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Some Preliminaries

In this course, we have the ambitious task of explaining how the aggregate
economy works. We would also like to evaluate the impact of government
policies designed to correct potential inefficiencies that lead to welfare losses
among individuals. For this purpose, we will integrate individual behavior
into our macroeconomic models and try to see the consequences of market
equilibrium.

Our approach will be different from the approach followed in undergrad-
uate courses. There the approach is to study individual behavior (the firm
and the consumer) in micro classes, and then employ a somewhat different
set of models in the macro courses. For example, we have the consumption
function, the demand for money, an investment schedule, the 1S curve and
the LM curve.

These functions are typically only loosely connected to an underlying
choice problem. Furthermore, these models do not take into account that
individuals live in an environment under uncertainty, i.e., that individuals
do not for sure what the future will bring and have to predict future values of
prices, government policies, etc. when making current decisions. Also, they
do not take into account the fact that individuals live in a fundamentally
dynamic environment in that the action taken today has implications for
the payoff that one receives tomorrow. Traditional macroeconomics has not
dealt adequately with either of these issues.

Prior to Keynes, there was little dynamic theory, except for Ramsey
who examined problems of optimal taxation. Keynes did not have an ad-
equate framework dealing with problems under uncertainty, so he basically
abandoned the theory of choice. (General Theory, 1936.) Hicks tried to
address the problem of economies moving over time, how people form expec-
tations, etc. (Value and Capital, 1937.) This book influenced scholars
such as Lucas and Prescott who were instrumental in bringing dynamic,
stochastic analysis into macroeconomics.

Some mathematical developments also furthered the developments in eco-
nomics. Bellman came up with the method of dynamic programming in the
1950s. This method can be used to transform a complicated intertemporal
optimization problem into a much simpler and seemingly static looking opti-
mization problem. This is done by summarizing features of the environment
which change over time into a small set of state variables. Also, linear pre-
diction theory was developed during this time by Wiener and Kolmogorov.
We will use this technique when modelling the way individuals make fore-
casts over time and the way they use a signal or a noisy piece of information
to infer the values of variables they are interested in. Finally, we will try
to integrate economic theory with the econometric analysis of date which it
generates.



1 Introduction

What are some data which macroeconomists look at?

Typically we have time series observations on a set of economic variables.
Clearly, if we wish to describe how investment behavior changes over time,
we have to postulate some model or equation which moves over time. Linear
difference equations provide a way to model the movement of variables over
time. Hence, we will study them.

’l:t:)\’l:t_1+€t, 0<>\<1,

ig given. Here ¢; may be a constant or it may vary over time. While this
difference equation provides a way of generating a time path of observations
for investment, the time path will not necessarily look what we observe. In
particular, it will be too smooth relative to the behavior of the actual series.
Now, in the 1930’s, Slutsky and Frisch showed that if you took several white
noise or serially uncorrelated stochastic processes, i.e., {e:}i2g, E(e) = 0,
Var(e) = 02, and E(ere; i) = 0 for all k> 0, and summed them in various
ways, you could replicate the behavior of many observed time series. Hence,
one way to improve our difference equation is to make it stochastic, i.e.,
assume that ¢ is a random variable and hence, the sequence {&}{2, is a
stochastic process (or a collection of random variables). Then 4; will bounce
around with shocks to ¢;. Furthermore, even though ¢; is itself serially
uncorrelated, the effect of past e shocks will persist over time through the
dependence of i; on ;1.

But what is still missing? Suppose we can in fact match up the observed
investment series with the time path of our stochastic difference equation.
Suppose we would like to predict the effect of a new tax scheme on the behav-
ior of investment expenditures. Can we do it with our stochastic difference
equation? No, because this equation does not incorporate the implications
of individual behavior. For example, if firms know that the tax on new in-
vestment will be lower relative to buying old machines, they will change their
investment plans. So we have to have a model based on individual choice
which takes into account the uncertainty in the environment (for example,
firms may be uncertain about real future tax rates due to the existence of
inflation, they may be unsure about the price that they can get for their
product in the future). Furthermore, this model must be dynamic because
current investment decisions by firms will have ramifications for their fu-
ture decsions, i.e., firms make decisions on new machines or new technology
which last for many periods. This is the basic notion behind capital theory
— the existence of durable goods, whether they are machines, a reputation,
human capital (augmented by education), organizational capital (the lit-
tle procedures and augmented wisdom which make organizations function
smoothly), etc. Finally, we want our solution to this model to look like a
stochastic difference equation. If it is linear as well, we are in great shape



because then we can use econometric methods (OLS) to estimate parameters
and to test the implications of one model against another.

2 A Mathematical Framework

Modern macroeconomics is concerned with the problem of introducing dy-
namics and uncertainty into models which try to describe the aggregate
economy. Now, it turns out that the solution to such models take the form
of sequences over time. We may formulate dynamic problems with a finite
time horizon. On the other hand, we may not wish to deal with the problem
of the last period T'. Hence, we may let the economy proceed out to infinity
and approximate individual optimization problems which occur in a finite
horizon as infinite horizon problems. For example, a consumer may choose
how much to consume and how many securities to hold in the following
problem:

max tu C
{ech s} t:ZO Frule)

subject to
et +pese < (pe + di)se—1 + wy,
{U)t}, {dt} given.

The solution to the above problem consists of a set of sequences ¢ = {¢;}72,,
s = {s:}725. The solution is not in terms of some scalars ¢ and s as in a
static problem. Hence, we have to have a way of dealing with the properties
of the entire sequence if we want to characterize the behavior of the optimal
consumption and security holdings choices.

An easy way to deal with models which have sequences or stochastic
processes as their solution is to learn some functional analysis. Functional
analysis studies spaces whose elements are functions. How is a function
defined on Fuclidean space? A function f is a rule which associates a unique
real number y € Y C R denoted y = f(z) with each element of a set of real
numbers X C R.

XCR f:X—=Y, YCR.

Now consider the price sequence {p:}2; = {P(T)}2;. Then P is a rule
which associates a unique real sequence p € P such that

with each element of the set of integers T'= {1,2,3,...}.
P:T—P st pp=PFP(T) VeT.

If P,(-) = P(-), then P is a stationary or time-invariant rule.



We will also be dealing with objects called difference equations. Let
e = {&}2; be an element from the space of real sequences S, i.e., S =
({e}21 :er € R Vt). Thus, a first-order linear difference equation for the
sequence ¢ = {i;}7°; € S is a function ¢ which maps S into itself, i.e.,

g:8—=8 st [(g(i) ¢ =Nig 1+ e for [\| <1andVt>1,
or
’l:t = )\’l:t,l -+ €t Vi Z 1.

Now, a difference equation is a function of functions because, as noted before,
{e:}72, and {i;}32; are themselves functions of time. These examples show
that we have to deal with more abstract spaces than the ones we are used
to. In particular, we cannot just deal with the set of real number R or R™.
This brings us to a discussion of metric spaces.

2.1 Metric spaces

A metric space is a pair of objects (X, d) if X is a set and d(z,y) is a real-
valued function, called the metric, defined for all , y € X and satisfying the
following conditions or axioms:

1. Positivity: d(x,y) > 0 and d(z,z) =0 for all =,y € X.

2. Strictly Positive: If d(x,y) = 0, then z = y for all z,y € X.

3. Symmetry: d(y,z) = d(z,y) for all z,y € X.

4. Triangle Inequality: d(x,y) < d(z,z) +d(z,y) for all x,y,z € X.

What is the concept of distance in Euclidian space?

d(,y) = (@1 — ) + (@2~ )]

For future reference, we have the following:

Definition 2.1 Let F be an ordered set, i.e., a set on which order is defined.
If there exists an o s.t. * < « for all x € E, then E is bounded above and
« is an upper bound on E.

Definition 2.2 Let E be an ordered set and let E be bounded above. Sup-
pose there exists an « s.t.

(i) « is an upper bound on E.
(i) If v < «, then v is not an upper bound of E.

Then « is the least upper bound on E, or a = sup(FE).



Other examples are given by:

1 (R, d(e,y) = (@1 — 1)+ (22— 2)2) /).
2. (R2,d(w, ) = (o1 — yo)| + (22 — p2)]).

8. (R, doo(w,y) = max(|z1 — 1)l loz — v2l)-

4. X = C(0,T): space of all bounded, continuous functions on the inter-
val (0,7"). Metrics:

T 1/p
dp(l‘;y)—VO Il‘(t)—y(t)lpdt] , pEl,00)

doo(2,y) = S |2(t) — y(t)]-

5. Define [,(0, 00) as the set of all sequences {x;}72g s.t. Y oog |ze|P < o0,
and the metric as

o] 1/p

R
t=0

Then (I,,d,) is a metric space.

6. Define [, as the set of all bounded sequences of real or complex num-
bers, i.e., {x:}32 € I iff 3 a real number M s.t. |z:| < M for all ¢.
Define

doo(@,y) = sup @ — yy.

Then (I, ds) is a metric space.

How do you show that (I, dx) is a metric space? We have to show that do,
satisfles the properties of a metric, i.e., P, SP, S, TE. Note that ,(0,00) D
loo(0,00). We will use (I2(0, 00),ds) where

00 1/2
d2(z,y) = {Z |2t — yt|2} ;
=0
where [5(0, 00) is the set of sequences {x:}2, s.t. > iog |:z:t|2 < 00.

Definition 2.3 A sequence {x,} in a metric space (X,d) is said to be a
Cauchy sequence if for each € > 0, there exists an N(e) s.t. d(xn,Tm) < €
for any n,m > n.



Thus, a sequence {z,} is said to be Cauchy if limy, y—s00 d(@n, 2m) = 0.

Definition 2.4 A sequence {x,} in a metric space (X, d) is said to converge
to a limit xo € X if for every € > 0 there exists an N(e€) s. t. d(ap, ) < €
forn > N(e).

Lemma 2.1 Let {x,} be a convergent sequence in a metric space (X,d).
Then {xn} is a Cauchy sequence.

Proof. Let g be the limit of the sequence {x,} in (X,d). Then for
any n and m, one has d(z,,z,) < d(a,,x0) + d(zg, zm) by the Triangle
Inequality. Since zg is the limit of {x,}, given € > 0, there is an N s.t.
n,m > N implies d(x,, x9) < €/2 and d(xg, ) < €/2. Then d(zp, xmy) <€
whenever n,m > N. Hence, {z,} is a Cauchy sequence. ®

But is every Cauchy sequence in a metric space (X, d) convergent in the
same space? No!

Consider the metric space (C[0,2,d2(z,y)). Let {x,} be the sequence
of continuous functions

mo0<t<1
“"”(t)_{ 1 1<t<2.

Clearly, {xn(t)} converges to

0 0<t<1
“"O(t)_{ 1 1<t<2.

Now in (C[0,2 ,da(z,y)), {x.(t)} is a Cauchy sequence. Note that
1
do(t™, 12 = / (t™ — ™) 2dt
0

1
— / (#2412 — 2Tt
0]
1 2
(2 _gemr 1 oml —t”+m+1) 1
(2n+1 T oamri n+m-+1 ‘0
1 1 2

2n—0—1+2m—0—1 T n+tm-+1

Hence, for any € > 0, it is possible to choose N (€) such that the RHS is less
than e whenever m and n both exceed N, i.e., choose e = 2/(2N + 3)(2N +
4)(2N +5).

Another question.

Is every sequence which is Cauchy in one metric space also Cauchy in
another metric space? The answer again is no!



Example 1 Consider the space (C[0,2 ,ds(z,y)) and put the sequence of
functions

moo<t<1
“””(t)_{ 1 1<t<?2

each of which are elements of (C[0,2,ds(x,y)). In (C[0,2,dx), Tn(t) is
not Cauchy, i.e., for any fixed m > 0, there is a § > 0 s.t.

sup sup [t" —t"| > 4.
n>00<t<1

More precisely,
sup sup [t" —t™| = sup sup|t" —t"|
n>00<t<1 0<t<1n>0

= sup lim [t —¢t™
0<t<1 P

= sup lim ™" ™ —1]

= sup t" lim [t"7™ —1].

But
1 for0<t<1
: n—m _ — — —
7}1—{20 [t 1] { 0 fort=1
Therefore,
sup lim ™" — 1| = sup t" =1.
0<t<1 P> 0<t<1

Hence, x,(t) =", 0 <t < 2 is not Cauchy in (C[0,2 ,deo (2, y)).
We can also examples in which a sequence converges to a limit in one
metric space but it does not converge in another metric space.

Example 2 Consider the sequence of functions (C[0,1 ,ds) where

Claim: x,(t) — zo where g = 0. We have that

do (T o) — {/01|xn(t)—0|2dt}1/2
— {/Ol/n(l—nt)2dt}1/2

1/n 1/2
— {/ (1—2nt + n2t2)dt}
0

7



9,3 1/2
. 2 n-t 1/n
5 1/2
_ {1 all n_i} _ (312

Given € > 0, if n > N where N > €2 then d(z,,zm) < e Hence,
limy, 00 n(t) = zo(t) = 0.
Does {x,}52 o converge to xg is (C[0,1 ,deo(x,y))?
Now
doo(Tn; Tm) =  sup |zn(t) — zm(t)]
0<t<1

= sup |1 —nt—0
0<t<1

= 1 for each n.

More precisely, {z»} does not converge to xy because for any arbitrary m
we can find an N > n s.t.

1
doo(Tn; Tm) > 5 for all m > N.

Hence, Cauchy sequences need not converge in a given metric space nor
do sequences which are Cauchy in one metric space need to be Cauchy in
another metric space. In many cases, we want Cauchy sequences to converge
to points in the same space.

