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Bandwidth Selection in Nonparametric Kernel Testing 1

By Jiti Gao and Irène Gijbels

The University of Adelaide and Katholieke Universiteit Leuven

Abstract. We propose a sound approach to bandwidth selection in nonparametric ker-

nel testing. The main idea is to find an Edgeworth expansion of the asymptotic distribution

of the test concerned. Due to the involvement of a kernel bandwidth in the leading term

of the Edgeworth expansion, we are able to establish closed–form expressions to explicitly

represent the leading terms of both the size and power functions and then determine how

the bandwidth should be chosen according to certain requirements for both the size and

power functions. For example, when a significance level is given, we can choose the band-

width such that the power function is maximized while the size function is controlled by the

significance level. Both asymptotic theory and methodology are established. In addition,

we develop an easy implementation procedure for the practical realization of the established

methodology and illustrate this on two simulated examples and a real data example.
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1. Introduction

Consider a nonparametric regression model of the form

Yi = m(Xi) + ei, i = 1, 2, . . . , n, (1.1)

where {Xi} is a sequence of strictly stationary time series variables, {ei} is a sequence

of independent and identically distributed (i.i.d.) errors with E[e1] = 0 and 0 <

E[e2
1] = σ2 < ∞, m(·) is an unknown function defined over IRd for d ≥ 1, and n is

the number of observations. We assume that {Xi} and {ej} are independent for all

1 ≤ i ≤ j ≤ n.

To avoid the so–called “curse of dimensionality” problem, we mainly consider

the case of 1 ≤ d ≤ 3 in this paper. For the case of d ≥ 4, various dimension

reduction estimation and specification methods have been discussed extensively in

several monographs, such as Fan and Gijbels (1996), Hart (1997), Fan and Yao (2003),

Gao (2007), and Li and Racine (2007).

There is a vast literature on testing a parametric regression model (null hypoth-

esis) versus a nonparametric model, especially for the case of i.i.d. Xi’s (random or

fixed design case). Many goodness-of-fit testing procedures are based on evaluating

a distance between a parametric estimate of the regression function m (assuming the

null hypothesis is true) and a nonparametric estimate of that function. Among the

popular choices for a nonparametric kernel estimator for m are the Nadaraya-Watson

estimator, the Gasser-Müller estimator and a local linear (polynomial) estimator.

Earlier papers following this approach of evaluating such a distance include Härdle

and Mammen (1993), Weihrather (1993) and González-Manteiga and Cao (1993),

among others. Härdle and Mammen (1993) consider a weighted L2-distance between

a parametric estimator and a nonparametric Nadaraya-Watson estimator of the re-

gression function. The asymptotic distribution of their test statistic under the null

hypothesis depends on the unknown error variance (the conditional error variance

function). Weihrather (1993) instead uses a Gasser-Müller nonparametric estimator
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in the fixed design regression case, divides by an estimator of the error variance and

considers a discretized version of the L2-distance. González-Manteiga and Cao (1993)

also consider the fixed design regression case but rely on minimum distance estimation

of the parametric model, seeking for minimizing a weighted L2-type distance between

the parametric model and a pilot nonparametric estimator.

Another approach to the same testing problem is introduced in Dette (1999) who

focusses on the integrated conditional variance function, and uses as a test statis-

tic the difference of a parametric estimator and a nonparametric (Nadaraya-Watson

based) estimator of this integrated variance. It is shown that this estimator (asymp-

totically) corresponds to test statistics based on a weighted L2-distance between a

parametric and nonparametric estimator of the regression function, as in the above

mentioned papers, using an appropriate weight function in defining the L2-distance.

Dette (1999) studies the asymptotic distribution of the test statistic under fixed alter-

natives. Such kind of alternatives are to be distinguished from the so-called sequences

of local alternatives, where the difference between the regression function under the

alternative and the one under the null hypothesis depends on the sample size n and

decreases with n. The latter setup is the one considered in our study.

The above papers and several more recent goodness-of-fit tests (see for example

Zhang and Dette (2004) and references therein) have in common that they rely on

nonparametric kernel type regression estimators and that the resulting test statis-

tics are of a similar form (at least in first-order asymptotics), and all depend on a

bandwidth parameter. The choice of the bandwidth parameter in such goodness-of-fit

testing procedures is the main concern in the present paper. Roughly speaking one

can distinguish in the literature two approaches to deal with this bandwidth parame-

ter choice in nonparametric and semiparametric kernel methods used for constructing

model specification tests for the mean function of model (1.1). A first approach is to

use an estimation-based optimal bandwidth value, such as a cross–validation band-

width. A second approach is to consider a set of suitable values for the bandwidth
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and proceed further from there.

Existing studies based on the first approach include Härdle and Mammen (1993)

for testing nonparametric regression with i.i.d. designs and errors, Hjellvik and

Tjøstheim (1995), and Hjellvik, Yao and Tjøstheim (1998) for testing linearity in

dependent time series cases, Li (1999) for specification testing in econometric time

series cases, Chen, Härdle and Li (2003) for using empirical likelihood–based tests,

Juhl and Xiao (2005) for testing structural change in nonparametric time series re-

gression, and others. As pointed out in the literature, such choices cannot be justified

in both theory and practice since estimation–based optimal values may not be optimal

for testing purposes.

Nonparametric tests involving the second approach of choising either a set of

suitable bandwidth values for the kernel case or a sequence of positive integers for

the smoothing spline case include Fan (1996), Fan, Zhang and Zhang (2001), and

Horowitz and Spokoiny (2001). The practical implementation of choosing such sets

or sequences is however problematic. This is probably why Horowitz and Spokoiny

(2001) develop their theoretical results based on a set of suitable bandwidths on

the one hand, but choose their practical bandwidth values based on the assessment

of the power function of their test on the other hand. Apart from using such test

statistics based on nonparametric kernel, nonparametric series, spline smoothing and

wavelet methods, there are test statistics constructed and studied based on empirical

distributions. Such studies have recently been summarized in Zhu (2005).

To the best of our knowledge, the idea of choosing the appropriate smoothing

parameter such that the size of the test under consideration is preserved while max-

imizing the power against a given alternative was only first explored analytically by

Kulasekera and Wang (1997), in which the authors propose using a nonparametric

kernel test to check whether the mean functions of two data sets can be identical in

a nonparametric fixed design setting. In some other closely related studies, various

discussions have been given on the comparison of power values of the same test at
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different bandwidths or different tests at the same bandwidth. Such studies include

Hart (1997), Hjellvik, Yao and Tjøstheim (1998), Hunsberger and Follmann (2001),

and Zhang and Dette (2004). The last paper compares three main types of nonpara-

metric kernel tests proposed in Härdle and Mammen (1993), Zheng (1996), and Fan,

Zhang and Zhang (2001).

On the issue of size correction, there have recently been some studies. For example,

Fan and Linton (2003) develop an Edgeworth expansion for the size function of their

test and then propose using corrected asymptotic critical values to improve the small–

medium sample size properties of the size of their test. Some other related studies

include Nishiyama and Robinson (2000), Horowitz (2003), Nishiyama and Robinson

(2005), who develop some useful Edgeworth expansions for bootstrap distributions of

partial–sum type of tests for improving the size performance.

The current paper is motivated by such existing studies, especially by Kulasek-

era and Wang (1997), Fan and Linton (2003), Dette and Spreckelsen (2004), and

Zhang and Dette (2004), to develop a solid theory to support a power function–based

bandwidth selection procedure such that the power of the proposed test is maximized

while the size is under control when using nonparametric kernel testing in parametric

specification of a nonparametric regression model of the form (1.1) associated with

the hypothesis form of (1.2) below.

To state the main results of this paper, we introduce some notational details. The

main interest of this paper is to test a parametric null hypothesis of the form

H0 : m(x) = mθ0(x) versus a sequence of alternatives of the form

H1 : m(x) = mθ1(x) + ∆n(x) for all x ∈ IRd, (1.2)

where both θ0, θ1 ∈ Θ are unknown parameters and Θ is a parameter space of IRp,

and ∆n(x) is a sequence of nonparametrically unknown functions over IRd. With

∆n(x) not being equal to zero, the function mθ1(x) in H1 is in fact the projection of

the true function on the null model.
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Note that m(x) under H1 in (1.2) is semiparametric when {∆n(x)} is unknown

nonparametrically. Note also that instead of requiring (1.2) for all x ∈ IRd, it may be

assumed that (1.2) holds with probability one for x = Xi. Some first–order asymptotic

properties for both the size and power functions of a nonparametric kernel test for the

case where ∆n(·) ≡ ∆(·), corresponding to a class of fixed alternatives (not depending

on n), have already been discussed in the literature, such as Dette and Spreckelsen

(2004). This paper focuses on studying higher–order asymptotic properties of such

kernel tests for the case where {∆n(·)} is a sequence of local alternatives in the sense

that limn→∞∆n(x) = 0 for all x ∈ IRd.

Let K(·) be the probability kernel density function and h be the bandwidth in-

volved in the construction of a nonparametric kernel test statistic denoted by T̂n(h).

To implement the kernel test in practice, we propose a new bootstrap simulation

procedure to approximate the 1 − α quantile of the distribution of the kernel test

by a bootstrap simulated critical value lα. Let αn(h) = P
(
T̂n(h) > lα|H0

)
and

βn(h) = P
(
T̂n(h) > lα|H1

)
be the respective size and power functions. In Theo-

rem 2.2 we show that

αn(h) = 1− Φ(lα − sn)− κn (1− (lα − sn)2) φ(lα − sn) + o
(√

hd
)
, (1.3)

βn(h) = 1− Φ(lα − rn)− κn (1− (lα − rn)2) φ(lα − rn) + o
(√

hd
)
, (1.4)

where sn = p1

√
hd, rn = p2 n δ2

n

√
hd, κn = p3

√
hd, and Φ(·) and φ(·) denote

respectively the cumulative distribution and density function of the standard Normal

random variable, in which all pi’s are positive constants and δ2
n =

∫
∆2

n(x)π2(x)dx

with π(·) being the marginal density function of {Xi}.
Our aim is to choose a bandwidth hew such that βn(hew) = maxh∈Hn(α) βn(h)

with Hn(α) = {h : α − cmin < αn(h) < α + cmin} for some small 0 < cmin < α.

Our detailed study in Section 3 shows that hew is proportional to (n δ2
n)−

3
2d . Such

established relationship between δn and hew shows us that the choice of an optimal

rate of hew depends on that of an order of δn.
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If δn is chosen proportional to n−
d+12

6(d+4) for a sequence of local alternatives underH1,

then the optimal rate of hew is proportional to n−
1

d+4 , which is the order of a nonpara-

metric cross–validation estimation–based bandwidth frequently used for testing pur-

poses. When considering a sequence of local alternatives with δn = O
(
n−

1
2
√

loglogn
)

being chosen as the optimal rate for testing in this kind of kernel testing (Horowitz

and Spokoiny 2001), the optimal rate of hew is proportional to (loglogn)−
3
2d .

The rest of the paper is organised as follows. Section 2 points out that existing

nonparametric kernel tests can be decomposed with quadratic forms of {ei} as leading

terms in the decomposition. This motivates the discussion about establishing Edge-

worth expansions for such quadratic forms. In Section 3, we apply the Edgeworth

expansions to study both the size and power functions of a representative kernel test.

Section 4 presents several examples of implementation. Some concluding remarks

are made in Section 5. Mathematical assumptions and proofs are provided in the

appendix.

2. Nonparametric kernel testing

As mentioned in the introductory section, various authors have discussed and

studied nonparametric kernel test statistics based on a (weighted) L2–distance func-

tion between a nonparametric kernel estimator and a parametric counterpart of the

mean function. It can be shown that the leading term of each of these nonparametric

kernel test statistics is of a quadratic form (see, for example, Chen, Härdle and Li

2003)

Pn(h) =
n∑

i=1

n∑

j=1

ei w(Xi)Lh(Xi −Xj)w(Xj) ej, (2.1)

where Lh(·) = 1
n
√

hd
L

(
·
h

)
, L(x) =

∫
K(y)K(x + y)dy, and w(·) is a suitable weight

function probably depending on either π(·), σ2(·) or both, in which K(·) is a prob-

ability kernel function, h is a bandwidth parameter and both are involved in a non-

parametric kernel estimation of m(·) .
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In this paper, we concentrate on a second group of nonparametric kernel test

statistics using a different distance function. Rewrite model (1.1) into a notational

version of the form under H0

Y = mθ0(X) + e, (2.2)

where X is assumed to be random and θ0 is the true value of θ under H0. Obviously,

E[e|X] = 0 under H0. Existing studies (Zheng 1996; Li and Wang 1998; Li 1999; Fan

and Linton 2003; Dette and Spreckelsen 2004; Juhl and Xiao 2005) propose using a

distance function of the form

E [eE (e|X) π(X)] = E
[(

E2(e|X)
)
π(X)

]
, (2.3)

where π(·) is the marginal density function of X.

