Wi1W

>
it

]
<∞.

Let

Dθ0,i = E
[(
g′i(θ

>
0 Xis)

)2
νθ0,i(Xis)ν

>
θ0,i

(Xis)
]
.

In order to establish the asymptotic normality of θ̂, we need to assume that there

is an initial estimator θ̂1 such that ‖θ̂1−θ0‖ = OP

(
(NT )−1/2

)
. The proof of Theorem

3.1 below is given in Appendix B.

Theorem 3.1. Assume that conditions A1–A4 hold and that there exist two positive

definite matrices Σθ0 and Dθ0 such that

1

N

N∑
i=1

Λi,T → Σθ0 (3.1)

as N, T →∞ simultaneously and

1

N

N∑
i=1

Dθ0,i → Dθ0 as N →∞. (3.2)
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Additionally, as N, T →∞ simultaneously

1

N

(
max
1≤i≤N

Λi,T

)
→ 0. (3.3)

If the initial estimator θ̂1 is
√
NT–consistent, then we have

√
NT

(
θ̂ − θ0

)
d−→ N(0, D+

θ0
Σθ0D

+>
θ0

) (3.4)

as N, T →∞ simultaneously, where D+
θ0

is the pseudoinverse of Dθ0 .

Remark 3.2. The above theorem shows that the estimator θ̂ is asymptotically normal

with
√
NT rate of convergence even when the link functions may be heterogeneous.

Equations (3.1) and (3.3) are imposed to make sure that the Lindeberg condition holds

when we prove the joint central limit theorem. In the meantime, the condition that

the initial estimate is
√
NT–consistent is similar to the

√
T–consistency condition

in the one–index case (see Härdle, Hall and Ichimura 1993 and Carroll et al 1997

for example). As a matter of the fact, this restriction is feasible as such an initial

estimator can be obtained by using some existing methods (see, for example, Härdle

and Stoker 1989; Horowitz and Härdle 1996).

Let bg,i(u) = 1
2
µ2g

′′
i (u) and σ2

i (u) = ν0σ
2
θ0,i

(u)/fθ0,i(u), where µk =
∫
ukK(u)du,

νk =
∫
ukK2(u)du and σ2

θ0,i
(u) = E

(
ε2it|θ>0 Xit = u

)
. We next establish an asymptotic

distribution for ĝ(x) in the following theorem; its proof is given in Appendix B.

Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied. If, in addi-

tion, NTh4 →∞,

1

N

N∑
i=1

bg,i(u)→ bg(u),
1

N

N∑
i=1

σ2
i (u)→ σ2

g(u) as N →∞, (3.5)

and

max
1≤i≤N

σ2
i (u) = o(N),

then, as N, T →∞ simultaneously,

√
NTh

(
ĝ(u)− g(u)− bg(u)h2

)
d−→ N

(
0, σ2

g(u)
)
. (3.6)

Remark 3.3. Note that Theorem 3.2 covers the case that g(·) can be consistently

estimated by ĝ(·) when model (1.1) reduces to the case where the link functions are

all homogeneous (i.e., gi(·) ≡ g(·)).
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4. Dynamic single-index panel data models

We next consider the case that Xit contains lagged values of Yit. If Xit = Ỹi,t−1 =

(Yi,t−1, · · · , Yi,t−p)>, then model (1.1) becomes

Yit = gi
(
θ>0 Ỹi,t−1

)
+ εit, (4.1)

where, for each i, {εit, t ≥ 1} is a sequence of i.i.d. random variables and εit is

independent of Yi,s for all s < t. To ensure that the asymptotic distributions in

Section 3 still hold for this dynamic model, we provide some sufficient conditions for

{Yit, t ≥ 1} to be geometrically ergodic for each i ≥ 1. This implies that {Yit, t ≥ 1}
satisfies the stationarity and mixing conditions. Motivated by Theorems 3.1 and 3.2

in An and Huang (1996), we give two kinds of conditions on the link functions gi that

ensure the geometrical ergodicity of {Yit, t ≥ 1}.

Proposition 4.1. Let φi(x1, · · · , xp) = gi(θ
>x) with x = (x1, · · · , xp)>.

(i). Suppose that

sup
‖x‖≤C

|φi(x)| <∞ for any C > 0 and i ≥ 1 (4.2)

lim
‖x‖→∞

∣∣∣φi(x)− α>i x
∣∣∣

‖x‖
= 0 for each i ≥ 1, (4.3)

where αi = (αi,1, · · · , αi,p)> satisfies

xp − αi,1xp−1 − · · · − αi,p−1x− αi,p 6= 0 for all |x| > 1. (4.4)

Then, {Yit, t ≥ 1} defined by (4.1) is geometrically ergodic for each i ≥ 1.

(ii). Suppose that there exists a positive number λi < 1 and a constant Ci for each i,

such that

|φi(x)| ≤ λi max{|x1|, · · · , |xp|}+ Ci. (4.5)

Then {Yit, t ≥ 1} defined by (4.1) is geometrically ergodic for each i ≥ 1.

The detailed proof of Proposition 4.1 follows from the same arguments as used

in An and Huang (1996). Similar results about geometrical ergodicity are available

from Masry and Tjøstheim (1995), and Lu (1998).

We next provide two examples that satisfy the conditions in the above proposition.
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Example 4.1. Let θ0 = (θ01, θ02)
> = (0.6, 0.8)> and gi(u) = 1√

2
u + sin(2π

i
u). Then

the dynamic panel data model (4.1) reduces to

Yit =
1√
2

(0.6Yi,t−1 + 0.8Yi,t−2) + sin

(
2π(0.6Yi,t−1 + 0.8Yi,t−2)

i

)
+ εit.

As sin(·) is a bounded function, by letting αi =
(
0.6√
2
, 0.8√

2

)>
, it is easy to show

that (4.2) and (4.3) are satisfied. Hence, by Proposition 4.1 (i), {Yit, t ≥ 1} is

geometrically ergodic for each i ≥ 1.

Example 4.2. Assume that the link functions gi(·) satisfy

|gi(u)| ≤ ρi|u|√
p

+ κi, for any u ∈ R,

where κi and ρi are positive constants, ρi < 1, and p is the dimension of θ0 in (4.1).

Following the same arguments as used in Example 3.5 of An and Huang (1996), we

can show that (4.5) holds with λi = ρi and Ci = κi. And hence, {Yit, t ≥ 1} is

geometrically ergodic for each i ≥ 1. On the other hand, if gi(·) satisfies

lim
|u|→∞

|gi(u)− c∗iu|
|u|

= 0, for each i ≥ 1,

where c∗i satisfies (4.4) in Proposition 4.1 (ii), then we also can show that {Yit, t ≥ 1}
is geometrically ergodic for each i ≥ 1.