Definition 2.5 A metric space (X, d) is said to complete if each Cauchy
sequence in (X,d) is a convergent sequence in (X,d).

The spaces (1,(0,00),dp,) and (I, dso) are complete.

Example 3 The space of rational numbers with the absolute value is not
a complete metric space, i.e. the sequence {3,3.14,3.141,3.1415,...} is a
Cauchy sequence but it is not convergent in this space because 7 is not a
rational number.

Example 4 Consider (C[0,T ,d«). How we show that this space is com-
plete?

Let {xn} be an arbitrary Cauchy sequence in (C[0,7", d ). Hence, there
is an N(e) s.t. for n > N(e) implies

|20 (t) — 2 ()| < doo (X, T) = sup |, (E) — 2, (2)] < € for all ¢.

Then for fixed ¢ {@,,(¢)} converges to xo(t). Since ¢ is arbitrary, the sequence
of functions {x,(-)} converges point-wise to z(-). But N(e) beng indepen-
dent of ¢ implies that {x,(-)} converges uniformly to z¢(-). But from real
analysis, if a sequence of continuous functions {z,(-)} converges uniformly
to a function zg(-), then zg(-) is continuous. Then every Cauchy sequence
in (C[0,T ,ds) is convergent, and (C[0,T ,d) is complete.



Definition 2.6 A function [ mapping a metric space (X,d) into itself is
called an operator.

Definition 2.7 Let f : X — X be an operator on a metric space (X,d).
The operator is said to be continuous at a point g € X if fore > 0, there
exists a & > 0 s.t. d(f(x), f(xo)) < € whenever d(z,x0) < §. The operator
f is said to a continuous if it is continuous at each point r € X.

Now we wish to study contraction mappings which are a particular type of
operator useful for economics.

Definition 2.8 Let (X,d) be a metric space and let f : X — X. Then f
is a contraction or contraction mapping if there exists a real number k,
0< k<1, st

d(f(z), f(y)) < kd(z,y) forz,y € X.

Can you show that a contraction is a continuous operator? Easy. Consider
any z,y € X s.t. d(z,y) < d. Then d(f(x), f(y) < kd(z,y) < kd. Therefore,

for any e > 0, there exists a § > 0 s.t. d(f(x), f(y)) < 0 whenever d(z,y) <
d, i.e. pick d = €¢/k.

Theorem 1 (Contraction Mapping): Let (X,d) be a compete metric space
and f : X — X be a contraction. Then there exists one and only one point
xg € X s.t.

fxg) = xg.
Moreover, if x is any point in X and x,, is defined inductively by x1 = f(xg),
x9g = f(x1),...;2n = f(®n_1), then z, — xg as n — oco. That is, f has

a unique fixed point and every sequence of iterations of [ converge to this
fized point.

Proof. We show that every sequence of iterations of f converges to a
fixed point. Then we show that f can have only one fixed point.

Let  be any point in X and define z; = f(zg), 2 = f(z1), and, in
general, &, = f(xn—1). Then x, = f™(x). We will show that {z,} is a
Cauchy sequence. Assume n > m; then

d(Tn, 2m) = d(f"(x), /" (2))

= d(f™(@n-m), ["(2))
d(f™ Y @n_m), [™ (x)) [Contraction property .

IN

By induction,

d(Tn, Tm) < K" d(Tp—m, x).



Using the triangle inequality,

d(Tn, Tm) < kK" [d(@®n—m;Tn-m—1)+ ... +d(z2,21) +d(x1,2)
< R E N k1 d e, ).

Since 0 < k < 1, we have

d(xpn, m) < K™ Zk:zd(:l:l,:z:) = md(xl, x).
=0

Since 0 < k < 1, it is possible to find an N s.t. for n,m > N, d(zp, xm) < €
Since the space (X, d) is complete, the sequence {x,, } converges to an element
of (X,d). Let xg = lim;, o0 @, Since f is continuous, we know that

g, f(mn) = F(Jim, o).
But

SQlim ) = f (o)

n—0o0

and

g, f(wn) = [ip oni1 = 20

Therefore, F(xg) = xg. Hence, xq is a fixed point of f.

To show that the fixed point is unique, we argue by contradiction. As-
sume xg and yg are two distinct fixed points of f. Then we obtain the
contradiction:

0 < d(zo,y0) = d(f(x0), f(y0)) < kd(zo,y0) < d(zo, yo)-

Therefore, f has only one fixed point. =

Corollary 1 Let (X,d) be a complete metric space, and let f be a (not
necessarily continuous) function, f: X — X. If for some integer p, P is a
contraction, then f has a unique fized point.

We will now look at sets X whose elements are functions. The functions
C10,T and [,]0,00) for 1 < p < oo are some examples.

Definition 2.9 Let X be the space of functions, and let z,y € X. Then
x>y iff x(t) > y(t) for all t in the domain of definition of the function.

Consider the metric:

doo (1, y) = sup |2(t) — y(®)]-

10



Theorem 2 (Blackwell’s sufficient conditions for T to be a contraction) Let
T be an operator on a metric space (X, d) where X is a space of functions.
Assume T has the following two properties:

(i) Monotonicity: For any x,y € X, x >y implies T(x) > T(y).

(ii) Discounting: Let ¢ denote a function that is constant at the real value ¢
for all points in the domain of definition of functions in X. Therefore,
for any real ¢, and every r € X,

T(x+c¢) <T(x)+ Pc for some <3< 1.
Then T is a contraction mapping with modulus 3.

Proof. For any x,y € X, notice that
x(t) < y(t)+deo(z,y) forallt

= y(t) +suple(t) —y ()],
which implies that @ < y 4+ doo (2, y). Now

T(x) < T(y)+ doo(z,y) by monotonicity
< T(y)+ fdec(z,y) by discounting

which implies that

T(x) — T(y) < Bdoo(x,y).

Interchange x and y, which implies that

T(y) — T(zx) < Bdeo(x,y),

or

—Bdoo(@,y) < T(x) — T(y) < Bdoo(, y)-

But (2.1) holds for all ¢ elements in the domain of definition of = and y.
Thus, we have that

T (2) — T(y)| < Bdoo(z, y),
which implies that

sup[T'(z) = T(y)| < Bdoo(z, y),
. Thus,

doo(T(@) = T(y)) < Bdoo(, y)-

Thus, 7" is a contraction.

11



2.2 Uncertainty

We will be dealing with so-called random phenomena or with variables whose
values or conditions we cannot predict perfectly. To study such phenomena,
we need to develop some mathematical tools.

Probability spaces are the basic mathematical models for random phe-
nomena. Consider a collection of random phenomena. We assume that there
exists a set () which is called the sample space. In a given experiment, a
particular element w € €2 is chosen. This point in turn determines the values
associated with a random phenomena in that experiment.

We are also interested in events which are subsets of 2. w € A where A C
() means that the event A occurred during the experiment. The probability
that the event A will occur is then a real number P(A) satisfying 0 < P(A) <
1.

Definition 2.10 Let F be a collection of subsets of a set ). Then F is
called a field (or algebra) if and only if Q € F and F is closed under com-

plementation and finite union.:
(i) Qe F;
(i) If A€ F, then A° € F.
(iii) If A1, Ao, ..., A, € F, then Ul A; € F

3 3

Notice that F is closed under finite intersection, i.e.

i=1 i=1
If (iii) is replaced by closure under countable union, i.e.,
(iv) If A1, Ao,. .., € F, then U2, A; € F,

3 3

then F is called a o-field or o-algebra.

Definition 2.11 A measure on a o-field F is a non-negative, extended real-
valued function p on F such that whenever A, Az, ..., form a finite or

3 3

countably infinite collection of disjoint sets in F, we have

p (U An> = Zu(An). [Countably additive]
If () = 1, then u is a probability measure.

Definition 2.12 A probability space is a triple (Q,F, P) where ) is a
non-empty set, F is a o-field of subsets of ) and P is a positive measure
s.t. P(Q)=1. In this case, P is sometimes called a probability measure.

12



Example 1 Let €2 denote the collection of all possible outcomes of an exper-
iment involving 50 flips of a coin. A typical sample point is then an ordered
50-tuple, i.e., (H,H,T,...,T). Let p denote the probability of getting H on

3

any toss and ¢ = 1 — p be the probability of getting T". Let A be the event
consisting of all outcomes with n heads and 50 — n tails. Then

Instead of dealing with the abstract notions of probability spaces, we
will deal with random variables and their distributions. We begin with
some definitions.

Definition 2.13 A Borel field B in R is the smallest o field of sets from R
that contains all open intervals (a,b).

The sets in the Borel field are called Borel sets. It can be shown that
(i) every interval is a Borel set,
(ii) every open set is a Borel set,

(iii) every closed set is a Borel set.

Definition 2.14 A real random variable X is a real-valued function defined
on the sample space ) such that all sets

A={weQ:X(w) € B for all Borel sets B C R} € F,
or,

X:Q—=R st. X Y(B)eF.

Definition 2.15 The probability distribution function of X, denoted by F(x),
1s

Then F(x) is the probability of the event A = {w € Q: X(w) < z}.

0< F(x)<1 Vz

F(—o00) =0
F(oc0) = 1.
If <y, then

{weQ: X(w)<z}C{we: X(w) <y} = F(z) < F(y).

13



Thus, F' is monotonic increasing. Also, if 21 < x9,
Plz; < X(w) <y = F(x9) — F(z1).

If F'(x) is absolutely continuous, then there exists a function f € L{(—00, 00)
such that

Fa) = [ swat

where L1(—00,00) is the set of functions f : R — R s.t.

/ 1 (B)|dt < oo.
b

Let X and Y be two real random variables on 2. The joint probability
distribution is

F(z,y) = P(X(w) <zand Y(w) < y).

Expectation
If X is a random variable, its expectation, if it exists, is

E(X) = /Q X (w)dP(w) < oo.

If E(|X]) = Jq|X(w)|dP(w) < oo, then E(X) < oo and is well defined.
Thus, if X € L1(§2, F, P), then X has a well-defined expected value.

A real-valued random variable X is said to be an element of Lo(Q2, F, P)
if and only if

BXP) = [ 1X(@)dP(w) < co.

If X € Ly(Q2, F, P), then X has a finite second moment. Since Ly(Q, F, P) C
L1(Q, F, P), random variables which have finite second moments also have
finite expected values. In this case, the variance of X, denoted o2 (X), is

o?(X)=E[(X — E(X)2

If X and Y are two real-valued random variables in L2(Q2, F, P), then
the covariance of X and Y is defined as

Cov(X,Y) = E[(X — px)(Y — py ).

Stochastic Independence
Let X and Y be two real-valued random variables on a probability space
(Q,F,P). X and Y are stochastically independent if and only if

PXw)<zandY(w)<y =PX(w) <z PY(w)<y.

Theorem 3 Let X and Y be two stochastically independent random vari-
ables in Ly(Q), F,P). Then E(XY)=E(X)E(Y).

14



Also,
PX(w)>zandY(w) >y = P X(w) >z PY(w)>y.

Example 2 Let A and B be two events in  and let x4 and xp denote
their characteristic functions, i.e.

xa = lifweAd

= (0 if otherwise.

Claim x4 and xp are independent < P(ANB) = P(A)P(B),

= Since the stochastic independence condition is valid for all  and y,
then for x < 1 and y < 1,

P(A(\B) = Plxa>zandxp >y
= Pxa>zPlxp>vy
= P(A)P(B).
<= Now P(ANB) =Plxa>xand xp >y forallz<1and y < 1, and
P(A)P(B) = Plxa >z Plxp >y,

which yields the required condition.
Also check cases with ¢ > 1 and y > 1.

Conditional Expectation Operator
Let (Q, F, P) be a probability space and let B be a sub-collection of F. Then
B is a sub-o-field if B is itself a o-field of F.

Example 1 B = {0, Q}.

Example 2 B = {F}.

Example 3 Let A € 7. Then
B={0,A, A°.Q}

is the o-field generated by A.

Example 4 Let A,B € F, where ANB = 0 and let C = (AUB)¢ =
A°(B¢. Then

B={0,A,B,C, A, B°,C*,Q}

is the sub-o-field generated by A and B, that is, B is the smallest o-field
containing A and B.

Example 5 Let Y be a random variable on (2, F, P), i.e., for every Borel
set A C R, the set Y~1(A) € F. Now let B be the smallest o-field in F that

15



contains all events of the form Y 1(A) where A is a Borel set in ®. Then B
is said to be the sub-o-field generated by Y.

To see how we can generate a sub-o-field from the inverse images of
random variables, notice that if Y = x4 is the characteristic function of
an event A, then B is {0, A, A5, Q}. Y = axa+ Bxs, 0 < a <  and
AN B =0, then

B={0,A,B,C, A%, B°,C*,Q}.

To define conditional expectation, let B be the sub-o-field of F and let
X € L1(2, F, P). Then define the real-valued function v(B) by

V(B) = /B X(w)dP(w), Bé€B.

We need to show that v is a measure on B such that it is absolutely contin-
uous with respect to the restriction of the underlying probability measure
P to B, PB.1 Let PB be the restriction of P to B or PP is the probability
measure which assigns probability to events B € B. Then it can be shown by
the Radon-Nykodym Theorem that there exists a unique random variable
EB(X) that is measurable with respect to B and which satisfies

V(B) = /B EB[X (w)PB(w) — /B X (w)P(dw).

The random variable EB(X) is called the conditional expectation of X with
respect to B. If B is the o-field generated by the random variable Y, then
we shall denote EB[X by EY[X and call it the conditional expectation of
X with respect to Y.