This suggests using a normalized kernel–based sample analogue of (2.3) of the

form

Tn(h) =
1

n
√

hd σn

n∑

i=1

n∑

j=1, &=i

ei K
(

Xi −Xj

h

)
ej, (2.4)

where σ2
n = 2µ2

2 ν2
∫

K2(u)du with µk = E[ek
1] for k ≥ 1 and νl = E[πl(X1)] for l ≥ 1.

It can easily be seen that Tn(h) is the leading term of the following quadratic form

Qn(h) =
1

n
√

hd σn

n∑

i=1

n∑

j=1

ei K
(

Xi −Xj

h

)
ej. (2.5)

In summary, both equations (2.1) and (2.5) can be generally written as

Rn(h) =
n∑

i=1

n∑

j=1

ei φn(Xi, Xj) ej, (2.6)

where φn(·, ·) may depend on n, the bandwidth h and the kernel function K.

Thus, it is of general interest to study asymptotic distributions and their Edge-

worth expansions for quadratic forms of type (2.6). To present the main ideas of

establishing Edgeworth expansions for such quadratic forms, we focus on Tn(h) in the

rest of this paper. This is because the main technology for establishing an Edgeworth
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expansion for the asymptotic distribution of each of such tests is the same as that for

Tn(h).

Since Tn(h) involves some unknown quantities, we estimate it by a stochastically

normalized version of the form

T̂n(h) =

∑n
i=1

∑n
j=1, &=i êi K

(
Xi−Xj

h

)
êj

n
√

hd σ̂n

, (2.7)

where êi = Yi − m
θ̂
(Xi) and σ̂2

n = 2µ̂2
2 ν̂2

∫
K2(u)du with µ̂2 = 1

n

∑n
i=1 ê2

i and

ν̂2 = 1
n

∑n
i=1 π̂2(Xi), in which θ̂ is a

√
n–consistent estimator of θ0 under H0 and

π̂(x) = 1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

)
is the conventional nonparametric kernel density estima-

tor with b̂cv being a bandwidth parameter chosen by cross–validation (see for example

Silverman 1986).

Similarly to existing results (Li 1999), it may be shown that for each given h

T̂n(h) = Tn(h) + oP

(√
hd

)
. (2.8)

Thus, we may use the distribution of T̂n(h) to approximate that of Tn(h). Let leα

(0 < α < 1) be the 1 − α quantile of the exact finite–sample distribution of T̂n(h).

Because leα may not be evaluated in practice, we therefore suggest choosing either

a non–random approximate α–level critical value, lα, or a stochastic approximate

α–level critical value, l∗α by using the following simulation procedure:

• We generate Y ∗
i = m

θ̂
(Xi) +

√
µ̂2 e∗i for 1 ≤ i ≤ n, where {e∗i } is a sequence of

i.i.d. random samples drawn from a pre-specified distribution, such as N(0, 1).

Use the data set {(Xi, Y ∗
i ) : i = 1, 2, . . . , n} to estimate θ̂ by θ̂∗ and compute

T̂n(h). Let lα be the 1− α quantile of the distribution of

T̂ ∗n(h) =

∑n
i=1

∑n
j=1, &=i ê

∗
i K

(
Xi−Xj

h

)
ê∗j

n
√

hd σ̂∗n
, (2.9)

where ê∗i = Y ∗
i −m

θ̂∗
(Xi) and σ̂∗2n = 2µ̂∗22 ν̂2

∫
K2(u)du with µ̂∗2 = 1

n

∑n
i=1 ê∗2i .

In the simulation process, the original sample Xn = (X1, · · · , Xn) acts in the

resampling as a fixed design even when {Xi} is a sequence of random regressors.
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• Repeat the above step M times and produce M versions of T̂ ∗n(h) denoted

by T̂ ∗n,m(h) for m = 1, 2, . . . ,M . Use the M values of T̂ ∗n,m(h) to construct

their empirical distribution function. The bootstrap distribution of T̂ ∗n(h) given

Wn = {(Xi, Yi) : 1 ≤ i ≤ n} is defined by P ∗
(
T̂ ∗n(h) ≤ x

)
= P

(
T̂ ∗n(h) ≤ x|Wn

)
.

Let l∗α (0 < α < 1) satisfy P ∗
(
T̂ ∗n(h) ≥ l∗α

)
= α and then estimate lα by l∗α.

Note that both lα = lα(h) and l∗α = l∗α(h) depend on h. It should be pointed out

that the choice of a pre–specified distribution does not have much impact on both

the theoretical and practical results. In addition, we may also use a wild bootstrap

procedure to generate a sequence of resamples for {e∗i }.
Note also that the above simulation is based on the so–called regression bootstrap

simulation procedure discussed in the literature, such as Li and Wang (1998), Franke,

Kreiss and Mammen (2002), and Li and Racine (2007). When Xi = Yi−1, we may

also use a recursive simulation procedure, commonly-used in the literature. See for

example, Hjellvik and Tjøstheim (1995), and Franke, Kreiss and Mammen (2002).

Since the choice of a simulation procedure does not affect the establishment of our

theory, our main results are established based on the proposed simulation procedure.

We now have the following results in Theorems 2.1 and 2.2; their proofs are provided

in the appendix.

Theorem 2.1. Suppose that Assumptions A.1 and A.2 listed in the appendix hold.

Then under H0

sup
x∈R1

∣∣∣P ∗(T̂ ∗n(h) ≤ x)− P (T̂n(h) ≤ x)
∣∣∣ = O

(√
hd

)
(2.10)

holds in probability with respect to the joint distribution of Wn, and

P
(
T̂n(h) > l∗α

)
= α + O

(√
hd

)
. (2.11)

For an equivalent test, Li and Wang (1998) establish some results weaker than

(2.10). Fan and Linton (2003) consider some higher–order approximations to the size

function of the test discussed in Li and Wang (1998).
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For each h we define the following size and power functions

αn(h) = P
(
T̂n(h) > lα|H0

)
and βn(h) = P

(
T̂n(h) > lα|H1

)
. (2.12)

Correspondingly, we define (α∗n(h), β∗n(h)) with lα replaced by l∗α.

Before we discuss how to choose an optimal bandwidth in Section 3, we give

Edgeworth expansions of both the size and power functions in Theorem 2.2 below.

In order to express the Edgeworth expansions, we need to introduce the following

notation. Let

κn =

√
hd

(
µ2

3K2(0)
nhd + 4µ3

2ν3

3 K(3)(0)
)

σ3
n

, (2.13)

where νl = E[πl(X1)] =
∫

πl+1(x)dx, and K(3)(·) is the three–time convolution of

K(·) with itself.

Theorem 2.2. (i) Suppose that Assumptions A.1 and A.2 listed in the appendix

hold. Then

αn(h) = 1− Φ(lα − sn)− κn (1− (lα − sn)2) φ(lα − sn) + o
(√

hd
)
, (2.14)

α∗n(h) = 1− Φ(l∗α − sn)− κn (1− (l∗α − sn)2) φ(l∗α − sn) + o
(√

hd
)

(2.15)

hold in probability with respect to the joint distribution of Wn, where Φ(·) and φ(·)
are the probability distribution and density functions of N(0, 1), respectively, and

sn = C0(m)
√

hd with

C0(m) =

∫ (
∂mθ0

(x)

∂θ

)τ
(
E

[(
mθ0

(X1)

∂θ

) (
mθ0

(X1)

∂θ

)τ
])−1 (

mθ0
(x)

∂θ

)
π2(x)dx

√
2ν2

∫
K2(v)dv

.

(ii) Suppose that Assumptions A.1–A.3 listed in the appendix hold. Then the

following equations hold in probability with respect to the joint distribution of Wn:

βn(h) = 1− Φ(lα − rn)− κn (1− (lα − rn)2) φ(lα − rn) + o
(√

hd
)
, (2.16)

β∗n(h) = 1− Φ(l∗α − rn)− κn (1− (l∗α − rn)2) φ(l∗α − rn) + o
(√

hd
)
, (2.17)
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where rn = n C2
n

√
hd, in which

C2
n =

∫
∆2

n(x)π2(x)dx

σ2
√

2ν2
∫

K2(v)dv
. (2.18)

Assumption A.2 implies that the random quantity C0(m) is bounded in probabil-

ity. As expected, the rate of rn depends on the form of ∆n(·).

To simplify the following expressions, let zα be the 1−α quantile of the standard

normal distribution and dj = (z2
α − 1)cj for j = 1, 2, where

c1 =
4K(3)(0)µ3

2ν3

3σ3
n

and c2 =
µ2

3K
2(0)

σ3
n

. (2.19)

Let d0 = d1−C0(m). A corollary of Theorem 2.2 is given in Theorem 2.3 below.

Theorem 2.3. Suppose that the conditions of Theorem 2.2(i) hold. Then under

H0

lα ≈ zα + d0

√
hd + d2

1

n
√

hd
in probability, (2.20)

l∗α ≈ zα + d0

√
hd + d2

1

n
√

hd
in probability. (2.21)

Theorem 2.3 shows that the size distortion of the proposed test is d0

√
hd +d2

1
n
√

hd

when using the standard asymptotic normality in practice. A similar result has been

obtained by Fan and Linton (2003). We show in addition that the bootstrap simulated

critical value is approximated explicitly by zα + d0

√
hd + d2

1
n
√

hd
.

As the main objective of this paper, Section 3 below proposes a suitable selection

criterion for the choice of h such that while the size function is appropriately con-

trolled, the power function is maximized at such h. A closed–form expression of the

power function–based optimal bandwidth is given.

3. Power function–based bandwidth choice
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We now employ the Edgeworth expansions established in Section 2 to choose a

suitable bandwidth such that the power function βn(h) is maximized while the size

function αn(h) is controlled by a significance level. We thus define

hew = arg max
h∈Hn(α)

βn(h) with Hn(α) = {h : α− cmin < αn(h) < α + cmin} (3.1)

for some arbitrarily small cmin > 0.

We now start to discuss how to solve the optimization problem (3.1). It follows

from (2.13) and (2.19) that

κn =

√
hd

(
µ2

3K2(0)
nhd + 4µ3

2ν3

3 K(3)(0)
)

σ3
n

= c1

√
hd + c2

1

n
√

hd
. (3.2)

Let x =
√

hd. We rewrite κn as κn = c1 x + c2 n−1 x−1. Let γn = (z2
α − 1)κn,

lα − rn ≈ zα + γn − rn = zα +
(
d1 − n C2

n

)
x + d4 x−1 ≡ zα + d3 x + d4 x−1, (3.3)

lα − sn ≈ zα + γn − sn ≈ zα + (d1 − C0(m))x + d4 x−1 = zα + d0 x + d4 x−1, (3.4)

where d0 = d1 − C0(m), d1 = (z2
α − 1)c1, d3 = d1 − n C2

n and d4 = c2 (z2
α − 1) n−1.

Note that limn→∞ d4 = 0. Since Assumption A.3 implies that limn→∞ n C2
n = +∞,

we thus have

lim
n→∞

d3 = −∞ when lim
n→∞

n C2
n = +∞. (3.5)

Due to this, we treat d3 as a sufficiently large negative value when n C2
n is viewed

as a sufficiently large positive value in the finite–sample analysis of this section.

Ignoring the higher–order terms (i.e. terms of order o(x + n−1x−1) or smaller),

we now re–write the power and size functions βn(h) and αn(h) simply as functions of

x =
√

hd as follows:

βn(h) ≈ 1− Φ(lα − rn)− κn (1− (lα − rn)2) φ(lα − rn)

≈ 1− Φ(zα + d3x + d4x
−1)−

(
c1x + c2n

−1x−1
)

×
(
1− (zα + d3x + d4x

−1)2
)

φ
(
zα + d3x + d4x

−1
)
≡ β(x), (3.6)

αn(h) ≈ 1− Φ(lα − sn)− κn (1− (lα − sn)2) φ(lα − sn)
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≈ 1− Φ(zα + d0x + d4x
−1)−

(
c1x + c2n

−1x−1
)

×
(
1− (zα + d0x + d4x

−1)2
)

φ
(
zα + d0x + d4x

−1
)
≡ α(x). (3.7)

Our objective is then to find xew =
√

hd
ew such that

xew = arg max
x∈Hn(α)

β(x) with Hn(α) = {x : α− cmin < α(x) < α + cmin} , (3.8)

where cmin is chosen as cmin = α
10 for example. Finding roots of β′(x) = 0 implies that

the leading order of the unique real root of the equation is given approximately by

hew = x
2
d
ew = a

− 1
2d

1 t
− 3

2d
n , (3.9)

where tn = n C2
n, a1 =

√
2K(3)(0)

3
(√∫

K2(u)du
)3 · c(π) with c(π) =

∫
π3(x)dx

(√∫
π2(x)dx

)3 , in which C2
n is

as defined in Theorem 2.2(ii).

