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Abstract

We characterize the Pareto-frontier in a simple Mirrleesian model of income taxation. We
show how the second-best frontier which incorporates incentive constraints due to private
information on productive abilities relates to the first-best frontier which takes only resource
constraints into account. In particular, we argue that the second-best frontier can be in-
terpreted as a Laffer-curve. We also use this second-best frontier for a comparative statics
analysis of how optimal income tax rates vary with the degree of inequity aversion, and for
a characterization of optimal public-good provision. We show that a more inequity averse
policy maker chooses tax schedules that are more redistributive and involve higher marginal
tax rates, but chooses a lower public-goods provision level.
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1 Introduction

In this note we characterize the set of Pareto-efficient allocations in a simple version of the
Mirrlees (1971) model of optimal nonlinear income taxation. We consider an economy where
there are two types of individuals who differ in their productive abilities. Individuals have a
linear effort cost, so that an individual’s marginal cost of contributing to the economy’s output
is low if the individual is high-skilled and high if the individual is low-skilled.1 We obtain the
following results.

First, we show how the second-best Pareto-frontier compares to the first-best Pareto-frontier
in a model in which information about productive abilities is publicly observed. The first-best
frontier is linear and there is neither a maximal, nor a minimal utility level for high-skilled
or low-skilled individuals. With the second-best Pareto-frontier, by contrast, such maxima and
minima exist. Moreover, we show that each point on the second-best Pareto-frontier is associated
with a marginal income tax rate for low-skilled individuals, and a marginal income tax rate for
high-skilled individuals. Both marginal tax rates are shown to be non-decreasing functions of
the utility of the low-skilled individuals.

The fact that there is a minimal of utility for the high-skilled individuals implies that the
second-best frontier is similar to a Laffer-curve: if the high-skilled individuals’ utility level
fell below the minimal level, then an increase of their utility level would also make the low-
skilled individuals better off. Moreover, the minimal utility level of the high-skilled is associated
with maximal marginal income tax rates. Having a minimal utility level for the high-skilled
individuals is hence akin to the possibility, known from models of linear income taxation (see,
e.g., Sheshinski (1972), or Hellwig (1986)), that if the income tax rate is very high, then a
decrease of the income tax rate will lead to an increase of tax revenue.

Second, we use the Pareto-frontier to characterize an optimal income tax. The frontier makes
it possible to characterize an optimal income tax in a straightforward way: given a social welfare
function, just choose an optimal point on the frontier. This is a optimization problem whose
solution can be characterized by a first-order condition, which is shown to be both necessary
and sufficient for welfare-maximization.2 Moreover, we conduct a comparative statics analysis:
an increase in inequity aversion – more formally, an increase of the weight on the low-skilled
individuals’ utility in the social welfare function – is shown to be associated with an increase of
the marginal tax rate of the high-skilled individuals, and with an increase of the marginal tax
rate of the low-skilled individuals.3

Third, we use the Pareto-frontier to characterize the optimal level of public-good provision.
As an extension, we assume that individuals derive utility from the provision of a public good
and solve for an optimal scheme of income taxation and public-good provision. Once more, the
Pareto-frontier enables us to characterize the optimal policy via the first order conditions of an
unconstrained optimization problem. Again, we show that these first-order conditions are not

1For an analysis of optimal utilitarian income taxation with linear effort costs, see Weymark (1986, 1987).
2The literature on optimal income taxation mostly focusses on necessary conditions. Our simple setup enables

us to show sufficiency also.
3For a model of linear income taxation, a similar comparative statics analysis can be found in Hellwig (1986).
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only necessary but also sufficient.4 Again, we undertake a comparative statics exercise and find
that an increase in inequity aversion is, ceteris paribus, associated with a lower public-goods
provision level.

Thus, a main finding of this paper is that an increase in inequity aversion has different im-
plications for redistributive income taxation and public-goods provision. It implies that there
are more direct income transfers from high-skilled to low-skilled individuals and also higher
marginal tax rates. However, it also implies that there is less public-goods provision. The rea-
son for this last observation is that low-skilled individuals suffer more from the higher taxes that
are needed in order to finance increased public-goods provision. A more inequity-averse policy
maker attaches more weight to this and, therefore opts for a smaller public-goods provision level.

This paper contributes to the literature in the following way: it complements the work by
Weymark (1986, 1987) who provides a comparative statics analysis of optimal income taxes,
under the maintained assumption that the policy maker’s objective is to redistribute resources
from high-skilled to low-skilled individuals. Our work does not rely on such an assumption,
but characterizes the whole set of Pareto-efficient allocations. Our comparative static results
therefore apply to all efficient income tax schedules, and not just to the subset that is relevant
if the policy is chosen by an inequity-averse policy maker.5

This present paper’s characterization of the Pareto-frontier will prove useful for applications.
Having a one-to-one mapping between Pareto-efficient income tax schedules and points on the
Pareto-frontier makes it possible to circumvent the solution of constraint optimization problems
with incentive and resource constraints. This property has been useful for the characterization
of optimal tax and expenditure policies in Bierbrauer (2010). Moreover, a complete charac-
terization of the Pareto-frontier is necessary for any political economy treatment of nonlinear
income taxation. If the policy maker’s objective function is an endogenous object due to political
competition, then one cannot a priori limit attention to tax schedules that would be chosen by
an inequity-averse policy maker.

