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Semiparametric Trending Panel Data Models

with Cross-Sectional Dependence

By Jia Chen, Jiti Gao and Degui Li1

School of Economics, The University of Adelaide, Adelaide, Australia

Abstract

A semiparametric fixed effects model is introduced to describe the nonlinear trending

phenomenon in panel data analysis and it allows for the cross–sectional dependence in

both the regressors and the residuals. A semiparametric profile likelihood approach based

on the first–stage local linear fitting is developed to estimate both the parameter vector

and the time trend function. As both the time series length T and the cross–sectional size

N tend to infinity simultaneously, the resulting semiparametric estimator of the parame-

ter vector is asymptotically normal with a rate of convergence of OP

(
1√
NT

)
. Meanwhile,

an asymptotic distribution for the estimate of the nonlinear time trend function is also es-

tablished with a rate of convergence of OP

(
1√
NTh

)
. Two simulated examples are provided

to illustrate the finite sample behavior of the proposed estimation method. In addition,

the proposed model and estimation method is applied to the analysis of two sets of real

data.
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Keywords: Cross–sectional dependence, nonlinear time trend, panel data, profile likeli-
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1. Introduction

Modeling time series with trend functions has attracted an increasing interest in recent

years. Mainly due to the limitation and practical inapplicability of parametric trend

functions, recent literature focuses on estimating time–varying coefficient trend functions

using nonparametric estimation methods. Such studies include Robinson (1989) and Cai

(2007). Phillips (2001) provides a review on the current development and future directions

about modeling time series with trends. In the meantime, some other nonparametric and

semiparametric models are also developed to deal with time series with a trend function.

Gao and Hawthorne (2006) propose using a semiparametric time series model to address

the issue of whether the trend of a temperature series should be parametrically linear

while allowing for the inclusion of some explanatory variables in a parametric component.

While there is a rich literature on parametric and nonparametric time–varying coef-

ficient time series models, as far as we know, few work has been done in identifying and

estimating the trend function in a panel data model. Atak, Linton and Xiao (2009) pro-

pose a semiparametric panel data model to deal with the modeling of climate change in

the United Kingdom. The authors consider using a model with a dummy variable in the

parametric component while allowing for the time trend function to be nonparametrically

estimated. More recently, Li, Chen and Gao (2010) extend the work of Cai (2007) in a

trending time–varying coefficient time series model to a panel data time–varying coeffi-

cient model. In such existing studies, the residuals are assumed to be cross–sectionally

independent. A recent work by Robinson (2008) may be among the first to introduce a

nonparametric trending time–varying model for the panel data case under cross–sectional

dependence.

In order to take into account of existing information and contribution from a set of

explanatory variables, this paper proposes extending the nonparametric model by Robin-

son (2008) to a semiparametric partially linear panel data model with cross–sectional

dependence. In our discussion, both the residuals and explanatory variables are allowed

to be cross–sectionally dependent.

The model we consider in this paper is a semiparametric trending panel data model

of the form

Yit = X>it β + ft + αi + eit, (1.1)

Xit = gt + vit, i = 1, · · · , N, t = 1, · · · , T, (1.2)
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where β is a d–dimensional vector of unknown parameters, ft = f
(
t
T

)
and gt = g

(
t
T

)
are both time trend functions with f(·) and g(·) being unknown, both {eit} and {vit}
are independent and identically distributed (i.i.d.) across time but correlated among

individuals, and αi are fixed effects satisfying

N∑
i=1

αi = 0. (1.3)

Note that {αi} is allowed to be correlated with {Xit} through some unknown structure,

while {eit} is assumed to be independent of {vit}.

Models (1.1) and (1.2) cover and extend some existing models. When β = 0, model

(1.1) reduces to the nonparametric model discussed in Robinson (2008). When N = 1,

models (1.1) and (1.2) reduce to the models discussed in Gao and Hawthorne (2006).

Meanwhile, model (1.2) allows for {Xit} to have a trend function and thus be nonsta-

tionary. As a consequence, models (1.1) and (1.2) become more applicable in practice

than some of the existing models discussed in Cai (2007), and Li, Chen and Gao (2010),

in which {Xit} is assumed to be stationary. Such practical situations include the model-

ing of the dependence between the share consumption, {Yit}, on the total consumption,

{Xit}, as well as the modeling of the dependence of the mean temperature series, {Yit},
on the Southern Oscillation Index, {Xit}. Furthermore, we relax the cross–sectional in-

dependence assumption on both the regressors {Xit} and the error process {eit}. As

pointed out in Chapter 10 of Hsiao (2003), this makes panel data models more practically

applicable because there is no natural ordering for cross–sectional indices. As a result,

appropriate modeling and estimation of cross–sectional correlatedness becomes difficult

particularly when the dimension of cross–sectional observation N is large. To be able to

study the asymptotic theory of our proposed estimation method in this paper, we will

impose certain mild moment conditions on {eit} and {vit} as in (3.1)–(3.3) in Section 3.

The main objective of this paper is then to construct a consistent estimation method

for the parameter vector β and the trending function f(·). Throughout the paper, both

the time series length T and the cross sections size N are allowed to tend to infinity. A

semiparametric dummy–variable based profile likelihood estimation method is developed

to estimate both β and f(·) based on first–stage local linear fitting. The resulting estima-

tor of β is shown to be asymptotically normal with a rate of convergence of OP

(
1√
NT

)
.

Meanwhile, an asymptotic distribution for the nonparametric estimate of the time trend
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function is also established with a rate of convergence of OP

(
1√
NTh

)
. In addition, we also

propose a semiparametric estimator for the cross–sectional covariance matrix of {vit, eit},
which is useful in constructing the confidence intervals of the estimator of β and estimate

of f(·).

The rest of the paper is organized as follows. A semiparametric pooled profile like-

lihood method for β and f(·) is proposed in Section 2. The asymptotic theory of the

proposed estimation method is established in Section 3. Some related discussions, such

as estimation of some covariance matrices, an averaged profile likelihood estimator and

the cross–validation bandwidth selection method, are given in Section 4. Two simulated

examples as well as two real–data applications are provided in Section 5. Section 6 con-

cludes the paper. The mathematical proofs of the main results are given in Appendices

A and B.

2. Estimation method

Several existing semiparametric estimation methods can be developed to estimate the

parameter vector β and the time trend function f(·). Among such estimation methods,

the averaged profile likelihood estimation method is a commonly–used method and has

been investigated by some authors in both the time series and panel data cases (see, for

example, Fan and Huang 2005; Su and Ullah 2006; Atak, Linton and Xiao 2009). As we

discuss in Section 4.3, the averaged profile likelihood estimation method is not so efficient

for our semiparametric setting. Thus, we propose using a semiparametric pooled profile

likelihood method associated with a dummy variable to estimate β and f(·).

Before we propose the estimation method, we need to introduce the following notation:

Ỹ = (Y11, · · · , Y1T , Y21, · · · , Y2T , YN1, · · · , YNT )>,

X̃ = (X11, · · · , X1T , X21, · · · , X2T , XN1, · · · , XNT )>,

α = (α2, · · · , αN)>, D = (−iN−1, IN−1)> ⊗ iT ,

f̃ = iN ⊗ (f1, · · · , fT )>, ẽ = (e11, · · · , e1T , e21, · · · , e2T , eN1, · · · , eNT )>,

where ik is the k × 1 vector of ones and Ik is the k × k identity matrix. As
N∑
i=1

αi = 0,

model (1.1) can be rewritten as

Ỹ = X̃β + f̃ +Dα + ẽ. (2.1)
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Let K(·) denote a kernel function and h is a bandwidth. Denote Z(τ) =


1 1−τT

Th

...
...

1 T−τT
Th


and Z̃(τ) = iN ⊗ Z(τ). Then by Taylor expansion,

f̃ ≈ Z̃(τ)

 f(τ)

hf ′(τ)

 .
Let W (τ) = diag

(
K(1−τT

h
), · · · , K

(
T−τT
Th

))
and W̃ (τ) = IN ⊗W (τ). The semipara-

metric dummy–variable based profile likelihood estimation method is proposed as follows.

