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Specification Testing in Nonlinear Time Series

with Long–Rang Dependence1

By Jiti Gao†,∗,2 Qiying Wang‡ and Jiying Yin†,∗

The University of Adelaide†, The University of Western Australia∗ and The University

of Sydney‡

Abstract

This paper proposes a model specification testing procedure for parametric

specification of the conditional mean function in a nonlinear time series model

with long–range dependence. An asymptotically normal test is established even

when long–range dependence is involved. In order to implement the proposed

test in practice using a simulated example, a bootstrap simulation procedure is

established to find a simulated critical value to compute both the size and power

values of the proposed test.

Keywords: Asymptotic theory, Gaussian process, nonlinear time series, long–range depen-

dence, parametric specification.

1 Introduction

Consider a nonlinear time series model of the form

Yt = m(Xt) + et, t = 1, 2, · · · , n, (1.1)

where m(·) is an unknown function over IR = (−∞,∞), {Xt} is a sequence of strictly

stationary time series regressors, and {et} is a sequence of strictly stationary time series

errors with E[e1] = 0 and 0 < E[e2
1] < ∞.

1The authors also acknowledge the financial support from the Australian Research Council Discovery

Grants Program.
2Correspondence: Jiti Gao, School of Economics, The University of Adelaide, Adelaide SA 5005,

Australia. Email: jiti.gao@adelaide.edu.au.
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Both nonparametric estimation and parametric specification of m(·) have been dis-

cussed extensively in the literature for the case where both Xt and et are strictly sta-

tionary and short–range dependent time series. Such results may be found in the recent

monographs by Fan and Yao (2003), Gao (2007), and Li and Racine (2007) for example.

For the case where both Xt and et are strictly stationary and long–range dependent

time series, estimation of m(·) has also been quite active during the last ten years or so.

See for example, Beran (1994), Cheng and Robinson (1994), Hidalgo (1997), Robinson

(1997), Beran and Ghosh (1998), Csörgó and Mielniczuk (1999), Gao and Anh (1999),

Mielniczuk and Wu (2004), Gao (2007), and others.

By contrast, there has been little work done on parametric specification testing of

m(·) for the case where either Xt, or et or both may be strictly stationary and long–range

dependent time series. To the best of our knowledge, the only available work is given

by Gao and Wang (2006), who consider a parametric specification of m(·) for the case

where {Xt} is a sequence of fixed designs while {et} is a sequence of strictly stationary

and long–range dependent time series errors.

This paper considers the case where the regressors Xt may exhibit some kind of

long–range dependence (LRD). In the detailed discussion, we consider the case where

et = σ(Xt)εt, in which σ(·) > 0 is an unknown function and {εt} is a sequence of

independent and identically distributed (i.i.d.) random variables with E[εt] = 0 and

E[ε2
t ] = 1. In addition, {Xs : s ≥ 1} and {εt : t ≥ 1} are assumed to be mutually

independent. In order to clearly present both the main ideas and the key results without

involving too much technicality, we assume that {Xt} is a sequence of stationary Gaussian

regressors. In Section 5 below, moreover, we point out that the case where {et} is a

sequence of martingale differences and {Xt} is a sequence of strictly stationary and

long–range dependent regressors may be discussed similarly.

The main interest of this paper is to consider specifying the conditional mean function

while allowing the conditional variance function to be flexible. This is often the case

where interest is on estimation and testing of the conditional mean function m(x) =

E[Yt|Xt = x]. We are thus interested in testing

H0 : m(x) = mθ0(x) versus H1 : m(x) = mθ0(x) + ∆n(x) (1.2)
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for all x ∈ IR, where θ0 is a vector of unknown parameters, mθ(x) is a known parametric

function of x indexed by a vector of unknown parameters, θ, and {∆n(x)} is a sequence

of unknown functions such that limn→∞ supx∈IR |∆n(x)| = 0. More detailed discussion

and specification of ∆n(x) is given in Section 4 below.

In some other cases, interest may be on assessing and specifying the conditional

variance function σ2(·). In such cases, parametric specification of σ(·) is an important

issue in both theory and applications. Section 3 will discuss such specification issues.

The organization of this paper is as follows. Section 2 proposes a nonparametric test

for (1.2) and then establishes asymptotic properties of the proposed test. Section 3 dis-

cusses some extensions. Both a bootstrap simulation procedure and its implementation

in an example are given in Section 4. Section 5 concludes the paper with some remarks.

The proofs of the main results are given in Appendix A.

2 Asymptotic theory

This section proposes a nonparametric test for the hypotheses (1.2) and then establishes

an asymptotic distribution for the proposed test in Theorems 1 and 2 below. Their

proofs, along with other proofs, are relegated to Appendix A.

Since m(x) under H1 is semiparametric, we need to establish a nonparametric or

semiparametric test for (1.2). As discussed in the literature, several forms have been

proposed to test (1.2) for the case where {(Xt, εt) : t ≥ 1} is a sequence of either

independent or strictly stationary short–range dependent variables.

Under H0, the true model becomes

Yt = mθ0(Xt) + et (2.1)

with E[et|Xt] = 0 under H0. We thus have

E [etE (et|Xt) f(Xt)] = E
[(

E2(et|Xt)
)
f(Xt)

]
= 0 (2.2)

under H0, where {f(·)} is the marginal density function of {Xt}.
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As suggested by Zheng (1996) for the independent sample case, we propose using a

normalized kernel–based sample analogue of (2.2) of the form

L̂n(h) =

∑n
t=1

∑n
s=1,6=t ês an(Xs, Xt) êt√

2
∑n

t=1

∑n
s=1,6=t ê

2
s a2

n(Xs, Xt) ê2
t

, (2.3)

where êt = Yt−mbθ(Xt) and an(Xs, Xt) = K
(

Xs−Xt

h

)
, in which θ̂ is a consistent estimator

of θ0 under H0, K(·) is a probability kernel function and h is a bandwidth parameter.

It should be pointed out that several different classes of nonparametric and semipara-

metric tests have been proposed to deal with this kind of parametric specification testing

issues. A recent literature survey in the field of model specification testing is given in

Chapter 3 of Gao (2007) (see the references therein and other related references, such as

Biedermann and Dette 2000).

As discussed in existing studies (such as Zheng 1996; Li and Wang 1998; Li 1999;

Fan and Li 2000; Fan and Linton 2003; Arapis and Gao 2006; Gao 2007), a test statistic

of the form (2.3) has a main advantage over its competitors in the situation that an

indirect estimator of σ2(·) is used to replace σ2(·). Such feature is particularly attrac-

tive when the conditional variance function σ2(·) as assumed in this paper is unknown

nonparametrically.

It may be shown that the leading term of L̂n(h) under H0 is given by

Ln(h) =

∑n
t=1

∑n
s=1,6=t es an(Xs, Xt) et

σn

=

∑n
t=1

∑n
s=1,6=t εs Kn(Xs, Xt) εt

σn

, (2.4)

where Kn(Xs, Xt) = σ(Xs)K
(

Xs−Xt

h

)
σ(Xt) and σ2

n = n2h√
π

E
[
σ4

(
X1√

2

)] ∫∞
−∞ K2(x)dx.

In order to show that L̂n(h) is an asymptotically consistent test, we need to establish an

asymptotic distribution for Ln(h) under the following assumptions.

Assumption 2.1. (i) {εt, t ≥ 1} is a sequence of non–degenerate independent and

identically distributed (i.i.d.) random errors with E[ε1] = 0, E[ε2
1] = 1 and E[ε4

1] < ∞.