5. Empirical examples

We give a brief discussion on the bandwidth selection and then give two real data

examples to illustrate the proposed estimation method.

5.1. Bandwidth selection

Bandwidth selection is important for nonparametric estimation. Consider the es-

timate of g at the final step of the iterations. It follows from (3.6) that the asymptotic

integrated mean squared error of ĝ(·) is given by

h4
∫
b2g(u)du+

∫
σ2
g(u)du

NTh

and an optimal global bandwidth is of the form

hopt =

∫
σ2
g(u)du

4
∫
b2g(u)du

(NT )−1/5. (5.1)
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Based on (5.1), we can use the plug–in method (see Ruppert, Sheather and Wand

1995 for detail) to choose an optimal bandwidth for the implementation of (5.1) in

practice. In the real data application below, we instead propose using a semipara-

metric leave-one-out cross validation method to select the bandwidth.

Suppose that θ̂(h) is an estimate of θ0 via the iterative procedure described in

Section 2 with bandwidth h. For each 1 ≤ i ≤ N and 1 ≤ t ≤ T , we calculate

a
(−t)
it (h) =


T∑

s=1,s6=t
Kh

(
θ̂(h)

>
Xits

)
−1

T∑
s=1,s6=t

Kh

(
θ̂(h)

>
Xits

)
Yis

 , (5.2)

and let

CV (h) =
1

NT

N∑
i=1

T∑
t=1

(
Yit − a(−t)it (h)

)2
. (5.3)

Then, we choose ĥ = arg min
h
CV (h) as an optimal bandwidth in our implemen-

tation in the rest of this section.

5.2. Real data examples

Example 5.1. The first example is about the cigarettes demand in 46 American

states over the period 1963–1992. The data set is from Baltagi, Griffin and Xiong

(2000). The data set contains 7 variables: average retail price per pack of cigarettes,

population, population above the age of 16, consumer price indices, real per capita dis-

posable income, real per capita sales of cigarettes and minimum real price of cigarettes

in any neighboring state.

As in Baltagi, Griffin and Xiong (2000) and Mammen, Støve and Tjøstheim

(2009), we use only four variables to model cigarettes demand: real per capita sales

of cigarettes (denoted as Yi,t), average retail price per pack of cigarettes (denoted as

Xi,t,2), real per capita disposable income (denoted as Xi,t,3) and minimum real price

of cigarettes in any neighboring state (denoted as Xi,t,4). Denote Xi,t,1 = Yi,t−1, i = 1,

· · ·, 46, t = 1, · · ·, 29. Baltagi, Griffin and Xiong (2000) modeled the data with the

following log-linear dynamic demand model

lnYi,t = α + β1 lnXi,t,1 + β2 lnXi,t,2 + β3 lnXi,t,3 + β4 lnXi,t,4 + ui,t, (5.4)

where ui,t = µi + λt + vi,t, µi denotes a state-specific effect, and λt denotes a year-

specific effect. In this paper, we use a single–index panel data model with heteroge-

neous link functions. By allowing the link functions to vary across states, we can also
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incorporate state-specific effects such as religion, race, tourism, tax, and education

into our model.

As all the four variables exhibit a time trend, we first remove the trend from the

data. Similarly to Mammen, Støve and Tjøstheim (2009), we make the following

transformation

Ỹi,t = lnYi,t − sY (t) and X̃i,t,l = lnXi,t,l − sXl(t), l = 1, · · · , 4,

where sY (t) is the nonparametric estimator of the time trend in observations lnYi,t,

and sXl(t) is the nonparametric estimator of the trend in observations lnXi,t,l. sY (t)

can also be seen as time-specific effects λt in model (5.4), which may include policy

interventions, health warnings and so on. We then assume that

Ỹi,t = gi(θ
>X̃i,t) + εi,t, i = 1, · · · , 46, t = 1, · · · , 29, (5.5)

where X̃i,t =
(
X̃i,t,1, X̃i,t,2, X̃i,t,3, X̃i,t,4

)>
, and θ = (θ1, θ2, θ3, θ4)

> is the vector of

parameters to be estimated. We apply the RMAVE estimation method proposed

in Section 2 to the transformed observations. For the initial estimator θ̂1 of θ, we

use a normalized version of Baltagi, Griffin and Xiong (2000)’s OLS estimate of

β = (β1, β2, β3, β4)
> from model (5.4): θ̂1 = β̂

‖β̂‖
= (0.9765,−0.2029, 0.0456, 0.0575)>.

Our semiparametric estimate of θ is then θ̂ = (0.9171,−0.3478, 0.1764, 0.0823)>.

Comparison of our estimate with Baltagi, Griffin and Xiong (2000)’s OLS estimate

sees a drop in the coefficient for the lagged consumption from 0.9765 to 0.9171,

and increases in all the other covariate coefficients, especially in the coefficient for

disposable income (Xi,t,3) which sees almost a threefold increase from 0.0456 to 0.1764.

Mammen, Støve and Tjøstheim (2009) used a nonparametric additive model to fit the

data and found a similar result: the nonparametric estimates of the elasticities for

retail price, disposable income, and minimum price in any neighboring state (Xi,t,2,

Xi,t,3, and Xi,t,4) are more significant than Baltagi, Griffin and Xiong (2000)’s OLS

estimates.

To see whether the estimates of the link functions vary across states, we plotted

the estimated link functions for the first two states in Figure 5.1. The figure shows

that there does exist some level of difference between the nonparametric estimates of

the link functions for the two states.

13



!0.35 !0.3 !0.25 !0.2 !0.15 !0.1 !0.05 0
!0.2

!0.18

!0.16

!0.14

!0.12

!0.1

!0.08

!0.06

!0.04

Figure 5.1. Estimated link functions for the first (dash-dotted line) and second (dash-starred line)

states.

Example 5.2. The second data set, which is available from the UK Met Office website

http://www.metoffice.gov.uk/climate/uk/stationdata/, contains monthly data of the

average maximum temperature (TMAX), the average minimum temperature (TMIN),

the number of days of air frost (AF), the number of millimeters of rainfall (RAIN),

and the number of hours of sunshine (SUN). The data were collected from 37 stations

across the UK. We select data over the decade of January 1999–December 2008 from

16 stations according to data availability.