(i) For given α and β, we estimate f(τ) and f ′(τ) by f̂α,β(τ)

hf̂ ′α,β(τ)

 = arg min
(a,b)>

(
Ỹ − X̃β −Dα− Z̃(τ)(a, b)>

)>
W̃ (τ)

(
Ỹ − X̃β −Dα− Z̃(τ)(a, b)>

)
.

If we denote S(τ) =
(
Z̃>(τ)W̃ (τ)Z̃(τ)

)−1
Z̃>(τ)W̃ (τ), then by simple calculation,

we have

f̂α,β(τ) = (1, 0)S(τ)(Ỹ − X̃β −Dα) = s(τ)(Ỹ − X̃β −Dα), (2.2)

where s(τ) = (1, 0)S(τ).

(ii) Denote

f̃α,β = iN ⊗
(
f̂α,β (1/T ) , · · · , f̂α,β (T/T )

)>
= S̃(Ỹ − X̃β −Dα),

where S̃ = iN ⊗
(
s> (1/T ) , · · · , s> (T/T )

)>
. Then we estimate α and β by

(α̂>, β̂>)> = arg min
(α>,β>)>

(
Ỹ − X̃β −Dα− f̃α,β

)> (
Ỹ − X̃β −Dα− f̃α,β

)
= arg min

(α>,β>)>

(
Ỹ ∗ − X̃∗β −D∗α

)> (
Ỹ ∗ − X̃∗β −D∗α

)
. (2.3)

where Ỹ ∗ =
(
INT − S̃

)
Ỹ , X̃∗ =

(
INT − S̃

)
X̃ and D∗ =

(
INT − S̃

)
D.

Define M∗ = INT −D∗
(
D∗>D∗

)−1
D∗>. Simple calculation leads to the solution of

the minimization problem (2.3):

β̂ =
(
X̃∗>M∗X̃∗

)−1
X̃∗>M∗Ỹ ∗, (2.4)

α̂ =
(
D∗>D∗

)−1
D∗>

(
Ỹ ∗ − X̃∗β̂

)
. (2.5)
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(iii) Plug (2.4) and (2.5) into (2.2) to obtain the estimate of f(τ) by

f̂(τ) = s(τ)
(
Ỹ − X̃β̂ −Dα̂

)
. (2.6)

Note that our study in Sections 3 and 5 below shows that the proposed pooled profile

likelihood method associated with a dummy variable has both theoretical and numerical

advantages over the averaged profile likelihood estimation method.

3. The main results

In this section, we first introduce some regularity assumptions and establish asymptotic

distributions for β̂ and f̂(·).

3.1. Assumptions

A1. The kernel function K(·) is continuous and symmetric with compact support.

A2. Let vt = (v1t, · · · , vNt)>, 1 ≤ t ≤ T . Suppose that {vt, t ≥ 1} is a sequence of

independent and identically distributed (i.i.d.) N × d random matrices with zero

mean and E
[
‖vit‖4

]
< ∞. There exist d × d positive definite matrices Σv and Σ∗v,

such that as N →∞,

1

N

N∑
i=1

E
[
vitv

>
it

]
−→ Σv,

1

N

N∑
i=1

N∑
j=1

E
[
vitv

>
jt

]
−→ Σ∗v, E

∥∥∥∥∥
N∑
i=1

vit

∥∥∥∥∥
δ

= O
(
N δ/2

)
,

(3.1)

where δ > 2 is a positive constant.

A3. The trend functions f(·) and g(·) have continuous derivatives of up to the second

order.

A4. Let et = {eit, 1 ≤ i ≤ N}. Suppose that {et, t ≥ 1} is a sequence of i.i.d. random

errors with zero mean and independent of {vit}. There exists a d×d positive definite

matrix Σv,e such that as N →∞,

1

N

N∑
i=1

N∑
j=1

E
[
vi1v

>
j1

]
E [ei1ej1]→ Σv,e. (3.2)

Furthermore, there is some 0 < σ2
e <∞ such that as N →∞

1

N
E

(
N∑
i=1

eit

)2

→ σ2
e and E

∣∣∣∣∣
N∑
i=1

eit

∣∣∣∣∣
δ

= O
(
N δ/2

)
, (3.3)

where δ > 2 is as defined in A2.
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A5. The bandwidth h satisfies as T →∞ and N →∞ simultaneously,

NTh8 → 0,

√
NTh

log(NT )
→∞ and

T 1− 2
δh

log(NT )
→∞.

Remark 3.1. A1 is a mild condition on the kernel function and many commonly–used

kernels, including the Epanechnikov kernel, satisfy A1. Furthermore, the compact support

condition for the kernel function can be relaxed at the cost of more technical proofs. In

A2, we impose some moment conditions on {vit} and allow for cross–sectional dependence

of {vit} and thus {Xit}. When {vit} is also i.i.d. across individuals, it is easy to check that

(3.1) holds. Since there is no natural ordering for cross–sectional indices, it may not be

appropriate to impose any kind of mixing or martingale conditions on {vit} when vit and

vjt are dependent. Equation (3.1) instead imposes certain conditions on the measurement

of the ‘distance’ between cross–sections ij and ik. To explain this in some detail, let us

consider the case of d = 1 and define a kind of ‘distance’ function among the cross–sections

of the form

ρ(i1, i2, · · · , ik) = E
[
vj1i1,1 · · · v

jk
ik,1

]
, (3.4)

and then consider one of the cases where k = 4 and j1 = j2 = · · · = j4 = 1. In addition,

we focus on the case where all 1 ≤ i1, i2, · · · , i4 ≤ N are different. Consider a distance

function of the form

ρ(i1, i2, · · · , i4) =
1

|i4 − i3|δ3|i3 − i2|δ2 · · · |i2 − i1|δ1
(3.5)

for δi > 0 for all 1 ≤ i ≤ 3. In this case, equation (3.1) can be verified because

N∑
i1=1

N∑
i2=1

· · ·
N∑
i4=1

E [vi1,1 · · · vi4,1] = O
(
N4−

∑3

j=1
δj
)

= O
(
N2
)

(3.6)

when
∑3
j=1 δj ≥ 2. Obviously, the conventional Euclidean metric is covered. One may

also show that equation (3.1) can also be verified when some other distance functions,

including an exponential distance function, are considered.

A3 is a commonly used condition in local linear fitting. In A2 and A4, we assume

that both {et} and {vt} are i.i.d.. This can be relaxed by allowing both {et} and {vt}
to be stationary and α–mixing (see, for example, Gao 2007). In A4, we also do need the

mutual independence between vit and eit in this paper. When vit and eit are dependent

each other, we do not necessarily have E[viteit] = 0. In this case, a modified estimation
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method, such as an instrumental variable based method may be needed to construct a

consistent estimator for β. To emphasize the main ideas, the proposed estimation method

and the resulting theory as well as to avoid involving further technicality, we establish the

main results under Conditions A1–A5 throughout this paper. However, such extensions

are left for future discussion. The cross–sectional dependence conditions in (3.2) and

(3.3) are similar to those in (3.1). A5 is required for establishing the asymptotic theory

without involving too much technicality. A5 covers the case of N
T
→ λ for 0 ≤ λ ≤ ∞.

For example, when N is proportional to T , A5 reduces to Th4 → 0 and T
1− 2

δ h
log(T )

→∞. For

the case of N = [T c], A5 reduces to T 1+ch8 → 0 and T
1− 2

δ h
log(T )

→ ∞ when c ≥ 1 − 4
δ

for

δ > 4.

3.2. Asymptotic theory

We first establish an asymptotic distribution for β̂ in the following theorem.

Theorem 3.1. Let Conditions A1–A5 hold. Then as T →∞ and N →∞ simultaneously

√
NT

(
β̂ − β

)
d−→ N

(
0d, Σ−1v Σv,eΣ

−1
v

)
. (3.7)

Remark 3.2. The above theorem shows that the proposed pooled profile likelihood

estimator of β can achieve the root–NT convergence rate. As both T and N tend to

infinity jointly, the asymptotic variance in (3.7) is simplified, compared with some existing

literature on the profile likelihood estimation for semiparametric panel data models with

fixed effects (see, for example, Su and Ullah 2006). A consistent estimation method for

Σv and Σv,e will be proposed in Section 4.1 below.