Example 6 If B = {(,Q}, then E¥(X) = E(X), i.e., E® maps X onto the
constant function F(X).

Example 7 If B = F, then E¥[X = X.
Example 8 If B= {0, A, A°,Q} and if 0 < P(A) < 1, then
1

EBIX (wo) = A /A X (wP(dw) ifwy € A

1
= — X(w)P(dw) if wg € A°.
B L X@P(@w) it
Example 9 Let X.Y € Ly(Q, F, P) and assume that X is measurable with
respect to B. Then

EBXY = XEB)Y .

'See, for example, Section 14, Appendix D, Naylor and Sell, Linear Operator Theory
in Engineering and Science, New York: Springer Verlag.
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Example 10 Let X,Y € Lo(2, F, P). Then
ES [EPIX Y| = EF[X EFY.
Example 11 EB is a linear operator on L1(, F, P).

Stochastic Processes

A stochastic process is a family or collection of random variables X(w)
where t is an element of some index set T. If t = 0,1,2,... we have a
discrete stochastic process. The distribution for stochastic processes refers
to distributions over a finite number of the elements of the stochastic process.

Example 1 Let {e(w)}2, be a sequence of random variables defined on
some probability space (€, F, P). Then {e};2, is defined to be a sequence
of identically and independently distributed random variables if and only if

Pr(egn < ag, ..., €qnik < ag) = Pr(e, < ags..., €4k < ag)

3

for finite h and k.
For ¢ in the interval I, let X (¢,w) be a random variable with finite second
moment defined on (2, F, P) for all ¢, i.e.,

EUX@JF}:KJX@wn%WM)<am

Since X (¢,w) has a finite second moment, it also has a finite first moment
or expected value, i.e.,

B (X)) = [ 1X(tw)|Pds) < oo,
which implies that
E@@ﬁ:éX@@HW)

is finite and well-defined. Hence, we can define the variance of X (¢,w) as

E(X(t) - E[X(t) ) = /Q X (t,) = E[X(t,)|* P(dw).
We can also define the covariance between X (t,w and X (t + s,w) as
Cov[X(t,), X(t+s,:) =FE[(X(t,) —E[X(t,))(X({t+s,)—E[X({t+s,)) .

3

A realization from some stochastic process {e}ser is a time series if the
index set T varies over time.
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We may have stochastic processes which are defined over individuals.
This is termed a cross section. We can also have stochastic processes which
are defined over individuals and time. In this case, the underlying probabil-
ity space is defined in terms of a sample space which is the product space
of two underlying probability spaces, i.e., 2 = Q1 x Q9. and

{€m (w1, w2) HeT nen-

The realization from this stochastic process is termed a panel data set for a
given number of individuals over a given time span.

3 Some Additional Methods

In this section, we will consider the solution of linear difference equations and
the solution of dynamic linear-quadratic (L.Q) optimization problems under
uncertainty. LQ problems have the property that the optimizing sequence
can be described as a linear stochastic difference equation. Furthermore,
such problems satisfy the property of certainty equivalence in that the solu-
tion to the problem under uncertainty is equivalent to finding the solution to
the dynamic optimization problem in which all exogenous random variables
are replaced by their expectations. An original treatment of some of these
issues may be found in Sargent (1979).

3.1 Solution to Linear Stochastic Difference Equations

Consider a general stochastic process {@:};2,. If {z:}52, is a covariance
stationary stochastic process with E(x;) = 0, then the Wold representation
theorem says that it can be represented as

o
T =) cjer—j + (3.1)
=0

where ¢ = 1, Z;?';Oc? < 00, E(e]) = 02 > 0, E(eres) = 0 for t # s,
E(e;) = 0, and E(nwes) = 0 for all £ and s. Here n; is a process which can
be predicted arbitrarily well by a linear function of only past values of x; so
that 7, is linearly deterministic. Also, e, = z; — E[:z:t|:z:t_1, Xt—2,..., where
E(-) denotes the best linear predictor of z; on its past.

We wish to solve the expectational difference equation
yi = NE(ypy1|2s, 21, - . ,) + 2. (3.2)

We will seek a solution of the form

e} (e o]
yr= > bjej with »_ b? < 00. (3.3)
7=0 j=0
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Notice that this is equivalent to seeking solutions to the difference equation
which are stochastic processes measurable with respect to the information
set generated by current and past values of 2y and which have finite second
moments, i.e.,

E(y})=E> bje j=0") b3,
=\ =\

bjEt,j
3=0

= FE{|boet +bret—1+ ... [boetyn + brétyh1+ ...}
= bobpo? + bibpyi0’+ ...

= 02> bibjp < (Z bj) (Z b§.+h) < 00,
=0 =0 =0

where the last result follows by the Schwartz Inequality.
Hence, our solution will come from the space of square summable se-
quences (I, d9) with metric

and

[e.o]

E(yyisn) = E{ bj€i—jtn
=0

e}

1/2
dQ(f,g) = (Z(f] _93)2) fOI' f,g € Z2-

7=0
To define an operator from the right-hand side of (3.2), notice that
Yit1 = bo€ry1 + b1 +boe 1 + ...

and

~

E(yii|xe, ©e—1,...,) = bies +baer—1 + ...
Substituting this result into the right-hand side of (3.2) yields
A(bier + boer 1 +baer_o+...) + (coer +cre—1+...).
But
Yyt = boer +breg 1 +boeg_ o+ . ...

Therefore, we obtain an operator T : (ls,ds) — (l2,ds) such that the j'th
element of T is given by

[T(bl)}j =AYy + ¢, >0 (3.4)

We can show that there exists a unique sequence b* such that 7'(b*) = b*
because this equation defines a contraction on a complete metric space.
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To obtain the b* = {b;‘ 720 sequence, start with the zero sequence. i.e.,

1
b] — Cj
2 1
bj = Abj—i—l + Cj
= AG+1 T ¢
2 2
b= A+ o

= Ny + A1+ ¢

T /\nilcj+n_1 -+ )\n72cj+n—2 + ... Fcy,
or
ngc}o b;k =c¢5+ )‘Cj-i—l -+ )\2Cj+2 + ...

More generally,

b(L) = Z(Cj -+ Cj—i—l)‘ -+ Cj+2)\2 + .. .)Lj

=0
= Z Cij -+ )\ZCJ'_HLj -+ A2 Z Cj+2Lj —+ ...

=0 =0 =0

(L) ¢ 5 |:C(L) o —0—01L}

— (L)) |8 oy _

(L) + [ L L} T 2

g c(D)  co+erl+col?

+A [ 5 73 +
L)
1= AL

(1 AL N2 ) AL (co e e+ ) ,
which implies

(L) = AL 1e()N)

b(L) = ===

(3.5)

Suppose x; has an underlying autoregressive representation given by
(J,(L):L‘t = €,
with a(L)e(L) = I and 3232 a? < 0o. Then we can express the solution as

_1-AL'a(N)"ta(L)
B 1—-AL!

Yt (3.6)
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3.2 Linear-Quadratic Optimization Problems under Certainty

Before we introduce uncertainty, we will study some infinite horizon dynamic
optimization problems under certainty. This will help in the analysis of
examples which we will consider later.

Consider the problem of selecting a sequence {y;};2, to maximize

o0

T({diZe) = Y { (/2002 = @/~ yi1)* + e}, S >0,d>0
t=0

subject to y_1 = @1 given. Assume that {z:}7°, is a given sequence in
(12]0, 00), d2). We will maximize this objective function with respect to se-
quences which are elements of R, i.e., y € R for all £.

First, we note that if there is a sequence {;};2, which solves the above
problem, then it must lie in the space (I2]0,00), d2). Suppose the contrary,
that ¢ is not an element of (I3, dy). Then

n
Z@?—)oo as n — oo,
t=0

which implies that
—(f/2)zgf — —00 as n — 00.
t=0

But if Y22, y? diverges with n, then it can be established that for some
€ >0,

S = (557) (55

does not diverge to 400 fast enough to prevent the value of the objective
function from going to —oo, because {x;};2, € (I2[0, 00), d2). Therefore, we
seek solutions to the problem which are elements of (I3]0, 00), d2).

Differentiating with respect to ¢ for r = 0, 1,..., and equating to zero
to obtain the Euler equations:

—dys1 + (i +di)ys —dye—1 = ¢, t>0. (3.1)
Collecting terms, we have
(‘d +(f+2d)L - dL2) Yer1 = T,

or

1
L+ L2> Yrrt = — =T, (3.2)

(1_f+dzd
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We can factor the characteristic polynomial as

2
(1 _ f_; dL 4 L2> = (1-XML)(1—XL)
= 1— (M +A)L+ A\l
where
+2d
My = L : (3.3)
At = 1, (3.4)
which implies that
1 [+ 2d
A1 3.5
1 Vi (3.5)
Solving
1 1
mln)\1+)\—1 = 1_ﬁ:0’
which yields A1 = £1. For A = 1, we have that
1
AL+ — =2
1+ y

From (3.5), we see that when f = 0, (f + 2d)/d = 2, implying that the
solution is A\;y = Ay = 1. When f > 0, we have that (f + 2d)/d > 2, and
A1 < 1and A2 > 1. But A2 = 1/\;. Therefore, the solution is

(1= XML)(1 = ML) = (1= AL)(1 - A1), (3.6)

Therefore, we can write

(1- 20 ) = g

(1=ALY1 =AMLy = —é:{:t

(1= AL)(1 = ALY Dy = —éxt

1-ADA-AL Yy = S
(=ML = S (3.7)

where y; = (1 — AL)y:. We note that y* = {y;}2, € (lo,d2) whenever
y={y:}2g € (l2,d2). In other words,

DW= (v — dp-1)? = da(y,y),
t=0 t=0
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where y = {y:}2¢ and ' = {Ay:—1}7Z. But
d2 (y, y,) < d2 (0, y) + d2 (0, y,)
= D u+NY v
=0 =0

But if 329% y2 < oo, then 0% 42 | = 3°9°, y? — y2, < co. Then the Euler
equation can be represented as

* * A
Yi = A1+ 77 Al < 1. (3.8)

But we know that difference equation defines a contraction mapping on the
complete metric space (lz,d2). Therefore, a unique fixed point of the form

v= > Ny (3.9)
=0

exists. Hence, the optimizing sequence is defined as
Yr = Ayr—1 + Y - (3.10)
Thus, we obtain the feedback-feedforward form of the solution
A=
=M1+ 5 > Nz, t2>0. (3.11)
i=0

Suppose we add the requirement that the {z;}72, sequence is described
by the difference equation

A(L)l’t = 0,

or
o o

Ty = Z a;jri—; where Z a? < 00,a0 = —1. (3.12)
=1 =0

Recall that the Euler equation can be expressed as in (3.8). We have already
showed the existence of a fixed point in (3.9). Suppose we seek an alternative
representation for y; of the form

yz( = ijl’t,j, where Zb? < 0Q. (313)
=0 =0

To obtain this representation, notice that the Euler equation maps sequences
b = {b7}32, into sequences {b?'H Jane



Substituting for zy41 = Zjo-il a;xi—; yields

byt + b7y + 0y o+ =
A

E:L‘t + NG (a1xs + agxe—1 + .. ) + NOFxe + Nbhwe_1 + . .. (3.14)

Equating coeflicients on x;_; for j > 0 yields

bptt = AP+ abf + 3

B = Aboajir + Ay, =1
Notice that we can define an operator

AP+ Aabd +4 j=1

Tb) ;= . 3.15
[ ( )-J { )\boa,j_H -+ )\b;?‘_H j=>1 ( )

Once we have verified the existence of a fixed point to this operator, we can
solve for {b;}32, from:

bo(l — (1,1)\) = 3 + Abg
bj = /\bj-H -+ /\boa,j+1.

The second equation implies

by = Abo > Noagijrr =bo > MFlaj g, (3.16)
k=0 k=0
and
b1 - bo Z /\k+1ak+2, (3.17)
k=0

To find an alternative expression for b1, notice that

ad+a)? +aN+ . = A e A L —ah—ap\? -
If a(L) = 1 —a1L — agl? — ..., then

bi=bo (A1 —a1 = A la(n)).

But we also have that

. bo(l — )\(1,1) — /\/d
= \ .

Equating these expressions and solving for by yields

b1

3

A
bo(1 = Aar) = 5 = Abo (A‘l — a1 — /\_la(A))
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or

by = (3) a(\) L. (3.18)

Also, we have that

N & .
b — (E) a(N)ES Netlag g > 1 (3.19)
k=0

In compact form, we have

b(L) = (3) a(n) !

1+i ( i )\kjak> Lj] , (3.20)

=1 \k=j+1
and

Yt = Ayr—1 + (3) b(L)xy, (3.21)

where a()\) = ag + a1\ +ax\? + .. .. This gives as the solution for y; in the
space of square summable linear combinations of current and lagged z’s.

4 Dynamic Land Allocation Model

Let us apply some of these concepts to a substantive problem. We consider
an Egyptian farmer who can allocate land between the production of wheat
and cotton. The continuous cultivation of one of the crops tends to a deteri-
oration of the land quality, and that yields a substantive dynamic stochastic
optimization problem.

Let
X1 = production of crop 7 at time ¢
P;; = price the farmer receives for crop 7 at time ¢
A;; = land allocated at time ¢ — 1 for the production
of crop © at time ¢
A = total cultivated land available at time ¢
0<pB<1 = discount factor
a;y = shock to production of crop ¢ at time £

The production functions for the two crops are described as follows. For
the first crop,

Arg

Al
X1t = (flt +ai — %Alt) A +dy (1 - % - 7) Ap. (41)

Notice that the second term represents the deterioration in land quality. If

Al’j_l = % = £, then the problem of the farmer becomes a static one. If
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the fractions of land from current and past period’s cotton cultivation are
greater than one, then average land productivity is reduced. Hence, the
dynamic aspects of the problem come from the features of the production
in cotton, the main crop.