Both seasonality and trend are first removed from the data and we focus on

investigating the relationship between the TMAX and RAIN and SUN. For the i–th

station, denote the seasonality and trend removed TMAX at time t as Yi,t, and the

seasonality and trend removed RAIN and SUN as Xi,t,1 and Xi,t,2, respectively. We

then use the proposed semiparametric RMAVE method to estimate the parameter θ

in the model

Yi,t = gi(θ
>Xi,t) + εi,t, i = 1, · · · , 16, t = 1, · · · , 120, (5.6)

where Xit = (Xi,t,1, Xi,t,2)
>. We first use a least squares (LS) estimation method to
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Figure 5.2. Estimated link functions for stations Armagh (dash-dotted line) and Bradford (dash-

starred line).

estimate β in a linear model of the form

Yi,t = X>i,tβ + αi + ei,t, (5.7)

where αi are station-specific effects. Then, we use the normalized LS estimate β̂

‖β̂‖
=

(0.1931, 0.9812)> as the initial estimate for θ in the RMAVE estimation of (5.6). The

resulting RMAVE estimator of θ is θ̂ = (0.1046, 0.9945)>, which sees a drop from

0.1931 to 0.1046 in the coefficient for the rainfall covariate and a slight increase in

the coefficient of sunshine.

As in Example 5.1, plots of the link functions for the first two stations are given

in Figure 5.2. The figure shows the two estimated functions almost coincide which

indicates that the difference between the two link functions is small.

6. Conclusion

We have considered an estimation problem in a single–index panel data model with

heterogeneous link functions. A nonparametric local linear based minimum average

variance estimation method has been proposed to estimate the parameter vector and

15



an average of the link functions. An asymptotically normal distribution has been

established for each of the proposed estimates. In addition, we have included two real

data examples to show how the proposed theory and estimation method is illustrated

and implemented in practice.

The paper has some limitations and several extensions may be done. One of the

topics is to establish some corresponding theory for the case where the residuals are

cross–sectionally dependent. Another of the topics is whether the established theory

may be extended to the case where {Xit} is nonstationary in t and cross–sectionally

dependent in i. Such topics may be discussed in future research.
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Appendix A: Technical lemmas

Let Xit,x = Xit − x. We assume without loss of generality that µ2 = 1 (otherwise, we

can let K(u) = µ
1/2
2 K(µ

1/2
2 u)). Denote

ΘNT =
{
θ : |θ − θ0| ≤ Cθ(NT )−1/2

}
,

XNT =
{
x : ‖x‖ ≤M(NT )1/(2+δ)

}
,

and

FNT = {(x, θ) : x ∈ XNT , θ ∈ ΘNT } ,

where Cθ and M are two positive constants. Define

Zh(x,Xit) = Kh(θ>Xit,x)

(
θ>Xit,x

h

)k
Xit,x

and

Z∗h(x,Xit) = Kh(θ>Xit,x)

(
θ>Xit,x

h

)k
.

Lemma A.1. Let A1, A2, A3 (i)(iii) hold. If, in addition,

h→ 0, (NT )1/(2+δ)αT,h → 0, (NT )1+(p+κ+2)/(2+δ)ακ−pT,h h
−1−p → 0,

16



we have

max
1≤i≤N

sup
x∈XNT

∣∣∣∣∣ 1T
T∑
t=1

Z∗h(x,Xit)− fθ,i(θ>x)µk − f ′θ,i(θ>x)µk+1h

∣∣∣∣∣ = OP (h2 + αT,h) (A.1)

and

max
1≤i≤N

sup
x∈XNT

∣∣∣∣∣ 1T
T∑
t=1

Zh(x,Xit)− fθ,i(θ>x)νθ,i(x)µk −
[
fθ,i(θ

>x)µθ,i(θ
>x)

]′
µk+1h

∣∣∣∣∣
= OP (h2 + αT,h), (A.2)

where f ′θ,i(θ
>x) is the derivative of fθ,i(θ

>x).

Proof. We only prove (A.2) as the proof of (A.1) is similar. To prove (A.2), we first prove

max
1≤i≤N

sup
x∈XNT

∣∣∣∣∣ 1T
T∑
t=1

(Zh(x,Xit)− E [Zh(x,Xit)])

∣∣∣∣∣ = OP (αT,h). (A.3)

We first partition the set XNT into B balls Bk, 1 ≤ k ≤ B, each centered at xk with

radius r = O(hαT,h). By a simple calculation, we have

B = O
(
(NT )p/(2+δ)h−pα−pT,h

)
.

Then, for each θ ∈ ΘNT we have

max
1≤i≤N

sup
x∈XNT

∣∣∣∣∣ 1T
T∑
t=1

(Zh(x,Xit)− E [Zh(x,Xit)])

∣∣∣∣∣
≤ max

1≤k≤B
max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

(Zh(xk, Xit)− E [Zh(xk, Xit)])

∣∣∣∣∣
+ max

1≤k≤B
sup
x∈Bk

max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

([Zh(x,Xit)− Zh(xk, Xit)]− E [Zh(x,Xit)− Zh(xk, Xit)])

∣∣∣∣∣
=: max

1≤k≤B
max
1≤i≤N

|HT,1(k, i)|+ max
1≤k≤B

sup
x∈Bk

max
1≤i≤N

|HT,2(k, i, x)| . (A.4)

We first consider max
1≤k≤B

max
1≤i≤N

HT,1(k, i). Let

Zh(xk, Xit) = Zh(xk, Xit)I {‖Xit‖ ≤ ∆NT } ,

Zch(xk, Xit) = Zh(xk, Xit)− Zh(xk, Xit),

where ∆NT = (NT )1/(2+δ)L(NT ), and L(·) is a positive slowly–varying function satisfying

L(NT )→∞, (NT )1/(2+δ)L(NT )αT,h → 0,

(NT )1+(p+κ+2)/(2+δ)ακ−pT,h h
−1−pLκ+2(NT )→ 0, (A.5)

as N,T →∞.
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It is easy to check that

HT,1(k, i) =
1

T

T∑
t=1

{
Zh(xk, Xit)− E

[
Zh(xk, Xit)

]}
+

1

T

T∑
t=1

{Zch(xk, Xit)− E [Zch(xk, Xit)]} .