(ii) {Xt, t ≥ 1} is a stationary Gaussian sequence with E[X1] = 0, E[X2
1 ] = 1 and the

covariance structure γ(s − t) = E [XsXt] satisfying γ(τ) = |τ |−αl(|τ |) < 1 for τ ≥ 1,

where 0 < α < 1 and l(x) is a positive function slowly varying at ∞. (iii) {εt, t ≥ 1} is

independent of {Xs, s ≥ 1}.
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Assumption 2.2. (i) K(x) is a positive symmetric function satisfying
∫∞
−∞ K(x) = 1

and supx K(x) < ∞. (ii) limn→∞ h = 0 and limn→∞ nh = ∞.

Assumption 2.3. σ(x) is a positive continuous function satisfying σ(x) ≤ C0 (|x|β +

1) for some β ≥ 0 and constant C0 > 0.

The first result of this paper is given as follows; its proof is given in Appendix A.

THEOREM 1 Under Assumptions 2.1–2.3, we have as n →∞

Ln(h) →D N(0, 1). (2.5)

It is interesting to notice that the limit behavior in (2.5) does not depend on α

involved in Assumption 2.1. As shown in Appendix A below, the asymptotic distribution

of the stochastically normalized form Ln(h) mainly depends on the probabilistic structure

of {εt}. In other words, the probabilistic structure of the stationary regressors {Xt}
does not affect the asymptotic distribution of Ln(h). Due to the Gaussian assumption in

Assumption 2.1(ii), the rest of the assumptions become probably the minimum conditions

in this kind of problem. As shown in Section 5 below, some additional conditions on the

joint density functions of (Xi, Xj), (Xi, Xj, Xk) and (Xi, Xj, Xk, Xl) are needed when

the Gaussianity assumption is relaxed.

While the asymptotic normality in (2.5) is not unexpected, its proof cannot be derived

directly using existing results for central limit theorems for quadratic forms of long–range

dependent time series as discussed in Fox and Taqqu (1987), Avram (1988), Giraitis and

Surgailis (1990), Giraitis and Taqqu (1997), Ho and Hsing (1996, 1997, 2003), Gao

and King (2004), Hsing and Wu (2004), Gao and Wang (2006) and others. We therefore

believe that the asymptotic normality result in (2.5) is a kind of extension of such existing

results for the case where the random coefficient functions Kn(·, ·) reduce to a sequence

of real numbers.

In addition to Assumptions 2.1–2.3, we need Assumption 2.4 below to establish an

asymptotic distribution for L̂n(h).

Assumption 2.4 (i) Under the null hypothesis H0, there is a sequence of positive

real numbers ηn satisfying ηn → 0 as n → ∞ such that ||θ̂ − θ0|| = oP (ηn), where || · ||
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denotes the Euclidean norm. (ii) There exists some ε0 > 0 such that
∂m2

θ(x)

∂θ2 is continuous

in both x ∈ R and θ ∈ Θ0, where Θ0 = {θ : ||θ − θ0|| ≤ ε0}. (iii)∣∣∣∣∣∣∣∣∂mθ(x)

∂θ
|θ=θ0

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∂2mθ(x)

∂θ2
|θ=θ0

∣∣∣∣∣∣∣∣ ≤ C(1 + |x|β1)

for some constants β1 > 0 and C > 0.

THEOREM 2 Let Assumptions 2.1–2.4 hold. If, in addition, n
√

hη2
n = O(1) holds,

where ηn is defined as in Assumption 2.4, then under the null hypothesis H0

L̂n(h) →D N(0, 1), as n →∞. (2.6)

The proof of (2.6) is given in Appendix A. Both Theorems 1 and 2 show that

asymptotic normality can still be the limiting distribution of such a test even when

the process involved is long–range dependent. On the technical side, the condition that

n
√

hη2
n = O(1) makes a linkage between the rate of h → 0 and the rate of θ̂ converging

to θ0. This condition holds automatically under the conventional rate of ηn = O(n−1/2),

since h → 0.

It is noted that Zhao and Wu (2008) have investigated the confidence bands for

nonparametric estimates of µ(x) and σ(x) in the model:

Yt = µ(Xt) + σ(Xt)εt, t = 1, 2, ..., n.

The results in Zhao and Wu (2008) might be useful in constructing a test statistic to

simultaneously test whether µ and σ are of certain parametric forms, but does not provide

a straightforward routine as proposed in this paper.

3 Extensions and other models

This section discusses several extensions of model (1.1) to the following cases.

3.1 Parametric specification of the conditional variance

As briefly mentioned in the introduction, it is also of interest to test

H01 : σ(x) = σϑ0(x) and H11 : σ(x) = σϑ0(x) + ∆1n(x) (3.1)
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for all x ∈ IR, where ∆1n(·) defined similarly to ∆n(·) is chosen such that infx∈IR σ(x) > 0

under H11.

In this case, we may consider a transformed model of the form

log(Yt −m(Xt))
2 = log(σ2(Xt)) + log(ε2

t ) = µ + log(σ2(Xt)) + ηt, (3.2)

where µ = E [log(ε2
t )] and ηt = log(ε2

t )− E [log(ε2
t )].

We then estimate m(·) either nonparametrically by m̂(·) or parametrically by mbθ(·)
when H01 holds, the corresponding test for H01 may be constructed based on the following

approximate model

Zt = µ + log(σ2(Xt)) + ηt, (3.3)

where Zt = log(Yt − m̂(Xt))
2 or log(Yt −mbθ(Xt))

2.

To test H01, the test L̂n(h) is still applicable with êt being modified as êt = Zt− µ̂−
log(σ2bϑ(Xt)), in which µ̂ and ϑ̂ are the respective consistent estimators of µ and ϑ0 under

H01.

3.2 Additive model specification testing

In both theory and practice, we will need to consider the case of Xt = (Xt1, · · · , Xtd)
τ . In

this case, {Xt} involved in (1.1) is a vector of d–dimensional regressors, we may consider

a hypothesis problem of the form

H02 : m(x) =
d∑

i=1

miθ0(xi) versus H12 : m(x) =
d∑

i=1

miθ0(xi) +
d∑

i=1

Λin(xi) (3.4)

for all x = (x1, · · · , xd)
τ ∈ IRd, where each miθ0(·) is a known function indexed by θ0,

and {Λin(·)} is a sequence of unknown functions over IR.

In this case, the test L̂n(h) is also applicable with êt being modified as êt = Yt −∑d
i=1 mibθ(Xti). With additional conditions, the conclusion of Theorem 2 remains true.

4 Simulation and an example of implementation

This section proposes a simulation scheme to deal with the choice of both a simulated

critical value and a suitable bandwidth parameter for the implementation of the test.
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An example of implementation is then given to show how practically both the theory

and the simulation procedure may be realized.

To study the power function of L̂n(h), we need to discuss about how to estimate

∆n(x). Under H1, model (1.1) becomes

Yt = m(Xt) + et = mθ1(Xt) + ∆n(Xt) + σ(Xt)εt. (4.1)

We apply a semiparametric estimation method (see, for example, Chapter 2 of Gao

2007) to estimate θ1 by minimizing
∑n

t=1

(
Yt −mθ1(Xt)− ∆̃n(Xt, θ1)

)2

over θ1, where

∆̃n(x, θ1) =

Pn
t=1 K

“
x−Xtbhcv

”
(Yt−mθ1

(Xt))

K
“

x−Xtbhcv

” , in which ĥcv is chosen by a conventional cross–

validation estimation method. We then estimate ∆n(x) by ∆̂n(x) = ∆̃n(x, θ̂1).