The production function of wheat is

Xor = (fo + ag) A (4.2)

At time —1, the farmer maximizes

1 Zﬂ (th + —X2t> (4.3)

subject to (4.1), (4.2), and the land constraint Ay, + Ay = A, given Ay 1,
where F_; denotes expectation conditional on information at —1. The
farmer takes the joint stochastic process for {Pa:/Pit, a1z, a2t }72, as given.
The information the farmer has at the decision period ¢ is {A1 -1, A2s—1,
arg—1,0241, Pog1/Pis1,Pag o/Pis9,-++,Si—1,S—2}. Substituting for
Xlt and th

di - _
1 Zﬂ { fi+ai)An — lAig + Z} (A— A1 — Ay) Ay — Re(A — A)
where
1
Ry = o [Por(f2 + azt). (4.4)
t

denotes the value of the marginal product of land in the production of wheat.
Hence, Ry is the return to land in the production of wheat, evaluated in terms
of the price of cotton.

Define the vector Z; as

Zy = ((1,115, Ry, St)’7 (45)

where S; is an (n — 2) vector of other variables which may be jointly dis-
tributed with a1 and R and which may contain information about these
variables. For example, S; may include taxes, tariffs, prices of other agri-
cultural inputs and exports. We assume that {Z;}$°, is a vector stochastic
process. The evolution of each Z; is determined by the law of motion

LY Zy = Uy,
or

(I —6L— 0L - — 8,7 = Uy, (4.6)
where 0; are n x n matrices fori =1,...,n. Let I;_; = {A1 41, A1t 2,.--,
1,4—1,01,0—2; ---, 1, Ry, ...,St_1,St_2} be the information set pos-

sessed by the Egyptian farmer at time ¢ — 1. Since {Z;}32, is a stochastic
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process, we know that Z;(w) for ¢ = 0,1,2, ... are random variables defined
on some underlying probability space (2, F, P). We also know that the
collection of random variables in the information set I; 1 generates a sub-o-
algebra of events denoted by F._1 C ... C F. In other words, observing the
values of the random variables in I; 1 provides us with information about
only a subset of the events in F. Then {U;}{°, is defined to be a sequence
of innovations in that

E(U|I,—1) = 0. (4.7)

Observing the realizations of the random variables in I; 1 provides us with
no additional information about the set of underlying events generated by
U;. We further assume that E(UU]) exists and is equal to X for ¢t > 0. We
argue that the solution to the Egyptian farmer’s dynamic land allocation
problem will be a set of stochastic processes { A1 }5°, and {Ag }52,. We will
restrict this solution in two ways.

e Each Aj(w), t > 0, will be required to be a measurable function with
respect to the underlying sub-o algebra F;_1.

e Each A (w), t > 0, will be required to be an element of Lg (Q,F,P),
i.e., we require the discounted value of the solution to be square inte-
grable:

/Q Bl Ary(w)2P(dw). (4.8)

By analogy with the deterministic case, this last condition will be a necessary
and sufficient condition for {A14}725 and { A9 }52 to be a solution. Provided
such a solution exists, it must satisfy the Euler equations for this problem.
Differentiating with respect to A4, we obtain

] .odi [ - 1
J1+ Elay|lli-1 — g1 E[Au|li—1 + E—l A—Arp1— iE(Altut—l)
} d }
—E[R|I; | — %E[Al,mut,l_ =0, t>0. (4.9)
Simplifying
. d
hH+di+E[(ae— R)| L1 — Z—lAl,tq
d ] d ]
- (91 + j) E[Ay|I 1 — %E[Al,tﬂﬁtq_ =0,
or
d 2d d
E [%Al,zﬁ-ﬁ-l + (91 + f) A+ Z}Al,t—lut—l
= f1 +di + E[(alt — Rt)|It,1:. (410)
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We will solve this problem using the certainty equivalence property of LQ
optimization problems. Notice that the characteristic polynomial associated
with the deterministic version of this difference equation is
pdi, 4 ( 2d1) di pdi|, , (Ag | 2 1
i +g1+A+A i +5d1+5 +5

%(L*1 — A1) (1= L)

= —Alﬂ_dl(l—)\flL_l)(l—)\gL), (4.11)
which implies that
Agl 2
A+A = — (=2 +2 412
e = (52 (412
1
e = 5 (4.13)

Thus, Ay = 1/8A\; and we can examine f(A) = A+ 1/8A. Differentiating

J(A\) with respect to A yields
1
"N =1-—==.

The solution is given by

Define
_ (A 2
= (5d1+5>.

Notice that
2

¢ < ——=,
VB
implying that [A1] > 1/4/83. Since 0 < 8 < 1, we also have that

N )

which implies that
(4.14)

1
IAd1] > —= > 1> |Aq.

VB

Thus, we can write
—Bdi A
CLES (L=A'L7Y (1 = ML) Ay = fi +di + are — Ry,
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which implies that

A &
A=A, 1 — a5 ;()\1 Yy +dy + a1 i — Rigi)-

Since Ay = 1/(BA1), AT = BAg. Therefore, we have
Ay & ;
Ag = XA 1 — e (B )" (f1 +d1 + a1 445 — Ritd)- (4.15)
i=0

Thus, the solution to the deterministic version of the difference equation
yields the solution for the optimal quantity of land devoted to cotton pro-
duction as a linear function of last period’s land allocated to cotton and
the discounted future value of random shocks to cotton production and the
return to wheat production. We note that the latter has a negative effect on
the optimal quantity of land allocated to cotton production: if the current
of future return to wheat production increases — due to changes in the prices
of wheat or cotton or to random shocks to the production of wheat — we
find that the quantity of land allocated to cotton production declines.

We now return to the stochastic version of the difference equation defined
by (4.10). Multiplying this equation by 8% yields

d ; 2d )
%BtﬂE{Al,t—i—INtfl_ + (91 + f) BEE[AL|L 1 +

d—jﬂtﬂE[Auflqu = B[B"2(fi + di + (ax — R)|Ti 1] - (4.16)
Now define the new variables
livi = F :B<t+1)/2A1,t+1|Itfl}
W= B|87Aull ]
Al = FE [5@71)/2141,1&—1”1&—1}

ry = FE :5t/2(f1 +d1 + (a1 — Rt)utfl} .

Then the Euler equation can be written as

B2y 2di\ . dipTV? .
— Am Tt ot ) Aut —g A = (4.17)

Notice that A7, ;, Af;, A7, 1, and 2} are all random variables that are
measurable with respect to the information set I;_1. Define B to be the
operator such that

BAj,,1 = BE [6@4_1)/2141,1&-!—1”1&71} =F {Bt/2A1t|I+tfl}
B7'4;, = B'E [ﬂt/2A1t|It—1} =F [B(t+1)/2f41,t+1|[t—1} .
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Now consider the characteristic polynomial associated with the difference
equation relating A7, 4, Af;, and A7, 4 to z;. This characteristic polyno-
mial may be factored as

1/24
Pldipa (91 +

_61/2d1 N N
B="2_"11-XBY(1-XB),
A AN

A

2d4 d18~1/?
2 ) T

which implies

Y — 3 * _AXI *
(1 - )\IB 1)(1 - )\2B)A1t = ml’t,
or
Y p—1y 4 — 75‘ * A 3 *
(1-MB YAy, = ﬁxt where Ay, = (1 — \B) A%,
or
o Ay L -
Ay = )\1A1’t+1 — ﬂT;Jlxt’ |)\1| < 1. (418)

But this is a functional equation which maps random variables that are
elements of Lg (Q, Fi—1, P,—1) into itself. Tt is also a contraction mapping
since |A1| < 1. Hence, there exists a unique solution such that

Ay = i)‘ll i Mty (4.19)
But
Ay = E [BtﬂAltut—l} ~ME {6@71)/2141,1&—“[1&—1}
Ti, = E {5(t+1)/2(f1 +di +ay i — Rt—l—i)Htfl} :
Therefore, we have that
BPE[Aull 1) = MpYVPE Ay | Ty
AR B2 &

~ g, ;(5\151/2)i {(fi +di) + El(are+i — Regi)| li—1

But B<t_1)/2E A—1|li—1 = B<t_1)/2A1,t_1 since Ay ;1 is an element of the
information set I; 1. Therefore,
ElAylL1 = 5\15_1/2141,1571
AN &

" B12d; ;(5\151/2)i {(fi+d)+E[(a1,444 — Reya)| It 1}
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Define A such that A3/2 = X. Then, we can write the solution to the
stochastic difference equation as

E[Ay|li1 = N1

_3—j S B {(fi +di) + E [(ar,45 — Rewi)| L1 }.(4.20)
=0

Recall that we chose the initial sequence {A1:}72, to be measurable with
respect to the information set I;_;. Therefore, we can replace F(A1|li—1) =
Ay However, we still have to evaluate E(ay 4+i|l;1) and E(Ryi|l1). In
the model which Eckstein takes to data, he assumes that

ai 0 p 0 ai,—1 Uit
= + ’ + , 4.21

where |p| < 1, |aq] < 1 and uy = [wig, ugr " ~ N(0,%) for all £ > 0. Given
this representation, we can calculate

E(ait|I;-1) = pa1—1 because E(uyg|l;—1) = 0 by definition.
Also,

E(ai 41|l 1) = pE(aw| 1) + E(ui 1|l 1) = pPars 1.
Iterating in this way, we have that

E(ay k| li-1) = p" a1
Similarly,

E(Rip|li—1) = o + a1 Ry 1,
and

E(Riy1|li-1) = oo+ arB(R|li-1)

= ag+agor + Q%Rt—l-

Continuing in this way,

E(Rt—i—i) = Z Oé{ + aﬁ“Rt,l.

7=0

Substituting into the formula for Ay, yields

A . LI . .
Ay = )\Al,t—l — d_1 Z()\B)Z (040 Z Oé{ — CYZI—HRt—l 4 pl"'lal,t—l) .
=0 =0
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Collecting terms and simplifying yields

Ay = M1 — ao Z (Z Oé)
—0

3=0

A/\Oq

2 S e Ry~ LS DCEDEH

=0 =0

— >\A1,t—1 — A)\Oé() Z (Z Oél>

+

i—0
Ao —1 AXp

TE A T g (4.22)

Let

n 0o i
po = —— > (A8) (Z 04{)
17 -
7=0
B Ala —1
H1 d1(1 — )\5041)
AXp
p2 = —o— =
di(1— \Bp)
Using this notation, we can the solution as
Ay =M1+ po+ i Re—1 + poar 1.
But A1;—1 = paig—2 + u1g—1, which implies that
Ay = M1 + po + p1Re—1 + popar g—o + potiy g—1-
From the solution, we also have that
pipai ;-2 = pAig1— pAAiz 9 — ppo — ppiRe o

Substituting back into the expression for Ay, simplifying, and stacking
vields

Ay _ po(l = p) 4 A+p w1 Ayt
R; og 0 o1 Ry 1
—pA  pt Ao €1¢

+ [ 0 0 Rio ] + [ o1 ] 5 (4.23)

where €1y = pour—1 and ey = ugs.

These equations display the rational expectations cross-equation restric-
tions between the endogenously determined land allocation variable Aj; and
the exogenous process for R;. In particular, the coefficients p; for i = 0,1, 2
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display the effect of expectations of future values of R; and a1; on the optimal
choice for Ay;.
Is {A14}72, a covariance stationary process? Since |A| < 1, we can write

0 o
Ay — 1/1—0/\ 1y Nayg1i+pe Y XNRi 1 (4.24)
=0 =0

Using this representation and the fact that E(a1;) = 0 for all £ and E(R;) =
ag/(1 — a1), we find that

Ho H20g
B(Ay) = .
) = T3 T A=A —an

Likewise,

Var(Ay) = E[Ay— E(An)?

o] oo 2

i i H20g

pry Narg1—i+pz Y N R — ]
i=0 i=0 (I—a)(-2A)

oo 0 2
. . aq
= W NE(@ )i NVE (R - 1)
i=0 i=0

= F

oo ] a
+2p1 2 ZAQZE |:a'1,t1i (Rtli — 7 0 )} .
=0 - a1

Now

e 2
E(a%,tflfi) = Var(ait-1-4) = Var [Z PZULti] - 5
i=0

E Ry 14— = Var(Ry1-4)=F [Z 04%@,1&1‘] =
- =0

Finally,

aqQ

Elajz1- (Rt—l—i 1 )} = Cov (a1,4—1-i, Ri—1-4)

— o1

(Z qul,t—1—i> = + Z OC{U2,t—1—i
=0 ar i
o

= D (par) Cov(urp 1-4,u2,1-4)
i=0
012
1—par

= Cov

Substituting back into the expression for Var(Ai4) yields

1 252 252 o
Var(Alt) Hio7 4 Ha03 H12012

C1=A21-p2 1-02 1-pa
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Thus, we find that the first and second (unconditional) moments of Ai; are
constant and independent of ¢. We could also calculate Cov (A1, A1 4—i)
and show that it is independent of ¢ and depends only on k. Thus, {A1:}52,
is a covariance-stationary process.