The remainder is organized as follows. Section 2 specifies the environment. The Pareto-frontier
is derived in Section 3. Section 4 contains the characterization of an optimal income tax system,
and Section 5 extends the model so as to include an optimal decision on public-good provision.
The last section concludes. All proofs are relegated to an Appendix.

2 The Environment

An individual i has utility function Ui = u(ci) − li, where ci is consumption of private good
and li denotes hours worked by individual i. The function u(.) satisfies u′(.) > 0, u′′(.) < 0,
and limc→0 u

′(c) = ∞, and limc→∞ u
′(c) = 0. Individuals differ in their productive abilities.

4Necessary conditions have previously been derived, for instance, by Boadway and Keen (1993), Sandmo

(1998), or Gahvari (2006).
5The work by Stiglitz (1982, 1987) contains some results about Pareto-efficient income tax schedules. This

work, however, neither contains a complete characterization of the Pareto-frontier, nor comparative statics results.
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Each individual has a skill parameter wi, where wi ∈ {wL, wH} with 0 < wL < wH . There is a
continuum of individuals of mass 1. The population share of individuals with a high skill level
is commonly known and denoted by fH . Let fL = 1 − fH . We assume in the following that
1 ≥ fH

wH
wL

.6

Output can produced according to two constant returns to scale technologies. If an individual
with productivity wt, t ∈ {L,H}, works for one hour, this yields wt units of output. We denote
the output that is provided by individual i in the following by yi, where yi = wili. We can
hence write an individual’s utility function also as Ui = u(ci) − yi

wi
. Individuals have private

information on their skills and also on the hours that they work. It is, however, observable
how much output an individual provides, yi, and how much the individual consumes, ci. An
allocation consists of a consumption-output combination for productive individuals, (cH , yH),
and a consumption-output combination for less productive individuals, (cL, yL).

Our analysis does not incorporate upper and lower bounds on the hours that individuals can
work, and the output they can produce. Obviously, we cannot justify this assumption as being
realistic. Our reason for imposing it is that it makes the differences between a first-best and a
second-best analysis very transparent. As will become clear, the presence of incentive constraints
endogenously generates upper and lower bounds on the productive effort of individuals, even if
there is no physical constraint at all.

We use a mechanism design approach to study the Mirrleesian income tax problem; that
is, instead of assuming that individuals are confronted with an income tax schedule T that
relates their pre-tax-income, y, to their after-tax income, c, and then choose y and c in a utility-
maximizing way, we focus immediately on the set of allocations (cL, yL, cH , yH) that permit a
decentralization via some income tax schedule. As is well-known,7 an allocation can be reached
via an income tax schedule if and only if it is feasible and incentive compatible. Feasibility
requires that

fH yH + fL yL = r + fH cH + fL cL , (1)

where r is an exogenous revenue requirement. Incentive compatibility holds provided that

u(cH)− yH

wH
≥ u(cL)− yL

wH
, (2)

and

u(cL)− yL

wL
≥ u(cH)− yH

wL
. (3)

An allocation is said to be admissible if it is feasible and incentive compatible.

3 The Pareto-Frontier

An allocation (cL, yL, cH , yH) is said to be Pareto-efficient if it is admissible and there is no
admissible allocation (c̃L, ỹL, c̃H , ỹH) such that u(c̃H) − ỹH

wH
≥ u(cH) − yH

wH
and u(c̃H) − ỹH

wH
≥

u(cL)− yL
wL

, with at least one of these inequalities being strict.

6This assumptions simplifies the exposition. For the optimization problems studied in the Appendix, it implies

that non-negativity constraints on individual consumption levels may be safely ignored.
7See, e.g., Guesnerie (1995) for a proof.
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To characterize the set of Pareto-efficient allocations, we study a family of optimization
problems, which depend on two parameters, namely the revenue requirement r, and a given
utility level for the low-skilled individuals,

u(cL)− yL

wL
= vL . (4)

Given r and vL, we denote the set of admissible allocations satisfying (4) by A(vL, r). We can
now define the value function VH : (vL, r) 7→ VH(vL, r) of the following optimization problem:

VH(vL, r) := max u(cH)− yH
wH

s.t. (cL, yL, cH , yH) ∈ A(vL, r) . (5)

For given r, we identify the second best Pareto-frontier with the range of VH so that VH1 < 0,
where VHj denotes the derivative of the function VH with respect to its jth argument.

Proposition 1 For given r, the function VH has the following properties:

I. There exist numbers vL(r) and vL(r) so that VH1 < 0 if and only if vL ∈ [vL(r), vL(r)].

II. There exist numbers v1
L(r), and v2

L(r) with vL(r) < v1
L(r) < v2

L(r) < vL(r), so that:

(a) For vL ∈ [vL(r), v1
L(r)[, the low-skilled individuals’ incentive constraint (3) is binding,

VH11 < 0, limvL→vL(r) | VH1 |= 0 and limvL→v1
L(r) | VH1 |= fL wL

fH wH
.