Under certain conditions, it may be shown that limn→∞ supx∈IR

b∆n(x)
∆n(x)

= 1 and also

that θ̂1 is asymptotically consistent to θ1. Since this is a totally new topic in this kind

of model specification problem, detailed discussion about suitable conditions required

for the establishment of the asymptotic consistency and a rigorous proof is extremely

technical. We therefore wish to leave such theoretical discussion for future research. In

Example 4.1 below, we apply this estimation method for the practical implementation.

To propose the following simulation procedure, we need to introduce the following

notation. Define

ε∗t = ε ηt, where ε =
1
n

n∑
t=1

ε̂t, ε̂t =

(
Yt −mbθ(Xt)

)
I[σ̂n(Xt) > 0]

σ̂n(Xt)
, (4.2)

σ̂2
n(x) =

∑n
t=1 K

(
x−Xtbhcv

) (
Yt −mbθ(Xt)

)2

∑n
t=1 K

(
x−Xtbhcv

) , (4.3)

in which ĥcv is chosen by a conventional cross–validation estimation method and {ηt}
is a sequence of i.i.d. random variables with E[ηt] = 0 and E[ηi

t] = 1 for i = 2, 3. In

addition, we require ε∗it = εi ηi
t with εi = 1

n

∑n
t=1 ε̂i

t for i = 2, 3. It is noted that the choice

of {ηt} is not essential in the theoretical study of this paper. In practice, we choose the

distribution of {ηt} as follows: P
(
η1 = −

√
5−1
2

)
=

√
5+1

2
√

5
and P

(
η1 =

√
5+1
2

)
=

√
5−1

2
√

5
.

Such two–point distributional structure has been used in the literature (see, for example,

Li and Wang 1998).
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4.1 Simulation scheme

Let lr (0 < r < 1) be the 1− r quantile of the exact finite–sample distribution of L̂n(h).

Because lr may not be evaluated in practice, we suggest an approximate r–level critical

value l∗r to replace it by using the following bootstrap procedure:

• Generate Y ∗
t = mbθ(X∗

t ) + σ̂n(X∗
t ) ε∗t for 1 ≤ t ≤ n, where {ε∗t} is chosen as in

(4.2) above, and {X∗
t } is a sequence of stationary Gaussian regressors drawn from

a stationary LRD Gaussian process with the covariance structure being given by

γbα(τ) = l̂(|τ |) |τ |−bα, in which α̂ and l̂ may be constructed using a spectral density

estimation method (such as, Robinson 1995), and σ̂n(x) is give by (4.2) above.

• Use the data set {(X∗
t , Y ∗

t ) : 1 ≤ t ≤ n} to estimate θ̂ by θ̂∗ and to compute L̂∗n(h),

where L̂∗n(h) is the corresponding version of L̂n(h) under H0 with {(Xt, Yt) : 1 ≤
t ≤ n} and (θ0, θ̂) being replaced by {(X∗

t , Y ∗
t ) : 1 ≤ t ≤ n} and (θ̂, θ̂∗).

• Repeat the above step M times and produce M versions of L̂∗n(h) denoted by

L̂∗n,m(h) for m = 1, 2, . . . ,M . Use the M values of L̂∗n,m(h) to construct their

empirical distribution function. The bootstrap distribution of L̂∗n(h) given Wn =

(X1, · · · , Xn; Y1, · · · , Yn) is defined by P ∗
(
L̂∗n(h) ≤ x

)
= P

(
L̂∗n(h) ≤ x|Wn

)
. Then

let l∗r (0 < r < 1) satisfy P ∗
(
L̂∗n(h) ≥ l∗r

)
= r and estimate lr by l∗r .

It is pointed out that l∗r = l∗r(h) is a function of h. A critical problem raised in the

implementation of the proposed test is the choice of a suitable bandwidth h. To solve

this problem, define the size and power functions of L̂∗n(h) as

γn(h) = P ∗
(
L̂∗n(h) > l∗r |H0 true

)
and βn(h) = P ∗

(
L̂∗n(h) > l∗r |H0 false

)
. (4.4)

Let Hn = {h : r − ε0 < γn(h) < r + ε0} and define ĥgwy such that βn(ĥgwy) =

maxh∈Hn βn(h), where 0 < ε0 < r is some small constant.

In general, the issue of how to find ĥgwy theoretically has not been addressed in

this kind of long–range dependent time series case. Since the regressors {Xt} are still

stationary, the theory and methodology developed in Gao and Gijbels (2008) for the

stationary time series case may still be applicable (see also Chapter 3 of Gao 2007). In
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the following example, we therefore propose using the leading term of an asymptotically

approximated version of ĥgwy of the form

ĥgwy = â(K)−
1
2 t̂
− 3

2
n , (4.5)

where t̂n = n Ĉ2
n, Ĉ2

n =
1
n

Pn
t=1

b∆2
n(Xt) bf(Xt)bσ2

0

√
2bν0

R
K2(v)dv

, â(K) =
√

2K(3)(0)

3
“√R

K2(u)du
”3 ĉ(f) and ĉ(f) =

1
n

∑n
t=1 f̂ 2(Xt)σ̂

6
n(Xt) ·

(
1
n

∑n
t=1 f̂(Xt)σ̂

4
n(Xt)

)− 3
2
, in which K(3)(·) is the three–time con-

volution of K(·) with itself, σ̂2
0 = 1

n

∑n
t=1 σ̂2

n(Xt), ν̂0 = 1
n

∑n
t=1 f̂ 2(Xt) and f̂(x) =

1

nbhcv

∑n
t=1 K

(
x−Xtbhcv

)
is the conventional nonparametric kernel density estimate.

4.2 An example of implementation

Example 4.1 Consider a linear model of the form

Yt = θ0 + θ1Xt + σ0

√
1 + X2

t εt, (4.6)

where {εt} is a sequence of i.i.d. observations sampled from either N(0, 1) or a normalized

χ2 distribution of the form
χ2

2−2

2
, and {Xt} is a sequence of stationary Gaussian regressors

with E[X1] = E[X2
1 ] = 1 and E[XsXt] = γ(s − t) for s 6= t with γ(k) = η|k|−α for

k = ±1,±2, · · · . The true values involved in (4.6) are θ0 = θ1 = 1, σ0 = 1 and

α = η = 0.5.

To compute the sizes of the test, generate {Yt} from

H0 : Yt = 1 + Xt +
√

1 + X2
t εt. (4.7)

To generate the data under H1, we consider the case of ∆n(x) = cn ∆(x) in (1.2) and

generate {Yt} from

H1 : Yt = 1 + Xt + cn X2
t +

√
1 + X2

t εt, (4.8)

with ∆(x) = x2 and cn = d1n = n−
1
2

√
log log (n) or cn = d2n = n−

13
30 .

The reasoning for the choice of cn is as follows. The rate of d1n = n−
1
2

√
loglog(n)

is the optimal rate of testing in this kind of nonparametric kernel testing problem as

discussed in Horowitz and Spokoiny (2001). The rate of d2n = n−
13
30 implies that the

optimal bandwidth ĥgwy is proportional to n−
1
5 .
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We choose the standard Normal kernel for K(x) = 1√
2π

e−
x2

2 in the implementation.