It can also be shown that hew is the maximizer of the power function βn(h) at

h = hew such that

β′′n(x)|
x=
√

hd
ew

< 0 , (3.10)

at least for sufficiently large n. Detailed derivations of (3.9) and (3.10) are given in

Appendix B below.

Furthermore, the choice of hew satisfies both Assumptions A.1(v) and A.3 that

lim
n→∞

n hd
ew = +∞ and lim

n→∞
n

√
hd

ew C2
n = +∞.

This implies that the choice of hew is valid to ensure limn→∞ βn(hew) = 1.

When both σ2 = µ2 = E[e2
1] and the marginal density function π(·) of {Xi} are

unknown in practice, we propose using an estimated version of hew as follows:

ĥew = â
− 1

2d
1 t̂

− 3
2d

n , (3.11)

where

t̂n = n Ĉ2
n with Ĉ2

n =
1
n

∑n
i=1 ∆̂2

n(Xi)π̂(Xi)

µ̂2

√
2ν̂2

∫
K2(v)dv

and

â1 =

√
2K(3)(0)

3
(√∫

K2(u)du
)3 ĉ(π) with ĉ(π) =

1
n

∑n
i=1 π̂2(Xi)

(√
1
n

∑n
i=1 π̂(Xi)

)3 ,
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in which µ̂2, ν̂2 and π̂(·) are as defined in (2.7), and ∆̂n(x) is given by

∆̂n(x) =

∑n
i=1 K

(
x−Xi

b̂cv

) (
Yi −m

θ̂
(Xi)

)

∑n
i=1 K

(
x−Xi

b̂cv

)

with θ̂ and b̂cv being the same as in (2.7).

Note also that ĥew provides an optimal bandwidth irrespectively of whether one

works under the null hypothesis H0 or under the alternative hypothesis H1. In other

words, it can be used for computing not only the power under an alternative H1,

but also the size under H0 in each case. Detailed discussion about this is given in

Appendix B below.

We conclude this section by summarizing the above discussion into the following

proposition; its proof is given in Appendix B below.

Proposition 3.1. Suppose that Assumptions A.1–A.3 listed in the appendix hold.

Additionally, suppose that ∆n(x) is continuously differentiable such that

lim
n→∞

sup
x∈Dπ

||∆′
n(x)||

|∆n(x)| ≤ C < ∞ and limn→∞ infx∈IRd |∆n(x)|
√

nb̂d
cv = ∞ in probability

for some C > 0, where Dπ = {x ∈ IRd : π(x) > 0} and || · ||2 denotes the Euclidean

norm. Then

lim
n→∞

βn(ĥew)

βn(hew)
= 1 in probability. (3.12)

As pointed out in the introduction, implementation of each of existing nonpara-

metric kernel tests involves either a single bandwidth chosen optimally for estimation

purposes or a set of bandwidth values. The proposed ĥew is chosen optimally for

testing purposes. Section 4 below shows how to implement the proposed test based

on our bandwidth in practice and compares the finite–sample performance of the

proposed choice with that of some closely relevant alternatives in the literature.

4. Examples of implementation
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This section presents two simulated examples and one real data example to il-

lustrate the proposed theory and methods in Sections 2 and 3 as well as to make

comparisons with some closely relevant alternatives in the literature. Simulated ex-

ample 4.1 below discusses the finite–sample performance of the proposed test T̂n(ĥew)

with that of the alternative version where the test is coupled with a cross–validation

(CV) bandwidth choice. Simulated example 4.2 below compares our test with some of

the commonly used tests in the literature. Example 4.3 provides a real data example

to show that the proposed test makes a clear difference. In the following finite–sample

study in Examples 4.1–4.3 below, we consider the case where ∆n(x) = cn ∆(x), in

which {cn} is a sequence of positive real numbers satisfying limn→∞ cn = 0 and ∆(x)

is an unknown function not depending on n.

Example 4.1. Consider a nonparametric time series regression model of the form

Yi = θ1Xi1 + θ2Xi2 + cn(X2
i1 + X2

i2) + ei, 1 ≤ i ≤ n, (4.1)

where {ei} is a sequence of Normal errors and both Xi1 and Xi2 are time series

variables generated by

Xi1 = αXi−1,1 + ui and Xi2 = βXi−1,2 + vi, 1 ≤ i ≤ n (4.2)

with {ui} and {vi} being i.i.d. random errors generated independently from Normal

distributions as below.

Under H0, we generate a sequence of observations {Yi} with θ1 = θ2 = 1 as the

true parameters, i.e.

H0 : Yi = Xi1 + Xi2 + ei, (4.3)

where {ei} is a sequence of independent and identically distributed random errors

generated from N(0, 1), and {Xi1} and {Xi2} are independently generated from

Xi1 = 0.5Xi−1,1 + ui and Xi2 = 0.5Xi−1,2 + vi, 1 ≤ i ≤ n (4.4)
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with X01 = X02 = 0 and {ui} and {vi} are sequences of independent and identically

distributed random errors and generated independently from a N(0, 1).

Under H1, we are interested in two alternative models of the form

H1 : Yi = Xi1 + Xi2 + cn(X2
i1 + X2

i2) + ei, ei ∼ N(0, 1) (4.5)

with cn being chosen as either c1n = n−
1
2

√
loglog(n) or c2n = n−

7
18 .

In the testing procedure, the parameters θ1 and θ2 in the parametric model are

estimated as discussed in Sections 1 and 2.

The reasoning for the above choice of cjn is as follows. The rate of c1n =

n−
1
2

√
loglog(n) should be an optimal rate of testing in this kind of nonparametric

kernel testing problem as discussed in Horowitz and Spokoiny (2001). The rate of

c2n = n−
7
18 implies that the optimal bandwidth ĥew in (B.43) with d = 2 is propor-

tional to n−
1
6 .

Throughout this example, we choose K(·) as the standard normal density function.

Let ĥcv be chosen by a cross–validation criterion of the form

ĥcv = arg min
h∈Hcv

1

n

n∑

i=1

(Yi − m̂−i(Xi1, Xi2; h))2 with Hcv =
[
n−1, n

1
6

]
(4.6)

in which

m̂−i(Xi1, Xi2; h) =

∑n
l=1, &=i K

(
Xl1−Xi1

h

)
K

(
Xl2−Xi2

h

)
Yl

∑n
l=1, &=i K

(
Xl1−Xi1

h

)
K

(
Xl2−Xi2

h

) .

Let ĥ0test be the corresponding version of ĥew in (B.43) and ĥ0cv be the correspond-

ing version of ĥcv in (4.6) both computed under H0. Since {Yi} under H1 depends on

the choice of cn, thus the computing of both ĥew of (B.43) and ĥcv of (4.6) under H1

depend on the choice of cn. Let ĥjtest be the corresponding versions of ĥew in (B.43)

and ĥjcv be the corresponding versions of ĥcv in (4.6) with cn = cjn for j = 1, 2.

In order to compare the size and power properties of T̂n(h) with the most relevant

alternatives, we introduce the following simplified notation: for j = 1, 2,

α01 = P
(
T̂n

(
ĥ0cv

)
> l∗α

(
ĥ0cv

)
|H0

)
, βj1 = P

(
T̂n

(
ĥjcv

)
> l∗α

(
ĥ0cv

)
|H1

)
,

α02 = P
(
T̂n

(
ĥ0test

)
> l∗α

(
ĥ0test

)
|H0

)
, βj2 = P

(
T̂n

(
ĥjtest

)
> l∗α

(
ĥ0test

)
|H1

)
.
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We consider cases where the number of replications of each of the sample versions

of α0k and βjk for j, k = 1, 2 was M = 1000, each with B = 250 number of boot-

strapping resamples, and the simulations were done for the cases of n = 250, 500 and

750. The detailed results at the 1%, 5% and 10% significance level are given in Tables

4.1–4.3, respectively.

Table 4.1. Simulated size and power values at the 1% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

n α01 α02 β11 β21 β12 β22

250 0.012 0.016 0.212 0.239 0.294 0.272

500 0.018 0.014 0.270 0.303 0.318 0.334

750 0.014 0.008 0.310 0.367 0.408 0.422

Table 4.2. Simulated size and power values at the 5% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

n α01 α02 β11 β21 β12 β22

250 0.054 0.046 0.514 0.522 0.656 0.658

500 0.052 0.058 0.572 0.564 0.690 0.730

750 0.046 0.052 0.648 0.658 0.820 0.812

Table 4.3. Simulated size and power values at the 10% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

n α01 α02 β11 β21 β12 β22

250 0.116 0.110 0.696 0.764 0.884 0.909

500 0.104 0.090 0.744 0.817 0.860 0.934

750 0.108 0.090 0.844 0.895 0.946 0.968
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Tables 4.1–4.3 report comprehensive simulation results for both the sizes and

power values of the proposed tests for models (4.3) and (4.4). Column 2 in each of

Tables 4.1–4.3 shows that while the sizes for the test based on ĥ0cv are comparable

with these given in column 3 based on ĥ0test, the power values of the test based on

ĥjtest in columns 6 and 7 are always greater than these given in columns 4 and 5

based on ĥjcv. This is not surprising, because the theory shows that each of ĥjtest is

chosen such that the resulting power function is maximized while the corresponding

size function is under control by the significance level.

In addition, the test based on ĥ2test is almost uniformly more powerful than the

best based on ĥ1test, which is the second most powerful test. This is basically because

ĥ2test is based on considering H1 with c2n = n−
7
18 , which goes to zero slower than

c1n = n−
1
2

√
log log(n), and hence the distance between the alternative and the null

is biggest in the former case (and therefore easier to detect). Meanwhile, the last

columns of Tables 4.1–4.3 show that the test based on the bandwidth ĥ2test is still a

powerful test even though the bandwidth is proportional to n−
1
6 , which is the same as

the optimal bandwidth based on a cross–validation estimation method. This shows

that whether an estimation–based optimal bandwidth may be used for testing depends

on whether the bandwidth is chosen optimally for testing purposes.

We finally want to stress that the proposed test based on either ĥ1test or ĥ2test has

not only stable sizes even at a small sample size of n = 250, but also reasonable power

values even when the ‘distance’ between the null and the alternative has been made

deliberately close at the rate of
√

n−1 loglog(n) = 0.060 for n = 500 for example. We

can expect that the test would have bigger power values when the ‘distance’ is made

wider. Overall, Tables 4.1–4.3 show that the established theory and methodology is

workable in the small and medium–sample case.

Example 4.1 discusses the small and medium–sample comparison results for the

proposed test with either testing–based optimal bandwidth or estimation–based (CV)

bandwidth. Example 4.2 below considers comparing the small and medium–sample
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performance of the proposed test associated with the optimal bandwidth with some

closely related nonparametric tests available in both the econometrics and statistics

literature.

Example 4.2. Consider a linear model of the form

Yi = α0 + β0 Xi + ei, 1 ≤ i ≤ n = 250, (4.7)

where {Xi} is a sequence of independent random variables sampled from N(0, 25)

distribution truncated at its 5th and 95th percentiles, and {ei} is sampled from one

of the three distributions: (i) ei ∼ N(0, 4); (ii) a mixture of Normals in which {ei} is

sampled from N(0, 1.56) with probability 0.9 and from N(0, 25) with probability 0.1;

and (iii) the Type I extreme value distribution scaled to have a variance of 4. The

mixture distribution is leptokurtic with a variance of 0.39, and the Type I extreme

value distribution is asymmetrical.

This is the same example as used in Horowitz and Spokoiny (2001) for the compar-

ison with some of the commonly used tests in the literature, such as the Andrews’ test

proposed in Andrews (1997), the HM test proposed in Härdle and Mammen (1993),

the HS test proposed in Horowitz and Spokoiny (2001) and the empirical likelihood

(EL) test proposed in Chen, Härdle and Li (2003).

To compute the sizes of the test, choose α0 = β0 = 1 as the true parameters

and then generate {Yi} from Yi = 1 + Xi + ei under H0, and generate {Yi} from

Yi = 1 + Xi + 5
τ φ

(
Xi
τ

)
+ ei under H1, where τ = 1 or 0.25, and φ(·) is the density

function of the standard normal distribution.