By the first term in (A.5) and E
[
‖Xit‖2+δ

]
< ∞ in A2(ii), we can show that for any

η > 0,

P

(
max
1≤k≤B

max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

{Zch(xk, Xit)− E [Zch(xk, Xit)]}
∣∣∣∣∣ > ηαT,h

)

≤
N∑
i=1

T∑
t=1

E‖Xit‖2+δ

NTL2+δ(NT )
≤ 1

L2+δ(NT )
= o(1),

which implies that

max
1≤k≤B

max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

{Zch(xk, Xit)− E [Zch(xk, Xit)]}
∣∣∣∣∣ = OP (αT,h). (A.6)

Furthermore, by A1, A2(ii), A3(i) and the standard argument for the variance of α–

mixing nonparametric kernel statistic, we have

max
1≤k≤B

max
1≤i≤N

Var

(
T∑
t=1

Zh(xk, Xit)

)
= O

(
Th−1

)
. (A.7)

Then, by Bernstein inequality for α–mixing processes (see Theorem 2.18 in Fan and Yao

2003 for example),

P

(∣∣∣∣∣ 1T
T∑
t=1

{
Zh(xk, Xit)− EZh(xk, Xit)

}∣∣∣∣∣ > ηαT,h

)

= P

(∣∣∣∣∣
T∑
t=1

{
Zh(xk, Xit)− EZh(xk, Xit)

}∣∣∣∣∣ > ηTαT,h

)
≤ 4 exp

(
−Cη2 log T

)
+ CTακTh∆κ+2

NT h
−1,

where C is some positive constant. Hence, as NTακ−pTh h
−p = o(1),

P

(
max
1≤k≤B

max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

{Zh(xk, Xit)− EZh(xk, Xit)}
∣∣∣∣∣ > ηαT,h

)
≤ O

(
BNT−Cη2 + BNTακTh∆κ+2

NT h
−1
)

= O
(
α−pT,hh

−pN1+p/(2+δ)T p/(2+δ)−Cη
2

+ (NT )1+(p+κ+2)/(2+δ)ακ−pTh h
−1−pLκ+2(NT )

)
= o(1)

when η is large enough, which, together with (A.6), implies

max
1≤k≤B

max
1≤i≤N

HT,1(k, i) = OP (αT,h). (A.8)

18



Meanwhile, by A1 we have

max
1≤k≤B

sup
x∈Bk

max
1≤i≤N

|Zh(x,Xit)− Zh(xk, Xit)|

≤ Ch−1
(

max
1≤k≤B

sup
x∈Bk

|x− xk|
)
≤ Ch−1hαT,h = O(αT,h),

which implies

max
1≤k≤B

sup
x∈Bk

max
1≤i≤N

HT,2(k, i, x) = OP (αT,h). (A.9)

Combining (A.4), (A.8), (A.9) and the proof of Lemma 6.7 in Xia (2006), we obtain

(A.3).

Moreover, by A1 and A3 (i)(iii), we obtain

E

Kh(θ>Xit,x)

(
θ>Xit,x

h

)k = fθ,i(θ
>x)µk + fθ,i(θ

>x)µk+1h+O(h2),

and

E

Kh(θ>Xit,x)

(
θ>Xit,x

h

)k
Xit,x

 = fθ,i(θ
>x)νθ,i(x)µk+

[
fθ,i(θ

>x)µθ,i(θ
>x)

]′
µk+1h+O(h2).

Lemma A.1 follows immediately from (A.3) and the above two equations.

Lemma A.2. Letting ai,x and bi,x be defined as ais and bis with Xits replaced by Xit,x in

(2.3), then under A1–A3,

ai,x = gi(θ
>
0 x) + g′i(θ

>
0 x)(θ0 − θ)>νθ,i(x) +

1

2
g′′i (θ>0 x)h2 +

1

Tfθ,i(θ>x)

T∑
t=1

Kh(θ>Xit,x)εit

+O
((
|δθ|2 + h(h2 + αT,h) + α2

T,h + (h+ αT,h)|δθ|
))

(A.10)

and

bi,x = g′i(θ
>
0 x) +

1

Thfθi (θ>x)

T∑
t=1

Kh(θ>Xit,x)

(
θ>Xit,x

h

)
εit (A.11)

+ O
((
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))
,

uniformly hold for x ∈ XNT , where δθ = θ − θ0.

Proof. Define Sθi,k = 1
T

T∑
t=1

Kh(θ>Xit,x)(θ>Xit,x)k for k = 0, 1, 2, 3. By simple calculation,

we have

ai,x =

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,2 − Sθi,1(θ>Xit,x)

)
Yit

}
(A.12)
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and

bi,x =

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,0(θ

>Xit,x)− Sθi,1
)
Yit

}
. (A.13)

By Lemma A.1, we have uniformly for x ∈ XNT ,

Sθi,0 = fθ,i(θ
>x) +OP (h2 + αT,h), (A.14)

Sθi,1 = OP (h(h+ αT,h)) = OP (h2 + hαT,h), (A.15)

Sθi,2 = fθ,i(θ
>x)h2 +OP

(
h2(h2 + αT,h)

)
, (A.16)

Sθi,3 = OP (h3(h+ αT,h)) = OP (h4 + h3αT,h). (A.17)

Hence, by (A.14)–(A.16),

Sθi,0S
θ
i,2 −

(
Sθi,1

)2
=
(
fθ,i(θ

>x)
)2
h2 +OP

(
h2(h2 + αT,h)

)
. (A.18)

By Taylor expansion, we have

Yit = gi(θ
>
0 Xit) + εit

= εit + gi(θ
>
0 x) + g′i(θ

>
0 x)θ>0 Xit,x +

1

2
g′′i (θ>0 x)(θ>0 Xit,x)2 +O(|θ>0 Xit,x|3)

= εit + gi(θ
>
0 x) + g′i(θ

>
0 x)θ>Xit,x +

1

2
g′′i (θ>0 x)(θ>Xit,x)2

+ g′i(θ
>
0 x)(θ0 − θ)>Xit,x +

1

2
g′′i (θ>0 x)

[
(θ>0 Xit,x)2 − (θ>Xit,x)2

]
(A.19)

+ O
(
|θ>0 Xit,x|3

)
= εit + gi(θ

>
0 x) + g′i(θ

>
0 x)θ>Xit,x +

1

2
g′′i (θ>0 x)(θ>Xit,x)2

+ g′i(θ
>
0 x)(θ0 − θ)>Xit,x + ∆it,x,

where

∆it,x = O
([

(θ>0 Xit,x)2 − (θ>Xit,x)2
]

+ |θ>0 Xit,x|3
)

= O

([
(θ0 − θ)>Xit,x

]2
+ 2θ>Xit,x(θ0 − θ)>Xit,x + (θ>Xit,x)3

+
[
(θ0 − θ)>Xit,x

]3
+ 3(θ0 − θ)>Xit,x(θ>Xit,x)2 + 3

[
(θ0 − θ)>Xit,x

]2
θ>Xit,x

)
= O

(
|δθ|2|Xit,x|2 + |δθ||Xit,x||θ>Xit,x|+ |θ>Xit,x|3 + |δθ|3|Xit,x|3

+ |δθ||Xit,x||θ>Xit,x|2 + |δθ|2|Xit,x|2|θ>Xit,x|
)
. (A.20)