Let zr be the 1− r quantile of the standard Normal distribution. Note that z0.01 = 2.33

at the 1% level, z0.05 = 1.645 at the 5% level and z0.10 = 1.28 at the 10% level.

For i, j = 1, 2, let ĥigwy(j) denote ĥgwy(j) corresponding to din for either the case of

εt ∼ N(0, 1) (with j = 1) or the case of εt ∼ χ2
2−2

2
(with j = 2), Ligwy(j) = L̂n(ĥigwy(j)),

l∗ir(j) = l∗ir(ĥigwy(j)), Lcv(j) = L̂n(ĥcv(j)) under H0, and Licv(j) = L̂n(ĥcv(j)) corre-

sponding to din for i, j = 1, 2 under H1, where ĥcv is chosen such that

ĥcv = arg min
h∈Hcv

1

n

n∑
t=1

(Yt − m̂−t(Xt, h))2 , (4.9)

in which m̂−t(Xt, h) =
Pn

s=1,6=t K(Xs−Xt
h )YsPn

u=1,6=t K(Xu−Xt
h )

and Hcv =
[
n−1, n−(1−δ0)

]
for 0 < δ0 < 1.

In Tables 4.1–4.6 below, we use N = 250 as the number of the bootstrap resamples

and M = 500 as the number of replications. For i, j = 1, 2, let figwy(j) denote the

frequency of Ligwy(j) > l∗ir(j), fcv(j) be the frequency of Lcv(j) > zr under H0, and

ficv(j) be the frequency of Licv(j) > zr under H1 for r = 1%, 5% or 10%.

Table 4.1. Rejection Rates for Testing the Conditional Mean at the 1% level

Observation Three Versions of the Test

Null Hypothesis Is True

n fcv(1) fcv(2) f1gwy(1) f1gwy(2) f2gwy(1) f2gwy(2)

250 0.002 0.008 0.014 0.010 0.022 0.010

500 0.014 0.008 0.020 0.014 0.014 0.012

750 0.016 0.002 0.016 0.006 0.016 0.006

Null Hypothesis Is False

n f1cv(1) f1cv(2) f2cv(1) f2cv(2) f1gwy(1) f1gwy(2) f2gwy(1) f2gwy(2)

250 0.080 0.090 0.088 0.088 0.182 0.162 0.120 0.126

500 0.086 0.094 0.080 0.094 0.198 0.194 0.138 0.132

750 0.102 0.092 0.102 0.090 0.212 0.256 0.170 0.180
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Table 4.2. Rejection Rates for Testing the Conditional Mean at the 5% level

Observation Three Versions of the Test

Null Hypothesis Is True

n fcv(1) fcv(2) f1gwy(1) f1gwy(2) f2gwy(1) f2gwy(2)

250 0.028 0.026 0.072 0.066 0.078 0.052

500 0.016 0.022 0.054 0.046 0.054 0.058

750 0.018 0.032 0.046 0.058 0.056 0.056

Null Hypothesis Is False

n f1cv(1) f1cv(2) f2cv(1) f2cv(2) f1gwy(1) f1gwy(2) f2gwy(1) f2gwy(2)

250 0.128 0.154 0.128 0.142 0.276 0.304 0.214 0.224

500 0.124 0.112 0.116 0.126 0.284 0.320 0.216 0.248

750 0.152 0.152 0.162 0.162 0.382 0.352 0.304 0.286

Table 4.3. Rejection Rates for Testing the Conditional Mean at the 10% level

Observation Three Versions of the Test

Null Hypothesis Is True

n fcv(1) fcv(2) f1gwy(1) f1gwy(2) f2gwy(1) f2gwy(2)

250 0.038 0.024 0.080 0.116 0.080 0.114

500 0.046 0.034 0.104 0.078 0.102 0.084

750 0.030 0.038 0.106 0.098 0.106 0.090

Null Hypothesis Is False

n f1cv(1) f1cv(2) f2cv(1) f2cv(2) f1gwy(1) f1gwy(2) f2gwy(1) f2gwy(2)

250 0.164 0.154 0.180 0.152 0.380 0.368 0.328 0.284

500 0.162 0.134 0.160 0.148 0.430 0.354 0.354 0.284

750 0.176 0.166 0.162 0.172 0.408 0.452 0.332 0.364

Tables 4.1–4.3 show that there is some size distortion when using ĥcv and zr in

practice. The size performance may be significantly improved when using the simulated
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critical value l∗r(ĥgwy) associated with the power–based ĥgwy. As expected from the

theory, the test associated with ĥgwy is more powerful than that based on ĥcv. In addition,

L̂n(ĥ1gwy) corresponding to d1n is more powerful than that of L̂n(ĥ2gwy) corresponding

to d2n while their sizes are comparable. This is not surprising, because d1n has been

shown to be the optimum rate for this kind of nonparametric testing (see, for example,

Horowitz and Spokoiny 2001; Chapter 3 of Gao 2007).

In addition, Tables 4.1–4.3 also show that the choice of the distribution of {εt} has

little impact on the simulated sizes and power values. This may show that robustness of

the proposed bootstrap simulation procedure.

In summary, our small and medium–sample studies in the simulated example have

shown that the use of an asymptotically normal test associated with a cross–validation

estimation–based bandwidth may not make such a test practically applicable due to

poor size and power properties. However, the performance of such a test can be signifi-

cantly improved when it is coupled with a power–based optimal bandwidth as well as a

bootstrap simulated critical value.

5 Conclusions and discussion

This paper has considered a class of nonlinear time series models with possible LRD in the

regressors. A simple kernel test has been proposed and then studied both theoretically

and practically. The small and medium–sample studies have shown that both the theory

and the simulation procedure work well.

As briefly mentioned in the introductory section, the assumptions on Xt and et may

be relaxed. For the error part, it is possible to show that Theorems 1 and 2 remain true

when {et} is a sequence of martingale differences.

For the regressor case, we may allow {Xt} to be a sequence of strictly stationary

and long–range dependent regressors. In this case, we need to introduce the following

additional assumption.

Assumption 5.1. (i) {Xt, t ≥ 1} is a sequence of strictly stationary and long–

range dependent regressors with E[X1] = 0, E[X2
1 ] = 1 and the covariance structure

13



γ(s − t) = E [XsXt] satisfying γ(τ) = |τ |−αl(|τ |) < 1 for τ ≥ 1, where 0 < α < 1 and

l(x) is a positive function slowly varying at ∞.

(ii) Let fi,j,k,l(·) be the joint probability density of (Xi, Xj, Xk, Xl). Assume that all

fi,j,k,l(·, ·, ·, ·) are uniformly continuous.

(iii) In addition, for m = 2 or 4

lim sup
n→∞

1

n2

n∑
i,j=1

{∫
σ2m(x)f(i,j)(x, x)dx

}
< ∞,

lim sup
n→∞

1

n3

n∑
i,j,k=1

{∫
σ2m(x)f(i,j,k)(x, x, x)dx

}
< ∞,

lim sup
n→∞

1

n4

n∑
i,j,k,l=1

{∫
σ8(x)f(i,j,k,l)(x, x, x, x)dx

}
< ∞,

lim sup
n→∞

1

n4

n∑
i,j,k,l=1

{∫∫
σ4(x)σ4(y)f(i,j,k,l)(x, x, y, y)dxdy

}
< ∞.