Suppose that we had chosen the exogenous processes to be of mean
exponential order less than 1/4/3, i.e.,

|E'ta1,t+j| < k?(:[;)t+j7 |E'th+j| < k(:z:)t+j,

where k> 0 and 1 < 2 < 1/4/B. Then the solution for {A1;}:2, would also
be of mean exponential order less than 1/4/3. What are some examples of
such processes? Consider the trend process

aiy = apgt +uyy, where 1 < g < 1/v/B, ag > 0, and E(ugy) = 0.(4.25)

Then |Eia1 41| = gyt

5 Dynamic Industry Equilibrium

In the dynamic land allocation problem, we talked about the problem of a
single decision-maker in a dynamic, stochastic environment. This decision-
maker took prices as given and solved a maximization problem. Now we will
look at simple models of equilibrium. We start out with models of industry
equilibrium.

5.1 An LQ Model of Investment: Quadratic Adjustment
Costs

We will use a simple investment model to discuss these issues. Suppose that
there are N identical firms in the industry. Let output by a single firm be
given by

yr = Joke. (5.1)

Let p; be the price of output. Assume that firms buy capital goods in period
t and sell off their capital carried oyer from the previous period at the price
Ji. Let (1/2)(K;— K1) be the real cost of adjusting the capital stock. The
firm is assumed to maximize the discounted value of net cash flows at time
0:

[e.o]

d
{Ir(rtli"}éo t:O(pthkt — Ji(ky — k1) — 5(’% —ke1)?, (5.2)

given k_1 and the price sequence {J;}$°,. The firm also takes the price of
industry output as given, i.e., it treats {p; }$2, as a given sequence. However,
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the price of industry output is now determined by the demand for output,
i.e., by the inverse demand curve:

vy = Ag — A1, + Uy, (5.3)

where {U;}72, is a known sequence of demand shifters and Y; = N fok, =
JoK¢. Assume that {J;}22, and {U}2, are elements of Zg . Show for yourself
that the optimal capital stock sequence for the firm will be given by

—d !

(= Dk = 757

(Ji+1 — bJer2 + pr1fo), 1> 0. (5.4)
This capital stock sequence will itself be an element of Zg and it will satisfy
the Euler equations:

pifo — Ji + By — d(ky — k1) + dB (k1 — ki), > 0. (5.5)

Notice that the firm takes the price of industry output as given but its
decision influences the price of output. This simultaneity must be resolved
in equilibrium.

An industry equilibrium is the pair of sequence {p; }?2_ and {K;}°, such
that

(i) given the representative firm’s optimal capital stock sequence, prices
{pt}52, clear the market:

pr = Ag — A1Y, + Uy = Ag — A1N foky + Uy, (5.6)

(ii) when the representative firm faces {p;}$2, as a price-taker, the capital
stock sequence {k;}:2, defined by (5.4) maximizes the firm’s present
value.

Substitute for p; in the Euler equation using the market-clearing condi-
tion and multiply by N:

NAgfo+ NfoUy — NJ; + NBJsp1 — {Nd(1 + 3) + A1 foN?} ky

+Ndki_1 + NdBkip 1 =0, t>0. (5.7)

Re-write this equation as

BKip1 + ¢Ki+ Kio1 = Nd {J: — BJer1 — foUs — Aofo}, (5.8)
where

A1 foN

o= - (-0 200, (5.9

or
1 N
i (1 + %L + BL2> Kip1 = —{Je = BJew1 = ol = Aofo}. (5.10)
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We can factor the characteristic polynomial as

¢ Lo B
(1+BL+BL>(1 MI)(1 = AoL), (5.11)

where Ag > 1/8 > 1> A\;. We can write the solution as
N
(1=XML)(1—XL)Kiy1 = %{Jt — BJer1 — foUr — Ao fo}- (5.12)

To ensure that the solution is an element of Zg ,le Y72, BtKEH < 00, we
solve the root \s forward and the root A\; to obtain

NOO

K1 = MK — N SO i — Birs — foUsri — Ao fo}-(5.13)
i=0

Since A1 = (BA2) !, we can write the solution as

N &
Kiy =Mk — = > O Jeri = BJevint — foUrri — Aofo}- (5.14)
i=0

One interesting that Lucas and Prescott did was to solve for the industry
equilibrium indirectly. Instead of proceeding directly to derive (5.11), they
used the fact that a competitive equilibrium sequence of prices and capital
stocks will maximize the sum of consumer plus producer surplus with respect
to Kt.

In the static version of the problem, we would have

Y = Nfok output
p = Ag— A1Y unit price

¢ = €Y unit cost.

Thus, the problem is
Y
m;ix/ (Ag — Arx)dx — ex?, (5.15)
0
In our model, the area under the demand curve is given by
Yi 1 9
[ (40— AX <UNIX = AgYi— JAYE+ T
0
1
= AgN fok: — §A1N2 f2E? + N fok: (5. 16)
Total industry costs are

1
NJy(ky — ky1)* — 3 N (ks = ki 1)2. (5.17)
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Therefore, the problem becomes

> 1
o 3 5 {AoNfokit - LN+ N Uik
=0 1—Q

1
~NJy(ky — by 1)* + 7 (ks — k:tl)Q} . (5.18)
The Euler equations for this problem are given by

AgN fo — A fAN%ky + N foU, — NJ, + N3Jyy1
—dN(k?t — kit_l) + BNd(kiH_l — k?t) = 0. (519)

It is straightforward to show that the set of Euler equations can be simplified
as in (5.7). Hence, the industry equilibrium capital sequence can be found
as the solution of an optimal planning problem, as suggested by Lucas and
Prescott.

What happens under uncertainty? In this case, {k:}52, and {p:}°, are
stochastic processes. In the linear-quadratic dynamic optimization frame-
work, certainty equivalence holds. Hence, the optimal decision rule under
uncertainty is given by

o
(1= LYk = —d > _ BEr1 (Jig14i — BIrsari — fopreiti) - (5.20)
i=0
Thus, firms decision rules depend on expectations of future price. But price
depends on firms’ decisions. There exists a rational expectations equilibrium
if firms use the equilibrium price distribution or sequence to calculate these
expectations.

In this case, we do not merely substitute for pr = Ag — A1 N fok: + Uy
in the firm’s first-order conditions. Instead, we use the market-clearing
condition to calculate Eyy1(piyq) for i > 0, and substitute the expression for
this expectation. Equivalently, we can substitute for p; in the Euler equation
for the stochastic problem. In the uncertainty case, the relevant set of Euler
equations is

fore — Ji + BE(Jig1) — d(ky — Ky—1) + dBEtki41 — dBky =0, t > 0.

Substituting for p; using the market-clearing condition and multiplying by
N yields

NAofo — AIN?f3ki + N foUy — NJ; + NBEy(Ji1)
_Nd(ky — k1) +dNBEy (k1) — ANBk, — 0, £>0.  (5.21)

Suppose {J:}52, and {U;}72, are chosen to be elements of Lg(Q,]-", P, ie.,

/QB|Jt(w)|2P(dw) < o0 and /QB|Ut(w)|2P(dw) < .
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If the equilibrium sequence {kiy1}52 is also equired to be an element of
this space and measurable with respect to the information set or sub-o-
algebra generated by Jit1, Jt, ... and Uz, Uy, . . ., then the solution can be
represented as

ket = Mke— AT B {Jigin

=0
—BJeviv2 — foUrrir1 — Aofo}, t >0, (5.22)
K. — Nk (5.23)
pe = Ao— AN fok + U (5.24)

5.2 Externalities

Suppose that there are externalities in the production of industry output
such that the average product of individual firms depends on the total avail-
able industry capital stock:

K
Y— it ot S f2>0. (5.25)
ky ky

There are N firms in the industry, and each firm faces the inverse demand
function

pt = Ag — A1 + Uy, (5.26)

where Y; = Ny, and {U;}32, and {J;}32, are processes that are elements
of Zg .
The firm solves the problem:

> d
max > B — Jy(ke — k1) — 5 (ke — ki—1)?} (5.27)
{kt}?io t=0 2

given k_1 and K_1, {p:}20, {Je}20, and {K;}2,. )
Equilibrium in this industry is a set of sequences {p}2,, {ki}i2g, and
{K}$°, which satisfy the following three conditions:

(i) Given {p}2q and {K;}22,, {ki}52, maximizes the present value of the
firm;

(ii) the firm’s behavior is consistent with the industry-wide capital stock:
Nk, = Ky;

(iii) given the firm’s optimal sequence {£;}3°,, the sequence {p;}$2, clears
the markets, i.e.,

Pr=Ag— A1[fi - Nfo Ky + U, t>0.
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The Euler equations for the firm’s problem are given by:
pef1 — Jo + BJip1 — d(ky — k1) + dB (k1 — k) = 0. (5.28)
Substituting for p; using the inverse demand function yields
dBkiy1 —d(1 + Bkt + dke—1 =
Jio — BJey1 — Aot + Arf1(fi + N fo) Ky + Ut (5.29)
Multiply by N to solve for the industry capital stock:
doKiy1 —d(1+ ) Ky +dK—1 =
NJi— NBJy1 — Ao fiN + A1 fiN(f1 + Nfo) Ky + NU, (5.30)
which yields
dBKip1 — [d1+8)+ ALiN(fi + Nf2) Ki +dK;1 =

N(Je = BJey1 — Aofi + U). (5.31)
What is the social planner’s problem for this economy? This is given by
Yi d
max / (AO — Alil,‘ -+ Ut)dl‘ - Jt(Kt — thl) — —(Kt — Kt,1)2 (532)
{24 JO 2n
s.t.
K = Nky and Yy = N(f1ke + N foky). (5.33)

The Euler equations are given by:

Aofi + AoN fo — A1(f1 + N f2)* Ky + (f1 + Nfo)Up — Jy + B
d d
—~ (Ki — K 1)+ FB(Kt+1 - K, =0, (5.34)

which can be simplified as
dBK+1 — {d(l +8)+ AIN(fi + Nf2)2} Ky +dKy1 =
N(Je = BJey1 — (Aofr —U)(f1 + N f2) . (5.35)
Comparing the Euler equations for the social planner’s problem with the
Fuler equations for the industry-wide equilibrium stock, we note that they
differ with respect to the coeflicient on K;. In particular we can factor the

characteristic polynomial associated with the difference equation for each of
these capital stocks as

BL™' — ¢+ L=
dBM L1 — A L7 (1 = Ao L)

3

where
b = — ((1 +08)+ AlN(flJ;l - Nf2)> industry equilibrium
B 2
b = - ((1 +8)+ AlN(f1d+ Nf2) ) social planner’s problem.

Notice that || > |¢|, which implies that Ay > A > 1/8 > 1> A; > A1
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5.3 Dynamic Optimal Taxation

We now present a set of results with investment and capital income taxation.
We consider the problem of a government which acts as a dominant player
and sets tax rates to finance a given sequence of government expenditures
subject to the behavior of the private sector. The government maximizes

the sum of consumer and producer surplus for a given industry by choos-
ing a sequence of tax rates {7}72, and the industry capital stock {K;}52,
subject to the optimizing rues of firms in this industry and the sequence of
government budget constraints. We initially assume that there is no tax on
initial capital.

No Tax on Initial Capital.
Assume that the government receives the capital income tax

Ty = i Nk, (5.36)

and faces the sequence of budget constraints

bBt+1 — (gt + By — TtNk?t) (537)

where 0 < b < 1 is a discount factor, B; is the existing stock of debt, By1
is the future stock of debt, and ¢; is current government expenditures. Each
firm produces output according to the production function

3

Yt = fokt: fO > O: (538)
and faces the inverse demand function
pt=Ag— A1, + Uy (5.39)

As before, assume that firms face quadratic costs of adjustment and a given
sequence for the price of capital {J;}72.
The problem for the government can be expressed using the Lagrangian

x 1
L=>"t { [AOfONk:t - §A1(f02N2k;§) + foUiky (5.40)
t=0

1
=Ny = k1) — 5 Nel(k; - ky_1)?

A N
TT g1t b — JoU — Aofori) — K

+pt [bB1 — (gt + By — e Nkt) }
The FOC’s with respect to k¢, 7, and Bijiare:
N {—Ag F2N2ky — Nd(ky — k1) — bNd(kyq — k) + \bbppy  (5.41)

—0; + e, = (Ao foN — foNU, + NJ, — NbJi1)}

A N
“ T ow T O + Nk =0 (5.42)

bﬂt - b/JJH_l = 0. (543)

0, [ANk:tl -

3
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We seek a solution {m, kt, 0, 1t }324 to (5.41) -(5.43), given the govern-
ment budget constraint

ZTtth = Z btgt + B =G, (544)
=0 =0

where GG denotes the present value of government expenditures and where
we have imposed the condition

lim "B, — 0,
t+h—o0

and the initial conditions k1 and Bg = 0.
We can re-write (5.41) as

Nd
pere = =~ (1= ALY (1 — ALYk — (1 — AL 10, = s, (5.45)
where
St = —A(]fON — fONUt +NJ; — Nth—H'

Using this definition of s, the equation describing the behavior of the in-
dustry capital stock can be expressed as
A 1 A 1
-_— 1-AD)k = —————5;.
a1 —wr 17 = N T oL 1%
Notice that condition (5.43) is satisfied with p; = p for all ¢. Hence we
can write the remaining conditions as

A 1 A 1

(5.46)

—— 1ALkt = ————————s;, t> 4
dl—bAL—th+( AL)k; INT T t>0 (547)
A1
—Z——6,=0, t>0. :
uk:t dl—/\LHt 0 t_O (548)
Fort>1,
- (=L —é(l—b/\L_l)(l—AL)k: (5.49)
T = N St by ts .
d
0, = “7(1—AL)kt. (5.50)

Notice that we cannot operate on both sides of (5.47) for ¢ > 0, only for
t > 1. Now substitute these results into (5.48) to obtain

(1+p/N)HX 1

1— AL)ky = — , > 1 5.51

( i 2u+ Nyd 1—bAL-10 "= (5:51)
Solving for 73 and 6, yields
n/N }

= —q——0 ., t>1 .52

Tt {(2M+N st, t> (5.52)

1 N 1
g, — —HIEwN) t>1. (5.53)

WMN 1—bAL L
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In these expressions, p is like an implicit price for the present value form of
the government budget constraint. Thus, p increases with G. We note that
0 (1 +u/N ) 1

ou

=—— > <0
2u+ N 2 <

(2u+ N)

Thus, we note that k; goes down with p for all t. Likewise,
0 ( w/N ) 1
— = > Q.
Ou \2u+ N (2u + N)?