Meanwhile, by (A.14)–(A.18) we have(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,2 − Sθi,1(θ>Xit,x)

)
gi(θ

>
0 x)

}

= gi(θ
>
0 x)

(
Sθi,0S

θ
i,2 − (Sθi,1)

2
)−1 (

Sθi,0S
θ
i,2 − (Sθi,1)

2
)

= gi(θ
>
0 x), (A.21)
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(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,2 − Sθi,1(θ>Xit,x)

)
g′i(θ

>
0 x)θ>Xit,x

}

= g′i(θ
>
0 x)

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1 (
Sθi,1S

θ
i,2 − Sθi,1Sθi,2

)
= 0 (A.22)

and (
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,2 − Sθi,1(θ>Xit,x)

)(1

2
g′′i (θ>0 x)(θ>Xit,x)2

)}

=
1

2
g′′i (θ>0 x)

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1 (
(Sθi,2)

2 − Sθi,1Sθi,3
)

(A.23)

=
1

2
g′′i (θ>0 x)h2 +OP

(
h2(h2 + αT,h)

)
.

Let Qθi,k = 1
T

T∑
t=1

Kh(θ>Xit,x)(θ>Xit,x)kXit,x for k = 0, 1, 2. By Lemma A.1, we have

Qθi,0 = fθ,i(θ
>x)νθ,i(x) +OP (h2 + αT,h), (A.24)

Qθi,1 = OP (h(h+ αT,h)). (A.25)

As a result, we have(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,2 − Sθi,1(θ>Xit,x)

)
g′i(θ

>
0 x)(θ0 − θ)>Xit,x

}

= g′i(θ
>
0 x)(θ0 − θ)>

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1 {
Sθi,2Q

θ
i,0 − Sθi,1Qθi,1

}
(A.26)

= g′i(θ
>
0 x)(θ0 − θ)>νθ,i(x) +OP

(
(h2 + αT,h)|δθ|

)
.

Furthermore, by (A.20) we have(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1( 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,2 − Sθi,1(θ>Xit,x)

)
∆it,x

)
= OP

([
|δθ|2 + h|δθ|+ h3 + |δθ|3 + h2|δθ|+ h|δθ|2

])
(A.27)

= OP
(
(|δθ|2 + h3 + h|δθ|)

)
.

Since

1

T

T∑
t=1

Kh(θ>Xit,x)εit = OP (αT,h),

1

T

T∑
t=1

Kh(θ>Xit,x)(θ>Xit,x)εit = OP (hαT,h), (A.28)

we have (
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,2 − Sθi,1(θ>Xit,x)

)
εit

}
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=

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1
Sθi,2

(
1

T

T∑
t=1

Kh(θ>Xit,x)εit

)

−
(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1
Sθi,1

(
1

T

T∑
t=1

Kh(θ>Xit,x)(θ>Xit,x)εit

)
(A.29)

=
1

Tfθ,i(θ>x)

T∑
t=1

Kh(θ>Xit,x)εit +OP (αT,h(h+ αT,h)) .

From (A.12), (A.18), (A.19), (A.21)–(A.23), (A.26), (A.27) and (A.29), we have proved

(A.10).

Meanwhile, it is straightforward to have

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,0(θ

>Xit,x)− Sθi,1
)
gi(θ

>
0 x)

}

= gi(θ
>
0 x)

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1 (
Sθi,0S

θ
i,1 − Sθi,0Sθi,1

)
= 0, (A.30)

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,0(θ

>Xit,x)− Sθi,1
)
g′i(θ

>
0 x)θ>Xit,x

}

= g′i(θ
>
0 x)

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1 (
Sθi,0S

θ
i,2 − (Sθi,1)

2
)

= g′i(θ
>
0 x), (A.31)

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,0(θ

>Xit,x)− Sθi,1
)(1

2
g′′i (θ>0 x)(θ>Xit,x)2

)}

=
1

2
g′′i (θ>0 x)

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1 (
Sθi,0S

θ
i,3 − Sθi,1Sθi,2

)
(A.32)

= OP (h(h+ αT,h)),

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,0(θ

>Xit,x)− Sθi,1
)
g′i(θ

>
0 x)(θ0 − θ)>Xit,x

}

= g′i(θ
>
0 x)(θ0 − θ)>

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1 (
Sθi,0Q

θ
i,1 − Sθi,1Qθi,0

)
(A.33)

= OP ((h+ αT,h)|δθ|/h) ,

and (
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,0(θ

>Xit,x)− Sθi,1
)

∆it,x

}
= OP

((
|δθ|2/h+ |δθ|+ h2 + |δθ|3/h+ h|δθ|+ |δθ|2

))
(A.34)

= OP
(
(|δθ|2/h+ |δθ|+ h2)

)
.
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Again from (A.14), (A.15) and (A.28), we can obtain

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1{ 1

T

T∑
t=1

Kh(θ>Xit,x)
(
Sθi,0(θ

>Xit,x)− Sθi,1
)
εit

}

=

(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1
Sθi,0

(
1

T

T∑
t=1

Kh(θ>Xit,x)(θ>Xit,x)εit

)

−
(
Sθi,0S

θ
i,2 −

(
Sθi,1

)2)−1
Sθi,1

(
1

T

T∑
t=1

Kh(θ>Xit,x)εit

)
(A.35)

=
1

Th2fθ,i(θ>x)

T∑
t=1

Kh(θ>Xit,x)(θ>Xit,x)εit +OP (αT,h(h+ αT,h)/h) .

In view of (A.13), (A.18), (A.19) and (A.30)–(A.35), the proof of (A.11) is completed.

Lemma A.3. Under the conditions of Lemma A.2, we have

1

T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)b
2
isXitsX

>
its/f̂θ,i(θ

>Xis) (A.36)

=
2

N

N∑
i=1

Dθ0,i +OP
(
h2 + αT,h/h+ |δθ|+ |δθ|2/h+ (NT )−1/2

)
,

and

1

T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)bisXits

(
Yit − ais − bisθ>0 Xits

)
/f̂θ,i(θ

>Xis)

=
1

NT

N∑
i=1

T∑
t=1

(Xit − µθ0,i(θ>0 Xit))g
′
i(θ
>
0 Xit)εit +

1

N

N∑
i=1

Dθ0,i(θ − θ0)

+OP
(
(h+ αT,h + |δθ|) (h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h)

+(NT )−1/2(h2 + |δθ|)
)
, (A.37)

where Dθ0,i = E

[(
g′i(θ

>
0 Xis)

)2
νθ0,i(Xis)ν

>
θ0,i

(Xis)

]
and f̂θ,i(θ

>x) = 1
T

T∑
t=1

Kh(θ>Xit,x).