(b) For vL ∈ [v1
L(r), v2

L(r)], no incentive constraint is binding. Moreover, VH11 = 0, and
| VH1 |= fL wL

fH wH
.

(c) For vL ∈]v2
L(r), vL(r)], the high-skilled individuals’ incentive constraint (2) is binding,

VH11 < 0, limvL→v2
L(r) | VH1 |= fL wL

fH wH
, and limvL→vL(r) | VH1 |=∞.

The Proposition shows that along the second-best Pareto-frontier there are maximal utility levels
for low-skilled and for high-skilled individuals. For vL < vL(r), or vL > vL(r), the function VH is
increasing in vL, which is incompatible with Pareto-optimality. Part II shows that the Pareto-
frontier can be divided into three segments: for low values of vL, the low-skilled individuals’
incentive constraint is binding, and for high values of vL, the high-skilled individuals’ incentive
constraint is binding. Moreover, there is a range of intermediate values of vL so that neither the
low-skilled individuals’ nor the high-skilled individuals’ incentive constraint is binding. Hence,
in this range the second-best Pareto-frontier coincides with the first-best Pareto-frontier, which
does not take the requirement of incentive compatibility into account. The question which of the
incentive constraints is binding is decisive for the curvature of the Pareto-frontier. It is strictly
concave only if one of the incentive constraints is binding and linear otherwise. Moreover, the
function VH is shown to satisfy the Inada-conditions

limvL→vL(r) | VH1 |= 0 and limvL→vL(r) | VH1 |=∞ . (6)

We now turn to the marginal income tax rates that are associated with any given point on
the Pareto-frontier. To any point on the frontier corresponds the allocation

a(vL, r) = (cL(vL, r), yL(vL, r), cH(vL, r), yH(vL, r)) ,
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vL

VH(., r) First-best

Second-best

vL(r) vL(r)v1
L(r) v2

L(r)

Figure 1: Pareto-Frontiers.

which solves Problem (5). Following the literature, we interpret the difference between an
individual’s marginal rate of transformation between output y and consumption c, which equals
1 for each individual, and the individual’s marginal rate of substitution, 1

wu′(c) , as the marginal
income tax rate that the individual faces.8 With reference to the allocation a(vL, r), we therefore
define the marginal tax rates for high-skilled and low-skilled individuals, respectively, as follows:

τH(vL, r) := 1− 1
wHu′(cH(vL, r))

and τL(vL, r) := 1− 1
wLu′(cL(vL, r))

.

Proposition 2 Both marginal tax rates are non-decreasing functions of vL. We also have that
τH(vL, r) ≤ 0 and that τL(vL, r) ≥ 0, for all vL and r. More specifically,

(a) For vL ∈ [vL(r), v1
L(r)[, τH < 0, τH1 > 0, and τL = 0.

(b) For vL ∈ [v1
L(r), v2

L(r)], τH = 0, and τL = 0.

(c) For vL ∈]v2
L(r), vL(r)], τH = 0, τL > 0, and τL1 > 0.

According to Proposition 2, both the sign and the comparative statics properties of the marginal
income tax rates depend on which incentive constraint is binding. If the low-skilled are very
badly off, their incentive constraint is binding, which implies an upward distortion of labor
supply for the high-skilled, τH < 0, and no distortionary taxation of low-skilled labour, τL = 0.
Moreover, as the low-skilled are made better off, the upward distortion of high-skilled labour
supply becomes smaller and smaller, so that τH1 > 0. In the range where no incentive constraint
binds, there are no distortions at all, i.e., both marginal tax rates are equal to 0. Finally, if

8This interpretation is based on the first-order condition of the utility maximization problem that individuals

face when confronted with an income tax schedule T : choose c and y in order to maximize u(c) − y
w

subject to

the constraint c = y − T (y). The first order condition is T ′(y) = 1− 1
wu′(c) .
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the low-skilled individual’s utility level is very high, and hence the high-skilled individual’s
utility level very low, the high-skilled individuals’ incentive constraint is binding. This yields a
downward distortion of the supply of low-skilled labor, τL > 0, and no distortion of high-skilled
labor supply, τH = 0. Moreover, the downward distortion gets more severe as we make the
low-skilled individuals even better off, τL1 > 0.

The second-best Pareto-frontier is akin to a Laffer-curve in that it indicates what marginal
tax rates are compatible with efficiency. The typical Laffer-consideration identifies efficiency
with an ability to generate tax revenues, so that a tax system is inefficient if higher revenues
can be generated with lower tax rates. We, by contrast, work with a notion of Pareto-efficiency
under conditions of asymmetric information. The conclusions that emerge are, however, similar:
The increased demand for tax revenues in the conventional Laffer-analysis, corresponds in our
model to an increased concern for the low-skilled individuals’ well being. This goes hand in
hand with an increase of marginal tax rates. However, there is a pair of maximal tax rates so
that a further increase would fail to channel more resources to the low-skilled.