Thus, increases in y increase the sequence of taxes starting from ¢ > 1.
Now we solve for kg, 19, 0g, given a value for u. For t > 0,

A1
kt— —=——=60;=0
P g1
implies that
A
ko = =0qg.
20 d 0
We obtain this condition by setting 6_1,60_»,...= 0, which is the appropri-
ate set of initial conditions because the social planner takes k 1,k o,... as

given and not as being influenced by his choice of {7y, 71,...}. We have that
conditions (5.46) and (5.48) hold for ¢ > 0. Thus, operating on both sides
of (5.46) by

Nd

~ (- bAL™Y)
and adding the result to (5.48) yields
1
= 1—bAL 18, t>0.
Tt 7 T N( ) ts = 0
Substituting into (5.46) to obtain for £ = 0 yields
A1 - 1
EN+u90 TR = AR L= T T T
But 6y = dukg /A, which implies
N+p ) A ( Nty ) 1
ko = Me_{ — — . 5.54
0 (N+2u Y Nd\NT2u) 1o (5:54)
Also,
B N+ pu w o N+u ) 1
Oo = dy (N+2u) F1m (N+2u T—bAL-1 " (5.55)

Finally, using the expression for 7z, we obtain

TO_(d_M) O+ p/N)

G (N +2u)so. (5.56)
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How is p determined? We know that the present value form of the budget
constraint holds:

S obimk = b =G.
t=0 t=0

Notice that the solution for 7+ and k: both depend on p. First, we note
that if G = 0, p = 0 is a solution because 9 = 0 and 7 = 0 for t > 1. If
(G is not equal to zero, the value of p must be found from the PV formula
using the solution for the tax sequence and the capital stock sequence. Also,
there exist values of GG large enough such that no set of 7, 0y, and k; solves
this problem. The reason is that the tax reduces industry output because it
reduces industry capital. But if industry capital is reduced sufficiently, the
sum of consumer and producer surplus becomes negligible. In that case, the
government ends up with nothing.

The time-inconsistency of the government’s optimal plans is evident from
the fact that different functions are used to determine k; and 7 at t — 0 and
t > 1. In particular, when G > 0, g > 0 and

dp
N +2u
Also let s; = sg for all t. Then

TH = dp k:—ﬂ( ! )s
TN T N\ N2

> 0.

but
o 1
- = , t>1
TTNNa2 T '
Hence, 9 > 7 for ¢+ > 1. This occurs because the government takes
k_1,k_9,... as given whereas it realizes that n will affect k; in periods
t > 1. Another way of understanding the time-inconsistency problem is to
solve this problem at time ¢ = 1, taking as given the initial conditions kg
and Bj from the solution with £ 1 and by = 0. The initial conditions for

{0:}72 are 6 = 6_1 = ... = 0 since the planner now takes kg as given and
uninfluenced by {71, 7,...}. It can be shown that
N+u ) A ( N+u ) 1

k1 = Mg — —— .

: (N Tou) T AN \Nt2u) 1AL 1 (5:57)
dy n/N )

— kg — . .

T (N+2u> 0 (N+2u 51 (5:58)

But this is not identical to the solution that we found for ¢ = 1.

Taxation of Initial Capital
The government now taxes initial capital by setting

BO = —(7',1]{7,1). (559)
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Therefore, the PV form of the government budget constraint becomes

S bmki+ ko1 =) bg =G. (5.60)
t=0 =0

The Lagrangian becomes

> 1
L=>"¢% { {AO JoNky = 5 Ax( FENZED) + foUsky (5.61)
t=0
1
=Nk — kp1) = SNd(k — ky_1)?
+0 [ANk: —AL(J — bJi1 — folUy — Aofor) — k
3 =1 T Lt t+1 oUt 0JoTt 2

+pug [bByy1 — (9¢ + By — iNky) +p—1[Bo+7-1k_1 }

The FOC’s are found as before for k¢, 7, Bir1, 0, and p; for £ > 0. The
first-order conditions for By and 71 are

i1 —po =0 (5.62)
,u_1k7_1 =0. (5.63)
But £_1 > 0, which implies mu_1 = 0 = pu; for £ > 0. Therefore,
T_1k_1 = thgt, with = = 0 for t > 0.
=0

The taxes at ¢ > 0 are like distorting taxes because they alter the optimal

choice of capital whereas the taxes at + = —1 are "lump-sum” because k_1
is given. Hence, it is optimal to tax everything at time t = —1. Also notice
o0
Tk = > Vg
t=0
By = —71_1k_1 <0
Br = b Ygo—7_1k_1) <0 since gg < Y02, btq = T_1k_1,

and so on. This last fact implies that if this problem is solved at time time
t =1 with By = b (g0 — b '7_1k_1), then the sequence of taxes necessary
to finance the remainder of G — gg will still be given by » = 0 for ¢ > 1.
hence, the solution is time-consistent.

Limited Taxation on Capital
Suppose the government is able to impose only a limited amount of tax on
the initial capital stock, i.e.,

T7_1k-1 <R, (5.64)

and, more generally,

Ttk?t S R, t 2 —1. (565)
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The value of R is chosen so that without taxation of initial capital, the
taxes implied by the tax collection scheme of the original problem would
be less than R for all t. On the other hand, if taxation of initial capital is
allowed, then the restriction wk: < R becomes binding in the sense that the
government cannot raise all of G just by taxing the initial capital.

The Lagrangian is

b 1
L= { [AO foNk, — §A1( FEN2ED) + foUiky (5.66)
t=0
1
=Ny = k1) — 5 Nel(k; - ky_1)?
AN
+0; [ ANk 1 — Em(Jt —bJiy1 — foUs — Ao fors) — ke

+pg [0Biy1 — (9e + By — iNky) +p1[Bo+71 1k 1
Gt[R—1e1ke—1 +p_1[Bo+71-1k_1 }

For 4, t > —1 and By, t > 0, the FOC’s are:
OL

= _9 3.67
87‘15 < ( )
A ! 0 k b k=0 t>0 5.68
S \1T7 ¢ + peky — bpey1ky =0, t 2> (5.68)
OL
=0 & —¢ok_1+ p_1k—1=0 (5.69)
87',1
OL
8—Bt =0 & —ur+pue 10, £>0. (5.70)

Also, ¢411(R—7ik) = 0 for £ > —1 so that either ¢r1 = 0 or the constraint
holds with equality at £ 4 1, i.e., R = 1zk¢, or both. Now R is large relative
to %tl;:t where %tl;:t is the solution to the problem without initial taxation so
we argue that ¢41 = 0 for ¢ > 0. But R < G so that all taxes cannot be
collected by taxing initial capital. Thus,

po1=¢+0>0
from the first-order condition with respect to 7. Then
R
= P

Then from t = 0 onwards, the revenues that must be raised are

Z ngt — R.
t=0

Set ;1 = p—1 so that the solution to the original problem {mk:};2, raises
the revenues Y 3°,b'g; — R. The tax rate will be lower at t = 0 because
taxes have been collected at ¢ = —1 already. But the problem is still not
time-consistent because at ¢ = 0, the government regards kg as fixed and
given.

T-1
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6 Consumption Choice

The first intertemporal model of consumer choice problem is due to Irving
Fisher. Suppose consumers can borrow and lend all they wish at the constant
real interest rate 7.

The consumer’s choice problem is to solve

max V(Cy,C1,...,Cr) = max Biu(Cy) 6.1
{ee,Be}2, ( o {et,Be}g2 OZ t ( )

subject to
Ci+ B <Y+ (1 + T)Bt—l; t >0, (62)

given B_1 where Y; is current income. Substituting recursively for B; from
the next period’s budget constraint, we obtain the present value form of the
budget constraint

1 Cr Br Y1 Yr
C . —Y; .
0H IR AT T aAET T ey T T a7
Thus, the problem becomes
max Bru(Cy) 6.3
{ct,Be}2 0;) t ( )
subject to
T T
Cy Y
Co+y —<Yo+) ——, (6.4)
t=1 (1 + T)t =1 (1 + T)t

with By = 0. Otherwise, the consumer would like to borrow as much as
possible at the end of his life, and he would die in debt.
The FOC’s are given by:
1
t, !
Cy)= —,
/8 (7 ( t) (1 + ')")t 3
or taking the ratio of two consecutive conditions,
BUI(CH_I) _ 1
W (Cy) 147
e If 1/(1+r)=f, then «/(Cyq1) = v/ (Cy), which implies Cryq = Ct.

e If1/(1+7) < B, then w/(Ciy1) /v (C) < 1, which implies that Cyyy >
Cy. Notice that § = 1/(1 + p), where p is the rate of subjective time
preference. Thus, 1/(1+ p) > 1/(1+r) implies that p < r, which says
that individuals are not too impatient relative to market opportunities.

(6.5)

e If 1/(1+7r) > 3, then v/ (Cyy1) /v (Cy) > 1, which implies that C41 <
C;. Notice that 8 = 1/(1+ p). Thus, 1/(1+ p) < 1/(1 + r) implies
that p > r, which says that individuals are more impatient relative to
market opportunities.
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6.1 Saving Under Certainty

Let the utility function be given by
x
> Bhuler), (6.6)
t=0

and consider the budget constraint
A1 = Ry [Ai+ye — e, (6.7)

Ag given. Here R, denotes the time-varying gross real interest rate. Assume
that {y:}i2o is a given sequence of exponential order less than 1/8 and
{R:}2, is a known and given sequence of one-period gross rates of return
on wealth (i.e., we have not dealt with taxation).

¢t = consumption
A; = non-human wealth
y; = labor income.

Let y: = Ayz—1 and By = R for all £ > 0 with R > A.

The budget constraint shows how non-human wealth evolves. To rule
out infinite wealth obtained by arbitrarily large amounts of borrowing, let’s
solve

A1

ct+ = A+

t
But

Apri = Copi — Yoi T

Therefore, we have

Ct+1 — Yt+1 Ao
=A ]
cr + 7 + ToRias t T+ Yts

or, more generally,

o o
C C
ety (H?c:ORtJ,-lk) Covg Sy Y (H?c:ORt-i-lk) Yt + A, (6.8)
j=1 j=1
where
. h—1p—1
Jm (Hk:ORt-Hc) Agyn — 0 (6.9)
is a transversality condition which rules out arbitrarily large wealth. We
don’t have a terminal condition because the problem is an infinite horizon
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problem. Let’s make the specialization that u(c;) = In(¢;). Then the prob-

lem becomes
x

max In(et),
{eeAtr1}i20 120

subject to

Ayt
¢

The FOC’s are:

¢+ <y + Ag

1A
5o
Ct

At
2= g
Rt t+1;

(6.10)

(6.11)

(6.12)

(6.13)

where )\; is the Lagrange multiplier associated with the one-period budget

constraint. Notice that
At = Ridiq1,

which implies that

¢
Fo_ RiAiy1
Ct
= BByt
= (H‘L;}]Rt"‘kﬁ) Attk-
But
i
At4j = u ;
Cirtj

which implies that

covg = ¥ (TG Rigs) s

Substituting this solution into the budget constraint yields

L+ i (Hi;éR;rlk) & (Hi;éRtJrk) =Y+ i (Hf;}]R;}k) Yerj + At
Jj=1 =1

which implies

e, ) o0 .
ad B =y+ (ch;éR;rlk) Yirj + At
Jj=0 J=1
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(6.15)

(6.16)
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or

c=(1-75) {yt - i (TE_6R, ) vy + At} : (6.18)
=1

Thus, we find that consumption is proportional to human and non-human
wealth. Human wealth is just the discounted stream of income earned by
the individual over his lifetime. Let us specialize this expression a bit more.

o = (1-5) {yt—FRt_lyt—l—l+R;1R;_&1yt+2+...+At}
= (1-75) {(1+R71)\+R’2)\2+...)yt+At}
= (1-8) [A+y/0-2R), (6.19)

with R~'\ < 1, which implies that wealth grows at a rate less than the
growth rate of income. Thus, the consumption derived from optimizing
behavior varies inversely with the real interest rate and directly with current
income and the growth rate of income.

Suppose we have an example in which the gross rate of interest on assets
held between periods £ and £+ 1 is random and becomes known only at the
beginning of period ¢ + 1, after a decision about consumption at ¢ must be
made. When the time t decisions are made, the consumer knows Ay, y¢, and
Ry 1, Rs o,....

Now the problem becomes

o0
max F; Yy Fulcry) (6.20)
{Ct+j}?i0 j=0
s.t.
o+ By (THZGRY ) ey <w+ B> (TEZGR, L) yewy + Ae(6:21)
j=1 j=1

We further assume that u(c;) = In(c;), {Re}52 is an i.i.d process with 1 <
ER; < 1/3?%, and that {:}3°, is an i.i.d. process of mean exponential order
less than 1/ that is also independent of {R;}:2,.