Define µj =
∫
ujK(u)du and νj =

∫
ujK2(u)du. An asymptotic distribution of f̂(τ) is

established in the following theorem.

Theorem 3.2. Let Conditions A1–A5 hold. Then as T →∞ and N →∞ simultaneously

√
NTh

(
f̂(τ)− f(τ)− bf (τ)h2 + oP (h2)

)
d−→ N

(
0, ν0σ

2
e

)
, (3.8)

where bf (τ) = 1
2
µ2f

′′(τ).

Remark 3.3. The asymptotic distribution in (3.8) is a standard result for local linear

fitting of nonlinear time trend function. From (3.8), we can obtain the mean integrated

square error (MISE) of f̂(·)

MISE(f̂(τ)) = E
∫ 1

0

(
f̂(τ)− f(τ)

)2
dτ ≈ ν0σ

2
e

NTh
+
∫ 1

0
b2f (τ)dτ h4, (3.9)
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where the symbol “an ≈ bn” denotes that an
bn
→ 1 as n→∞.

From (3.9), we can obtain an optimal bandwidth of the form

hopt =

(
ν0σ

2
e

4
∫ 1
0 b

2
f (τ)dτ

)1/5

(NT )−1/5. (3.10)

The above bandwidth selection method cannot be implemented directly as both σ2
e

and b2f (τ) in (3.10) are unknown. Hence, in the simulation study in Section 5, we propose

using a semiparametric “leave–one–out” cross validation method that will be introduced

in Section 4.3 below.

4. Some related discussions

In Section 4.1, consistent estimators are constructed for Σv, Σv,e and σ2
e which are

involved in Theorems 3.1 and 3.2. Then, an averaged profile likelihood estimation is

introduced in Section 4.2. The so–called “leave–one–out” cross validation bandwidth

selection criterion is provided in Section 4.3.

4.1. Estimation of Σv, Σv,e and σ2
e

To make the proposed estimation method practically implementable, we also need to

construct consistent estimators for Σv and Σv,e. Define

Σ̂v(i) =
1

T

T∑
t=1

v̂itv̂
>
it and v̂it = Xit − ĝt, (4.1)

where ĝt := ĝ
(
t
T

)
is the pooled local linear estimate of g

(
t
T

)
. Then, Σv can be estimated

by

Σ̂v =
1

N

N∑
i=1

Σ̂v(i). (4.2)

By the uniform consistency of the pooled local linear estimate (see the proofs in

Appendix B) and g(·) is independent of i, it is easy to check that Σ̂v(i) is a consistent

estimator of E
[
vi1v

>
i1

]
for each i, which implies that Σ̂v is a consistent estimator of Σv.

Let v̂it be defined as in (4.1) and

êit = Yit −X>it β̂ − f̂t, (4.3)

where f̂t := f̂
(
t
T

)
. Then, ρij(v) := E

[
vi1v

>
j1

]
and ρij(e) := E [ei1ej1] can be estimated by

ρ̂ij(v) =
1

T

T∑
i=1

v̂itv̂
>
jt and ρ̂ij(e) =

1

T

T∑
i=1

êitê
>
jt, (4.4)
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respectively. Let ϕN be some positive integer such that ϕN ≤ N and ϕN →∞.

By (3.2), Σv,e can be consistently estimated by

Σ̂v,e =
1

ϕN

ϕN∑
i=1

ϕN∑
j=1

ρ̂ij(v)ρ̂ij(e). (4.5)

Similarly, by (3.3), σ2
e can be consistently estimated by

σ̂2
e =

1

T

T∑
t=1

σ̂2
e(t) and σ̂2

e(t) =
1

ϕN

ϕN∑
i=1

ϕN∑
j=1

êitêjt. (4.6)

Following Theorems 3.1 and 3.2, one may show that the resulting estimators are all

consistent.

4.2. Averaged profile likelihood estimation method

As
N∑
i=1

αi = 0, another way to eliminate the individual effects αi from model (1.1) is

to take averages over i

YAt = X>Atβ + ft + eAt, (4.7)

where the subscript A indicates averaging with respect to i, YAt = 1
N

N∑
i=1

Yit, XAt =

1
N

N∑
i=1

Xit and eAt == 1
N

N∑
i=1

eit. Denote YA = (YA1, · · · , YAT )>, XA = (XA1, · · · , XAT )>,

f = (f1, · · · , fT )> and eA = (eA1, · · · , eAT )>. Then, model (4.7) can be rewritten as

YA = XAβ + f + eA. (4.8)

Then, applying the profile likelihood estimation approach to model (4.8), one can

obtain the averaged profile likelihood estimator of β and estimate of f(·) by

β̂A =
(
X∗>A X∗A

)−1
X∗>A Y ∗A ,

f̂A(τ) = (1, 0)
(
Z>(τ)W (t)Z(τ)

)−1
Z>(τ)W (t)(YA −XAβ̂A),

where X∗A = XA −MXA = (IT −M)XA, Y ∗A = (IT −M)YA,

M =


(1, 0)

(
Z>(1/T )W (1/T )Z(1/T )

)−1
Z>(1/T )W (1/T )

...

(1, 0)
(
Z>(T/T )W (T/T )Z(T/T )

)−1
Z>(T/T )W (T/T )

 ,

in which W (τ) and Z(τ) are defined in Section 2, IT is the T × T identity matrix.
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It can be shown that the rate of convergence of β̂A to β is of the order
√
T , while the

rate of convergence of f̂A(τ) to f(τ) is of the same order of
√
NTh as that for f̂(τ). This

is clearly illustrated in Tables 5.1 and 5.2 below.

4.3. Bandwidth Selection

In this section, we adopt the “leave–one–out” cross validation method to select the

bandwidth for both the pooled and averaged profile likelihood estimation. The selection

procedure can be described as follows.

Let β̂(−1), α̂(−1) and f̂(−1)(·) be the leave–one–out versions of β̂, α̂ and f̂(·) in (2.4)–

(2.6), respectively. The leave–one–out estimator of h, ĥcv, is chosen such that

ĥcv = arg min
1

NT

(
Ỹ − X̃β̂(−1) −

˜̂
f (−1) −Dα̂(−1)

)T (
Ỹ − X̃β̂(−1) −

˜̂
f (−1) −Dα̂(−1)

)
, (4.9)

where
˜̂
f (−1) is defined in the same way as f̃ in (2.1) with f(·) being replaced by f̂(−1)(·).

5. Examples of implementation

We next carry out simulations to compare the small sample behavior of the two profile

likelihood estimation methods: the pooled and the averaged methods. Meanwhile, two

real–data examples are provided to show that our estimation method performs well in

the empirical analysis of a consumer price index data from Australia and a temperature

series data from the United Kingdom. We find significant increasing trends in both of the

data sets.

5.1. Simulated Examples

Example 5.1. Consider one data generating process of the form

Yit = Xitβ + f(t/T ) + αi + eit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (5.1)

where β = 2, f(u) = u3 + u, αi = 1
T

T∑
t=1

Xit for i = 1, · · ·, N − 1, and αN = −
N−1∑
i=1

αi. The

error terms eit are generated as follows. For each 1 ≤ t ≤ T , let ẽ·t = (e1t, ε2t, · · · , eNt),
which is a N–dimensional vector. Then, {ẽ·t, 1 ≤ t ≤ T} is generated as a N–dimensional

vector of independent Gaussian variables with zero mean and covariance matrix (cij)N×N ,

where

cij = 0.8|j−i|, 1 ≤ i, j ≤ N. (5.2)
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From the way eit are generated, it is easy to see that

E(eitejs) = 0 for 1 ≤ i, j ≤ N, t 6= s,

E(eitejt) = 0.8|j−i| for 1 ≤ i, j ≤ N, 1 ≤ t ≤ T.