It is expected that the conclusion of Theorem 1 remains true when Assumptions 2.1(i)(iii)–

2.3 and 5.1 hold, and that the conclusion of Theorem 2 also remains valid when Assump-

tions 2.1(i)(iii)–2.4 and 5.1 hold. Further rigorous proofs of such conclusions are left for

future research.

When {Xt} involved in model (1.1) is allowed to be a linear process, model (1.1) will

have more practical applications. One of the special cases is a nonparametric autoregres-

sive model when Xt = Yt−1. In this case, we expect that such a model may be applicable

to check whether the conditional mean function of a long–range dependent time series,

such as the S&P 500 Index, may be parametrically specified. Such issues are also left

for future research.
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6 Appendix A

This appendix provides the full proofs of Theorems 1 and 2 as well as the necessary

lemmas and their proofs. For notational simplicity, we denote all different i, j, k, l (i 6=
j, i 6= k, i 6= l, j 6= k, j 6= l, k 6= l) simply by i 6= j 6= k 6= l, and constants by

C, C1, ..., which may have different values at each appearance. Also, {Xk, k ≥ 1} and

{εk, k ≥ 1} are assumed to satisfy Assumption 2.1. h → 0 and nh →∞, as n →∞, as

in Assumption 2.2(ii).

6.1 Technical lemmas

In addition to the notation in Section 2, define τm =
∫∞
−∞Km(x)dx, m ≥ 1, γij = γ(i− j),

Σ =



1 γij γik γil

γji 1 γjk γjl

γki γkj 1 γkl

γli γlj γlk 1


,

and Λn = {(i, j, k, l) : |s− t| ≥ δn,where s, t = i, j, k or l} with some δn →∞.

LEMMA 1 (i) If τm < ∞, then for all i 6= j,

E [Km
n (Xi, Xj)] =

τm h

2
√

π[1− γij ]1/2
E

[
σ2m

(√
[1 + γij ]/2X1

)] {
1 + o(1)

}
. (A.1)

(ii) Assume (i, j, k, l) ∈ Λn. If τm < ∞, then

E [Km
n (Xi, Xj)] =

τm h

2
√

π
E

[
σ2m

(
X1/

√
2
)] {

1 + o(1)
}
; (A.2)

if τ2 < ∞, then

E
{
K2

n

(
Xi, Xj

)
K2

n

(
Xk, Xl

)}
=

τ2
2 h2

4π

(
E

[
σ4(X1/

√
2)

])2 {
1 + o(1)

}
. (A.3)
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(iii). Under Assumption 2.2, for all i 6= j 6= k 6= l and all m1,m2,m3,m4 ≥ 0, we have

E
{

(1 + |Xi|m1)(1 + |Xj |m2)K
(

Xi −Xj

h

) }
≤ C h, (A.4)

E
{

(1 + |Xi|m1)(1 + |Xj |m2)(1 + |Xk|m3)

× K

(
Xi −Xj

h

)
K

(
Xj −Xk

h

) }
≤ C h2, (A.5)

E
{

(1 + |Xi|m1)(1 + |Xj |m2)(1 + |Xk|m3)(1 + |Xl|m4)

K

(
Xi −Xk

h

)
K

(
Xj −Xk

h

)
K

(
Xi −Xl

h

)
K

(
Xj −Xl

h

) }
≤ C h3, (A.6)

where C is a constant depending only on max γij and mj.

Remark A.1. More detailed calculation shows that, for all i 6= j 6= k 6= l, we have

E
{
K2

n

(
Xi, Xj

)
K2

n

(
Xk, Xl

)}
∼ τ2

2 h2

(2π)2 (detΣ)1/2

∫ ∫
σ4(x)σ4(y)e−µτΣ−1µ/2dxdy,

where µτ = (x, x, y, y). We omit the details as (A.3) is sufficient for this paper.

Proof. We first prove (A.1). Write ρ = γij . It is readily seen that, as h → 0,

E [Km
n (Xi, Xj)] =

1
2π(1− ρ2)1/2

∫ ∫
σm(x)σm(y)Km

[
(x− y)/h

]
e
− 1

2(1−ρ2)
(x2−2ρxy+y2)

× dxdy (letting x = y1 + hx1, y = y1 and simple reorganization)

=
h

2π(1− ρ2)1/2

∫ ∫
σm(y1 + hx1)σm(y1)Km(x1)

× e
− 1

2(1−ρ2)

[
2(1−ρ)y2

1+2h(1−ρ)x1y1+h2x2
1

]
dx1dy1

=
h

2π(1− ρ2)1/2

∫ ∫
σm(y + hx)σm(y)Km(x)e

− (y+hx/2)2

1+ρ
− (3−ρ)h2x2

4(1−ρ2) dxdy

=
h

2π(1− ρ2)1/2

∫ ∫
σm(y + 3hx/2)σm(y + hx/2)Km(x)e

− y2

1+ρ
− (3−ρ)h2x2

4(1−ρ2)

× dxdy

=
h

2π(1− ρ2)1/2

∫ ∞

−∞
σ2m(y)e−

y2

1+ρ dy

∫ ∞

−∞
Km(x)dx

{
1 + o(1)

}
=

τm h

2
√

π(1− γij)1/2
E

[
σ2m

(
X1

√
(1 + γij)/2

)] {
1 + o(1)

}
, (A.7)

where, in the second step from below, we have used the dominate convergence theorem and

the continuity of σ(x). This proves (A.1).

By recalling γ(k) = |k|−αl(|k|) and noting that, for (i, j, k, l) ∈ Λn

γst = |s− t|−αl(|s− t|) = o(δ−α/2
n ), where s, t = i, j, k or l, (A.8)
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(A.2) is obvious as σ(x) is continuous and σ(x) ≤ C0 (|x|β + 1), for some β > 0.

We next prove (A.3). First note that, similarly to the proof of (A.7), as h → 0,

1√
π

∫ ∫
K2

n

(
x, y

)
e−(x2+y2)/2dxdy = τ2 h E

[
σ4(X1/

√
2)

] {
1 + o(1)

}
,

1√
2π

∫ ∫
K2

n

(
x, y

)
e−(x2+y2)/4dxdy = τ2 h E

[
σ4(X1)

] {
1 + o(1)

}
.

These facts yield that, with µτ = (x, y, s, t),

In :=
∫
· · ·

∫
K2

n

(
x, y

)
K2

n

(
s, t

)
e−µτ µ/2dxdydsdt

= π
(
τ2 h E

[
σ4(X1/

√
2)

])2 {
1 + o(1)

}
, (A.9)

I1n :=
∫
· · ·

∫
K2

n

(
x, y

)
K2

n

(
s, t

)
e−µτ µ/4dxdydsdt

= 2 π
(
τ2 h E

[
σ4(X1)

])2 {
1 + o(1)

}
. (A.10)

We are now ready to prove (A.3). By virtue of (A.8), we may rewrite Σ as Σ = I + δ
−α/2
n D,

where I is an identity matrix of order 4 and maximum element of D is bounded by an absolute

constant. This implies that det Σ ∼ 1 and there exists a matrix D1 whose element may depend

on h such that maximum element of D1 is bounded by an absolute constant and as n large

enough,

Σ−1 = I + δ−α/2
n D1. (A.11)

Recall h → 0 as n →∞. It follows easily from (A.11) that, as n large enough,∣∣e−µτΣ−1µ/2 − e−µτ µ/2
∣∣ ≤ e−µτ µ/2

∣∣e−δ
−α/2
n µτ Dµ/2 − 1

∣∣ ≤ δ−α/4
n e−µτ µ/4, (A.12)

where µτ = (x, y, s, t). This, together with (A.9) and (A.10), yields that

E
{
K2

n

(
Xi, Xj

)
K2

n

(
Xk, Xl

)}
=

1
(2π)2 (detΣ)1/2

∫
· · ·

∫
K2

n

(
x, y

)
K2

n

(
s, t

)
e−µ′Σ−1µ/2dxdydsdt

=
1

(2π)2 (detΣ)1/2

[
In + O(δ−α/4

n ) I1n

]
=

τ2
2 h2

4π

(
E

[
σ4

(
X1/

√
2
)])2 {

1 + o(1)
}
,

which implies (A.3).