The kernel function used here is K(x) = 15
16 (1−x2)2 I(|x| ≤ 1). Choose cn = 5τ−1

and ∆(x) = φ(x τ−1) for the corresponding forms in (1.2). For j = 1, 2, let cjn = 5τ−1
j

and ∆j(x) = φ(x τ−1
j ) with τ1 = 1 and τ2 = 0.25. Let ĥinew be the corresponding

version of ĥew of (B.43) based on (cjn, ∆j(x)) for j = 1, 2.

In order to make a fair comparison, we use the same number of the bootstrap

resamples of M = 99, the same number of replications of M = 1000 under H0 and
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M = 250 under H1 as in Table 1 of Horowitz and Spokoiny (2001). In Table 4.4

below, we add the size and power values to the last two columns for both the EL

test and the proposed test–T̂n

(
ĥinew

)
of this paper. The other parts of the table are

obtained and tabulated similarly to Table 1 of Horowitz and Spokoiny (2001).

Table 4.4. Simulated size and power values at the 5% significance level

Probability of Rejecting Null Hypothesis

Andrews HM HS EL T̂n

(
ĥnew

)

Distribution τ Test Test Test Test Test

Null Hypothesis Is True

Normal 0.057 0.060 0.066 0.053 0.049

Mixture 0.053 0.053 0.048 0.055 0.052

Extreme 0.063 0.057 0.055 0.057 0.052

Null Hypothesis Is False

Normal 1.0 0.680 0.752 0.792 0.900 0.907

Mixture 1.0 0.692 0.736 0.835 0.905 1.000

Extreme 1.0 0.600 0.760 0.820 0.924 0.935

Normal 0.25 0.536 0.770 0.924 0.929 0.993

Mixture 0.25 0.592 0.704 0.922 0.986 0.999

Extreme 0.25 0.604 0.696 0.968 0.989 0.989

Table 4.4 shows that the proposed test has better power properties than any of

the commonly used tests, while the size values are comparable with those of the com-

petitors. The results further support the power–based bandwidth selection procedure

proposed in Sections 2 and 3.

As discussed in the supplemental material, the proposed theory and methodology

for model (1.1) can be applied to an extended model of the form

Yi = m(Xi) + ei with ei = σ(Xi) εi, 1 ≤ i ≤ n, (4.8)
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where σ(·) satisfying infx∈IRd σ(x) > 0 is unknown nonparametrically and {εi} is a

sequence of i.i.d. random errors with zero mean and finite variance. In addition, {εi}
and {Xj} are assumed to be independent for all 1 ≤ j ≤ i ≤ n. A special case of

model (4.8) is discussed in Example 4.3 below.

Example 4.3. This example examines the high frequency seven–day Eurodollar

deposit rate sampled daily from 1 June 1973 to 25 February 1995. This provides us

with n = 5505 observations. Let {Xi : i = 1, 2, · · · , n = 5505} be the set of Eurodollar

deposit rate data. Figures 4.1 and 4.2 below plot the data values and the conventional

nonparametric kernel density estimator

π̂(x) =
1

nh̃cv

n∑

i=1

K

(
x−Xi

h̃cv

)

respectively, where K(x) = 1√
2π

e−
x2

2 and h̃cv is the conventional normal–reference

based bandwidth given by

h̃cv = 1.06 · n− 1
5

√√√√ 1

n− 1

n∑

i=1

(Xi − X̄)2 with X̄ =
1

n

n∑

i=1

Xi. (4.9)

Note that b̂cv of (2.7), ĥcv of (4.6) and h̃cv of (4.9) are normally different from each

other. In the case where {Xi} follows an autoregressive model, they can be chosen

the same. Thus, they are chosen the same in this example.

It has been assumed in the literature (see, for example, Aı̈t–Sahalia 1996; Fan

and Zheng 2003; Arapis and Gao 2006) that the Eurodollar data set {Xi} may be

modeled by a nonlinear time series model of the form

Yi = µ(Xi) + σ(Xi) εi, 1 ≤ i ≤ n, (4.10)

where Yi = Xi+1−Xi

Λ , σ(·) > 0 is unknown nonparametrically, and εi ∼ N (0, Λ−1), in

which Λ is the time between successive observations. Since we consider a daily data

set, this gives Λ = 1
250 .
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Figure 4.1: Seven–day Eurodollar deposit rate, June 1, 1973 to February 25, 1995.
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Figure 4.2: Nonparametric kernel density estimator of the Eurodollar rate.

On the question of whether there is any nonlinearity in the drift function µ(·),
existing studies have provided no definitive answer. For example, Aı̈t–Sahalia (1996),

and Arapis and Gao (2006) show that there is some evidence of supporting nonlin-

earity in the drift on the one hand. On the other hand, existing studies, such as
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Chapman and Pearson (2000), and Fan and Zheng (2003), suggest that nonlinearity

may just be caused by estimation biases when using nonparametric kernel estimation.

To further discuss whether the assumption on linearity in the drift is appropriate

for the given set of data, we apply our test to propose testing

H01 : µ(x) = µ(x; θ0) = β0(α0−x) versus H11 : µ(x) = β1(α1−x)+cn∆(x) (4.11)

for some θj = (αj, βj) ∈ Θ for j = 0, 1 and cn =
√

n−1 log log(n), where Θ is a

parameter space in IR2 and ∆(x) is a continuous function.

It can be shown that the proposed test in Section 2 has an asymptotically equiv-

alent version of the form:

T̃n(h) =

∑n
j=1

∑n
i=1,i&=j êj K

(
Xi−Xj

h

)
êi

√
2

∑n
j=1

∑n
i=1 ê2

j K2
(

Xi−Xj

h

)
ê2

i

, (4.12)

where êi = Yi− β̂(α̂−Xi), in which (α̂, β̂) is the pair of the conventional least squares

estimators minimizing
∑n

i=1

(
Yi − β̂(α̂−Xi)

)2
.

As pointed out in the literature (Arapis and Gao 2006), T̃n(h) is independent

of the structure of the conditional variance σ2(·). The kernel function used is the

standard normal density function given by K(x) = 1√
2π

e−
x2

2 .

Let h̃test be the corresponding version of (B.43). It has been shown in Appendix

B below that

h̃test = â
− 1

2
1 t̂

− 3
2

n , (4.13)

where t̂n and â1 are the same as in (B.43), in which ĉ(π) becomes

ĉ(π) =
1

n

n∑

i=1

π̂2(Xi)σ̂
6(Xi) ·

(
1

n

n∑

i=1

π̂(Xi)σ̂
4(Xi)

)− 3
2

(4.14)

with

σ̂2(Xi) =

∑n
u=1 K

(
Xi−Xu

h̃cv

)
ê2

u

∑n
v=1 K

(
Xi−Xv

h̃cv

) .
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Let L1 = T̃n(h̃test) and L2 = T̃n(h̃cv). To apply the test Lj for each j = 1, 2 to

test H01, we propose the following procedure for computing the p–value of Lj:

• Compute êi = Yi− β̂(α̂−Xi) and then generate a sequence of bootstrap resam-

ples {ê∗i } given by ê∗i = σ̂(Xi) ε∗i , where {ε∗i } is a sequence of i.i.d. bootstrap

resamples generated from N(0, Λ−1) and σ̂2(·) is defined as above.

• Generate Ŷ ∗
i = β̂(α̂ − Xi) + ê∗i . Compute the corresponding version L∗j of Lj

for each j = 1, 2 based on {Ŷ ∗
i }.

• Repeat the above steps M = 1000 times to find the bootstrap distribution of

L∗j and then compute the proportion that Lj < L∗j for each j = 1, 2. This

proportion is a simulated p–value of Lj.

Our simulation results return the simulated p–values of p̂1 = 0.102 for L1 and

p̂2 = 0.072 for L2. While both of the simulated p–values suggest that there is no

enough evidence of rejecting the linearity in the drift at the 5% significance level, the

evidence of accepting the linearity based on L1 is stronger than that based on L2.

As our test T̃n(h̃test) involves no estimation biases, the process of computing the

simulated p–values is quite robust. We therefore believe that this improved test

further reinforces the findings of Chapman and Pearson (2000) and Fan and Zhang

(2003) that there is no definitive answer to the question whether the short rate drift

is actually nonlinear.

5. Conclusion

This paper has addressed the issue of how to appropriately choose the bandwidth

parameter when using a nonparametric kernel–based test. Both the size and power

properties of the proposed test have been studied systematically. The established

theory and methodology has shown that a suitable bandwidth can be optimally chosen

after appropriately balancing the size and power functions. Furthermore, the new
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methodology has resulted in a closed–form representation for the leading term of

such an optimal bandwidth in the finite–sample case.

Existing results (see, for example, Li and Wang 1998; Li 1999; Fan and Linton

2003; Gao 2007) show that this kind of nonparametric kernel test associated with a

large sample critical value may not have good size and power properties. Our small

and medium–sample studies in both the simulated and real–data examples have shown

that the performance of such a test can be significantly improved when it is coupled

with a power–based optimal bandwidth as well as a bootstrap simulated critical value.

It is pointed out that the established theory and methodology has various ap-

plications in providing solutions to some other related testing problems, in which

nonparametric methods are involved. Future extensions also include dealing with

cases where both Xi and ei may be strictly stationary time series.

Appendix A

This appendix lists the necessary assumptions for the establishment and the proofs of

the main results given in Section 2.

A.1. Assumptions

Assumption A.1. (i) Assume that {ei} is a sequence of i.i.d. continuous random errors

with E[e1] = 0, 0 < σ2 = E[e2
1] = σ2 < ∞ and E[e6

1] < ∞.

(ii) We assume that {Xi} is strictly stationary and α–mixing with mixing coefficient

α(t) being defined by

α(t) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ Ωs
1, B ∈ Ω∞s+t} ≤ Cα αt (A.1)

for all s, t ≥ 1, where 0 < Cα < ∞ and 0 < α < 1 are constants, and Ωj
i denotes the σ–field

generated by {Xk : i ≤ k ≤ j}.

(iii) We also assume that {Xs} and {et} are independent for all 1 ≤ s ≤ t ≤ n. Let

π(·) be the marginal density such that 0 <
∫

π3(x)dx < ∞, and πτ1,τ2,···,τl(·) be the joint

probability density of (X1+τ1 , . . . , X1+τl) (1 ≤ l ≤ 4). Assume that πτ1,τ2,···,τl(·) for all

1 ≤ l ≤ 4 do exist and are continuous and bounded.
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(iv) Assume that the univariate kernel function K(·) is a symmetric and bounded proba-

bility density function. In addition, we assume the existence of both K(3)(·), the three–time

convolution of K(·) with itself, and K(2)
2 (·), the two–time convolution of K2(·) with itself.

(v) The bandwidth parameter h satisfies both limn→∞ h = 0 and limn→∞ nhd = ∞.

Assumption A.2. (i) Let H0 be true. Then for any sufficiently small ε1 > 0 and some

B1L > 0

lim
n→∞

P
(√

n||θ̂ − θ0|| > B1L

)
< ε1,

where θ0 is the same as defined in (1.2).

(ii) Let H1 be true. Then for any sufficiently small ε2 > 0 and some B2L > 0

lim
n→∞

P
(√

n||θ̂ − θ1|| > B2L

)
< ε2,

where θ1 is the same as defined in (1.2).

(iii) There exist some absolute constants ε3 > 0 and 0 < B3L < ∞ such that the following

lim
n→∞

P
(√

n||θ̂∗ − θ̂|| > B3L|Wn

)
< ε3

holds in probability, where θ̂∗ is as defined in the Simulation Procedure above Theorem 2.1.

(iv) Let mθ(x) be differentiable with respect to θ and ∂mθ(x)
∂θ be continuous in both x and

θ. In addition, E
[(

mθ0
(X1)

∂θ

) (
mθ0

(X1)
∂θ

)τ
]

is a positive definite matrix, and

0 <
∫ ∣∣∣∣

∣∣∣∣
∂mθ(x)

∂θ
|θ=θ0

∣∣∣∣

∣∣∣∣
2

π2(x)dx < ∞.

Assumption A.3. (i) Let {∆n(x)} be a sequence of continuous functions such that

0 <
∫

∆2
n(x)π2(x)dx < ∞.

(ii) Let C2
n satisfy limn→∞ n

√
hd C2

n = ∞ and limn→∞ n C6
n = 0, where

C2
n =

∫
∆2

n(x)π2(x)dx

σ2
√

2ν2
∫

K2(v)dv
,

in which ν2 = E
[
π2(X1)

]
< ∞.