The above equations imply that {eit} is cross–sectional dependent and time indepen-

dent. The explanatory variables Xit are generated by

Xit = g
(
t

T

)
+ vit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (5.3)

where g(u) = 2 sin(πu), {vit} is independent of {eit} and is generated in the same way as

{eit} but with a different covariance matrix (dij)N×N , where dij = 0.5|j−i| for 1 ≤ i, j ≤ N .

WithR = 500 replications, we compare the average square–root of mean squared errors

(ASMSE) of the pooled profile likelihood estimator (PPLE) of β and estimate of f(·) with

that of the averaged profile likelihood estimator of β and estimate of f(·) (APLE). For

a p× 1 parameter β = (β1, · · · , βp)> and a nonparametric function f(·) defined on [0, 1],

the ASMSE’s of their estimators β̂ and f(·) are defined as

ASMSE(β̂) =
1

R

R∑
r=1

(
1

p

p∑
l=1

(
β̂
(r)
l − βl

)2)1/2

, (5.4)

ASMSE(f̂) =
1

R

R∑
r=1

(
1

T

T∑
t=1

(
f̂ (r)(t/T )− f(t/T )

)2)1/2

, (5.5)

where β̂
(r)
l and f̂ (r)(·) are the estimates of βl and f̂(·) in the r-th replication for 1 ≤ l ≤ p

and 1 ≤ r ≤ R.

Table 5.1(a). ASMSE for the profile likelihood estimators of β in Example 5.1

N\T 5 10 20 30

5 PPLE 0.2464 (0.1916) 0.1532 (0.1129) 0.1125 (0.0817) 0.0946 (0.0656)

APLE 0.4158 (0.3980) 0.2381 (0.1864) 0.1775 (0.1312) 0.1439 (0.1012)

10 PPLE 0.1860 (0.1407) 0.1387 (0.1055) 0.0973 (0.0673) 0.0747 (0.0543)

APLE 0.3626 (0.2911) 0.2439 (0.1973) 0.2441 (0.1899) 0.1603 (0.1099)

20 PPLE 0.1511 (0.1137) 0.1149 (0.0867) 0.0733 (0.0524) 0.0462 (0.0338)

APLE 0.3257 (0.2562) 0.2237 (0.1692) 0.1709 (0.1228) 0.1680 (0.1281)

30 PPLE 0.1196 (0.0945) 0.1003 (0.0703) 0.0479 (0.0358) 0.0432 (0.0305)

APLE 0.3123 (0.2368) 0.2053 (0.1450) 0.1744 (0.1073) 0.1506 (0.0985)
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Table 5.1(b). ASMSE for the profile likelihood estimates of f(·) in Example 5.1

N\T 5 10 20 30

5 PPLE 0.5008 (0.2716) 0.3489 (0.1693) 0.2597 (0.1023) 0.2289 (0.0947)

APLE 0.6829 (0.5000) 0.4285 (0.2531) 0.3230 (0.1529) 0.2735 (0.1291)

10 PPLE 0.4318 (0.2124) 0.3101 (0.1414) 0.2306 (0.0943) 0.1910 (0.0751)

APLE 0.6165 (0.3949) 0.4150 (0.2382) 0.3136 (0.1570) 0.2697 (0.1355)

20 PPLE 0.3446 (0.1667) 0.2622 (0.1096) 0.1969 (0.0759) 0.1561 (0.0564)

APLE 0.5199 (0.3338) 0.3651 (0.2052) 0.2895 (0.1479) 0.2628 (0.1530)

30 PPLE 0.2871 (0.1301) 0.2404 (0.0915) 0.1587 (0.0582) 0.1374 (0.0557)

APLE 0.4740 (0.2900) 0.3394 (0.1712) 0.2805 (0.1246) 0.2465 (0.1192)

Tables 5.1(a) and 5.1(b) reveal that the PPLE outperforms the APLE uniformly. We

can further find that an increase in either N or T results in an obvious improvement

in the performances of the PPLE’s of both β and f(·). In contrast, the increase in

N does not necessarily result in the improvement of the performance of the APLE of β,

although the increase in T seems to lead to better performance of the APLE of β (although

this improvement might be slight). This indicates that the APLE can not estimate the

parameter β well for small T .

Example 5.2. Consider another the data generating process of the form

Yit = X>it β + f
(
t

T

)
+ αi + eit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (5.6)

where β =
(
1, 1

2
, 2
)>

, Xit = (Xit,1, Xit,2, Xit,3)
>, f(u) = 2u2 + u,

αi = max

{
1

T

T∑
t=1

Xit,1,
1

T

T∑
t=1

Xit,2,
1

T

T∑
t=1

Xit,3,

}
, i = 1, · · · , N − 1,

and αN = −
N−1∑
i=1

αi. Letting ẽ·t = (ε1t, ε2t, · · · , εNt), then we generate {ẽ·t, 1 ≤ t ≤ T}
as a N–dimensional vector of Gaussian variables with zero mean and covariance matrix

(c∗ij)N×N , where c∗ij = 2
(i−j)2+1

.

The explanatory variables Xit are generated by Xit = g
(
t
T

)
+ vit, where

g(u) =
(

1 + sin(πu),
1

2
u, −u

)>
, (5.7)
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and {vit = (vit,1, vit,2, vit,3)
> : 1 ≤ i ≤ N, 1 ≤ t ≤ T} satisfies Evit = 0,

E
(
vitv

>
jt

)
=

1

(j − i)2 + 1


4 0 0

0 1
2

0

0 0 1

 , 1 ≤ i, j ≤ N, 1 ≤ t ≤ T,

and E
(
vitv

>
js

)
= 0 for 1 ≤ i, j ≤ N and s 6= t.

Table 5.2(a). ASMSE for the profile likelihood estimators of β

N\T 5 10 20 30

5 PPLE 0.3785 (0.2036) 0.2537 (0.1221) 0.1723 (0.0819) 0.1336 (0.0690)

APLE 5.2104 (23.9788) 0.5987 (0.3523) 0.3628 (0.1884) 0.2712 (0.1421)

10 PPLE 0.2693 (0.1395) 0.1717 (0.0857) 0.1159 (0.0579) 0.0960 (0.0473)

APLE 5.6469 (19.3887) 0.6227 (0.3878) 0.3696 (0.1997) 0.2710 (0.1421)

20 PPLE 0.1807 (0.0908) 0.1248 (0.0639) 0.0861 (0.0400) 0.0685 (0.0347)

APLE 5.3776 (17.3639) 0.8067 (0.5337) 0.3609 (0.1922) 0.2798 (0.1326)

30 PPLE 0.1533 (0.0756) 0.0976 (0.0486) 0.0709 (0.0327) 0.0555 (0.0284)

APLE 5.0500 (11.6489) 0.6438 (0.3892) 0.3683 (0.1966) 0.2705 (0.1493)

Table 5.2(b). ASMSE for the profile likelihood estimates of f(·)

N\T 5 10 20 30

5 PPLE 0.7554 (0.4229) 0.4977 (0.2360) 0.3805 (0.1629) 0.2824 (0.1308)

APLE 6.9920 (46.0699) 0.7909 (0.5229) 0.4888 (0.2523) 0.3812 (0.1824)

10 PPLE 0.5457 (0.2773) 0.3846 (0.1709) 0.2762 (0.0994) 0.2406 (0.0783)

APLE 5.4341 (20.3767) 0.7601 (0.4996) 0.4373 (0.2525) 0.3576 (0.1781)

20 PPLE 0.3906 (0.1805) 0.2900 (0.1190) 0.2212 (0.0842) 0.2035 (0.0538)

APLE 6.0141 (22.3286) 0.9452 (0.7246) 0.4360 (0.2441) 0.3475 (0.1749)

30 PPLE 0.3290 (0.1477) 0.2919 (0.0977) 0.2073 (0.0553) 0.1796 (0.0422)

APLE 5.5615 (17.4042) 0.6778 (0.4486) 0.3916 (0.2400) 0.2902 (0.1797)
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The ASMSE’s of the proposed pooled profile likelihood estimators and the averaged

profile likelihood estimators of β and f(·) are calculated over 500 realizations. The results

for the estimator of β and estimate of f(·) are given in Tables 5.2(a) and 5.2(b), respec-

tively. While one may draw the same conclusions as those from Tables 5.1(a) and 5.1(b):

The PPLE performs uniformly better than the APLE and its performance improves as

either N or T increases, the performance of the APLE for the case of T = 5 is much worse

than that for the PPLE in each individual case. This is mainly because the cross–sectional

dependence imposed in Example 5.2 is stronger than that imposed in Example 5.1.