To complete our characterization of the Pareto-frontier, the following proposition documents
the consequences of a change in the exogenous revenue requirement r.

Proposition 3 The maximal and minimal utility levels of the low-skilled individuals vL and
vL, and the maximal and minimal utility levels of the high-skilled individuals V H and V H ,
are strictly decreasing functions of r, where, for any r, we define V H(r) := VH(vL(r), r) and
V H(r) := VH(vL(r), r).

An increase in the revenue requirement r yields to a crowding out of utility-possibilities, i.e.,
if r goes up then the range of possible utility levels for the low-skilled individuals shifts to the
left and the range of possible utility levels for the high-skilled individuals shifts downwards; see
Figure 2.

4 Optimal Income Taxation

For a given revenue requirement r, we can use the Pareto-frontier in order to characterize
a welfare-maximizing income tax system by the solution to following maximization problem,
maxvL gHVH(vL, r) + gLvL, where gH and gL = 1− gH are, respectively, the welfare weights on
the utility levels of the high-skilled and the low-skilled individuals. We have shown that VH is
a strictly decreasing and globally concave function of vL, which satisfies the Inada-conditions.
Consequently, the following first order condition is both necessary and sufficient for a welfare-
maximizing choice of vL,

VH1 = − gL

gH
. (7)

The solution to this optimization problem is illustrated in Figure 3 as a tangency condition. The
downward sloping line which touches the Pareto-frontier at the point v∗L is a social indifference
curve with slope − gL

gH
.
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vL

VH

VH(., r̃)

VH(., r)

vL(r̃) vL(r̃)vL(r) vL(r)

V H(r̃)

V H(r̃)

V H(r)

V H(r)

Figure 2: Second-Best Pareto-Frontiers with r < r̃.

Given this point on the frontier, we can use Proposition 2 to trace out the implications for
marginal income tax rates. In particular, we can do a comparative statics analysis so as to check
what an increased concern for the low-skilled – i.e., an increase of gL, so that the social indiffer-
ence curves become steeper – implies for marginal income tax rates. If we increase gL, then this
leads to an increase of the welfare-maximizing utility level of the low-skilled individuals, v∗L. By
Proposition 2, the implications for marginal tax rates depend on which incentive constraints are
binding.

As is well-known,9 the optimal utilitarian allocation with gL = fL and gH = fH is such
that the high-skilled individuals’ incentive constraint is binding. If, starting from this point
on the Pareto-frontier, we increase the utility of the low-skilled, vL, the associated change in
consumption levels and output requirements is such that the marginal tax rate of the high-
skilled individuals does not change, i.e., we still have “no distortion at the top”. At the same
time, the “downward distortion” of low-skilled labor supply becomes more severe; that is, the
marginal income taxes for the low-skilled go up. If instead, we decrease the utility of the
low-skilled, the effect on marginal tax rates depends on how much we reduce vL. A small
reduction will again leave the high-skilled individuals’ marginal tax rate unchanged, but reduce
the downward distortions for the low-skilled individuals. Eventually, the downward distortion
completely disappears and we are in the region of the Pareto-frontier in which no incentive
constraint binds. In this region, there are no distortions and small changes in vL have no impact
on marginal tax rates. However, if we decrease vL substantially, we eventually reach the region
of the Pareto-frontier so that the low-skilled individuals’ incentive compatibility constraint is
binding. This is associated with upward distortions in the supply of high-skilled labor (negative
marginal tax rates) and no distortions in the supply of low-skilled labor (zero marginal tax

9See, for instance, Weymark (1987) for a proof.
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rates). Moreover, the lower the utility level of the low-skilled, the more severe is the upward
distortion for the high-skilled individuals.

vL

VH(., r)
Social Indifference Curve

v∗L

Figure 3: Second-Best Pareto-Frontier and Social Indifference Curve.

5 Optimal Public-Good Provision

We now consider an extended version of our model, so as to endogenize the revenue requirement
r. More specifically, we assume that there is a public good q which can be produced at a cost
r(q), where we assume that the cost function r(·) satisfies r′(.) > 0, and r′′(.) > 0. We assume
that the preferences of type t-individuals, t ∈ {L,H}, are now given by θt q + u(c)− y

wt
, where

θt is a parameter which equals the marginal utility from public-good provision for individuals
of type t ∈ {L,H}. For this extended model, a welfare-maximizing policy solves the following
problem

max
vL,q

gH(θH q + VH(vL, r(q))) + gL(θL q + vL) . (8)

Proposition 4 A pair (v∗L, q
∗) solves the policy problem in (8) if and only if it satisfies condition

(7) and

gH θH + gL θL = −gH VH2 r
′ . (9)

The optimality condition in (9) is a version of the Samuelson rule which characterizes the optimal
public-good provision level by the requirement that the marginal welfare gain from increased
public-good provision, gH θH + gL θL, must be equal to the welfare loss due to the resulting
increase of the revenue requirement −gH VH2 r