Proof. Note that E
[
‖Xit‖2+δ

]
≤ ∞ by A2 (ii). It is easy to check that for any small ε > 0,

P

(
max
1≤i≤N

max
1≤t≤T

‖Xit‖ > M(NT )1/(2+δ)
)

≤
N∑
i=1

T∑
t=1

E‖Xit‖2+δ

M2+δNT
=

1

M2+δ
< ε

if taking M >
√

1/ε.

Hence, in the rest of the proof, we need only to consider the case of max
1≤i≤N

max
1≤t≤T

‖Xit‖ ≤

M(NT )1/(2+δ).
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Define ω̃θ,i(x) = E
[
(Xit − x)(Xit − x)>

∣∣∣ θ>Xit = θ>x
]
. By Lemma A.2, we have uni-

formly for x ∈ XNT ,

1

T

T∑
t=1

Kh(θ>Xit,x)Xit,xX
>
it,x = fθ,i(θ

>x)ω̃θ,i(x) +OP
(
(h2 + αT,h)

)
, (A.38)

and

f̂θ,i(θ
>x) = fθ,i(θ

>x) +OP
(
h2 + αT,h

)
. (A.39)

By (A.38) and (A.39),

1

T

T∑
t=1

Kh(θ>Xit,x)Xit,xX
>
it,x/f̂θ,i(θ

>x) = ω̃θ,i(x) +OP
(
h2 + αT,h

)
. (A.40)

Meanwhile, by Lemma A.2, we have

bi,x = g′i(θ
>
0 x) + 1

Thfθ,i(θ>x)

T∑
t=1

Kh(θ>Xit,x)
(
θ>Xit,x

h

)
εit

+ O
((
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))

= g′i(θ
>
0 x) +O

((
h2 + αT,h/h+ |δθ|+ |δθ|2/h

)) (A.41)

uniformly for x ∈ XNT .

By (A.40) and (A.41), we have

1
T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)b
2
isXitsX

>
its/f̂θ,i(θ

>Xis)

= 1
T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)
(
g′i(θ

>
0 Xis)

)2
XitsX

>
its/f̂θ,i(θ

>Xis)

+

(
1

T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)g
′
i(θ
>
0 Xis)XitsX

>
its

(
f̂θ,i(θ

>Xis)
)−1)

× O
(
h2 + αT,h/h+ |δθ|+ |δθ|2/h

)
= 1

TN

N∑
i=1

T∑
s=1

(
g′i(θ

>
0 Xis)

)2(
1
T

T∑
t=1

Kh(θ>Xits)XitsX
>
its/f̂θ,i(θ

>Xis)

)
+ OP

(
h2 + αT,h/h+ |δθ|+ |δθ|2/h

)
= 1

TN

N∑
i=1

T∑
s=1

(
g′i(θ

>
0 Xis)

)2
ω̃θ,i(Xis) +OP

(
h2 + αT,h/h+ |δθ|+ |δθ|2/h

)
= 1

N

N∑
i=1

E

[(
g′i(θ

>
0 Xis)

)2
ω̃θ0,i(Xis)

]
+OP

(
h2 + αT,h/h+ |δθ|+ |δθ|2/h+ (NT )−1/2

)
(A.42)

In the meantime, we have

E

[(
g′i(θ

>
0 Xis)

)2
ω̃θ0,i(Xis)

]
= E

[(
g′i(θ

>
0 Xis)

)2
E
(
ω̃θ0,i(Xis)| θ>0 Xis

)]
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= 2E

[(
g′i(θ

>
0 Xis)

)2 (
E
[
XisX

>
is

∣∣∣ θ>0 Xis

]
− µθ0,i(θ>0 Xis)µ

>
θ0,i(θ

>
0 Xis)

)]
= 2E

[(
g′i(θ

>
0 Xis)

)2
E
(
νθ0,i(Xis)ν

>
θ0,i(Xis)

∣∣∣ θ>0 Xis

)]
= 2E

[(
g′i(θ

>
0 Xis)

)2
νθ0,i(Xis)ν

>
θ0,i(Xis)

]
= 2Dθ0,i,

which, combined with (A.42), implies (A.36).

We next turn to the proof of (A.37). Observe that by Lemma A.2,

Yit − ai,x − bi,xθ>0 Xit,x

= εit + gi(θ
>
0 Xit)− gi(θ>0 x)− g′i(θ>0 x)(θ0 − θ)>νθ,i(x)− 1

2
g′′i (θ>0 x)h2 − g′i(θ>0 x)(θ>0 Xit,x)

− 1

Tfθ,i(θ>x)

T∑
l=1

Kh(θ>Xil,x)εil −
[

1

Tfθ,i(θ>x)

T∑
l=1

Kh(θ>Xil,x)εil

(
θ>Xil,x

h

)](
θ>0 Xit,x

h

)
+ O

((
h(h2 + αT,h) + α2

T,h + |δθ|2 + (h+ αT,h)|δθ|
)

(1 + |θ>0 Xit,x|/h)
)

= εit +
1

2
g′′i (θ>0 x)

(
(θ>0 Xit,x)2 − h2

)
− g′i(θ>0 x)(θ0 − θ)>νθ,i(x) (A.43)

− 1

Tfθ,i(θ>x)

T∑
l=1

Kh(θ>Xil,x)εil −
[

1

Tfθ,i(θ>x)

T∑
l=1

Kh(θ>Xil,x)εil

(
θ>Xil,x

h

)](
θ>Xit,x

h

)
+ O

((
h(h2 + αT,h) + α2

T,h + |δθ|2 + (h+ αT,h)|δθ|
)

(1 + |θ>0 Xit,x|/h)
)

uniformly for x ∈ XNT .

Therefore, we have

1

T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)bisXits

(
Yit − ais − bisθ>0 Xits

)
/f̂θ,i(θ

>Xis)

=
1

T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)bisXitsεit/f̂θ,i(θ
>Xis)

+
1

T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)bisXitsg
′
i(θ
>
0 Xis)ν

>
θ,i(Xis)(θ − θ0)/f̂θ,i(θ>Xis)

+
1

2T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)bisXitsg
′′
i (θ>0 Xis)

[
(θ>0 Xits)

2 − h2
]
/f̂θ,i(θ

>Xis)

− 1

T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)bisXits

{
1

Tfθ,i(θ>Xis)

T∑
l=1

Kh(θ>Xils)εil

}
/f̂θ,i(θ

>Xis)

− 1

T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)bisXits

(
θ>Xits

h

)

×
{

1

Tfθ,i(θ>Xis)

T∑
l=1

Kh(θ>Xils)

(
θ>Xils

h

)
εil

}
/f̂θ,i(θ

>Xis)

+ OP
((
h(h2 + αT,h) + α2

T,h + |δθ|2 + (h+ αT,h)|δθ|
)

(1 + |δθ|/h)
)

(A.44)
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=: Π1
N,T + Π2

N,T + Π3
N,T −Π4

N,T −Π5
N,T

+ OP
((
h(h2 + αT,h) + α2

T,h + |δθ|2 + (h+ αT,h)|δθ|
)

(1 + |δθ|/h)
)
.