5.2. An application in modeling consumer price index

This data set consists of the quarterly consumer price index (CPI) numbers of 11

classes of commodities for 8 Australian capital cities spanning from 1994 to 2008 (available

from the Australian Bureau of Statistics at www.abs.gov.au). Here we study the empirical

relationship between the log food CPI and the log all–group CPI. Let Yit be the log food

CPI and Xit be the log all–group CPI for city i at time t, where 1 ≤ i ≤ 8 and 1 ≤ t ≤ 60.

We then assume that {(Yit, Xit)} satisfies a pair of semiparametric models of the form

Yit = Xitβ + ft + αi + eit,

Xit = gt + vit, 1 ≤ i ≤ 8, 1 ≤ t ≤ 60, (5.8)

where αi are individual effects, and both ft and gt are the trend functions.

By applying the proposed pooled profile likelihood estimation procedure to the above

data set, we have the estimate for β: β̂ = 0.6617. The estimate of the trend function is

given in Figure 5.1. It follows from this figure that there is a significant upward trend in

ft, which is consistent with the observation that the food CPI series for each city generally

increases with time.

5.3 Trend modeling of a climatic data set

The second data set contains monthly mean maximum temperatures (in Celsius de-

grees), mean minimum temperatures (in Celsius degrees), total rainfall (in millimeters)

and total sunshine duration (in hours) from 37 stations covering the United Kingdom

(available from the UK Met Office at www.metoffice.gov.uk/climate/uk/stationdata). We

use monthly data from January 1999–December 2008 to see if there exists a significant

common trend in the mean maximum temperatures during this period among the stations.

16



1994 1996 1998 2000 2002 2004 2006 2008 2010
1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

Figure 5.1. The PPLE of the trend function ft in model (5.8).

Data from 16 stations are selected according to data availability (records start at different

time for different stations and data for some part of the period January 1999–December

2008 are missing at some stations).

To illustrate, we plot three data series of monthly mean maximum temperatures, total

rainfall and total sunshine duration from one of the selected stations: station Armagh.

As we can see from Figures 5.2–5.4, the data series exhibit obvious seasonal effects. In

this respect, we decompose the raw data series into three parts: the seasonal, the trend

and the residuals. The raw data series, the seasonal, the trend and the residuals in the

temperature, rainfall and sunshine series are plotted in Figures 5.2–5.4.

We first remove the seasonality from the raw data and then fit the data with the

model below. To investigate the relationship between the mean maximum temperatures

and total rainfall and total sunshine duration, we choose Yit as the mean maximum

temperatures for station i at time t, and Xit = (X1it, X2it)
> as the vector consisting of

the total rainfall and total sunshine duration. We then assume that {(Yit, Xit)} satisfies

a pair of semiparametric models of the form

Yit = ft +X>it β + eit,

Xit = gt + vit, 1 ≤ i ≤ 16, 1 ≤ t ≤ 120. (5.9)

Applying the pooled profile likelihood estimation method given in Section 2, we have

the estimate of beta as β̂ = (0.0014, 0.0184)>. This indicates that the total sunshine

17
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Figure 5.2. Plots of the monthly mean maximum temperatures (◦C) series from station Armagh: the

raw data, the seasonality, the trend and the residuals.

duration has a more significant influence than the total rainfall on the mean maximum

temperatures.

The estimate of the common trend function ft is plotted in Figure 5.5. Figure 5.5

shows that from the beginning of 1999 to the end of 2000, there is a decrease in the

trend (from about 11.5 at the beginning of 1999 to about 11 at the end of 2000), which

may be a result of an abnormally strong El Nino in 1998 that caused high temperatures

throughout the globe. Then in the two years that followed 1998, the temperatures went

from this extreme down to average. Thereafter, there is an overall increasing trend from

the beginning of 2001 to the end of 2006 (from about 11 at the beginning of 2001 to about

11.8 at the end of 2006). Then from the beginning of 2007 to the end of 2008, there is a

drop in the trend (from about 11.8 at the beginning of 2007 to about 10.5 at the end of

2008), which may be attributed to the La Nina conditions that have a cooling effect on

temperatures.

6. Conclusions and discussion

We have considered a semiparametric fixed effects panel data model with cross–

sectional dependence in both the regressors and the residuals. A semiparametric profile
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Figure 5.3. Plots of the monthly total rainfall (mm) series from station Armagh: the raw data, the

seasonality, the trend and the residuals.

likelihood based estimation method has been proposed to estimate both the parameter

vector and the time trend function. An asymptotically normal distribution with possible

optimal rate of convergence has been established for each of the proposed estimates for the

case where both the time series length T and the cross–sectional size N tend to infinity

simultaneously.

This paper has used two simulated examples to evaluate the finite–sample performance

of the proposed estimation method. As shown in the theory, the proposed semiparametric

profile likelihood based estimation method uniformly outperforms an averaged profile

likelihood based estimation method, which is commonly used in the literature. In addition,

we have discussed empirical applications of the proposed theory and estimation method

to two sets of real data with the first one being an Australian consumer price index data

set and the second one being a set of climatic data set from the United Kindgom.

There are some limitations in this paper. This paper assumes that there is no endo-

geneity between {eit} and {Xit} while allowing for cross–sectional dependence between

them. A future topic is to accommodate such endogeneity in a semiparametric model.

7. Acknowledgments
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Figure 5.4. Plots of the monthly total sunshine duration (hr) series from station Armagh: the raw data,

the seasonality, the trend and the residuals.
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Figure 5.5. The PPLE of the trend function ft in model (5.9).

The authors acknowledge the financial support from the Australian Research Council

Discovery Grants Program under Grant Number: DP0879088. Thanks also go to Dr Alev

Atak for providing us with information about the UK temperature data set.

Appendix A: Proofs of the main results

Let C is a generic positive constant whose value may vary from place to place throughout

the rest of this paper.
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Proof of Theorem 3.1. Note that

β̂ − β =
(
X̃∗>M∗X̃∗

)−1
X̃∗>M∗Ỹ ∗ − β

=
(
X̃∗>M∗X̃∗

)−1
X̃∗>M∗

(
INT − S̃

) (
X̃β + f̃ +Dα+ ẽ

)
− β

=
(
X̃∗>M∗X̃∗

)−1
X̃∗>M∗f̃∗ +

(
X̃∗>M∗X̃∗

)−1
X̃∗>M∗D∗α

+
(
X̃∗>M∗X̃∗

)−1
X̃∗>M∗ẽ∗ (A.1)

=: ΠNT (1) + ΠNT (2) + ΠNT (3),

where f̃∗ =
(
INT − S̃

)
f̃ and ẽ∗ =

(
INT − S̃

)
ẽ.

As
N∑
i=1

αi = 0, we have

ΠNT (2) =
(
X̃∗>M∗X̃∗

)−1
X̃∗>M∗D∗α

=
(
X̃∗>M∗X̃∗

)−1
X̃∗>D∗α−

(
X̃∗>M∗X̃∗

)−1
X̃∗>D∗

(
D∗>D∗

)−1
D∗>D∗α

=
(
X̃∗>M∗X̃∗

)−1
X̃∗>D∗α−

(
X̃∗>M∗X̃∗

)−1
X̃∗>D∗α = 0d, (A.2)

where 0d is a d× 1 vector of zeros.

The asymptotic distribution in Theorem 3.1 can be proved via the following two propositions.

Proposition A.1. Under A1–A3 and A5, we have

ΠNT (1) = oP
(
(NT )−1/2

)
.