′. According to Proposition 4, this condition,
in conjunction with the optimality condition (7) for vL, is both necessary and sufficient for the
characterization of a welfare-maximizing policy.
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Proposition 4 can be used for a comparative statics of optimal public-goods provision with
respect to the policy maker’s degree of inequity aversion. In the Appendix it is shown that
VH2 = VH1

wL
− 1

wH
, see Lemma 12. If we use this expression together with condition (7) to

substitute for VH2 in (9), we obtain the following formulation of the Samuleson rule,

r′ =
gHθH + gLθL

gH
wH

+ gL
wL

. (10)

This equation states that the marginal cost of public-goods provision is equal to the ratio of the
marginal welfare gain from increased public-good provision, and the marginal welfare loss from
increased output provision (Note that a marginal increase of yL implies a welfare loss of gL

wL
, and

that a marginal increase of yH implies a welfare loss of gH
wH

).
If we assume that individuals differ only in their disutility of productive effort and set θL =

θH =: θ̄, then, upon using that gL + gH = 1, we may rewrite this expression as

r′ =
θ̄

1
wH

+ gL( 1
wL
− 1

wH
)
. (11)

Now, it is easily verified that an increased concern for the well-being of the low-skilled implies a
lower lower public-goods provision level. Thus, we find that a policy maker who cares more for
the well-being of low-skilled individuals provides less public goods. The reason is that such a
policy maker attaches more weight to the low-skilled individuals’ larger utility loss from having
to provide the funds that are needed to pay for the public good.

6 Concluding Remarks

This paper has provided a complete analytical characterization of efficient tax and expenditure
policies in a simple Mirrleesian model of optimal income taxation. This made it possible to
undertake a rigorous comparative statics analysis of optimal policies with respect to the policy
maker’s degree of inequity aversion. We find that a larger concern for the well-being of low-
skilled individuals goes together with larger direct income transfers from high-skilled to low-
skilled individuals and with higher marginal income tax rates. At the same time, however, there
is a decreased supply of public goods.
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Appendix

Proof of Proposition 1

Step 1: We show that the Pareto-frontier can be divided into a part in which only the low-
skilled individuals’ incentive constraint is binding, a part in which no incentive constraint is
binding, and a part in which only the high-skilled individuals’ incentive constraint is binding.

Lemma 1 If an allocation is Pareto-efficient, then at most one of the constraints (2) and (3)
is binding.

Proof Suppose that both incentive constraints are binding. This implies that the given alloca-
tion must involve pooling, i.e., yL = yH and cL = cH . To see this, add the two binding incentive
constraints in order to obtain yH = yL. Obviously, incentive compatibility then also requires
that cH = cL. To complete the proof, we show that it is possible to Pareto-improve upon an
allocation that involves pooling. Consider an allocation with y := yL = yH and c := cL = cH .
The budget constraint implies that y = c + r. This pooling allocation is Pareto-dominated
by the “laissez-faire” allocation which gives to each type of household the bundle that solves
maxci,yi u(ci) − yi

wi
s.t. yi = ci + r. By a standard revealed preferences argument, the laissez-

faire allocation is incentive-compatible and makes no individual worse off in comparison to the
initial pooling allocation. Moreover, it is easy to verify that the laissez-faire allocation satisfies
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yL < yH and cL < cH . Hence the high-skilled or the low-skilled choose a consumption-output
combination that differs from the initial bundle (c, y) and are thereby made strictly better off.
Finally, note that the laissez-faire allocation is feasible. �

Lemma 2 There are Pareto-efficient allocations so that neither the high-skilled individuals’
incentive constraint (2) nor the low-skilled individuals’ incentive constraint (3) is binding.

Proof It follows from the first fundamental theorem of welfare economics that the laissez-faire
allocation, defined formally in the proof of Lemma 1, is, in a first-best sense, Pareto-efficient.
Since the laissez-faire allocation is such that the high-skilled individuals’ incentive constraint (2)
and the low-skilled individuals’ incentive constraint (3) are satisfied, it is also second-best Pareto-
efficient. The Lemma now follows from the observation that, at the laissez-faire allocation, both
incentive constraints hold as strict inequalities. �

Lemma 3 There are Pareto-efficient allocations so that the high-skilled individuals’ incentive
constraint (2) is binding and there are Pareto-efficient allocations so that the low-skilled indi-
viduals’ incentive constraint (3) is binding.

Proof The arguments in the proofs of Lemmas 1 and 2 imply that the laissez-faire allocation
is Pareto-efficient and is such that both incentive constraints are slack. This implies that there
is a neighborhood V lf

L of the laissez-faire allocation so that vL ∈ V lf
L implies that

VH(vL, r) := max u(cH)− yH
wH

s.t. u(cL)− yL
wL

= vL,

fH yH + fL yL = r + fH cH + fL cL .
(12)

The solution to this optimization problem can be conveniently characterized using a Lagrangean
approach. This yields the following results: the consumption levels cL(vL, r) and cH(vL, r) satisfy
the following first order conditions,

u′(cH(vL, r)) = 1
wH

and u′(cL(vL, r)) = 1
wL

. (13)

The low-skilled individuals output requirement then follows from

u(cL(vL, r))−
yL(vL, r)
wL

= vL . (14)

Given that cL(vL, r), cH(vL, r) and yL(vL, r) are determined by (13) and (14), the high-skilled
individuals’ output requirement follows from

fH yH(vL, r) + fL yL(vL, r) = r + fH cH(vL, r) + fL cL(vL, r) . (15)

Equations (13)-(15) can be used to undertake a comparative statics exercise of the allocation

a(vL, r) = (cL(vL, r), yL(vL, r), cH(vl, r), yH(vL, r)) .