We finally prove (A.6). The proofs of (A.4) and (A.5) are similar but simpler. Let µτ =

(x, y, s, t) as before. By virtue of max γij < 1, we have det Σ > 0. It follows from this fact that
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µτΣ−1µ ≥ λ0µ
τµ, where λ0 = min{λ1, λ2, λ3, λ4} > 0 and λj , j = 1, ..., 4 are the eigenvalues of

Σ. Now it is readily seen that if we denote the value of left hand in (A.6) by I2n, then

I2n =
1

(2π)2 (detΣ)1/2

∫
· · ·

∫
(1 + |x|m1)(1 + |y|m2)(1 + |s|m3)(1 + |t|m4)

× K
(x− s

h

)
K

(y − s

h

)
K

(x− t

h

)
K

(y − t

h

)
e−µτΣ−1µ/2 dxdydsdt

≤ C

∫
· · ·

∫
K

(x− s

h

)
K

(y − s

h

)
K

(x− t

h

)
K

(y − t

h

)
e−λ0µτ µ/4 dxdydsdt

= C h3

∫ ∫ ∫
K(s)K(y − s)K(t) K(y − t)

( ∫ ∞

−∞
e−λ0µτ

1µ1/4 dx
)
dydsdt

≤ C1 h3

∫ ∫ ∫
K(s)K(y − s)K(t) dydsdt ≤ C2h

3, (A.13)

where µτ
1 = (x, x− hy, x− hs, x− ht) and we have used the fact:∫ ∞

−∞
e−λ0µτ

1µ1/4 dx ≤
∫ ∞

−∞
e−λ0x2

dx < ∞,

since

µτ
1µ1 = 4x2 − 2hx(y + s + t) + h2(y2 + s2 + t2)

= 4
[
x− h(y + s + t)/4

]2 + h2
[
y2 + s2 + t2 − (y + s + t)2/4

]
≥ 4

[
x− h(y + s + t)/4

]2
.

This proves (A.6) and also completes the proof of Lemma 1.

LEMMA 2 If τ4 < ∞, then

1
n2h

∑
1≤i6=j≤n

(
K2

n(Xi, Xj)− E
[
K2

n(Xi, Xj)
])

= oP (1), (A.14)

and hence

1
n2h

∑
1≤i6=j≤n

K2
n(Xi, Xj) →P

τ2

2
√

π
E

[
σ4

(
X1/

√
2
)]

. (A.15)

Moreover, we also have

1
n2h

∑
1≤i6=j≤n

ε2i K
2
n(Xi, Xj)ε2j →P

τ2

2
√

π
E

[
σ4

(
X1/

√
2
)]

. (A.16)
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Proof. Write K̃n(Xi, Xj) = K2
n(Xi, Xj) − E

[
K2

n(Xi, Xj)
]

and define Λn as before with

δn = (nh)1/2. We have

E
( ∑

1≤i6=j≤n

K̃n(Xi, Xj)
)2

=
∑

(i,j,k,l)∈Λn

E
{
K̃n(Xi, Xj) K̃n(Xk, Xl)

}
+

∑
(i,j,k,l)/∈Λn

E
{
K̃n(Xi, Xj) K̃n(Xk, Xl)

}
= ∆n1 + ∆n2, say. (A.17)

Recall max γij < 1. It follows easily from (A.1) with m = 4 that

E
[
K̃2

n(Xi, Xj)
]
≤ 4E

[
K4

n(Xi, Xj)
]
≤ 4Cτ4 h

and

E
[
K̃n(Xi, Xj) K̃n(Xk, Xl)

]
≤

(
E

[
K̃2

n(Xi, Xj)
])1/2 (

E
[
K̃2

n(Xk, Xl)
])1/2

≤ 4Cτ4 h.

Therefore, whenever τ4 < ∞ and nh →∞,

∆n2 ≤ 4Cτ4 δn n3 h = o(n4h2). (A.18)

As for ∆n1, by noting that, uniformly for (i, j, k, l) ∈ Λn,

E
{
K̃n(Xi, Xj) K̃n(Xk, Xl)

}
= E

{
K2

n(Xi, Xj) K2
n(Xk, Xl)

}
− E

[
K2

n(Xi, Xj)
]

E
[
K2

n(Xk, Xl)
]

= o(h2),

by (A.2) with m = 2 and (A.3), it is readily seen that

∆n1 =
∑

(i,j,k,l)∈Λn

E
{
K̃n(Xi, Xj) K̃n(Xk, Xl)

}
= o(n4h2). (A.19)

Now (A.14) follows from (A.17)-(A.19) and Markov’s inequality.

Similarly, it follows easily from (A.2) and E[K2
n(Xi, Xj)] ≤ C h [by (A.1)] that

1
n2h

∑
1≤i6=j≤n

E
[
K2

n(Xi, Xj)
]

=
1

n2h

 ∑
|i−j|≥(nh)1/2

E
[
K2

n(Xi, Xj)
]
+

∑
|i−j|<(nh)1/2

E
[
K2

n(Xi, Xj)
]

=
τ2

2
√

π
E

[
σ4

(
X1/

√
2
)] 1

n2
#{(i, j) : |i− j| ≥ (nh)1/2, 1 ≤ i, j ≤ n} + o(1)

=
τ2

2
√

π
E

[
σ4

(
X1/

√
2
)]

+ o(1),
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where #(A) denotes the number of elements in A. This, together with (A.14), yields (A.15).

By recalling {εk} is a sequence of i.i.d. random errors with E[ε21] = 1 and independent

of Xk, the proof of (A.16) is the same as that of (A.15). We omit the details. The proof of

Lemma 2 is now finished.

The following lemma is needed in the proof of Theorems 1 and 2. The lemma is also useful

in itself.

LEMMA 3 Let {ηk, k ≥ 1} be a sequence of i.i.d. random variables. Let anij be a sequence of

constants with anij = anji for all n ≥ 1. Let ϕn(x, y) be symmetric Borel-measurable functions

such that, for all n ≥ 1,

E
[
ϕ2

n(η1, η2)
]

> 0 and E
(
ϕn(η1, η2) | η1

)
= 0. (A.20)

Then there exists an absolute constant A > 0 such that

sup
x

∣∣P (
B−1

n Q1n ≤ x
)
− Φ(x)

∣∣ ≤ A B−4/5
n

(
A1nEϕ4

n(η1, η2) + A2n Ln

)1/5
, (A.21)

where Q1n =
∑

1≤i<j≤n anij ϕn(ηi, ηj), B2
n =

∑
1≤i<j≤n a2

nijE
[
ϕ2

n(η1, η2)
]
,

A1n =
n∑

i=2

( i−1∑
j=1

a2
nij

)2
, A2n =

n−1∑
i=2

n∑
j=i+1

( i−1∑
k=1

anik anjk

)2
,

Ln = E
[
ϕn(η1, η3) ϕn(η1, η4) ϕn(η2, η3) ϕn(η2, η4)

]
.