Assumptions A.1–A.3 are standard and justifiable conditions. Some detailed justifica-

tions are given in Appendix C below.
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A.2. Technical lemmas

Recall that using limn→∞ nhd = ∞

κn =

√
hd

(
µ2

3K2(0)
nhd + 4µ3

2ν3

3 K(3)(0)
)

σ3
n

≡ c1

√
hd + c2

1
n
√

hd

= c1

√
hd

(
1 + c2c

−1
1

1
nhd

)
≈ c1

√
hd. (A.2)

In order to establish some useful lemmas without including non–essential technicality,

we introduce the following simplified notation:

aij =
1

n
√

hdσn

K
(

Xi −Xj

h

)
, Ln(h) =

n∑

i=1

n∑

j=1, &=i

aijeiej ,

ρ(h) =
√

2K(3)(0)
∫

π3(u)du

3

(√∫
π2(u)du

∫
K2(v)dv

)−3 √
hd. (A.3)

We need the following lemmas; their proofs are given in Appendix C below.

Lemma A.1. Suppose that the conditions of Theorem 2.2(i) hold. Then for any h

sup
x∈IR1

∣∣∣P (Ln(h) ≤ x)− Φ(x) + ρ(h) (x2 − 1) φ(x)
∣∣∣ = O

(
hd

)
. (A.4)

Recall Ln(h) =
∑n

i=1
∑n

j=1, &=i ei aijej as defined in (A.3) and let

Tn(h) =
h

d
2

nσn

n∑

i=1

n∑

j=1, &=i

êi Kh(Xi −Xj) êj =
h

d
2

nσn

n∑

i=1

n∑

j=1, &=i

ei Kh(Xi −Xj) ej

+
h

d
2

nσn

n∑

i=1

n∑

j=1, &=i

Kh(Xi −Xj)
[
m(Xi)−m

θ̂
(Xi)

] [
m(Xj)−m

θ̂
(Xj)

]

+
2h

d
2

nσn

n∑

i=1

n∑

j=1, &=i

ei Kh(Xi −Xj)
[
m(Xj)−m

θ̂
(Xj)

]

≡ Ln(h) + Sn(h) + Dn(h), (A.5)

where Sn(h) = h
d
2

nσn

∑n
i=1

∑n
j=1, &=i Kh(Xi −Xj)

[
m(Xi)−m

θ̂
(Xi)

] [
m(Xj)−m

θ̂
(Xj)

]
and

Dn(h) =
2h

d
2

nσn

n∑

i=1

n∑

j=1, &=i

ei Kh(Xi −Xj)
[
m(Xj)−m

θ̂
(Xj)

]
. (A.6)

Define L∗n(h), S∗n(h) and D∗
n(h) as the corresponding versions of Ln(h), Sn(h) and Dn(h)

involved in (A.5) with (Xi, Yi) and θ̂ being replaced by (Xi, Y ∗
i ) and θ̂∗ respectively.
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Lemma A.2. Suppose that the conditions of Theorem 2.2(i) hold. Then

sup
x∈IR1

∣∣∣P ∗ (L∗n(h) ≤ x)− Φ(x) + ρ(h) (x2 − 1) φ(x)
∣∣∣ = OP

(
hd

)
. (A.7)

Lemma A.3. Suppose that the conditions of Theorem 2.2(i) hold. Then under H0

E [Sn(h)] = O
(√

hd
)

and E [Dn(h)] = o
(√

hd
)

, (A.8)

E∗ [S∗n(h)] = OP

(√
hd

)
and E∗ [D∗

n(h)] = oP

(√
hd

)
, (A.9)

E [Sn(h)]− E∗ [S∗n(h)] = OP

(√
hd

)
and E [Dn(h)]− E∗ [D∗

n(h)] = oP

(√
hd

)
(A.10)

in probability with respect to the joint distribution of Wn, where E∗[·] = E[·|Wn].

Lemma A.4. Suppose that the conditions of Theorem 2.2(ii) hold. Then under H1

lim
n→∞

E [Sn(h)] = ∞ and lim
n→∞

E [Dn(h)]
E [Sn(h)]

= 0. (A.11)

A.3. Proof of Theorem 2.1:

A.3.1. Proof of (2.10): Recall from (2.8) and (A.5)–(A.6) that

T̂n(h) = (Ln(h) + Sn(h) + Dn(h)) · σn

σ̂n
+ oP

(√
hd

)
, (A.12)

T̂ ∗n(h) = (L∗n(h) + S∗n(h) + D∗
n(h)) · σn

σ̂∗n
+ oP

(√
hd

)
, (A.13)

where σ2
n, σ̂2

n and σ̂∗2n are as defined in (2.4), (2.7) and (2.9) respectively.

In view of Assumption A.2 and Lemmas A.1–A.3, we may ignore any terms with orders

higher than
√

hd and then consider the following approximations:

T̂n(h) = Ln(h) + E [Sn(h)] + oP (
√

hd) and

T̂ ∗n(h) = L∗n(h) + E∗ [S∗n(h)] + oP

(√
hd

)
. (A.14)

Let s(h) = E[Sn(h)] and s∗(h) = E∗ [S∗n(h)]. We then apply Lemmas A.1 and A.2 to

obtain that uniformly over x ∈ IR1,

P
(
T̂n(h) ≤ x

)
= P

(
Ln(h) ≤ x− s(h) + oP

(√
hd

))
(A.15)

= Φ(x− s(h))− ρ(h)((x− s(h))2 − 1) φ(x− s(h)) + o
(√

hd
)

and

P ∗
(
T̂ ∗n(h) ≤ x

)
= P ∗

(
L∗n(h) ≤ x− s∗(h) + oP

(√
hd

))

= Φ(x− s∗(h))− ρ(h)((x− s∗(h))2 − 1) φ(x− s∗(h)) + oP

(√
hd

)
.

29



Theorem 2.2(i) follows consequently from (A.10) and (A.15).

A.3.2. Proof of (2.11): In view of the definition that P ∗
(
T̂ ∗n(h) ≥ l∗α

)
= α and the

conclusion from Theorem 2.1(i) that

P
(
T̂n(h) ≥ l∗α

)
− P ∗

(
T̂ ∗n(h) ≥ l∗α

)
= OP

(√
hd

)
, (A.16)

the proof of P
(
T̂n(h) ≥ l∗α

)
= α + O

(√
hd

)
follows unconditionally from the dominated

convergence theorem.

A.4. Proof of Theorem 2.2

It follows from Lemmas A.1–A.4 that

αn(h) = P
(
T̂n(h) ≥ lα|H0

)
= P (Ln(h) ≥ lα − Sn(h) + oP (Sn(h))|H0)

= 1− P (Ln(h) ≤ lα − Sn(h) + oP (Sn(h))|H0) , (A.17)

α∗n(h) = P
(
T̂n(h) ≥ l∗α|H0

)
= P (Ln(h) ≥ l∗α − Sn(h) + oP (Sn(h))|H0)

= 1− P (Ln(h) ≤ l∗α − Sn(h) + oP (Sn(h))|H0) , (A.18)

βn(h) = P
(
T̂n(h) ≥ lα|H1

)
= P (Ln(h) ≥ lα − Sn(h) + oP (Sn(h))|H1)

= 1− P (Ln(h) ≤ lα − Sn(h) + oP (Sn(h))|H1) , (A.19)

β∗n(h) = P
(
T̂n(h) ≥ l∗α|H1

)
= P (Ln(h) ≥ l∗α − Sn(h) + oP (Sn(h))|H1)

= 1− P (Ln(h) ≤ l∗α − Sn(h) + oP (Sn(h))|H1) . (A.20)

Using Assumptions A.2(iv) and A.3, a Taylor expansion of mθ(·) at θ0 implies that for

sufficiently large n

Sn(h) = C0(m)
√

hd (1 + oP (1)) under H0 and (A.21)

Sn(h) = n C2
n

√
hd (1 + oP (1)) under H1 (A.22)

hold in probability, where C2
n is as defined in Theorem 2.2(ii). The proof of Theorem 2.2

then follows from (A.15) and (A.17)–(A.22).

A.5. Proof of Theorem 2.3: The proof follows from that of Theorem 2.2. The details are

given in Appendix C below.
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Appendix B

B.1. Derivation of (3.9) in the submission

In the sequel we work with the approximate power–function β(x), and discuss how

to find a maximum for this function. Straightforward calculations imply that the first

derivative may be written as

β′(x) = φ(zα + d3x + d4x
−1) x−6

10∑

i=0

ϑix
i, (B.1)

where the coefficients are given by

ϑ0 = c2n
−1d4

4, ϑ1 = 3zαd3
4c2 n−1, ϑ2 = 2c2n

−1d3d
3
4 − d2

4c2n
−1(4− 3z2

α) + d4
4c1,

ϑ3 = 3zαd3d
2
4c2n

−1 − c2n
−1zαd4(5− z2

α) + 3zαd3
4c1,

ϑ4 = 2d3d4(−c2n
−1 + d2

4c1) + d2
4c1(2− 3z2

α),

ϑ5 = −3zαd2
3d4c2n

−1 + d3

(
−zαd4 + 3zαd2

4c1

)
− zαd4c1,

ϑ6 = −c1(1− z2
α) + d3(−1 + 2d4c1)− d2

3c2n
−1(−2 + 3z2

α)− 2d3
3d4c2n

−1,

ϑ7 = −3zαd3
3c2n

−1 − 3zαd2
3d4c1 + zαd3c1(5− z2

α),

ϑ8 = −c2d
4
3n
−1 − 2c1d

3
3d4 − c1d

2
3(3z2

α − 4), ϑ9 = −3c1zαd3
3, ϑ10 = −c1d

4
3. (B.2)

Due to the complexity of the expressions of β′(x), it is very difficult to find such an x0

explicitly. Numerically, however, it may be possible to find xew =
√

hd
ew such that

xew = arg max
x∈Hn(α)

β(x) with Hn(α) = {x : α− cmin < α(x) < α + cmin} (B.3)

when cmin is chosen as cmin = α
10 for example.

We now discuss how to get to an explicit expression of an optimal bandwidth, by

maximizing the power function over a subset of Hn(α). Note that the minimal conditions

that limn→∞ h = 0 and limn→∞ nhd = ∞ imply that there is some large integer N ≥ 1 such

that for any arbitrarily large but finite cmax ≥ 1,

h ≤ c−1
max and nhd ≥ cmax for any n ≥ N. (B.4)
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In our finite–sample analysis, we then define a new interval of the form

Hn =
[(

cmax

n

)d−1

, c−1
max

]

. (B.5)

Since Theorem 2.2(i) shows that limn→∞ αn(h) = α holds in probability under the

minimal conditions limn→∞ h = 0 and limn→∞ nhd = ∞, we have Hn ⊆ Hn(α) at least for

sufficiently large n.

In order to represent hew explicitly we consider, quite naturally, solving the optimization

problem:

hew = arg max
h∈Hn

βn(h). (B.6)

To keep the notation simple, we still use the notation hew even when Hn may not be

identical to Hn(α). We impose the very natural condition that limn→∞ nhd = ∞ and obtain

the following approximations:

σ2
n = 2µ2

2ν2

∫
K2(u)du ≡ σ2

0,

κn = σ−3
n

√
hd

(
4µ3

2ν3

3
K(3)(0) + µ2

3
K2(0)
nhd

)

≈
√

hd σ−3
0 · 4µ3

2ν3

3
K(3)(0). (B.7)

Let

a1 =
4K(3)(0)µ3

2ν
3

3σ3
0

=
√

2K(3)(0)
3

(√∫
K2(u)du

)−3

c(π) (B.8)

with c(π) =
∫

π3(x)dx
(√∫

π2(x)dx
)3 . We then have κn ≈ a1

√
hd. Let b1 = (z2

α − 1)a1.