11



with respect to vL. This yields the following observations:

cL1 = cH1 = 0, yL1 = −wL < 0, yH1 = fL
fH
wL > 0 . (16)

Consequently, if we start from an allocation with vL ∈ V lf
L , which has slack in both incentive

constraints, a marginal change of vL has the following consequences: (i) For the low-skilled
individuals, we have that

d

dvL

[(
u(cL(vL, r))−

yL(vL, r)
wL

)
−
(
u(cH(vL, r))−

yH(vL, r)
wL

)]
= 1 +

fL

fH
> 0 .

This implies that, if starting from vL ∈ V lf
L , we decrease vL, this reduces the slack in the

low-skilled individuals’ incentive constraint in a linear way. Hence, we eventually reach an
allocation where the low-skilled individuals’ incentive constraint is binding. This proves the
second statement in Lemma 3.

(ii) For the high-skilled individuals, we have that

d

dvL

[(
u(cH(vL, r))−

yH(vL, r)
wH

)
−
(
u(cL(vL, r))−

yL(vL, r)
wH

)]
= −wL

wH

(
1 +

fL

fH

)
< 0 .

Hence, if starting from vL ∈ V lf
L , we increase vL, this reduces the slack in the high-skilled

individuals’ incentive constraint in a linear way. Hence, we eventually reach an allocation where
the high-skilled individuals’ incentive constraint is binding. This proves the first statement in
Lemma 3.

�

Step 2: We characterize the Pareto-frontier in the region where the high-skilled individuals’
incentive constraint (2) is binding.

Lemma 4 A solution a(vL, r) = (cL(vL, r), yL(vL, r), cH(vL, r), yH(vL, r)) of Problem (5) which
is such that the constraint (2) is binding can be characterized by the following system of equations.
The consumption-level of the high-skilled individuals satisfies

u′(cH(vL, r)) =
1
wH

. (17)

Given cH(vL, r), cL(vL, r) is implicitly characterized by the equation

fH
wH

wL
u(cH(vL, r))+

(
1− fH

wH

wL

)
u(cL(vL, r))−

r + fHcH(vL, r) + fLcL(vL, r)
wL

= vL .(18)

Given cL(vL, r) and cH(vL, r) the output requirements yL(vL, r) and yH(vL, r) are determined,
respectively, as

yL(vL, r) = r + fHcH(vL, r) + fLcL(vL, r)− fHwH(u(cH(vL, r))− u(cL(vL, r))) , (19)

and

yH(vL, r) = r + fHcH(vL, r) + fLcL(vL, r) + fLwH(u(cH(vL, r))− u(cL(vL, r))) . (20)
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Finally, the slope of the Pareto-frontier satisfies

VH1(vL, r) = −
fLwL(u′(cL(vL, r))− 1

wH
)

fL − (wL − fHwH)u′(cL(vL, r))
. (21)

Proof We can use the fact that the constraint (2) is binding, and the resource constraint (1) to
solve for yL(vL, r) and yH(vL, r), respectively, as functions of cL(vL, r) and cH(vL, r). This yields
equations (19) and (20). We write the utility level of high-skilled and low-skilled individuals,
respectively, as functions cL and cH . This yields the indirect utility functions

UH(cL, cH) := u(cH)− yH

wH
= fHu(cH) + fLu(cL)− r + fHcH + fLcL

wH
,

and

UL(cL, cH) := u(cL)− yL

wL
= fH

wH

wL
u(cH) +

(
1− fH

wH

wL

)
u(cL)− r + fHcH + fLcL

wL
.

The Pareto-problem can now be stated as follows: choose (cL, cH) in order to maximize UH(cL, cH)
subject to the constraint that UL(cL, cH) = vL. Note that this constraint is equivalent to equa-
tion (18) in Lemma 4. Using a Lagrangean approach, the solution (c∗L(vL), c∗H(vL) to this
problem can be characterized by the first-order conditions with respect to cH and cL. These
first order conditions can, respectively, be written as

u′(cH) =
1
wH

,

which proves equation (17) in Lemma 4, and

γ =
fLwL(u′(cL)− 1

wH
)

fL − (wL − fHwH)u′(cL)
,

where the Lagrange-multiplier γ is defined in such a way that

γ = − d

dvL
UH(c∗L(vL), c∗H(vL)) ,

which proves (21) in Lemma 4. �

Lemma 5 Let V H
L be defined by the property that vL ∈ V H

L if and only if the solution a(vL, r) =
(cL(vL, r), yL(vL, r), cH(vL, r), yH(vL, r)) of Problem (5) is such that the high-skilled individuals’
incentive constraint (2) is binding. For vL ∈ V H