Proof. In the proof of Lemma 3, we omit the subscripts n in anij and ϕn for convenience.

Set, for i = 2, · · · , n, Zi =
∑i−1

k=1 aikϕ(ηi, ηk) and Fi = σ(η1, ..., ηi). It is readily seen that

Q1n =
∑n

i=2 Zi with E(Zi | Fi−1) = 0, i = 2, · · · , n, by (A.20). This implies that {Q1j ,Fj , 2 ≤

j ≤ n} forms a martingale sequence. Hence it follows from Theorem 3.9 with δ = 1 in Hall

and Heyde (1980) that there exists an absolute constant A > 0 such that

sup
x

∣∣P (
B−1

n Q1n ≤ x
)
− Φ(x)

∣∣ ≤ AB−4/5
n M1/5

n , (A.22)

where U2
n =

∑n
i=2 Z2

i and Mn =
∑n

i=2 E[Z4
i ] + E(U2

n −B2
n)2.

Next we will show that

Mn ≤ 10 A1n E
[
ϕ4

n(η1, η2)
]
+ 4 A2n Ln, (A.23)

and then (A.21) follows immediately. In fact, by noting B2
n = E[U2

n], we have

Mn =
n∑

i=2

E[Z4
i ] + EU4

n −B4
n = 2

n∑
i=2

E[Z4
i ] + 2

∑
2≤i<j≤n

E
[
Z2

i Z2
j

]
−B4

n. (A.24)
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Using the second part of (A.20), we obtain that, for all i < j,

E
[
Z2

i Z2
j

]
=

i−1∑
k,k1=1

j−1∑
l,l1=1

aikaik1ajlajl1E
[
ϕ(ηi, ηk)ϕ(ηi, ηk1)ϕ(ηj , ηl)ϕ(ηj , ηl1)

]
=

i−1∑
k=1

j−1∑
l=1

a2
ika

2
jlE

[
ϕ2(ηi, ηk) ϕ2(ηj , ηl)

]
+ 2

i−1∑
k,l=1
k 6=l

aikailajkajl E
[
ϕ(ηi, ηk) ϕ(ηi, ηl) ϕ(ηj , ηk) ϕ(ηj , ηl)

]

+ 2
i−1∑
k=1

a2
ikajiajk E

[
ϕ2(ηi, ηk) ϕ(ηj , ηi) ϕ(ηj , ηk)

]
= R1ij + R2ij + R3ij , (A.25)

where

R1ij =
i−1∑
k=1

j−1∑
l=1
l6=k

a2
ika

2
jl

(
E

[
ϕ2(η1, η2)

])2

R2ij = 2
i−1∑

k,l=1

aikailajkajl E
[
ϕ(η1, η3)ϕ(η1, η4)ϕ(η2, η3)ϕ(η2, η4)

]
|R3ij | ≤

i−1∑
k=1

a2
ik

(
3a2

jk + 2|ajiajk|
)
E

[
ϕ4(η1, η2)

]
≤ 4

i−1∑
k=1

a2
ik

(
a2

jk + a2
ji

)
E

[
ϕ4(η1, η2)

]
.

Similarly, for all 2 ≤ i ≤ n,

E[Z4
i ] =

i−1∑
j=1

a4
ijE[ϕ4(η1, η2)] +

∑
1≤j 6=k≤i−1

a2
ija

2
ikE

[
ϕ2(η1, η2)ϕ2(η1, η3)

]
≤

( i−1∑
j=1

a2
ij

)2
E

[
ϕ4(η1, η2)

]
. (A.26)

By virtue of (A.25) and (A.26), it is readily seen that
∑n

i=2 E
[
Z4

i

]
≤ A1nE

[
ϕ4(η1, η2)

]
and

2
∑

2≤i<j≤n

E
[
Z2

i Z2
j

]
≤ B4

n + 4A2nLn + 8 A1n E
[
ϕ4(η1, η2)

]
.

Substituting these upper bounds back into (A.24), we obtain the inequality (A.23). The

proof of Lemma 3 is now completed.
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6.2 Proofs of Theorems

Proof of Theorem 1. Let B̃2
n =

∑
1≤i<j≤n K2

n(Xi, Xj) and M̃n =
∑

1≤i<j≤n εiεjKn(Xi, Xj).

By virtue of (A.15) and symmetry of Kn(x, y), in order to prove Theorem 1, it suffices to show

that

M̃n/B̃n →D N(0, 1). (A.27)

We now apply Lemma 3 to prove (A.27). Write

Ã1n =
∑

1≤i6=j≤n

K4
n(Xi, Xj) +

∑
1≤i6=j 6=k≤n

K2
n(Xi, Xj)K2

n(Xi, Xk),

Ã2n =
∑

1≤i6=j 6=k 6=l≤n

Kn

(
Xi, Xk

)
Kn

(
Xj , Xk

)
Kn

(
Xi, Xl

)
Kn

(
Xj , Xl

)
+

∑
1≤i6=j 6=k≤n

K2
n(Xi, Xk)K2

n(Xj , Xk).

By recalling Kn(Xi, Xj) ≤ C2
0 (1 + |Xi|β)(1 + |Xj |β)K(Xi−Xj

h ), it follows easily from Lemma

1 (iii) that if h → 0 and nh → ∞, then EÃ1n = o(n4h2) and EÃ2n = O(n4h3) = o(n4h2).

This, together with (A.15) and the fact that Ã1n ≤ B̃4
n and Ã2n ≤ 2 B̃4

n, yields that

E
{
(Ã1n + Ã2n)/B̃4

n

}
= E

{
(Ã1n + Ã2n)

[
I
( eB2

n≤A2
0n2h/4)

+ I
( eB2

n>A2
0n2h/4)

]
/B̃4

n

}
≤ 3P

(
B̃2

n ≤ A2
0n

2h/4
)

+ 16A−4
0 n−4h−2E(Ã1n + Ã2n)

= o(1), (A.28)

where A2
0 = 1√

π
E

[
σ4(X1/

√
2)

] ∫∞
−∞K2(x)dx. Therefore, by recalling E

[
ε40

]
< ∞, it follows

easily from (A.28) and Lemma 3 with ϕn(x, y) = xy and anij = Kn(Xi, Xj) that

sup
x

∣∣∣P (
M̃n/B̃n ≤ x

)
− Φ(x)

∣∣∣ ≤ E sup
x

∣∣∣P (
M̃n/B̃n ≤ x | X1, · · · , Xn

)
− Φ(x)

∣∣∣
≤ A

[
(Eη4

1)
2/5 + (Eη2

2)
4/5

]
· E

{
(Ã1n + Ã2n)/B̃4

n

}
= o(1)

as n →∞. This proves (A.27) and also complete the proof of Theorem 1.

Proof of Theorem 2. Set Λ(x) = mθ0(x)−mbθ(x). Under H0, we may write

M̂n(h) :=
n∑

t=1

n∑
s=1,6=t

ês an(Xs, Xt) êt

=
n∑

t=1

n∑
s=1,6=t

{
σ(Xs)εs + Λ(Xs)

}
K

(Xs −Xt

h

) {
σ(Xt)εt + Λ(Xt)

}
= Mn(h) + 2R1n + R2n, (A.29)
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where Mn(h) =
∑n

t=1

∑n
s=1,6=t εs εt Kn(Xs, Xt),

R1n =
n∑

t=1

εt

n∑
s=1,6=t

K
(Xs −Xt

h

)
Λ(Xs) σ(Xt),

R2n =
n∑

t=1

n∑
s=1,6=t

K
(Xs −Xt

h

)
Λ(Xs) Λ(Xt).