From the condition limn→∞ nhd = ∞ and using (B.7) and (B.8), we then get the

following simplified versions:

lα − rn = zα + γn − rn ≈ zα +
(
b1 − nC2

n

)
x

≡ zα + a2 x, (B.9)

βn(h) ≈ 1− Φ(lα − rn)− κn (1− (lα − rn)2) φ(lα − rn)

≈ 1− Φ(zα + a2x)− a1 x (1− (zα + a2x)2) φ(zα + a2x)

≡ β(x), (B.10)

where a2 = b1 − nC2
n.
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The natural condition limn→∞ nhd = ∞ implies that we may take c2 = 0, and subse-

quently d4 = 0. This simplifies the expression of β′(x) substantially. As a result, we have

ϑi = 0 for 0 ≤ i ≤ 5. Thus, with the following new coefficients:

θ0 = ϑ6 = nC2
n, θ1 = ϑ7 = zα(5− z2

α)a1a2,

θ2 = ϑ8 = −(3z2
α − 4)a1a

2
2, θ3 = ϑ9 = −3zαa1a

3
2, θ4 = ϑ10 = −a4

2a1, (B.11)

equation (B.1) simplifies to

β′(x) = φ(zα + a2x)
(
θ0 + θ1x + θ2x

2 + θ3x
3 + θ4x

4
)

. (B.12)

Since φ(·) is nonnegative, the equation β′(x) = 0 is equivalent to

θ0 + θ1x + θ2x
2 + θ3x

3 + θ4x
4 = 0. (B.13)

We find the zeros of equation (B.13) by using existing results for a general quartic

equation (see for example, http://mathworld.wolfram.com/QuarticEquation.html). Note

that equation (B.13) can be written as

x4 + r3x
3 + r2x

2 + r1x + r0 = 0 with ri =
θi

θ4
, i = 0, 1, 2, 3. (B.14)

Let x = u− 1
4r3,

p2 = r2 −
3
8
r2
3, p1 = r1 −

1
2
r2r3 +

1
8
r3
3, p0 = r0 −

1
4
r1r3 +

1
16

r2r
2
3 −

3
256

r4
3. (B.15)

We then may eliminate x3 from (B.14) to obtain a standard equation of the form

u4 + p2u
2 + p1u + p0 = 0. (B.16)

Existing results immediately imply that the zeros can be represented by

u1 =
1
2
(A1 + A2), u2 =

1
2
(A1 −A2), (B.17)

u3 =
1
2
(−A1 + A3), u4 =

1
2
(−A1 −A3), (B.18)
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where A1 =
√
−p2 + y1,

A2 =






√
−A2

1 − 2p2 − 2p1A
−1
1 for A1 -= 0

√
−2p2 + 2

√
y2
1 − 4p0 for A1 = 0

A3 =






√
−A2

1 − 2p2 + 2p1A
−1
1 for A1 -= 0,

√
−2p2 − 2

√
y2
1 − 4p0 for A1 = 0,

(B.19)

in which y1 is a real root of the cubic equation

y3 + q2y
2 + q1y + q0 = 0, (B.20)

where q2 = −p2, q1 = −4p0 and q0 = 4p2p0 − p2
1. A real root of equation (B.20) is

y1 = −q2

3
+ (B1 + B2), (B.21)

in which

B1 =
(
Rc +

√
Dc

)1/3
and B2 =

(
Rc −

√
Dc

)1/3
(B.22)

with

Rc =
9q2q1 − 27q0 − 2q3

2

54
, Qc =

3q1 − q2
2

9
and Dc = Q3

c + R2
c . (B.23)

In order to evaluate the four roots in (B.17) and (B.18), note first of all that the quantities

Rc and Dc can be re–expressed as

Rc =
−72p0p2 + 27p2

1 + 2p3
2

54
and Qc =

−12p0 − p2
2

9
. (B.24)

For each of the quantities involved we now provide the dominant terms, in view of the

fact that tn ≡ θ0 = nC2
n can be viewed as sufficiently large when assuming that tn →∞ as

n →∞.

Note that for finding the dominant term in the quantity B1 + B2, some caution is

needed since certain terms cancel out each other, and the dominant term comes from the

second–order terms in the quantities B1 and B2. Indeed, we have

B1 =
(√

Dc

)1/3
(

1 +
Rc√
Dc

)1/3

≈
(√

Dc

)1/3
{

1 +
1
3

Rc√
Dc

}
, (B.25)
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where we used a Taylor expansion of the function g(y) = y1/3 around the point 1. Similarly,

using a Taylor expansion of the function g(y) = y1/3 around the point −1 we have

B2 =
(√

Dc

)1/3
(
−1 +

Rc√
Dc

)1/3

≈
(√

Dc

)1/3
{
−1 +

1
3

Rc√
Dc

}
, (B.26)

and then B1 + B2 is given by B1 + B2 ≈
2
3
Rc D−1/3

c . Note that the dominant term for the

latter term is
2
3

(
−4

3
p0p2

) [

−
(4

3

)3

p3
0

]−1/3

=
2
3
p2. (B.27)

It may be shown that all four roots of the equation (B.16) are of order

u1,2,3,4 = (1 + o(1)) (−p0)
1
4 = (1 + o(1)) (−r0)

1
4 = (1 + o(1)) a

− 1
4

1 t
− 3

4
n , (B.28)

but that only one root is real and non–negative, namely u1 given by

u1 = (1 + o(1)) a
− 1

4
1 t

− 3
4

n . (B.29)

Letting x1 = u1 − 1
4r3, the optimal bandwidth is given approximately by

hew = x
2
d
1 = (1 + o(1)) u

2
d
1 = (1 + o(1)) a

− 1
2d

1 t
− 3

2d
n (B.30)

recalling the notation x =
√

hd, where a1 =
√

2K(3)(0)
3

(√∫
K2(u)du

)−3
c(π) is as defined

before.

Thus, equation (3.9) of the submission has been derived.

B.2. Derivation of (3.10) in the submission

In order to show that hew is the maximizer of the power function βn(h) at h = hew we

need to verify that

β′′n(x)|
x=
√

hd
ew

< 0 (B.31)

for at least sufficiently large n.

Let x0 =
√

hd
ew. Using β′(x0) = 0 and equation (B.13), we have

β′′(x0) = φ(zα + a2x0)
(
4θ4x

3
0 + 3θ3x

2
0 + 2θ2x0 + θ1

)
. (B.32)
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We thus have

β′′(x)|
x=
√

hd
ew

=
[
φ(zα + a2x)

(
4θ4x

3 + 3θ3x
2 + 2θ2x + θ1

)]
|
x=
√

hd
ew

. (B.33)

In order to verify (B.31), it suffices to show that

[
4θ4x

3 + 3θ3x
2 + 2θ2x + θ1

]
|
x=
√

hd
ew

< 0, (B.34)

which follows immediately from the fact that θ4x3 is the dominant term.

B.3. Comments on (3.11) in the submission

As given in (3.11), we have

ĥew = â
− 1

2d
1 t̂

− 3
2d

n , (B.35)

where

t̂n = nĈ2
n with Ĉ2

n =
1
n

∑n
i=1 ∆̂2

n(Xi)π̂(Xi)

µ̂2

√
2ν̂2

∫
K2(v)dv

and

â1 =
√

2K(3)(0)

3
(√∫

K2(u)du
)3 ĉ(π) with ĉ(π) =

1
n

∑n
i=1 π̂2(Xi)

(√
1
n

∑n
i=1 π̂(Xi)

)3 ,

in which µ̂2, ν̂2 and π̂(·) are as defined in (2.7) of the submission, and ∆̂n(x) is given by

∆̂n(x) =

∑n
i=1 K

(
x−Xi

b̂cv

) (
Yi −m

θ̂
(Xi)

)

∑n
i=1 K

(
x−Xi

b̂cv

)

In real data application, ∆̂n(x) can be computed directly from using the data. One

may then imply whether there is any departure and how significant the departure is. In

simulation study, computing ĥew requires the availability of the data {Yi} generated under

either H0 or H1. As a result, the value of ĥew under H0 can be different from that of ĥew

under H1 as they should be.

Note that under H0: ∆n(·) ≡ 0

∆̂n(x) =

∑n
i=1 K

(
x−Xi

b̂cv

) (
Yi −m

θ̂
(Xi)

)

∑n
i=1 K

(
x−Xi

b̂cv

) =

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

) (
mθ0(Xi)−m

θ̂
(Xi)

)

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

)
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+

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

)
∆n(Xi)

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

) +

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

)
ei

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

)

=

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

) (
mθ0(Xi)−m

θ̂
(Xi)

)

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

) +

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

)
ei

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

) .

Under H0: ∆n(·) ≡ 0, it may be shown that

Ĉ2
n = D1

1
nb̂d

cv

(1 + oP (1)),

where D1 > 0 is some constant.

As a result, under H0,

ĥew = D2 b̂
3
2
cv (1 + oP (1)),

where D2 > 0 is also some constant.

This shows that the optimal bandwidth used for computing sizes should be smaller

(asymptotically) than the conventional bandwidth b̂cv used for optimal estimation purposes.

Under H1: ∆n(·) -= 0, it may be shown that

∆̂n(x) =

∑n
i=1 K

(
x−Xi

b̂cv

) (
Yi −m

θ̂
(Xi)

)

∑n
i=1 K

(
x−Xi

b̂cv

) =

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

) (
mθ1(Xi)−m

θ̂
(Xi)

)

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

)

+

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

)
∆n(Xi)

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

) +

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

)
ei

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

) (B.36)

= oP (1) +

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

)
∆n(Xi)

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

) + oP (1)

= ∆n(x) + oP (1).

Thus, we have

ĥew ≈ C5

(
n C2

n

)− 3
2d with C2

n =
∫

∆2
n(x)π2(x)dx

σ2
√

2ν2
∫

K2(v)dv
.
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This shows that the order of ĥew is proportional to the rate of ∆n(·) converging to zero.

As in Example 4.1 of the submission, when ∆n(x) is specified for the simulation, one may

clearly see the relationship between them. For example, when ∆n(x) = cn ∆(x) as in the

case in the simulation study in Example 4.1, the order of ĥew is proportional to
(
n c2

n

)− 3
2d .

B.4. Proof of Proposition 3.1

In view of (B.36), Assumption A.2 and the assumption that infx∈IRd |∆n(x)|
√

nb̂d
cv →P

∞, we can obtain that uniformly in x ∈ Dπ = {x ∈ IRd : π(x) > 0},

∆̂n(x)
∆n(x)

− 1 =
∆̂n(x)−∆n(x)

∆n(x)
=

1
∆n(x)

n∑

i=1

Wni(x) (∆n(Xi)−∆n(x))

=
1

∆n(x)

n∑

i=1

Wni(x)
(
(Xi − x)τ ∆′

n(ξ)
)
+ oP (1)

=
1

∆n(x)

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

)
((Xi − x)τ ∆′

n(ξ))

1

n̂bd
cv

∑n
i=1 K

(
x−Xi

b̂cv

) + oP (1)

= −1τ∆′
n(x)

∆n(x)
(1 + oP (1)) b̂d

cv

∫
uK(u)du + oP (1) = oP (1) (B.37)

using Taylor expansions to ∆n(x), where ξ is between x and Xi, and 1 = (1, 1, · · · , 1)τ

denotes the identity vector.

Let B̂2
n = µ̂2

√
2ν̂2

∫
K2(v)dv, B2 = σ2

√
2ν2

∫
K2(v)dv, C̃2

n = 1
n

∑n
i=1 ∆̂2

n(Xi)π(Xi)

and C
2
n = 1

n

∑n
i=1 ∆2

n(Xi)π(Xi).

Because of the conventional convergence, in order to show that Ĉ2
n

C2
n
→P 1, it suffices to

show that for n large enough

∣∣∣∣∣
C̃2

n

C
2
n

− 1

∣∣∣∣∣ =
1
n

∣∣∣
∑n

i=1

(
∆̂2

n(Xi)−∆2
n(Xi)

)
π(Xi)

∣∣∣
1
n

∑n
i=1 ∆2

n(Xi)π(Xi)
=

∣∣∣
∫ (

∆̂2
n(x)−∆2

n(x)
)

π2(x)dx + oP (1)
∣∣∣

∫
∆2

n(x)π2(x)dx + oP (1)

=

∣∣∣∣
∫ (

∆̂2
n(x)

∆2
n(x) − 1

)
∆2

n(x)π2(x)dx + oP (1)
∣∣∣∣

∫
∆2

n(x)π2(x)dx + oP (1)

≤ sup
x∈Dπ

∣∣∣∣∣
∆̂2

n(x)
∆2

n(x)
− 1

∣∣∣∣∣

∫
∆2

n(x)π2(x)dx + oP (1)∫
∆2

n(x)π2(x)dx + oP (1)

≤ sup
x∈Dπ

∣∣∣∣∣
∆̂2

n(x)
∆2

n(x)
− 1

∣∣∣∣∣ = oP (1) (B.38)
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using (B.37).

In view of the Edgeworth expansion of βn(h) in Theorem 2.2(ii), in order to prove

Proposition 3.1, it suffices to show that as n →∞

ĥew

hew
− 1 →P 0, (B.39)

which follows from using Taylor expansions as follows:

ĥew

hew
− 1 =

(
tn
t̂n

) 3
2d

− 1 + oP (1) =
(

Cn

Ĉn

) 3
2d

− 1 + oP (1)

=
(

1 +
Cn

Ĉn

− 1
) 3

2d

− 1 + oP (1)

=
3
2d

(
Cn

Ĉn

− 1
)

(1 + oP (1)) = oP (1) (B.40)

following (B.38). This completes the proof of Proposition 3.1.