L , we have that

cL1 < 0, cH1 = 0 and VH11 < 0 . (22)

Proof It follows immediately from equation (17) that cH1 = 0. We now seek to show that
cL1 < 0. Observe first that cL(vL, r) < cH(vL, r). To see this, note that equations (19) and
(20) imply that yH(vL, r) > yL(vL, r). Since the high-skilled individuals’ incentive constraint is
binding, u(cH)− yH

wH
= u(cL)− yL

wH
, we must have cL(vL, r) < cH(vL, r). Since u′(cH) = 1

wH
, by
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(17) this implies in particular that u′(cL) > 1
wH

. Hence, the numerator of the fraction on the
left-hand side of (21) is positive. Along the Pareto-frontier it must be that VH1 < 0, so that the
denominator of this fraction is also positive, i.e.,

fL − (wL − fHwH)u′(cL(vL, r)) > 0 . (23)

Using that cH1 = 0, we can use equation (18) to obtain

cL1 = − wL

fL − (wL − fHwH)u′(cL)
< 0 . (24)

Finally, (21) can be used to obtain

VH11 = −fLwL(1 + fHwHu
′(cL))u′′(cL)cL1

(fL − (wL − fHwH)u′(cL))2
< 0 . (25)

�

Lemma 6 The set V H
L has a maximal element, denoted by vL. Moreover, limvL→vL | VH1 |=∞.

Proof The maximal element of V H
L is given as

vL = max
cL,cH

UL(cL, cH) ,

where UL is the indirect utility function defined in the proof of Lemma 4. The first-order
conditions of this problem are both necessary and sufficient since the function UL can be shown
to be negative-definite under our assumption that 1 ≥ fH

wH
wL

. The following first-order condition
characterizes cL(vL, r),

fL − (wL − fHwH)u′(cL(vL, r)) = 0 .

Since cL1 < 0, we have that fL − (wL − fHwH)u′(cL(vL, r)) converges from above to 0, as vL

converges to vL. This observation in conjunction with equation (22) in Lemma 4 implies that
limvL→vL | VH1 |=∞. �

Lemma 7 The set V H
L has a minimal element, denoted by v2

L. Moreover, limvL→v2
L
| VH1 |=

fL wL
fH wH

.

Proof We have shown in the proof of Lemma 3, that if we start from an allocation so that no
incentive constraint is binding and increase vL we eventually reach the region where the high-
skilled individuals’ incentive constraint is binding. The utility level v2

L marks the boundary of
these two regions. The corresponding allocation is characterized by the equations u′(cH(v2

L, r)) =
1

wH
, u′(cL(v2

L, r)) = 1
wL

as well as by (19) and (20). Plugging u′(cL(v2
L, r)) = 1

wL
into (21) yields,

| VH1 |= fL wL
fH wH

. �
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Step 3: We characterize the Pareto-frontier in the region where no incentive constraint is
binding. The characterization of a Pareto-efficient in this region is given in the proof of Lemma
3. In particular, using this characterization we obtain:

VH1 =
∂

∂vL

[
u(cH(vL, r))−

yH(vL, r)
wH

]
= − fL wL

fH wH
.

Step 4: We characterize the Pareto-frontier in the region where the low-skilled individuals’
incentive constraint (3) is binding. This follows from similar arguments as in Step 2. We
therefore only state the analog versions of Lemmas 4-7, without giving a formal proof.

Lemma 8 A solution a(vL, r) = (cL(vL, r), yL(vL, r), cH(vL, r), yH(vL, r)) of Problem (5) which
is such that the constraint (3) is binding can be characterized by the following system of equations.
The consumption-level of the low-skilled individuals satisfies

u′(cL(vL, r)) =
1
wL

. (26)

Given cL(vL, r), cH(vL, r) is implicitly characterized by

fLu(cL(vL, r)) + fHu(cH(vL, r))−
r + fHcH(vL, r) + fLcL(vL, r)

wL
= vL . (27)

Given cL(vL, r) and cH(vL, r) the output requirements yL(vL, r) and yH(vL, r) are determined,
respectively, as

yL(vL, r) = r + fHcH(vL, r) + fLcL(vL, r)− fHwL(u(cH(vL, r))− u(cL(vL, r))) , (28)

and

yH(vL, r) = r + fHcH(vL, r) + fLcL(vL, r) + fLwL(u(cH(vL, r))− u(cL(vL, r))) . (29)

Finally, the slope of the Pareto-frontier satisfies

VH1(vL, r) = −
(1− fL

wL
wH

)u′(cH(vL, r))− fH
wH

fH( 1
wL
− u′(cH(vL, r)))

. (30)

Lemma 9 Let V H
H be defined by the property that vL ∈ V H

H if and only if the solution a(vL, r) =
(cL(vL, r), yL(vL, r), cH(vL, r), yH(vL, r)) of Problem (5) is such that the low-skilled individuals’
incentive constraint (3) is binding. For vL ∈ V H

H we have that,

cL1 = 0, cH1 < 0 and VH11 < 0 . (31)

Lemma 10 The set V H
H has a minimal element, denoted by vL. Moreover, limvL→vL

| VH1 |= 0.