Similarly, we also have

σ̂2
1n(h) :=

n∑
t=1

n∑
s=1,6=t

ê2
s a2

n(Xs, Xt) ê2
t

=
n∑

t=1

n∑
s=1,6=t

{
σ(Xs)εs + Λ(Xs)

}2
K2

(Xs −Xt

h

) {
σ(Xt)εt + Λ(Xt)

}2

= σ̃2
1n(h) + R3n,

where σ̃2
1n(h) =

∑n
t=1

∑n
s=1,6=t ε2s ε2t K2

n(Xs, Xt) and

R3n =
n∑

t=1

n∑
s=1,6=t

{
2εt Λ(Xt) σ(Xt) + Λ2(Xt)

}
K2

(Xs −Xt

h

)
×

{[
σ(Xs)εs + Λ(Xs)

]2 + σ2(Xs) ε2s

}
.

Recall that Mn(h)/(A0n
√

h) →D N(0, 1) and 2
n2h

σ̃2
1n(h) →P A2

0, where

A2
0 =

1√
π

E
[
σ4(X1/

√
2)

] ∫ ∞

−∞
K2(x)dx,

by Theorem 1 and (A.16). Theorem 2 will follow if we prove

R1n = op(n
√

h), R2n = op(n
√

h) and R3n = op(n2h). (A.30)

To prove (A.30), for ∀δ > 0, write Ωn = {θ̂ : ||θ̂ − θ0|| ≤ δ ηn}.

First deal with R2n and R3n. Note that, by virtue of (ii) and (iii) in Assumption 2.4,

|∆(Xs)| ≤ C
∣∣∣∣θ̂ − θ0

∣∣∣∣ ∣∣∣∣∣∣∂mθ(Xs)
∂θ

|θ=θ0

∣∣∣∣∣∣ ≤ C1 δ ηn (1 + |Xs|β1), (A.31)

for n sufficiently large such that Ωn ⊆ Θ0. It follows from (A.31) that

|R2n|I(θ̂ ∈ Ωn) ≤ C δ2 η2
n

n∑
t=1

n∑
s=1,6=t

(1 + |Xs|β1) (1 + |Xt|β1) K
(Xs −Xt

h

)
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and

|R3n|I(θ̂ ∈ Ωn) ≤ C δ ηn

n∑
t=1

n∑
s=1,6=t

(1 + |Xs|2(β+β1)) (1 + |Xt|2(β+β1))

K
(Xs −Xt

h

)
(1 + |εt|)(1 + ε2s),

for n sufficiently large, and hence by (A.4) and (A.5), for ∀δ > 0,

P (|R2n| ≥ δ1/2n
√

h) ≤ P
(
||θ̂ − θ0|| > δ ηn

)
+ (δ1/2n

√
h)−1 E

[
|R2n|I(θ̂ ∈ Ωn)

]
≤ P

(
||θ̂ − θ0|| > δ ηn

)
+ C

√
δ n h1/2 η2

n

and

P (|R3n| ≥ δ1/2n2h) ≤ P
(
||θ̂ − θ0|| > δ ηn

)
+ (δ1/2n2h)−1 E

[
|R3n|I(θ̂ ∈ Ωn)

]
≤ P

(
||θ̂ − θ0|| > δ ηn

)
+ C

√
δ ηn.

This proves |R2n| = oP (n
√

h) and |R3n| = oP (n2h), where we have used the facts that

n h1/2 η2
n = O(1), ηn → 0 and θ̂ − θ0 = oP (ηn).

We next prove |R1n| = oP (n
√

h). Let

J1(s, t) = K

(
Xs −Xt

h

)
∂mθ(Xs)

∂θ
|θ=θ0 σ(Xt),

J2(s, t) = K

(
Xs −Xt

h

) {
Λ(Xs) +

∂mθ(Xs)
∂θ

|θ=θ0

(
θ0 − θ̂

)}
σ(Xt).

Under these notation, we have

R1n =
(
θ0 − θ̂

) n∑
t=1

εt

n∑
s=1,6=t

J1(s, t) +
n∑

t=1

εt

n∑
s=1,6=t

J2(s, t). (A.32)

Recall Assumption 2.3 and Assumption 2.4(iii). It follows from the results (A.4) and (A.5)

that, for all s 6= s1 6= t and for n sufficiently large,

E
[
J2

1 (s, t)
]
≤ C E

{
(1 + |Xs|2β1)(1 + |Xt|2β) K2

(Xs −Xt

h

) }
≤ C1 h,

E [|J1(s, t)J1(s1, t)|] ≤ C E
[
(1 + |Xs1 |β1) (1 + |Xs2 |β1) (1 + |Xt|2β)

K
(Xs1 −Xt

h

)
K

(Xs2 −Xt

h

)]
≤ C1 h2.
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These facts imply that for any 1 ≤ t ≤ n,

E
[ n∑

s=1,6=t

J1(s, t)
]2
≤ C (nh + n2h2) ≤ 2C n2h2,

since nh →∞. Hence, by the iid properties of εt with E[ε1] = 0 and the independence between

εt and Xs, we obtain that

E
[ n∑

t=1

εt

n∑
s=1,6=t

J1(s, t)
]2

≤ 2C n2h2
n∑

t=1

E[ε2t ] ≤ C1 n3h2. (A.33)

On the other hand, it follows easily from Taylor’s expansion of mθ(x) (respect to θ) that,

under H0, for all s 6= s1 6= t and for n large enough such that Ωn ⊆ Θ0,

E
[
|εt||J2(s, t)|I(θ̂ ∈ Ωn)

]
≤ C δ2 η2

n E|εt|E
[
K

(Xs −Xt

h

)∣∣∣∣∣∣∂2mθ(Xs)
∂θ2

|θ=θ0

∣∣∣∣∣∣ |σ(Xt)|
]

≤ C1 δ2 η2
n E

[
K

(Xs −Xt

h

)
(1 + |Xs|β1) (1 + |Xt|β)

]
≤ C1 δ2 η2

n h. (A.34)

It follows from (A.32)–(A.34) that

E
[
|R1n|I(θ̂ ∈ Ωn)

]
≤ δ ηn E

∣∣∣ n∑
t=1

εt

n∑
s=1,6=t

J1(s, t)
∣∣∣

+
n∑

t=1

n∑
s=1,6=t

E
[
|εt| |J2(s, t)I(θ̂ ∈ Ωn)

]
≤ C (δ n3/2hηn + δ2 n2η2

n h). (A.35)

This, together with Markov’s inequality, yields that, for ∀δ > 0,

P
(
|R1n| ≥ δ1/2n

√
h
)

≤ P
(
||θ̂ − θ0|| > δ ηn

)
+ Cδ−1/2(n2h)−1/2E

[∣∣ R1n

∣∣I(θ̂ ∈ Ωn)
]

≤ P
(
||θ̂ − θ0|| > δ ηn

)
+ Cδ1/2 nh1/2η2

n, (A.36)

since h → 0. This yields R1n = oP (n
√

h), by recalling nh1/2η2
n = O(1) and θ̂ − θ0 = oP (ηn).

The proof of Theorem 2 is now complete.
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