B.5. Justification of the use of (4.12)

Similarly to existing proofs (Lemma A.2 of Li 1999 for example), it can be shown that

T̂n(h) of (2.9) can be approximated by T̃n(h) of (4.12) in the following form:

T̂n(h) = T̃n(h) + oP

(√
hd

)
. (B.41)

As T̃n(h) is invariant to the form of σ(·) and thus does not involve a consistent estimator

of σ(·), it is used for the continuous–time model case.

B.6. Justification of the applicability of the proposed theory and methodology

to model (4.10) and the equations (4.13) and (4.14)

By examining the derivation of (3.9) of the submission, it can be shown that

hew = x
2
d
ew = a

− 1
2d

1 t
− 3

2d
n , (B.42)

where a1 =
√

2K(3)(0)
3

(√∫
K2(u)du

)−3
c(π) with

c(π) =
∫

π3(x)σ6(x)dx ·
(√∫

π2(x)σ4(x)dx

)−3

.
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Thus, equation (3.11) of the submission becomes

ĥew = â
− 1

2d
1 t̂

− 3
2d

n , (B.43)

where t̂n = nĈ2
n, â1 =

√
2K(3)(0)

3

(√∫
K2(u)du

)−3
ĉ(π),

ĉ(π) =
1
n

n∑

i=1

π̂2(Xi)σ̂6(Xi) ·
(

1
n

n∑

i=1

π̂(Xi)σ̂4(Xi)
)− 3

2

,

in which π̂(x) · σ̂2(x) = 1

n̂bd
cv

∑n
s=1 K

(
x−Xs

b̂cv

)
ê2
s with êt = Yt −m

θ̂
(Xt).

Before checking the proofs of the corresponding versions of Theorems 2.1–2.3 for model

(4.10), we need to note that the leading term Qn(h) in (2.7) becomes

Qn(h) =
1

n
√

hdσn

n∑

i=1

n∑

j=1, &=i

εi σ(Xi)K
(

Xi −Xj

h

)
σ(Xj) εj . (B.44)

Since aij = σ(Xi)K
(

Xi−Xj

h

)
σ(Xj) is still a symmetric function of (Xi, Xj) and {εi} is still

a sequence of i.i.d. errors, it can be checked that the corresponding versions of Lemmas

A.1–A.4 remain true.

Appendix C

C.1. Justification of Assumptions A.1–A.3

Assumption A.1 is quite standard in this kind of discussion. Similar conditions have

been used in Li (1999) for example. Assumption A.1(i) can be extended to the case where

ei = σ(Xi)εi as discussed in (4.10).

Assumption A.2(i) is required to ensure that the parametric estimator θ̂ is a
√

n–

consistent estimator of θ0. In addition, Assumption A.2(ii) requires that θ̂ may also be

considered as a
√

n–consistent estimator to θ1. This is achievable in this kind of local alter-

native case as in (1.2). For example, in the univariate linear model case where mθ(x) = βx

and m(x) = mθ0(x) = β0x under H0 and m(x) = mθ1(x) + ∆n(x) = β1x + ∆n(x) under

H1, the conventional least squares estimator

β̂ =
∑n

i=1 XiYi∑n
i=1 X2

i
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is a
√

n–consistent estimator of both β0 and β1 when the conditions E[X1∆n(X1)] = 0 and

E[X1e1] = 0 are satisfied. This is because

β̂ − β0 =
∑n

i=1 Xiei∑n
i=1 X2

i

=
E[X1e1]
E[X2

1 ]
+ OP (n−1/2)

= OP (n−1/2) under H0, and

β̂ − β1 =
∑n

i=1 Xi∆n(Xi)∑n
i=1 X2

i

+
∑n

i=1 Xiei∑n
i=1 X2

i

=
E[X1∆n(X1)]

E[X2
1 ]

+
E[X1e1]
E[X2

1 ]
+ OP (n−1/2)

= OP (n−1/2) under H1

using both E[X1∆n(X1)] = 0 and E[X1e1] = 0.

Alternatively, one may use a semiparametric estimator θ of the form

β =
∑n

i=1 X̃iỸi
∑n

i=1 X̃2
i

, (C.1)

where X̃i = Xi−
∑n

j=1 Wnj(Xi)Xj , Ỹi = Yi−
∑n

j=1 Wnj(Xi)Yj and Wni(x) =
K

(x−Xi
h

)
∑n

j=1
K

(
x−Xj

h

) .

In this case, unlike the case where there are two different regressors {Xi} and {Vi} and the

conventional semiparametric estimation is applicable to a partially linear model of the form

Yi = Xiβ + g(Vi) + ei discussed in Härdle et al (2000), β is not a
√

n–consistent estimator

of β.

Assumption A.3 is needed to ensure that the power of the proposed test goes to one

when n → ∞. To ensure that the optimal bandwidth ĥew satisfies Assumption A.1(v),

Assumption A.3 is needed to impose certain rate of C2
n → 0. In the case where h = ĥew,

the assumptions that limn→∞ nhd = ∞ and limn→∞ n
√

hd C2
n = ∞ reduce to

lim
n→∞

n C2
n = ∞ and lim

n→∞
n C6

n = 0.

Assumption A.3 holds in most cases, including the case where the marginal density function

π(·) either has compact support or satisfies limx→∞∆n(x)π(x) = 0.

C.2. Proofs of Lemmas A.1–A.4
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In order to establish some useful lemmas without including non–essential technicality,

we introduce the following simplified notation:

aij =
1

n
√

hdσn

K
(

Xi −Xj

h

)
, Ln(h) =

n∑

i=1

n∑

j=1, &=i

aijeiej ,

ρ(h) =
√

2K(3)(0)
∫

π3(u)du

3

(√∫
π2(u)du

∫
K2(v)dv

)−3 √
hd. (C.2)

To simplify the proof of Lemma A.1 below, we use the result that

lim
n→∞

σ2
n = 2µ2

2ν2

∫
K2(u)du ≡ σ2

0

and then assume without loss of generality that σ0 ≡ 1.

We now have the following lemma.

Lemma A.1. Suppose that the conditions of Theorem 2.1(i) hold. Then for any h

sup
x∈IR1

∣∣∣P (Ln(h) ≤ x)− Φ(x) + ρ(h) (x2 − 1) φ(x)
∣∣∣ = O

(
hd

)
. (C.3)

Proof: The proof is based on a non–trivial application of Theorem 1.1 of Götze,

Tikhomirov and Yurchenko (2004) listed in Appendix D below. As the proof itself is ex-

tremely technical, we provide only an outline below.

In view of the form of Ln(h), we need to follow the proofs of Theorems 1.1 and 3.1 as

well as Lemmas 3.2–3.5 of Götze, Tikhomirov and Yurchenko (2004) step by step to finish

the proof of Lemma A.1. Note that their proofs of Theorems 1.1 and 3.1 remain true.

The proofs of Lemmas 3.2–3.5 also remain true by successive conditioning arguments when

needed.

We may also apply Lemma D.1 below to the conditional probability P (Ln(h) ≤ x|Xn)

and then use the dominated convergence theorem to deduce (A.4) unconditionally.

To avoid repeating the conditioning argument (given Xn) for each case in the following

derivations, the corresponding conditioning arguments are all understood to be held in

probability with respect to the joint distribution of Xn = (X1, · · · , Xn).

In any case, in order to apply Lemma D.1 listed in the Appendix D below, we need to

verify certain conditions of Lemma D.1.

ajj = n−1h−d/2K(0)
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dτ = n−1h−d/2K(0) (1, · · · , 1)τ

TrA = h−d/2K(0)

V 2 = (nhd)−1K2(0)

‖A0‖2 = n−2h−d
n∑

s,t=1
s #=t

K2
(

Xs −Xt

h

)

dτA0d = n−3h−3d/2K2(0)
n∑

s,t=1
s #=t

K
(

xs − xt

h

)
. (C.4)

Obviously

Tr(A3
0) =

n∑

q=1

n∑

k=1
k #=q

n∑

j=1
j #=k
j #=q

aqkakjajq

=
(
n−1h−d/2

)3 n∑

q=1

n∑

k=1
k #=q

n∑

j=1
j #=k
j #=q

K
(

Xq −Xk

h

)
K

(
Xk −Xj

h

)
K

(
Xj −Xq

h

)

Using the stationary ergodic theorem and the α–mixing condition, the sums involving

the kernel function K in (C.4) can be approximated as follows:

1
n2

n∑

j,k=1
j #=k

K2
(

Xi −Xj

h

)
≈

∫ ∫
K2

(
x− y

h

)
π(x)π(y)dxdy

≈ hd
∫ ∫

K2(u)π(y + uh)π(y)dudy

≈ hd
∫ ∫

K2(u)π2(v)dudv, (C.5)

where π(x) is the marginal density function of X1.

Similarly, for the second sum in expression (C.4)

1
n2

n∑

s,t=1
s #=t

K
(

Xs −Xt

h

)
≈ hd

∫
K(u)du

∫
π2(v)dv. (C.6)

For the triple sum in expression (C.5) we find

1
n3

n∑

q=1

n∑

k=1
k #=q

n∑

j=1
j #=k
j #=q

K
(

Xq −Xk

h

)
K

(
Xk −Xj

h

)
K

(
Xj −Xq

h

)
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≈
∫ ∫ ∫

K
(

x− y

h

)
K

(
y − z

h

)
K

(
z − x

h

)
π(x)π(y)π(z)dxdydz

≈ h2d
∫ ∫ ∫

K(−(u + v))K(v)K(u)π(z − uh)π(z + vh)π(z)dudvdz

≈ h2d
∫ ∫ ∫

K(−(u + v))K(v)K(u)π3(z)dudvdz

= h2d
∫ ∫

K(u + v)K(v)K(u)dudv
∫

π3(z)dz

= h2d
∫ (∫

K(w)K(w − v)dw
)

K(v)dv
∫

π3(z)dz

= h2d
∫

K ∗K(v)K(v)dv
∫

π3(u)du

= h2d (K ∗K ∗K)(0)
∫

π3(u)du. (C.7)

Combining (C.4)—(C.7) we obtain the following approximate behaviours

TrA ≈ h−d/2K(0)

V 2 ≈ n−1h−dK2(0)

‖A0‖2 ≈
∫

K2(u)du
∫

π2(v)dv

dτA0d ≈ n−1h−d/2K2(0)
∫

K(u)du
∫

π2(v)dv

Tr(A3
0) ≈ hd/2 K(3)(0)

∫
π3(u)du, (C.8)

where we denoted K(3)(·) = (K ∗K ∗K)(·) the three times convolution of K with itself.

From this we get approximations for the quantities σ2
∗ and κ involved in Lemma B.1

below:

σ2
∗ ≈ n−1h−d(µ4 − µ2

2)K
2(0) + 2µ2

2

∫
K2(u)du

∫
π2(v)dv

κ ≈
µ2

3K2(0)
nhd + 4µ3

2

∫
π3(u)du

3 K(3)(0)
σ3
∗

√
hd

≈
√

2K(3)(0)
3

(√∫
K2(u)du

)−3

c(π)
√

hd ≡ ρ(h),

where c(π) =
∫

π3(x)dx
(√∫

π2(x)dx
)3
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In order to apply Lemma D.1 to finish the proof, we need to show that the upperbound

of Lemma D.1 tends to 0 as n →∞. Observe that

‖A‖2 = ‖A0‖2 +
n∑

j=1

a2
jj

≈
∫

K2(u)du
∫

π2(v)dv + (nhd)−1K2(0). (C.9)

Similar to (C.7), we may show that

n∑

t=1

L4
t =

n∑

s=1

(
n∑

t=1

a2
st

)2

=
n∑

s=1

n∑

t=1

a4
st +

n∑

s=1

n∑

t1=1

n∑

t2=1, &=t1

a2
st1a

2
st2

=
1

n2hd

∫
K4(u)du

∫
π2(v)dv

+
1

nhd

∫ ∫
K2(w)K2

(
w +

u− v

h

)
π(u)π(v)dwdudv

=
1

n2hd

∫
K4(u)du

∫
π2(v)dv +

1
n

K(2)
2 (0)

∫
π2(v)dv, (C.10)

where K(2)
2 (0) is the two–time convolution of K2(·) with itself.