Proof. Note that X̃∗>M∗X̃∗ = X̃∗>X̃∗ + X̃∗>D∗
(
D∗>D∗

)−1
D∗>X̃∗. Hence, to prove Propo-

sition A.1, it suffices for us to prove

1

NT
X̃∗>X̃∗ = Σv + oP (1), (A.3)

1

NT
X̃∗>D∗

(
D∗>D∗

)−1
D∗>X̃∗ = oP (1), (A.4)

X̃∗>M∗f̃∗ = oP (
√
NT ). (A.5)

Step (i). Proof of (A.3). By the definition of X̃∗, we have

1

NT
X̃∗>X̃∗ =

1

NT
X̃>

(
INT − S̃

)> (
INT − S̃

)
X̃

=
1

NT

N∑
i=1

T∑
t=1

(
Xit − X̃>s>

(
t

T

))(
Xit − X̃>s>

(
t

T

))>

=
1

NT

N∑
i=1

T∑
t=1

vitv
>
it +

1

NT

N∑
i=1

T∑
t=1

(
gt − X̃>s>

(
t

T

))
v>it
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+
1

NT

N∑
i=1

T∑
t=1

vit

(
gt − X̃>s>

(
t

T

))>

+
1

T

T∑
t=1

(
gt − X̃>s>

(
t

T

))(
gt − X̃>s>

(
t

T

))>
=: Π∗NT (1) + Π∗NT (2) + Π∗NT (3) + Π∗NT (4). (A.6)

We first consider Π∗NT (1). Note that

Π∗NT (1) =
1

NT

N∑
i=1

T∑
t=1

vitv
>
it =

1

T

T∑
t=1

(
1

N

N∑
i=1

vitv
>
it

)

=
1

T

T∑
t=1

(
1

N

N∑
i=1

vitv
>
it − E

[
1

N

N∑
i=1

vitv
>
it

])
+

1

T

T∑
t=1

E

[
1

N

N∑
i=1

vitv
>
it

]
=: Π∗NT (1, 1) + Π∗NT (1, 2). (A.7)

By A2 and the Markov inequality, we have, for any ε > 0,

P {|Π∗NT (1, 1)| > ε} ≤ 1

ε2
E [Π∗NT (1, 1)]2

=
1

ε2T 2

T∑
t=1

Var

(
1

N

N∑
i=1

vitv
>
it

)
=

1

ε2TN2
Var

(
N∑
i=1

vitv
>
it

)
= O

(
1

T

)
.

Hence, as T →∞, we have

Π∗NT (1, 1) = oP (1). (A.8)

By A2, it is easy to check that

Π∗NT (1, 2) = Σv + oP (1) (A.9)

as N,T →∞ simultaneously. By (A.7)–(A.9), we have

Π∗NT (1) = Σv + oP (1). (A.10)

For Π∗NT (4), we use the uniform consistency result

sup
0<τ<1

∥∥∥g(τ)− X̃>s>(τ)
∥∥∥ = OP

h2 +

√
log(NT )

NTh

 . (A.11)

The detailed proof of (A.11) will be given in Appendix B. From (A.11), it is easy to show

Π∗NT (4) = oP (1). (A.12)

By (A.10), (A.12) and the Cauchy–Schwarz inequality,

Π∗NT (2) = oP (1) and Π∗NT (3) = oP (1). (A.13)

With (A.6), (A.10), (A.12) and (A.13), we have shown that (A.3) holds.
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Step (ii). Proof of (A.4). As S̃D = 0, we have

D∗>D∗ = D>
(
INT − S̃

)> (
INT − S̃

)
D = D>D. (A.14)

Furthermore,

D>D =



2T T · · · T

T 2T · · · T

...
... · · ·

...

T T · · · 2T


=



T T · · · T

T T · · · T

...
... · · ·

...

T T · · · T


+ diag(T, · · · , T ). (A.15)

Letting A = diag(T, · · · , T ), B = (1, · · · , 1)>, C = T and P = (1, · · · , 1), and applying the

result about the inverse matrix (Poirier 1995):

(A+BCP )−1 = A−1 −A−1B
(
PA−1B + C−1

)−1
PA−1,

we have

(
D∗>D∗

)−1
=
(
D>D

)−1
=



1
T −

1
NT − 1

NT · · · − 1
NT

− 1
NT

1
T −

1
NT · · · − 1

NT

...
... · · ·

...

− 1
NT − 1

NT · · · 1
T −

1
NT


. (A.16)

Meanwhile, by the definition of X̃∗ and D∗ we have

X̃∗>D∗ = X̃∗>D = (AT (2), · · · , AT (N)) , (A.17)

where AT (k) = −
T∑
t=1

X1t +
T∑
t=1

Xkt = −
T∑
t=1

v1t +
T∑
t=1

vkt, k ≥ 2.

By (A.16) and (A.17), we then have

1

NT
X̃∗>D∗

(
D∗>D∗

)−1
D∗>X̃∗ =

1

NT

(
N∑
k=2

A∗T (k)A>T (k)

)

=
1

N

N∑
k=2

(
1

T
AT (k)

)(
1

T
A>T (k)

)
−
(

1

N

N∑
k=2

1

T
AT (k)

)(
1

N

N∑
k=2

1

T
A>T (k)

)
,

where A∗T (k) = 1
TAT (k)− 1

NT

N∑
k=2

AT (k).

Following the proof of (A.11) in Appendix B, we can show that for each k,

1

T
AT (k)

P−→ 0 as T →∞,

which implies ∥∥∥∥ 1

NT
X̃∗>D∗

(
D∗>D∗

)−1
D∗>X̃∗

∥∥∥∥ = oP (1).
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Hence, (A.4) holds.

Step (iii). Proof of (A.5). Note that

X̃∗>M∗f̃∗ = X̃∗>f̃∗ − X̃∗>D∗
(
D∗>D∗

)−1
D∗>f̃∗.

Similarly to the proofs of (A.3) and (A.4), we can show that the leading term on the right

hand side of the above equation is X̃∗>f̃∗. Hence, to prove (A.5), we need only to show

X̃∗>f̃∗ = oP (
√
NT ). (A.18)

By the definition of X̃∗ and f̃∗, we have

X̃∗>f̃∗ =
N∑
i=1

T∑
t=1

(
Xit − X̃>s>

(
t

T

))(
f

(
t

T

)
− s

(
t

T

)
f̃

)

=
N∑
i=1

T∑
t=1

(
vit +

[
g

(
t

T

)
− X̃>s>

(
t

T

)])(
f

(
t

T

)
− s

(
t

T

)
f̃

)

=
N∑
i=1

T∑
t=1

vit

(
f

(
t

T

)
− s

(
t

T

)
f̃

)
−

N∑
i=1

T∑
t=1

ṽ>s>
(
t

T

)(
f

(
t

T

)
− s

(
t

T

)
f̃

)

+
N∑
i=1

T∑
t=1

(
g

(
t

T

)
− g̃>s>

(
t

T

))(
f

(
t

T

)
− s

(
t

T

)
f̃

)
=: Π∗NT (5) + Π∗NT (6) + Π∗NT (7), (A.19)

where g̃ = iN ⊗ (g1, g2, · · · , gT )> and ṽ = (v11, · · · , v1T , v21, · · · , v2T , · · · , vNT )>.

Following the argument in the proof of (A.11) in Appendix B and by A2 and A3, we have

sup
0<τ<1

∣∣∣f(τ)− s(τ)f̃
∣∣∣ = O

(
h2
)
,

sup
0<τ<1

∥∥∥g(τ)− g̃>s>(τ)
∥∥∥ = O

(
h2
)
,

sup
0<τ<1

∥∥∥ṽ>s>(τ)
∥∥∥ = OP

√ log(NT )

NTh

 ,
which, together with A5, imply

Π∗NT (5) = OP
(√

NTh2
)

= oP (
√
NT ), (A.20)

Π∗NT (6) = OP

(√
NT log(NT )h3

)
= oP (

√
NT ), (A.21)

Π∗NT (7) = OP
(
NTh4

)
= oP (

√
NT ). (A.22)

By (A.19)–(A.22), we have shown that (A.18) holds.