Lemma 11 The set V H
H has a maximal element, denoted by v1

L. Moreover, limvL→v1
L
| VH1 |=

fL wL
fH wH

.
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Proof of Proposition 2

(a): It follows from the definition of marginal tax rates, equation (26) in Lemma 8, and the fact
that cL1 = 0 in Lemma 9 that τL = τL1 = 0. The facts that cH1 < 0 in Lemma 9, and that
u′(cH(v1

L, r)) = 1
wH

, imply that τH < 0, for all vL ∈ [vL, v
1
L[. Moreover, cH1 < 0 also implies

that τH1 > 0.
(b): This follows immediately from the definition of marginal tax rates and the observation,

in the proof of Lemma 3, that u′(cH(vL, r)) = 1
wH

and that u′(cL(vL, r)) = 1
wL

, whenever vL is
such that no incentive constraint is binding.

(c): It follows from the definition of marginal tax rates, equation (17) in Lemma 4, and the
fact that cH1 = 0 in Lemma 5 that τH = τH1 = 0. The facts that cL1 < 0 in Lemma 5, and
that u′(cL(v2

L, r)) = 1
wL

, see the arguments in the proof of Lemma 7, imply that τL > 0, for all
vL ∈]v2

L, vL]. Moreover, cL1 < 0 also implies that τL1 > 0.

Proof of Proposition 3

We prove our claim for the maximal utility level of the low-skilled vL and the minimal utility
level of the high-skilled V H . The proof for vL and V H follows from a symmetric argument.

In the proof of Proposition 1 we have shown that cL(vL(r), r) and cH(vL(r), r) do not depend
on r: Recall that cH(vL(r), r) satisfies u′(cH(vL(r), r) = 1

wH
, as shown in Lemma 4, and that

cL(vL(r), r) satisfies fL − (wL − fHwH)u′(cL(vL(r), r)) = 0 as shown in the proof of Lemma 6.
Hence,

d

dr
cL(vL(r), r) =

d

dr
cH(vL(r), r) = 0 . (32)

To establish that vL and V H are decreasing functions of r it therefore suffices to show that
yL(vL(r), r) and yH(vL(r), r) are both increasing functions of r. Using using equations (19) and
(20), see Lemma 4, and equation (32) we obtain:

d

dr
yL(vL(r), r) =

d

dr
yH(vL(r), r) = 1 . (33)

Proof of Proposition 4

We seek to show that the first order conditions (7) and (9) are sufficient for an optimal choice
of vL and q. To this end, we show that the Hessian of the function

W (vL, q) = gH(θH q + VH(vL, r(q))) + gL(θL q + vL) ,

which we henceforth denote by

H =

(
gHVH11 gHVH21 r

′

gHVH21 r
′ gH

(
VH22 (r′)2 + VH2 r

′′)
)

is negative-definite. The following Lemma will prove useful for this purpose.
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Lemma 12 The function VH has the following properties

VH2 =
VH1

wL
− 1
wH

, (34)

and

VH21 = VH11
wL

and VH22 = VH11

w2
L
. (35)

Proof To prove this Lemma, we note that a Pareto-efficient allocation a(vL, r) solves the
Pareto-problem in (5). We can setup a Lagrangean for this problem and derive the following set
of first order conditions, for the choice of yH and yL, respectively,

− 1
wH

+ λfH −
νH

wH
+
νL

wL
= 0 , (36)

and

λfL −
γ

wL
+
νH

wH
− νL

wL
= 0 , (37)

where λ is the strictly positive multiplier on the resource constraint, γ is the strictly positive
multiplier on constraint u(cL) − yL

wL
= vL, νL is the non-negative multiplier on the low-skilled

individuals’ incentive constraint, and νH is the non-negative multiplier on the high-skilled in-
dividuals’ incentive constraint. Upon adding the first-order conditions (36) and (37), we find
that

λ =
γ

wL
+

1
wH

. (38)

It follows from the properties of the Lagrangean multipliers that λ = −VH2 and γ = −VH1.
Using these facts to substitute for λ and γ in (38) establishes that (34) holds true. Once (34) is
established, the statements in (35) follow immediately. �

Let Q(x1, x2) = (x1 x2)H(x1 x2)t be the quadratic form associated with the Hessian H. Upon
using Lemma 12 to substitute VH11

wL
for VH21, and VH11

w2
L

for VH22, we compute

Q(x1, x2) = gHVH11

(
x1 +

r′

wL
x2

)2

+ gHVH2r
′′x2

2 .

From Proposition 1, VH11 ≤ 0 and VH1 < 0; together with (34) this implies that VH2 < 0.
Finally, we have assumed that r′′ > 0. Consequently, Q(x1, x2) < 0, whenever (x1, x2) 6= 0.
This implies that H is negative-definite.
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