Define Eit[G(Xit, Yit, Xis, Yis)] = E [G(Xit, Yit, Xis, Yis)|Xit, Yit]. It then follows that

Π1
N,T =

1

T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)g
′
i(θ
>
0 Xis)Xitsεit

(
fθ,i(θ

>Xis)
)−1

+ OP
(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))

=
1

N

N∑
i=1

{
1

T 2

T∑
t=1

T∑
s=1

Kh(θ>Xits)g
′
i(θ
>Xis)Xits

(
fθ,i(θ

>Xis)
)−1

εit

}
+ OP

(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))

=
1

N

N∑
i=1

{
1

T 2

T∑
t=1

T∑
s=1

[
Kh(θ>Xits)g

′
i(θ
>Xis)Xits

(
fθ,i(θ

>Xis)
)−1

− Eit

(
Kh(θ>Xits)g

′
i(θ
>Xis)Xits

(
fθ,i(θ

>Xis)
)−1)]

εit

}

+
1

NT

N∑
i=1

T∑
t=1

{
Eit

(
Kh(θ>Xits)g

′
i(θ
>Xis)Xits

(
fθ,i(θ

>Xis)
)−1)}

εit

+ OP
(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))

(A.45)

= Π1,1
N,T + Π1,2

N,T +OP
(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))
.

Similarly to the proof of Lemma 6.7 in Xia (2006), we have

Π1,1
N,T = OP

(
α2
T,h

)
. (A.46)

Additionally, since

Eit

(
Kh(θ>Xits)g

′
i(θ
>Xis)Xits

(
fθ,i(θ

>Xis)
)−1)

= E

{
E

[
Kh(θ>Xits)g

′
i(θ
>Xis)Xits

(
fθ,i(θ

>Xis)
)−1∣∣∣∣Xit, θ

>Xis

]∣∣∣∣Xit

}
= E

{
Kh(θ>Xits)g

′
i(θ
>Xis)

(
Xit − µθ,i(θ>Xis)

) (
fθ,i(θ

>Xis)
)−1∣∣∣∣Xit

}
= (Xit − µθ,i(θ>Xit))g

′
i(θ
>Xit) +OP (h2),

we have

Π1,2
N,T =

1

NT

N∑
i=1

T∑
t=1

(Xit − µθ,i(θ>Xit))g
′
i(θ
>Xit)εit +OP

(
(NT )−1/2h2

)
. (A.47)

By (A.45)–(A.47), we obtain

Π1
N,T =

1

NT

N∑
i=1

T∑
t=1

(Xit − µθ,i(θ>Xit))g
′
i(θ
>Xit)εit +OP

(
(NT )−1/2h2

)
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+ OP
(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))

(A.48)

=
1

NT

N∑
i=1

T∑
t=1

(Xit − µθ0,i(θ>0 Xit))g
′
i(θ
>
0 Xit)εit +OP

(
(NT )−1/2(h2 + |δθ|)

)
+ OP

(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))

Similarly, we have

Π2
N,T =

1

T 2N

N∑
i=1

T∑
s=1

T∑
t=1

Kh(θ>Xits)
(
g′i(θ

>
0 Xis)

)2
Xitsν

>
θ,i(Xis)(θ − θ0)

(
fθ,i(θ

>Xis)
)−1

+ OP
(
|δθ|(h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h)
)

=
1

TN

N∑
i=1

T∑
s=1

(
g′i(θ

>
0 Xis)

)2
νθ,i(Xis)ν

>
θ,i(Xis)(θ − θ0) (A.49)

+OP
(
|δθ|(h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h)
)

=
1

N

N∑
i=1

Dθ0,i(θ − θ0)

+ OP
(
|δθ|

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h+ (NT )−1/2
))

and

Π3
N,T =

1

2T 2N

N∑
i=1

T∑
s=1

T∑
t=1

g′i(θ
>
0 Xis)g

′′
i (θ>0 Xis)(fθ,i(θ

>Xis))
−1Kh(θ>Xits)Xits

[
(θ>0 Xits)

2 − h2
]

+ OP
(
h2
(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))

=
1

2T 2N

N∑
i=1

T∑
s=1

T∑
t=1

g′i(θ
>
0 Xis)g

′′
i (θ>0 Xis)(fθ,i(θ

>Xis))
−1Kh(θ>Xits)Xits

[
(θ>Xits)

2 − h2
]

+ OP
(
h2
(
h2 + αT,h + α2

T,h/h
)

+ |δθ|2 + |δθ|h
)

= OP
(
h2
(
h2 + αT,h + α2

T,h/h
)

+ |δθ|2 + |δθ|h
)
, (A.50)

where the last equality is due to the fact that

1

T

T∑
t=1

Kh(θ>Xits)Xits

[
(θ>Xits)

2 − h2
]

= OP
(
h2(h2 + αT,h)

)
.

As Eit
[
Kh(θ>Xits)g

′
i(θ
>
0 Xis)νθ,i(Xis)(fθ,i(θ

>Xis))
−1
]

= 0, by similar arguments to the

proof of Lemma 6.7 of Xia (2006), we have

Π4
N,T =

1

TN

N∑
i=1

T∑
s=1

(
fθ,i(θ

>Xis)
)−1

g′i(θ
>
0 Xis)

{
1

Tfθ,i(θ>Xis)

T∑
l=1

Kh(θ>Xils)εil

}

×
{

1

T

T∑
t=1

Kh(θ>Xits)Xits

}
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+ OP
(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))

=
1

TN

N∑
i=1

T∑
s=1

g′i(θ
>
0 Xis)νθ,i(Xis)

{
1

Tfθ,i(θ>Xis)

T∑
l=1

Kh(θ>Xils)εil

}
+ OP

(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))

=
1

N

N∑
i=1

{
1

T 2

T∑
s=1

T∑
l=1

(
Kh(θ>Xils)g

′
i(θ
>
0 Xis)νθ,i(Xis)(fθ,i(θ

>Xis))
−1
)
εil

}
+ OP

(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))

=
1

N

N∑
i=1

{
1

T 2

T∑
t=1

T∑
s=1

(
Kh(θ>Xits)g

′
i(θ
>
0 Xis)νθ,i(Xis)(fθ,i(θ

>Xis))
−1
)
εit

}
+ OP

(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))

= OP
(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))
. (A.51)

Analogously, we have

Π5
N,T = OP

(
αT,h

(
h2 + αT,h + α2

T,h/h+ (h+ αT,h)|δθ|/h+ |δθ|2/h
))
. (A.52)

It therefore follows from (A.44), (A.48)–(A.52) that the proof of (A.37) is completed.