Similarly, we may show that as n →∞

λ1 ≤ max
1≤j≤n

n∑

i=1

|aij | ≤
√

hd

∫
K(u)du

∫
π2(v)dv. (C.11)

Consequently, using that h → 0 and nhd →∞, we find that

|λ1|2

‖A‖2 ≈
hd

∫
π2(v)dv∫

K2(u)du
. (C.12)

From (C.7)–(C.10) we then find that
(

n∑

t=1

L4
t

)1/2

‖A‖2 ≈

√
K(2)

2 (0)
∫

π2(v)dv
√

n
. (C.13)

Thus, (C.12) and (C.13) imply that there is some constant C∞ such that

M ≈ C∞hd, (C.14)

which shows that the upperbound in Lemma B.1 tends to 0 at a rate proportional to hd.

This completes the proof of Lemma A.1.

45



Recall Ln(h) =
∑n

t=1
∑n

s=1, &=t es astet as defined before and let

Tn(h) =
h

d
2

nσn

n∑

i=1

n∑

j=1, &=i

êi Kh(Xi −Xj) êj =
h

d
2

nσn

n∑

i=1

n∑

j=1, &=i

ei Kh(Xi −Xj) ej

+
h

d
2

nσn

n∑

i=1

n∑

j=1, &=i

Kh(Xi −Xj)
[
m(Xi)−m

θ̂
(Xi)

] [
m(Xj)−m

θ̂
(Xj)

]

+
2h

d
2

nσn

n∑

i=1

n∑

j=1, &=i

ei Kh(Xi −Xj)
[
m(Xj)−m

θ̂
(Xj)

]

≡ Ln(h) + Sn(h) + Dn(h), (C.15)

where

Sn(h) =
h

d
2

nσn

n∑

i=1

n∑

j=1, &=i

Kh(Xi −Xj)
[
m(Xi)−m

θ̂
(Xi)

] [
m(Xj)−m

θ̂
(Xj)

]
,

Dn(h) =
2h

d
2

nσn

n∑

i=1

n∑

j=1, &=i

ei Kh(Xi −Xj)
[
m(Xj)−m

θ̂
(Xj)

]
. (C.16)

We then define L∗n(h), S∗n(h) and D∗
n(h) as the corresponding versions of Ln(h), Sn(h)

and Dn(h) involved in (A.5) with (Xt, Yt) and θ̂ being replaced by (Xt, Y ∗
t ) and θ̂∗ respec-

tively.

Lemma A.2. Suppose that the conditions of Theorem 2.2(i) hold. Then the following

sup
x∈IR1

∣∣∣P ∗ (L∗n(h) ≤ x)− Φ(x) + ρ(h) (x2 − 1) φ(x)
∣∣∣ = OP

(
hd

)
(C.17)

holds in probability.

Proof: Since the proof follows similarly from that of Lemma A.1 using conditioning

arguments given Wn = {(Xi, Yi) : 1 ≤ i ≤ n}, we do not wish to repeat the details.

Lemma A.3. (i) Suppose that the conditions of Theorem 2.2(ii) hold. Then under H0

E [Sn(h)] = O
(√

hd
)

and E [Dn(h)] = o
(√

hd
)

. (C.18)

(ii) Suppose that the conditions of Theorem 2.2(ii) hold. Then under H0

E∗ [S∗n(h)] = OP

(√
hd

)
and E∗ [D∗

n(h)] = oP

(√
hd

)
(C.19)

46



in probability with respect to the joint distribution of Wn, where E∗[·] = E[·|Wn].

(iii) Suppose that the conditions of Theorem 2.2(i) hold. Then under H0

E [Sn(h)]− E∗ [S∗n(h)] = OP

(√
hd

)
and E [Dn(h)]− E∗ [D∗

n(h)] = oP

(√
hd

)
(C.20)

in probability with respect to the joint distribution of Wn.

Proof: As the proofs of (i)–(iii) are quite similar, we need only to prove the first part

of (iii). In view of the definition of {ast} and (A.6), we have

Sn(h) =
n∑

t=1

n∑

s=1, &=t

(
m(Xs)−m

θ̂
(Xs)

)
ast

(
m(Xt)−m

θ̂
(Xt)

)
,

S∗n(h) =
n∑

t=1

n∑

s=1, &=t

(
m(Xs)−m

θ̂∗
(Xs)

)
ast

(
m(Xt)−m

θ̂∗
(Xt)

)
. (C.21)

Ignoring the higher–order terms, it can be shown that the leading term of S∗n(h)−Sn(h)

is represented approximately by

S∗n(h)− Sn(h) = (1 + oP (1))
n∑

t=1

n∑

s=1, &=t

(
m

θ̂
(Xs)−m

θ̂∗
(Xs)

)
ast

(
m

θ̂
(Xt)−m

θ̂∗
(Xt)

)
.

(C.22)

Using (C.22), Assumption A.2 and the fact that

E[ast] =
1

n
√

hdσn

E
[
K

(
Xs −Xt

h

)]

=
√

hd

nσn

∫
K(u)du

∫
π2(v)dv =

√
hd

nσn

∫
π2(v)dv, (C.23)

we can deduce that

E[Sn(h)]− E∗[S∗n(h)] = OP

(√
hd

)
, (C.24)

which completes an outline of the proof.

Lemma A.4. Suppose that the conditions of Theorem 2.2(iii) hold. Then under H1

lim
n→∞

E [Sn(h)] = ∞ and lim
n→∞

E [Dn(h)]
E [Sn(h)]

= 0. (C.25)
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Proof: In view of the definitions of and Sn(h) and Dn(h), we need only to show the

first part of (A.11). Observe that for θ1 defined in the second part of Assumption A.2(ii),

Sn(h) =
n∑

t=1

n∑

s=1, &=t

(
m(Xs)−m

θ̂
(Xs)

)
ast

(
m(Xt)−m

θ̂
(Xt)

)

=
n∑

t=1

n∑

s=1, &=t

(m(Xs)−mθ1(Xs)) ast (m(Xt)−mθ1(Xt))

+
T∑

t=1

T∑

s=1, &=t

(
mθ1(Xs)−m

θ̂
(Xs)

)
ast

(
mθ1(Xt)−m

θ̂
(Xt)

)

+ oP (Sn(h)) . (C.26)

In view of (C.26), using the second part of Assumption A.2(ii), in order to prove (A.11)

it suffices to show that for n →∞ and h → 0,

E




n∑

t=1

n∑

s=1, &=t

(m(Xs)−mθ1(Xs)) ast (m(Xt)−mθ1(Xt))



 →∞. (C.27)

Simple calculations imply that as n →∞ and h → 0

E




n∑

t=1

n∑

s=1, &=t

(m(Xs)−mθ1(Xs)) ast (m(Xt)−mθ1(Xt))





= c2
nE




n∑

t=1

n∑

s=1, &=t

∆n(Xs)ast∆n(Xt)





= σ−1
n (1 + o(1))

√
hd n

∫
K(u)du

∫
∆2

n(v)π2(v)dv

= σ−1
n (1 + o(1)) n

√
hd

∫
∆2

n(v)π2(v)dv →∞ (C.28)

using Assumption A.3, where σn is as defined before.

C.3. Proof of Theorem 2.3

Define Fn,h(x) and F ∗n,h(x) as the exact finite–sample distributions of T̂n(h) and T̂ ∗n(h),

respectively. Using existing results (Serfling 1980; Hall 1992) and Theorem 2.2(i) imply

lα − zα =
Φ(zα)− Fn,h(lα)

φ(zα)
+ oP (|lα − zα|) =

1
φ(zα)

(
(z2

α − 1) φ(zα) a1

√
hd

)
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+ oP (|lα − zα|) = b1

√
hd + oP (|lα − zα|) ,

l∗α − zα =
Φ(zα)− F ∗n,h(l∗α)

φ(zα)
+ oP (|l∗α − zα|) =

1
φ(zα)

(
(z2

α − 1) φ(zα) a1

√
hd

)

+ oP (|l∗α − zα|) = b1

√
hd + oP (|l∗α − zα|) , (C.29)

where a1 and b1 are as defined above Theorem 2.3. The proof is now finished.

Appendix D

Götze, Tikhomirov and Yurchenko (2004) consider a quadratic sum of the form

Qn =
n∑

j=1

ajj(X2
j − E[X2

j ]) +
∑

1≤j &=k≤n

ajkXjXk , (D.1)

where X1, · · · , Xn are independent and identically distributed random variables with E[X1] =

0. E[X2
1 ] < ∞ and E[X6

1 ] < ∞. Here {aij} is a sequence of real numbers possibly depending

on n. They actually consider a more general setup than this, but for simplicity we briefly

present this simplified form.

The following notations are needed.

A = (ajk)n
j,k=1 : n× n matrix containing all coefficients ajk

‖A‖ =
n∑

j,k=1

a2
jk;

TrA =
n∑

j=1

ajj : the trace of the matrix A;

V 2 =
∑n

j=1 a2
jj L2

j =
n∑

k=1

a2
jk, j = 1, · · · , n;

dτ = (a11, a22, · · · , ann) ∈ IRn: n-dimensional column vector containing all diagonal

elements of the matrix A;

A0 denotes the n× n matrix with elements ajk if j -= k and equal to 0, if j = k;

µk = E(Xk
1 ), βk = E|X1|k k = 1, · · · , 6;
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λ1 the maximal in absolute value, eigenvalue of the matrix A;

M = max





|λ1|2

‖A‖2 ,

(
n∑

j=1

L4
j )

1
2

‖A‖2




;

σ2
∗ = (µ4 − µ2

2)V 2 + 2µ2
2‖A0‖2 κ = σ−3

∗

(
µ2

3d
τA0d + 4

3µ2
3TrA3

0

)
.

In the above notations the superscript τ denotes the transposition of a vector or matrix.

Note that the matrix A0 is obtained from the matrix A by replacing all diagonal elements

by 0.

The coefficients in the quadratic form (D.1) should satisfy some conditions:

Q(i): ‖A‖ < ∞; Q(ii): there exists some absolute positive constant b2
1 > 0 such

that

1− V 2

‖A‖2 ≥ b2
1 . (D.2)

Note that (D.2) means that the ‘non-diagonal’ part of ‖A‖ is bounded away from

zero and has a non-negligible influence on the distribution of Qn.

Lemma D.1. Under conditions Q(i) and Q(ii), we have

sup
x∈IR1

∣∣P{Qn/σ∗ ≤ x}− Φ(x) + κΦ′′′(x)
∣∣ ≤ Cb−4

1

(
β2

3 + V ‖A‖−1β6

)
µ−3

2 M , (D.3)

with C being an absolute positive constant and where Φ denotes the cumulative distribution

function of the standard normal.

Proof: Its proof is given in the proof of Theorem 1.1 in Götze, Tikhomirov and Yurchenko

(2004).
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Chen, S. X., Härdle, W. and Li, M. (2003), “An Empirical Likelihood Goodness–of–Fit Test
for Time Series,” Journal of the Royal Statistical Society Series B, 65, 663–678.

Dette, H. (1999), “A consistent text for the functional form of a regression based on a difference
of variance estimators, ”The Annals of Statistics, 27, 1012–1040.

Dette, H., and Spreckelsen, I. (2004), “Some Comments on Specification Tests in Nonpara-
metric Absolutely Regular Processes,” Journal of Time Series Analysis, 25, 159–172.

Fan, J. (1996), “Test of Significance Based on Wavelet Thresholding and Neyman’s Truncation,”
Journal of the American Statistical Association, 434, 674–688.

Fan, J., and Gijbels, I. (1996), Local Polynomial Modelling and Its Applications, London: Chap-
man and Hall.

Fan, J., and Yao, Q. (2003), Nonlinear Time Series: Parametric and Nonparametric Methods,
New York: Springer.

Fan, J., and Zhang, C. M. (2003), “A Re-examination of Stanton’s Diffusion Estimation with
Applications to Financial Model Validation,” Journal of the American Statistical Association,
461, 118–134.

Fan, J., Zhang, C. M., and Zhang, J. (2001), “Generalized Likelihood Ratio Statistics and
Wilks Phenomenon,” Annals of Statistics, 29, 153–193.

Fan, Y., and Linton, O. (2003), “Some Higher–Order Theory for a Consistent Nonparametric
Model Specification Test,” Journal of Statistical Planning and Inference, 109, 125–154.

Franke, J., Kreiss, J. P., and Mammen, E. (2002), “Bootstrap of Kernel Smoothing in
Nonlinear Time Series,” Bernoulli, 8, 1–38.

Gao, J. (2007). Nonlinear Time Series: Semiparametric and Nonparametric Methods. London:
Chapman & Hall/CRC.
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