In view of (A.3)–(A.5), the proof of Proposition A.1 is completed.
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Proposition A.2. Let A1–A5 hold. Then we have

√
NTΠNT (3)

d−→ N
(
0d,Σ

−1
v Σv,eΣ

−1
v

)
. (A.23)

Proof. To prove (A.23), we need only to show

1

NT
X̃∗>M∗X̃∗

P−→ Σv (A.24)

and
1√
NT

X̃∗>M∗ẽ∗
d−→ N (0,Σv,e) . (A.25)

By (A.3) and (A.4) in the proof of Proposition A.1, we can easily obtain (A.24). For the

proof of (A.25), observe that

X̃∗>M∗ẽ∗ = X̃∗>ẽ∗ − X̃∗>D∗
(
D∗>D∗

)−1
D∗>ẽ∗ =: Π∗NT (8)−Π∗NT (9). (A.26)

For Π∗NT (8), we have

1√
NT

Π∗NT (8) =
1√
NT

N∑
i=1

T∑
t=1

viteit +
1√
NT

N∑
i=1

T∑
t=1

(
g

(
t

T

)
− X̃>s>

(
t

T

))
eit

− 1√
NT

N∑
i=1

T∑
t=1

vits

(
t

T

)
ẽ− 1√

NT

N∑
i=1

T∑
t=1

(
g

(
t

T

)
− X̃>s>

(
t

T

))
s

(
t

T

)
ẽ

=: Π∗NT (10) + Π∗NT (11)−Π∗NT (12)−Π∗NT (13). (A.27)

Following the proof of (A.11) in Appendix B, and by A2, A4 and A5, we have

Π∗NT (11) = OP

h2 +

√
log(NT )

NTh

 = oP (1), (A.28)

Π∗NT (12) = OP

√ log(NT )

NTh

 = oP (1), (A.29)

Π∗NT (13) = OP

√NT
h2 +

√
log(NT )

NTh

√ log(NT )

NTh

 = oP (1). (A.30)

If we can prove

Π∗NT (10)
d−→ N (0,Σv,e) , (A.31)

then by (A.28)–(A.30), we will show that

1√
NT

Π∗NT (8)
d−→ N (0,Σv,e) . (A.32)

As both T and N tend to infinity, we next prove (A.31) by the joint limit approach (see

Phillips and Moon 1999 for example).
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Letting Zt,N (v, e) = 1√
N

N∑
i=1

viteit, then Π∗NT (10) can be rewritten as

Π∗NT (10) =
1√
T

T∑
t=1

Zt,N (v, e).

By A2 and A4, {Zt,N (v, e), t ≥ 1} is a sequence of i.i.d. random vectors. Hence, we apply

the Lindeberg–Feller central limit theorem to prove (A.31). For any ε > 0,

1

T

T∑
t=1

E
(
‖Zt,N (v, e)‖2 I

{
‖Zt,N (v, e)‖ ≥ ε

√
T
})

= E
(
‖Z1,N (v, e)‖2 I

{
‖Z1,N (v, e)‖ ≥ ε

√
T
})
→ 0

as N,T → ∞ simultaneously, which implies that the Lindeberg condition is satisfied, which in

turn implies the validity of (A.31).

By (A.16), (A.17) and a standard calculation, we have

Π∗NT (9) =
1

T

N∑
k=2

AT (k)BT (k)− 1

NT

(
N∑
k=2

AT (k)

)(
N∑
k=2

BT (k)

)
,

where AT (k) =
T∑
t=1

vkt −
T∑
t=1

v1t and BT (k) =
T∑
t=1

ekt −
T∑
t=1

e1t.

Define AT (k) =
T∑
t=1

vkt and BT (k) =
T∑
t=1

ekt for k = 1, · · ·, N . Then,

Π∗NT (9) =
1

T

N∑
k=2

AT (k)BT (k)− 1

NT

(
N∑
k=2

AT (k)

)(
N∑
k=2

BT (k)

)

=
1

T

N∑
k=2

AT (k)BT (k)− 1

T
BT (1)

N∑
k=2

AT (k)− 1

T
AT (1)

N∑
k=2

BT (k)

+
N − 1

T
AT (1)BT (1)− 1

NT

(
N∑
k=2

AT (k)

)(
N∑
k=2

BT (k)

)

+
N − 1

NT
BT (1)

N∑
k=2

AT (k) +
N − 1

NT
AT (1)

N∑
k=2

BT (k)− (N − 1)2

NT
AT (1)BT (1)

=
1

T

N∑
k=2

AT (k)BT (k)− 1

NT

(
N∑
k=2

AT (k)

)(
N∑
k=2

BT (k)

)

− 1

NT
BT (1)

N∑
k=2

AT (k)− 1

NT
AT (1)

N∑
k=2

BT (k) +
N − 1

NT
AT (1)BT (1)

=:
5∑
j=1

Π∗NT (9, j). (A.33)

By A2 and A4, we have, as N,T →∞ simultaneously,

E
(
Π∗NT (9, 1)Π∗>NT (9, 1)

)
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=
1

T 2
E

( N∑
k=2

T∑
t=1

T∑
s=1

ektvks

)(
N∑
k=2

T∑
t=1

T∑
s=1

ektvks

)>
=

1

T 2

T∑
t=1

T∑
s=1

N∑
k1=2

N∑
k2=2

E (ek1tek2t)E
(
vk1sv

>
k2s

)

=
N∑

k1=2

N∑
k2=2

E (ek1,1ek2,1)E
(
vk1,1v

>
k2,1

)
= O(N),

E
(
Π∗NT (9, 2)Π∗>NT (9, 2)

)
=

1

N2T 2
E

 N∑
k1=2

T∑
t1=1

ek1t1

2

E


 N∑
k2=2

T∑
t2=1

vk2t2

 N∑
k2=2

T∑
t2=1

vk2t2

>


=
1

N2T 2

 N∑
k1=2

N∑
j1=2

T∑
t1=1

E (ek1t1ej1t1)

 N∑
k2=2

N∑
j2=2

T∑
t2=1

E
(
vk2t2v

>
j2t2

)
=

1

N2

 N∑
k1=2

N∑
j1=2

E (ek1,1ej1,1)

 N∑
k2=2

N∑
j2=2

E
(
vk2,1v

>
j2,1

) = O(1),

and similarly,

E
(
Π∗NT (9, 3)Π∗>NT (9, 3)

)
= O

(
1

N

)
,

E
(
Π∗NT (9, 4)Π∗>NT (9, 4)

)
= O

(
1

N

)
,

E
(
Π∗NT (9, 5)Π∗>NT (9, 5)

)
= O(1).

Hence,

Π∗NT (9, j) = oP (
√
NT ), j = 1, · · · , 5. (A.34)

Combining (A.33) and (A.34), we have

Π∗NT (9) = oP (
√
NT ). (A.35)

By (A.26), (A.32) and (A.35), (A.25) holds. The proof of Proposition A.2 is completed.

Proof of Theorem 3.2. By the definition of f̂(τ) in (2.6), we have

f̂(τ)− f(τ) = s(τ)
(
Ỹ − X̃β̂ −Dα̂

)
− f(τ)

= s(τ)

(
INT −D

(
D∗>D∗

)−1
D∗>(INT − S̃)

)
(Ỹ − X̃β̂)− f(τ)

=

(
s(τ)

(
INT −D

(
D∗>D∗

)−1
D∗>(INT − S̃)

)
f̃ − f(τ)

)
+s(τ)

(
INT −D

(
D∗>D∗

)−1
D∗>(INT − S̃)

)
ẽ

+s(τ)

(
INT −D

(
D∗>D∗

)−1
D∗>(INT − S̃)

)
X̃(β − β̂)

=: Π∗NT (14) + Π∗NT (15) + Π∗NT (16). (A.36)
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Note that

s(τ)D = (1, 0)
(
Z̃>(τ)W̃ (τ)Z̃(τ)

)−1
Z̃>(τ)W̃ (τ)D = 0N−1.