The FOC'’s are:

1A
By (6.22)
Ct
g 11\ _a
E Ltﬂ ~MIIRL) | =0, 5> 1 (6.23)

These conditions imply that

s = B (bR ) e
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Substitute this into the budget constraint:

e, ) o
ct+> B =u+Ey, (H%;éRtllk) Yerj + At
Jj=1 J=1

which implies that

c = (1=08)y+ i (Hi;éEtR;rlk) Ewyryj + At}
j=1

- 1-B) |y (R )+ At}

=1

= (1-08) [At +y+7/(1— Rfl)} . (6.24)

But the assumption that { R;} and {y;} arei.i.d and independent is arbitrary!
Suppose that we make no assumptions about {R;} and {y;}, which allow
us to simplify as we have done before. Then,

0
a=0-0)|A+y+> (H?c;BR;rlk) Yij T Ut (6.25)
=1

where Hyp1 = 122 (ng;;gR;;k) yeaj and ug = Hypq — EyHyyy. We know
that

E(ug A,y Re—1, Ry—9,...) = 0. (6.26)
Thus, we can write

co=00-08)[Ar+y+ Hip1 + vy, (6.27)
where v, = (1 — B)uz. Then we might be able to test this theory by using
generalized instrumental variables estimation.
6.2 The Consumption Function
The early Keynesian consumption function was postulated of the form

C; = a + bY;. (6.28)

But from time series data, it became apparent that consumption is a much
smoother series than income so this relationship did not fit very well in terms
of the time series data. Researchers tried to fit consumption to distributed
lags of income, i.e.,

Co=bL)Y, =01V +bY,1+..., (6.29)

so consumption seemed a smoothed version of income. Theories were sought
to interpret this distributed lag. This led to the idea of permanent income,
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i.e., that individuals did not choose their consumption to depend on current
income but on some measure of income expected over the lifetime. This led
researchers to examine Figher’s theory of intertemporal consumption alloca-
tion to reconcile the data with an optimizing model of consumption choice
over the individual’s lifetime. Up to this point, we derived the consumption
function

o= (1= B) |+ B> (R, ) ey + As| (6.30)
=1

How can we get consumption to be a distributed lag of income, i.e., how
can we get current and past values of income to affect current consumption?
Suppose

Yt = A1Yt—1 + A2Yt—2- (6.31)

Now

o0
v+ Y R 7y =y + RN awy + agyr 1) + R (01941 + aowr)
j=1

+R3(a1y42 + a2yir1) + - .-
= (14 R 'ay + R %ag)y, + R 'agyy 1 + R *a1(ary; + asyy 1)
+R¥[ar(aryis1 + agye) + az(arye + agyr1) + ...
= {1 + R ta; + R %(ay +a?) + 2373&102} Yt
+R tas(1+R la; + R 2a9) + R 3ady1 + ...
(1+asR L)y

= 6.32
1—a R ! —ayR2 (6:32)
Therefore,
(ye +a2R ys—1)
=(1- A . 6.33
& ( 6)[ t+1—(1,1R71—(1,2R72 ( )

Now suppose we assume that {y;}7°, and {R;}{°, are arbitrary stochas-
tic processes. Define

oo
Hy =y + EHip = yo+ B Y (THZGR ) vy (6.34)
j=1

Likewise,

[e.°]
Hiy =y +EiHy = g1 + By Y (THZGR Y ) vy (6.35)
j=1
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Suppose Ry = R. Then H; = y, + Ey P Riyw; = Ey > 720 Ry .
Likewise, Hy_1 = yt—1 + Fr—1 230'11 Ry j—1. Also, we have that

o o
RH, 1 =Ry, 1+E_1> Ry ;1 =Ry 1+ E1> Ry
j=1 =0

Combining these results yields

Hy= R(Hi—1 — y1—1) + Bt Y R yryj — Er1 Y R yy, (6.36)

j=0 j=0
which implies that
Hy=R(H; 1 —y1)+ e, (6.37)
where
e =Y R 7(Ew; — Er1yies), (6.38)

=0

i.e., the discounted value of the revision in income forecasts based on addi-
tional information available at time t. Notice that F;_1e = 0. Now ¢; =
(1 — B) [At +Ht:7 or (1 — B)_lct — At = Ht and (1 — B)_lct,l — At,1 = Htfl.

Therefore, we can write consumption as
¢ = Rep 1+ (1 — B) {At —RA; 1 — Rytfl: + €. (639)

Thus, we obtain the result that the only variables useful for predicting cur-
rent consumption are current wealth, past consumption, and past income.

6.3 The Random Walk Model of Consumption

Hall takes an alternative approach in that he derives restrictions on the be-
havior of consumption that do not involves stochastic processes for income.
Consider the problem of solving

o
max > B'u(c) (6.40)
{ee} 20 +—0
subject to
o o
co + Z Rte; < wyo+ Z Ry, (6.41)
t=1 t=1

The FOC’s are:

ful(e) = AR? (6.42)
B EW (crq1) = ARG, (6.43)
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Solving for the Lagrange multiplier yields

A= (BRI Ew (1) (6.44)
Substituting it into the first condition yields

u'(cr) = BREw (ci41), (6.45)
or

Eol (csq1) = (BR) M4 (1) (6.46)

This condition implies that no other information besides current consump-
tion should help to predict future consumption.
Equivalently, we have that

W (1) = (BR) "/ (c) + €xt1,

where Eierr1 = 0.
Suppose u(c) = (1/2)(c; — €)%, where € is the bliss level of consumption.
Then «/(¢;) = & — ¢; and

cert = (BR) e+ [1— (BR) | e+ e, (6.47)

where Fie;y1 = 0. Hall assumes further that 5 =1/R = 1/(1+7), or equiv-
alently, that the rate of subjective time preference equals the real interest
rate. Then we obtain the random walk of consumption:

ot = ¢+ [1 - (53)*1} e+ €1 (6.48)

Suppose that we regress current consumption against current income. Then
the random walk model of consumption developed by Hall states that the
coeflicient on income should be zero. €41 summarizes new information that
becomes available at time ¢ about the consumer’s future marginal utility of
consumption.

How may be the permanent income hypothesis be rejected? Suppose that
a set of consumers is constrained by their current incomes. For example,
they may not be able to borrow. Then their consumption will follow

& = py. (6.49)
The remainder behave optimally so that

¢, =\, | + e (6.50)
Aggregate consumption follows

et = ¢+ c;’ = py, + )\c;’_l + €. (6.51)
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Suppose that income follows an AR(2) process, i.e., Yyt = p1ys—1+p2Yt—2+Uz.

Elcler1,ye1,002) = Bl 1, y1,y0-2) + B(cy i1, Y1, Ye—2)
= pE(Yly1,y-2) + Ace — pys—1)
= UP1Yt—1 T PP2Yt—2 — HAYL—1 + Acr1
= plpr — Nye—1 + pp2yi—2 + Aci1.

The permanent income hypothesis will be rejected unless p; = X or p2 = 0.
Alternatively, suppose consumers use a non-optimal distributed lag to
form expectations of permanent income, i.e.,

o
=« Z 8y, (6.52)
t=0

or

o
ct=ay +90 Z OYt—1-1,
=0

which implies that
et = oy +0c 1. (6.53)
In that case,

E(ctlci—1,y1—1,9t—2) = dc1 + B (ye|ye—1,Ye—2)
= b1+ alpiy—1 + p2yr—2)- (6.54)

Hence, we find that past income is useful for predicting current consumption.

7 Monetary Economies

So far we have considered only real models of the aggregate economy and
individual behavior. We have not talked about the existence of some medium
of exchange, as money is usually termed. Alternatively, any good can serve
as a numeraire or unit of account in our model.

Now we will consider economies where there exist money. Money can
take on different forms. For example, there are commodity monies (gold
and the gold standard). There are partially backed monies. There are also
fiat money systems. Fiat monies are unbacked currencies. They contain no
clause providing for convertibility into another good. We begin with the
study of a very simple fiat money economy. A crucial question arises when
we consider fiat money: it has no value in itself. It cannot be fashioned into
gold bracelets. It yields no real rate of return. So if there exist other assets
or goods which do have value in themselves or which yield a real non-zero
rate of return stream, why should fiat money be held?
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One reason is that money yields utility in itself. Money-in-the-utility-
function models exploit this rationale. But this is a less than satisfactory
explanation. So let us step back and consider a slightly better explanation,
i.e., that money yields services just like any other asset but its services are
in the form of liquidity services. But this still seems to beg the question in
that why are liquidity services required. They are required because there
exists some restriction which says that goods purchases must be made with
money. This is the famous Clower constraint. It is a simple but in some
sense arbitrary way of bestowing value of money. There are more theoreti-
cally satisfactory ways of bestowing value of money, some of which we will
consider.

7.1 A Cash-in-Advance Model

We consider a closed economy monetary economy in which output is stochas-
tically determined and non-storable. The supply of money is also random
and determined according to the law o motion

Mtl = tht; (71)

where w; is the gross rate of monetary expansion and is stochastic. Let
st(yt,wt) be the state in period ¢. Then assume s;41 follows a Markov
process with probability distribution Prob(si+1 < §'|s; = s) = F(s', s).

The representative consumer has preferences of the form

Ep > B Mu(er). (7.2)

T=t

Which markets exist in this economy?

1. Claims to the output of the single firm may be traded, i.e., equity
shares.

2. Goods market.

How do trades take place?

Consumers enter period ¢ with holdings of money M; and shares z; of
claims to the firm’s output. The consumer learns the state of the economy s;
and may purchase consumption goods with money at prices P(s;, M;). His
purchases must obey the lLiquidity constraint or cash-in-advance constraint:

P(St, Mt)ct S Mt. (73)

After the goods market is closed, at the end of period t, the consumer
receives in cash his share of dividends, P(s;, M)y:z as well as some lump-
sum money transfers (w; — 1)M;. The consumer receives the money transfer
after the goods market closes. Hence, he cannot use the money transfer to

a5



buy consumption goods within the same period. At the end of the period,
shares and money are traded.
The timing of trades is as follows:

given My, z, buy goods
time t| receive money transfers

trade money and shares

The budget constraint when trading shares and determining how much
money to carry over into the next period is defined by

Myt + Q(st, M) 21 < [My — P(sy, My)er
+ [Q(st, My) + P(st, My)ys. 2z + (we — 1) M,

where
M1, 241 ¢ holdings of money and shares to be
carried over into the next period
Q(sy, M) :  share price determined in money.

Let m = 1/p; be the real price of money or its purchasing power, and
q: = Q:/pt the real price of shares. Re-write out the budget constraint above
using primed variables for the future:

c+mM' +q < M+ @g+y)z+rw-1DM=w (7.4)

c M, (7.5)

IN |

where w is defined as real wealth in period t. Wealth in period ¢t + 1, w’, is
defined as

w =M+ (¢ +y)d + 7 - 1M,

The consumer takes as given the prices q(s, M) and 7(s, M) and chooses
allocations ¢, 2/, and M’ which will attain the value function

u(c) + B/v(w’, M, s MNdF(s,s), (7.6)

provided there exists a bounded, continuous solution to the functional equa-
tion defined by

v(w, M, s, M) = max_ {u(c) + B/v(w’,M’, s’,M’)dF(s’s)} (7.7)

c,M',z
s.t.
ct+aM +q2 <aM+(q+y)z+m(lw—1)M (7.8)
¢ <7mM. (7.9)
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We wish the solution to be bounded and continuous. Let A and p be the
Lagrange multipliers associated with the constraints. In equilibrium, ¢ = y,

M=M M =M =wM, and 2/ = z= 1.
The FOC’s are:

W(c)=A+p

ov(w', M, s, M)  v(w',M' s, M) duw
=0 / [ oM’ N o/ oM

ov(w', M’ s, M dw
Aq_ﬂ/ W )82,’ (8,87)

c+mM +q7 =w for A\>0
c<7mM foru>0

Notice that

o’ ,
aMm’
and
/
w
oz - q, + y,'
To show that
ov(w, M, s, M)
ek Bkt Bk RV A |
ow
and
dv(w,M,s, M)
oM T

let us use the approach in Lucas (1978).

(7.10)

)

=

11

)
2)
)
)

i

3

(
(
(
(
(7.14

7
7.
7

— =

(7.15)

(7.16)

(7.17)

(7.18)

Proof. Assume the existence of a bounded, continuous v(w, M, s, M)

which is attained by ¢ > 0. Define f : RT x Rt — RT by

flw, M) = max, {u(c) +B/U(w’7]\~4f73f7M/)dF(3f7s)}
c,w’
s.t.
c+mM' +q <7M+ (q+y)z+m(w—-1)M
c<mM = M
c>0,2>0M >0.

For each w, f(w, M) is attained by ¢(w, M), w'(w, M) and M (w, M). Tt can
be shown that the maximand is strictly concave in ¢ and consequently, that
¢(w, M) is unique and varies continuously with w and M. If ¢(w, M) > 0
and if h is sufficiently small, then ¢(w, M) + h is feasible for wealth w + h
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and money balances VT{, and ¢(w -+ h, M +h) — h) is feasible for wealth w-+h
and money balances M + h. Therefore,

f(w+h, M +h) > u(c(w, M) + h)
w / o(w(w, M), M(w, W), s, SI')dF (s, s)
= u(c(w, M) + h) — u(c(w, M)) + f(w, M)
and
f(w, M) > u(c(w -+ h, M + h) — h)
+B/v(w(w N+ ), M(w+ b, W = h), o/, M)dF(s, )
— u(c(w + h, M+ h) — h) — u(c(w + h, M + h)) + f(w + h, M + h).
Together we obtain

w(e(w, M) + ) — u(e(w, M)) < f(w + h, M +h) — f(w, M)

w7
< u(c(w + h), M + h) — u(c(w + h, M + h) — h).
As a consequence,

w(c(w, M) + h) — w(c(w, M)) < f(w+h, M +h) — f(w -+ h, M)
+f(w+h, M) — f(w, M) < u(c(w + k), M + h) — w(c(w + h, M + h) — h).