Appendix B: Proofs of the main results

We now provide the detailed proofs of the main results in Section 3.

Proof of Theorem 3.1. Denote

SNT =
1

NT

N∑
i=1

T∑
t=1

(
Xit − µθ0,i(θ>0 Xit)

)
g′i(θ

>
0 Xit)εit.

Let θ = θ̂1 be an initial estimator of θ0, then after one iteration, we have

θ̃ − θ0 =

{
N∑
i=1

T∑
t=1

T∑
s=1

Kh(θ>Xits)b
2
isXitsX

>
its/f̂θ,i(θ

>Xis)

}−1

×
{

N∑
i=1

T∑
t=1

T∑
s=1

Kh(θ>Xits)bisXits(Yit − ais − bisθ>0 Xits)/f̂θ,i(θ
>Xis)

}
.

This, combined with Lemma A.3, implies

θ̃ − θ0 =
1

2

{
1

N

N∑
i=1

Dθ0,i

}+

SNT +
1

2

{
1

N

N∑
i=1

Dθ0,i

}+{
1

N

N∑
i=1

Dθ0,i

}
(θ − θ0)

+ OP

(
h(h2 + αT,h) + α2

T,h +
α3
T,h

h
+

(h2 + αT,h)

h
|δθ|+ |δθ|2 +

|δθ|3

h

)

=
1

2
D+
θ0
SNT +

1

2
D+
θ0
Dθ0(θ − θ0) + oP

(
(NT )−1/2 + |δθ|

)
(B.1)

+ OP

(
h(h2 + αT,h) + α2

T,h +
α3
T,h

h
+

(h2 + αT,h)

h
|δθ|+ |δθ|2 +

|δθ|3

h

)
.
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Let θ(k) be the value of the estimator of θ0 after k iterations, k ≥ 1. Recursing the

above equation and by A4, we have

θ(k) − θ0 =

{
k∑
l=1

1

2l

}
D+
θ0
SNT +

1

2k
D+
θ0
Dθ0(θ − θ0) + oP

(
(NT )−1/2 + |δθ|

)

+OP

(
h(h2 + αT,h) + α2

T,h +
α3
T,h

h
+

(h2 + αT,h)

h
|δθ|+ |δθ|2 +

|δθ|3

h

)

=

{
k∑
l=1

1

2l

}
D+
θ0
SNT +

1

2k
D+
θ0
Dθ0(θ − θ0) + oP

(
(NT )−1/2

)
(B.2)

Letting k →∞, we have

θ̂ − θ0 = D+
θ0
SNT + oP

(
(NT )−1/2

)
. (B.3)

We next prove the joint central limit theorem for
√
NTSNT . Let

BiT =
1√
T

T∑
t=1

(
Xit − µθ0,i(θ>0 Xit)

)
g′i(θ

>
0 Xit)εit =:

1√
T

T∑
t=1

Wit.

Note that

√
NTSNT =

1√
NT

N∑
i=1

T∑
t=1

Wit =
1√
N

N∑
i=1

(
1√
T

T∑
t=1

Wit

)
=

1√
N

N∑
i=1

BiT . (B.4)

We adopt the same argument as in the proof of Theorem 2 in Phillips and Moon (1999)

to prove the joint asymptotic normality of
√
NTSNT . As {BiT , 1 ≤ i ≤ N} is independent

by A2 (i) and

E
[
BiTB

>
iT

]
= E

[
Wi1W

>
i1

]
+ 2

T∑
t=2

[1− (t− 1)/T ]E
[
Wi1W

>
it

]
= Λi,T ,

it is enough for us to justify the Lindeberg condition.

By (3.1), we need to show that

1

N

N∑
i=1

E
[
‖BiT ‖2I

{
‖BiT ‖ >

√
Nε
}]
→ 0 (B.5)

for any ε > 0. Equation (B.5) follows directly from (3.3). Then, by (3.1) and (B.5), we have

√
NTSNT

d−→ N (0,Σθ0) . (B.6)

By (B.3) and (B.6), we have therefore shown that (3.4) holds.

Proof of Theorem 3.2. Note that

ĝ(u)− g(u) =
1

N

N∑
i=1

(ĝi(u)− gi(u)) (B.7)
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and

ĝi(u) =
T∑
t=1

wit(θ̂)Yit =
T∑
t=1

wit(θ̂)
(
gi(θ

>
0 Xit) + εit

)
, (B.8)

where

wit(θ) = (1, 0)


1

T

T∑
t=1

Kh(θ>Xit − u)

 1

θ>Xit − u


 1

θ>Xit − u


>
−1

×

 1

T

T∑
t=1

Kh(θ>Xit − u)

 1

θ>Xit − u


 .

By (B.8), we have for each i ≥ 1,

ĝi(u)− gi(u) =

(
T∑
t=1

wit(θ̂)gi(θ
>
0 Xit)− gi(u)

)
+

T∑
t=1

wit(θ̂)εit

=: ViT (1) + ViT (2).

Observe that

ViT (1) =

(
T∑
t=1

wit(θ̂)
(
gi(θ̂

>Xit)− gi(θ>0 Xit)
))
−
(

T∑
t=1

wit(θ̂)gi(θ̂
>Xit)− gi(u)

)
=: ViT (1, 1) + ViT (1, 2).

(B.9)

By Theorem 3.1, we can show that

ViT (1, 1) = OP ((NT )−1/2). (B.10)

Following the proofs of Lemmas A.1 and A.2, we have

max
i

∣∣∣ViT (1, 2)− h2µ2g′′i (u)
∣∣∣ = oP (h2). (B.11)

In view of (B.9)–(B.11) and noting NTh4 →∞, we have

1

N

N∑
i=1

ViT (1) = bg(u)h2 + oP (h2) (B.12)

Meanwhile, following the proof of Theorem 3.1, we can show

1√
N

N∑
i=1

√
ThViT (2)

d−→ N
(
0, σ2g(u)

)
. (B.13)

Therefore, equation (3.6) follows from (B.7), (B.12) and (B.13).

We have therefore completed the proofs of Theorems 3.1 and 3.2.
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