Hence, by (A.11) and standard argument for local linear fitting, we have

Π∗NT (14) = s(τ)f̃ − f(τ) =
1

2
f ′′(τ)µ2h

2 + oP (h2). (A.37)

By the Lindeberg–Feller central limit theorem and following the proof of Proposition A.2,

we have
√
NThΠ∗NT (15) =

√
NThs(τ)ẽ

d−→ N(0, ν0σ
2
e). (A.38)

By Theorem 3.1, we have

Π∗NT (16) = s(τ)X̃(β − β̂) = OP
(
(NT )−1/2

)
= oP

(
(NTh)−1/2

)
. (A.39)

Hence, by (A.36)–(A.39), we have completed the proof of (3.8).

Appendix B

Proof of (A.11). Note that

g(τ)− X̃>s>(τ) =
(
g(τ)− g̃>s>(τ)

)
− ṽ>s>(τ) =: ΞNT,1(τ)− ΞNT,2(τ), (B.1)

where g̃ = iN ⊗ (g1, g2, · · · , gT )>, in which iN is the N × 1 vector of ones.

We now prove

sup
0<τ<1

‖ΞNT,2(τ)‖ = OP

√ log(NT )

NTh

 , (B.2)

By the definition of s(τ) in Section 2, we have

Ξ>NT,2(τ) = (1, 0)S(τ)ṽ = (1, 0)
(
Z̃>(τ)W̃ (τ)Z̃(τ)

)−1
Z̃>(τ)W̃ (τ)ṽ.

We first prove

sup
0<τ<1

∥∥∥∥ 1

NTh
Z̃>(τ)W̃ (τ)Z̃(τ)− Λµ

∥∥∥∥ = O

(
1

Th

)
= o(1). (B.3)

Note that

1

NTh
Z̃>(τ)W̃ (τ)Z̃(τ) =


1
Th

T∑
t=1

K
(
t−τT
Th

)
1
Th

T∑
t=1

(
t−τT
Th

)
K
(
t−τT
Th

)
1
Th

T∑
t=1

(
t−τT
Th

)
K
(
t−τT
Th

)
1
Th

T∑
t=1

(
t−τT
Th

)2
K
(
t−τT
Th

)
 .

By the definition of Riemann integral, we have

1

Th

T∑
t=1

(
t− τT
Th

)j
K

(
t− τT
Th

)
= µj +O

(
1

Th

)
,
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uniformly for 0 < τ < 1.

Hence, (B.3) is proved. In view of (B.3), to prove (B.2), we need only to prove

sup
0<τ<1

∥∥∥∥ 1

NTh
Z̃>(τ)W̃ (τ)ṽ

∥∥∥∥ = OP

√ log(NT )

NTh

 . (B.4)

Note that

1

NTh
Z̃>(τ)W̃ (τ)ṽ =


1

NTh

N∑
i=1

T∑
t=1

K
(
t−τT
Th

)
vit

1
NTh

N∑
i=1

T∑
t=1

(
t−τT
Th

)
K
(
t−τT
Th

)
vit

 .
Hence, to prove (B.4), it suffices to show that for j = 0, 1,

sup
0<τ<1

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

(
t− τT
Th

)j
K

(
t− τT
Th

)
vit

∥∥∥∥∥ = OP

√ log(NT )

NTh

 . (B.5)

Define Qt,N (v) = 1
N

N∑
i=1

vit. It is easy to see that (B.5) is equivalent to

sup
0<τ<1

∥∥∥∥∥ 1

Th

T∑
t=1

(
t− τT
Th

)j
K

(
t− τT
Th

)
Qt,N (v)

∥∥∥∥∥ = OP

√ log(NT )

NTh

 . (B.6)

Let l(·) be any positive function that satisfies l(n)→∞ as n→∞. Then to prove (B.6), it

suffices to prove

sup
0<τ<1

∥∥∥∥∥ 1

Th

T∑
t=1

(
t− τT
Th

)j
K

(
t− τT
Th

)
Qt,N (v)

∥∥∥∥∥ = oP

l(NT )

√
log(NT )

NTh

 . (B.7)

We next cover the interval (0, 1) by a finite number of subintervals {Bl} that are centered

at bl and of length δNT = o(h2). Denoting UNT the number of such subintervals, then UNT =

O
(
δ−1NT

)
.

Define Kt,j(τ) = 1
Th

(
t−τT
Th

)j
K
(
t−τT
Th

)
. Observe that

sup
0<τ<1

∥∥∥∥∥
T∑
t=1

Kt,j(τ)Qt,N (v)

∥∥∥∥∥ ≤ max
1≤l≤UNT

sup
τ∈Bl

∥∥∥∥∥
T∑
t=1

Kt,j(τ)Qt,N (v)−
T∑
t=1

Kt,j(bl)Qt,N (v)

∥∥∥∥∥
+ max

1≤l≤UNT

∥∥∥∥∥
T∑
t=1

Kt,j(bl)Qt,N (v)

∥∥∥∥∥ =: ΞNT,3 + ΞNT,4. (B.8)

By A1 and taking δNT = O

(
(l(NT ))1+δ

√
log(NT )
NTh h2

)
, we have

ΞNT,3 = OP

(
δNT
h2

E
∥∥∥Q1,N (v)

∥∥∥) = oP

l(NT )

√
log(NT )

NTh

 . (B.9)

29



For ΞNT,4, we apply the truncation technique. Define

Q̃t,N (v) = Qt,N (v)I
{∥∥∥Qt,N (v)

∥∥∥ ≤ N−1/2T 1/δl(NT )
}
,

Q̃ct,N (v) = Qt,N (v)− Q̃t,N (v).

Note that

ΞNT,4 ≤ max
1≤l≤UNT

∥∥∥∥∥
T∑
t=1

Kt,j(bl)Q̃t,N (v)

∥∥∥∥∥+ max
1≤l≤UNT

∥∥∥∥∥
T∑
t=1

Kt,j(bl)Q̃
c
t,N (v)

∥∥∥∥∥
=: ΞNT,5 + ΞNT,6. (B.10)

For ΞNT,6, applying the Markov inequality and A2, we have for any ε > 0,

P

ΞNT,6 > εl(NT )

√
log(NT )

NTh

 ≤ P
{

max
1≤t≤T

∥∥∥Q̃ct,N (v)
∥∥∥ > 0

}

≤
T∑
t=1

P
{∥∥∥Qt,N (v)

∥∥∥ > N−1/2T 1/δl(NT )
}

= O

(
E
∥∥∥Qt,N (v)

∥∥∥δN δ/2(l(NT ))−δ
)

= O
(
(l(NT ))−δ

)
= o(1),

which implies

ΞNT,6 = oP

l(NT )

√
log(NT )

NTh

 . (B.11)

For ΞNT,5, observe that∥∥∥Kt,j(bl)Q̃t,N (v)
∥∥∥ ≤ N−1/2T−1+1/δh−1l(NT ).

Applying A2, A5 and Bernstein’s inequality for i.i.d. random variables, we have

P

ΞNT,5 > εl(NT )

√
log(NT )

NTh


≤ Cδ−1NT exp

{
− ε2(l(NT ))2 log(NT )

C + CεT 1/δ−1/2h−1/2(l(NT ))2(log(NT ))1/2

}
(B.12)

≤ Cδ−1NT exp{−M log(NT )} = o(1),

where C > 0 is a constant and M is a sufficiently large positive constant. The second inequality

above holds because of

l(NT )→∞ and
(l(NT ))2

T 1/δ−1/2h−1/2(l(NT ))2(log(NT ))1/2
→∞.

Hence,

ΞNT,5 = oP

l(NT )

√
log(NT )

NTh

 . (B.13)
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From (B.8)–(B.13), we can see that (B.7) holds, which in turn implies the validity of (B.2).

Meanwhile, following standard argument in local linear fitting (see, for example, Fan and

Gijbels 1996), we can show

sup
0<τ<1

‖ΞNT,1(τ)‖ = OP
(
h2
)
. (B.14)

In view of (B.1), (B.2) and (B.14), it has been shown that (A.11) holds.
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