Divide by h, let h — 0, and use the continuity of ¢(w, M) with respect to w
and M to obtain

8f(wM) 8f(wW) ! Y
on7 + Sy U (c(w, M)).

Therefore,

Af (w, M) dM _ Ov(w,M,s, M)
OM OM oM

and

Of(w, M)  dv(w, M,s, M)

Oow Oow

Therefore, we have that

ov(w,M,s,M)1  dv(w,M,s, M) oy
oM . Ow = u(ew, M)).

|

Here ) is defined as the marginal utility of wealth and p is the marginal
utility of real balances, wu being the marginal utility of nominal money.
Notice that if m = wM is defined, then M; does not enter as a separate
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exogenous variable so that the equilibrium relationships may be expressed
only as a function of s = (y, w).

y < m(s) for u(s) >0 (7.19)

A(s) +p(s) = w(y) (7.20)
m()A(s) = BE[r(sHu(s) + A(s)m(s)]s, (7.21)
A(s)q(s) = BEAs)(a(s) +4)ls - (7.22)

The last two constraints may be simplified by noting that m(s) = m(s) /M,
w(s") = m(s")/M = m(s") /wM and using the second condition to substitute
out for A(s") + u(s):

2 \5) = 5[ () + Al (7.23)
which implies that
m(s)A(s) = BE [M | s} . (7.24)

These conditions mat be interpreted as follows: the liquidity constraint says
that real balances m must equal or exceed output. Since p is the marginal
utility of real balances, the first condition says that if the liquidity constraint
is not binding, then the marginal utility of real balances is zero and if the
marginal utility of real balances is positive, then the liquidity constraint is
binding.

We have that

A+ U= Ug, (7.25)

i.e., the sum of the marginal utility of real balances and of wealth equals
the marginal utility of consumption. Because real wealth cannot buy con-
sumption, the marginal utility of wealth does not equal the marginal utility
of consumption.

The fourth condition above gives the standard relation for the pricing of
assets:

A(s)q(s) = BEA(s)(a(s") + y)ls -

Solving this condition froward and using the transversality condition which
comes out of the consumer’s problem yields

1 E(Aryr[st)

T—1 TIT

= g I¥] . 7.26
qt —tt1 >\T ( )

The transversality condition is given by

lim /BTft E()\th|3t)

Jim N, — 0. (7.27)
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This formula is very similar to the formula for the share price that we derived
in Lucas except that in his model, the marginal utility of wealth always
equals the marginal utility of consumption. In this case, we have a divergence
between the two because of the liquidity constraint. So the existence of a
distortion in monetary transactions affects the real side of the economy as
well.

Now consider the third condition above:

A(s)m(s) = BE[(M(s") + u(s))m(s)]s . (7.28)

Solving this forward, we obtain

=~ 7t E(pume|st)
oo 3 gl
T=1t+1 /\t
— ot E(vnm,|st)
T—t T
= —_—r . 7.29
P (.29)

Imposing the transversality condition yields
lim 87 *E[upmnMpi1 — 0. (7.30)
h—o0 )

Thus, money is priced just like other assets, once its direct return has been
appropriately defined. Specifically, its direct return is the value of liquid-
ity services provided by money. But notice that unlike other assets, the
real return on money is not observable. So if we were to test any of these
relationships, we would have to somehow measure these shadow prices.

Nominal and Real Interest Rates.

The nominal interest rate is the rate of return on a nominal bond which
pays one sure unit of money in the next period. The bond is bought at the
end of period ¢, and pays one unit of money at the end of period ¢ + 1.

The nominal budget constraint is:

prct + Qubry1 + Qrzepr + Myyr < My + by
+H(Q: + ye)ze + (wy — 1) M.

The real budget constraint (after dividing by py) is:

¢t + Qb1 + e F M1 < m My + miby
+(qe + meye) 2 + i (wr — 1) M.

The optimality condition for the choice of bonds is
MGy = BE A1, (7.31)

which says that the marginal (utility) cost of investing in nominal bonds
must be equal to the marginal benefit of investing in them. Thus, the real
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present value at the end of period t of this bond or the nominal present
value deflated by the price level is

. _ BB A1 Te41

7.32
qi W ( )
By contrast, the nominal present value of this bond is
~ BEU A1
=T T 7.33
R (739
and the nominal interest rate is
1 E{[A )
_ BE1| t+17Tt+1_’ (7.34)
1 + 1t 7Tt)\t
or
. AeTy
1+i4p=——"7——,
g BE[Ai+1me41
which implies
; A7y — B[ Aep1mep1
t -
Et[/\t+1ﬂ't+1_
B )
t[,uft—i-lﬂ-t—i-l_ (735)

Et[/\t+1ﬂ't+1: .

How would we price a bond which pays one unit of real output for sure
in period t 4+ 17 We may think of this as an indexed bond. Consider the
real budget constraint

¢+ qrip1 + M1 +peBr < By + ...
The FOC is given by
PtAt = BE A1, (7.36)

which implies the pricing relation

A
Pt = BE; {—;ﬂ : (7.37)
t
and the real rate of return
1 >\t+1:|
=(GFE, | —]|. 7.38
T4 p PR { by (7.38)

Note that this bond pays off 1/m41 units of cash in period ¢ + 1.
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Prices, Real Balances, and Interest Rates.

One issue that has interested monetary economists is the effect of output
and the quantity of money (or its rate of expansion) on prices, real balances,
and interest rates. We can use the equations

y < m(s) (7.39)
A(s) +ul(s) = ue(y) (7.40)
A(s)m(s) = BE {M} (7.41)

to solve for A(s), m(s),w(s) and
(s, M) = m]\(j). (7.42)

We note that m(s) are real balances and together with the remaining valu-
ation criteria such as A(s), p(s) and p(s) are independent of the quantity of
money. On the other hand, 7(s, M) and the nominal interest rate will de-
pend on the quantity of money. Notice that the equation 7(s, M) = m(s)/M
may be interpreted as the demand price for money so we are about to derive
a proper demand function for money.

As a simplifying device, we will assume that the probability distribution
of & = (y/w') is independent of the realization of s, i.e., F(s',s) = F(s¢).
Under this interpretation, Eu.(y")m(s")|s = A, a constant that is indepen-
dent of s. Then there will be two regions in which the marginal utility of
real balances is zero and the liquidity constraint is not binding (m > y and
u(s) = 0) , and one in which it is (u(s) > 0 and m(s) = y). The border line
between the two regions is given by the set y and w such that

y = m(s) (7.43)

u(s) = 0. (7.44)
These conditions allow us to determine the value of w as

BA .

w= = O(y). 7.45

wly ~ (749

When w < @(y), the liquidity constraint will not bind, whereas it will be

binding for w > &(y). To show this, suppose w = &(y) where m = y,u = 0,

and A = u.. (i) Let w increase for constant y. Suppose p remains equal

to zero, and hence, A remains equal to u.. Then, by (7.43), we have that

m(s) = BA/uc(y)y is falling, which implies m < y, which is a contradiction.

Hence, p must increase and be positive when w > @(y), (ii) Let w be less that

&(y). Assume m = y. By (7.44), A = BA/yw must rise. But p > 0 implies

that A(s) < wu.(y), which is a contradiction. Hence, m < y for w < @(y).
Consider the relative risk aversion utility function

u(e) = . (7.46)
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We have three cases:

A
r<l = w= B1—r (7.47)
r=1 = w=pA Wy (7.48)
r>1 = w=gA4y L (7.49)

Hence, the borderline between the two regions has a negative, zero, and
positive slope depending on whether relative risk aversion is lower, equal to,
or greater than unity.

More generally, the solution when w < @(y) is given by

BA
ue(y)w

m(s) = >y, A(s) = uc(y), u(s) =0, (7.50)

and when w > &(y), the solution is

GA
m(s) = 1. A(s) = 22, ) = ualy) - 5 20, (7.51)
The intuition for this borderline is that a high w at the beginning of the
period implies that more money will be distributed at the end of the period
and that the future value of money 7' = m/M’ will be lower in all future
states since M’ = m/M is higher. Therefore, it will be less attractive to
spend money on consumption, which will bid up the money price of con-
sumption goods in the beginning of the current period. This lowers the
value of money and current real balances. So if w is large enough, then real
balances will fall to hit the liquidity constraint.

The income velocity of money is y/m. In this model, y/m < 1.

e When w > &(y), then y/m = wy™ 1 /BA < 1 since m = BA/wy ",
e when w > &(y), y/m =1 since m = y.

How velocity varies with income depends on the degree of relative risk
aversion r. For the constant relative risk aversion utility function, we have
that

' (y) _yry "}

' (y) yr
Therefore, the marginal utility of consumption and wealth decreases less
than proportionately with income. Since A(s)m(s) = SA/w, real balances
vary inversely with the marginal utility of wealth. Hence, real balances
increase less than proportionately with income so velocity falls.

The price level is given by

=r<l. (7.52)

P(s,M) = = = (7.53)
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varies inversely with real balances. For r < 1, P(s, M) decreases less than
proportionately with output or income. Inflation fulfills the relation

Por wm(s)

P 7 m(g)

(7.54)

where 7' = m//M’ = m/wM. Hence, inflation varies directly with end-of-
period balances. Also expected inflation satisfies

P’ m 1
which is known and non-random since E(1/m’) is a constant.

e When p = 0, wm = SA/u.(y). Hence, expected inflation varies with
1/uc(y) and is increasing in income.

e When p > 0 (so that the liquidity constraint is binding), F(r/7") =
wyE(1/m’) and so it depends on both income and the gross rate of
monetary expansion. A temporary increase in income temporarily
lowers the current price level which increases inflation: P(s, M) =
M/m(s) = M/y. A temporary increase in monetary expansion in-
creases expected inflation because next period’s price increases while
the current price level and current real balances are independent of the
current monetary expansion when the liquidity constraint is binding.

Why is expected inflation independent of monetary expansion when the lig-
uidity constraint is not binding? Current real balances falls proportionately
and current real balances rise proportionately to monetary expansion. So
the current price rises proportionately to next period’s price level and ex-
pected inflation remains unaflected.

In summary, a temporary increase in monetary expansion leads implies
that real balances fall and the price level rises when the liquidity constraint
is not binding. Expected inflation rises when the liquidity constraint binds,
the nominal interest rate remains constant because

_ B’

i(8) = § = ————= = constant, indepdendent of monetary expansion.
( ) E()\’m,) ) p y p

The real interest falls with monetary expansion because

A

- BEW)
When the liquidity constraint is not binding, A equals the marginal utility
of consumption and hence is independent of monetary expansion. When
the liquidity constraint binds, A(s) = SA/yw so the real interest rate falls.
Hence, we obtain a lower interest rate on real loans when monetary expan-
sion is high.

p (7.56)
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The Fisher Relation and the Risk Premium on Nominal Bonds
Consider the ratio

Nl

1+p EXN7') E(\)
BB+ i) B(Y)
AE(NT")
ATE(N) 1

~ XEWWT) EWNA)/ENY (7.57)

To interpret this result, recall that 7’/ is the gross rate of appreciation of
money. (7'/7)\ denotes the version that is weighted by the marginal utility
of wealth. Dividing the result by the expected marginal utility of wealth
yields the result.

If the simple Fisher relation were to hold,

1+14 P’
R = F (?) expected gross inflation rate

1+p
- E (%) . (7.58)

Therefore the simple Fisher relation does not hold. Let us rewrite

ﬂ _ |:E(7T’/7T)E()\’) COU()\” 7T’/7r):| [ B 1)
1+p EN) EOV)
_ (B + SN D]
— [E(W /m)+ 160 } 59)
Recall that
i . =2 = 1 (7.60)

PE(1/P") P  E(®) E@)/x

which is the expected gross real rate of monetary appreciation. Thus, the
sign of the covariance between the marginal utility of wealth and the gross
real rate of appreciation of money determines whether (1+4)/(1+ p) is less
or greater than one over the expected real rate of appreciation of money.

Another parity condition has to do with the expected real return on
nominal bonds and the real rate of interest on indexed bonds. Consider first
the expected real return on nominal bonds:

R=(1+0)E (%) Y (7.61)

To understand this condition, consider investing one unit of money in nom-
inal bonds at ¢£. This yields 1 + ¢ units of money at ¢ + 1. The real value of
money at t+1is 7’ so (1+4)7’ is the real value of the investment in nominal
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bonds. The real value of money in period t is w. Hence the expected real
return on this investment is defined as in (7.61).

There exists a risk premium on nominal bonds if the expected real rate
of return on nominal bonds exceeds the real interest rate on indexed bonds:

1+R _ (A+9)E(r'/n)
1+p N/ BE(N)
BIEW) + EXNT) E(x)EX)
E(N7") A
E(@)EWX)

- o (7.62)

Thus,

1+R—(1+p)%

or

R—p = (1+p)%—1—p
EN)E(@)  (1+p)ENT)
=P =Fney ~ B
Cov(N, 7' /)
E(N7! /)

— _(1+p) (7.63)

Therefore, the risk premium on nominal bonds depends on the covariance
between the rate of appreciation of money and the marginal utility of wealth.
If the correlation is negative, then nominal bonds are less attractive than
indexed bonds which in equilibrium, requires a higher nominal interest rate
relative to the real rate of interest.
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