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Abstract

In a multivariate varying-coefficient model, the response vectors Y are regressed on known
functions v(X) of some explanatory variables X and the coefficients in an unknown regression
matrix θ(Z) depend on another set of explanatory variables Z. We provide statistical tests, called
local and global rank tests, which allow to estimate the rank of an unknown regression coefficient
matrix θ(Z) locally at a fixed level of the variable Z or globally as the maximum rank over all
levels of Z, respectively. In the case of local rank tests, we do so by applying already available
rank tests to a kernel-based estimator of the coefficient matrix θ(z). Global rank tests are obtained
by integrating test statistics used in estimation of local rank tests. We present a simulation study
where, focusing on global ranks, we examine small sample properties of the considered statistical
tests. We also apply our results to estimate the so-called local and global ranks in a demand system
where budget shares are regressed on known functions of total expenditures and the coefficients in
a regression matrix depend on prices faced by a consumer.

Keywords: varying-coefficient model, kernel smoothing, matrix rank estimation, demand systems,
local and global ranks.

JEL classification: C12, C13, C14, D12.

1 Introduction

1.1 Statement of the problem

Let (Xi, Zi) ∈ IRp × IRq be independent variables, Yi ∈ IRm be response variables and Ui ∈ IRm be
error terms. The focus of this work is on the statistical model

Yi =
(
Θ0(Zi) Θ(Zi)

) (
V0(Xi)
V (Xi)

)
+ Ui = θ(Zi)v(Xi) + Ui, i = 1, . . . , N, (1.1)

where N is the number of observations, θ(z), Θ0(z) and Θ(z) are unknown m× n, m× d0 and m× d
matrices of functions of z, respectively, and v(x), V0(x) and V (x) are known n× 1, d0 × 1 and d× 1
vectors of functions of x, respectively. We partition the matrix θ(z) into two submatrices Θ0(z) and
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Θ(z) because we will work with the matrix Θ(z). When d0 = 0, we suppose by convention that
Θ0(z) is empty and hence focusing on Θ(z) is more general than working with the matrix θ(z). In
applications to demand systems below, in particular, we shall suppose d0 6= 0 and be interested in the
matrix Θ(z) alone. Note also that

Θ(z) = θ(z)

(
0d0×d

Id

)
=: θ(z)α. (1.2)

(The matrix α will be used below.) Important assumptions on the model (1.1) are smoothness of the
functions of θ(z) and non-singularity of the covariance matrix

Σ = EUiU
′
i (1.3)

The rest of the assumptions can be found in Section 2.
The model (1.1) and its slight variants, generally known as varying-coefficient models, were consid-

ered by Cleveland, Gross and Shyu (1991), Hastie and Tibshirani (1993), Fan and Zhang (1999, 2000),
Cai, Fan and Li (2000), Li, Huang, Li and Fu (2002) and others in the context of regression, as well
as by many others related to other areas such as longitudinal analysis, nonlinear time series. Sev-
eral estimation methods for the functions of θ(z) were proposed. A simple and common choice is a
kernel-based estimator

θ̂(z) =
1

Nhq

N∑

j=1

Yjv(Xj)′K
(

z − Zj

h

) 
 1

Nhq

N∑

j=1

v(Xj)v(Xj)′K
(

z − Zj

h

)

−1

, (1.4)

where K is a kernel function and h > 0 is a bandwidth.
In this work, we are interested in the model (1.1) with several related objectives in mind. Let

rk{A} denote the rank of a matrix A. One of our goals is to address the hypothesis testing problem
of H0 : rk{Θ(z)} ≤ r against H1 : rk{Θ(z)} > r where r and z are fixed. The problem of testing for
the rank of a matrix is well studied. Known and commonly used methods are based on the Lower-
Diagonal-Upper triangular decomposition (Gill and Lewbel (1992), Cragg and Donald (1996)), the
minimum-χ2 test statistic (Cragg and Donald (1993, 1996, 1997)) or the idea of the Asymptotic Least
Squares (Robin and Smith (1995)). These methods require the asymptotic normality of an estimator of
the matrix. As we show, under suitable conditions, the estimator Θ̂(z) based on (1.4) is asymptotically
normal and hence the aforementioned methods can be applied. Since z is fixed, the statistical tests
for the rank of the matrix Θ(z) will be called local rank tests.

We shall also address the problem of global rank tests, that is, the hypothesis testing problem of
H0 : supz rk{Θ(z)} ≤ r against H1 : supz rk{Θ(z)} > r where r is fixed. This problem has not been
previously considered to our knowledge. Global rank tests will be based on the statistic obtained
by integrating the minimum-χ2 statistic of the local rank tests over the range of possible values of
z. Establishing the asymptotics of the resulting global test statistic is quite involved because the
minimum-χ2 statistic is a nonlinear functional of Θ̂(z). In fact, we are not able to find the exact
limit of the global test statistic under H0. We only show that the statistic is asymptotically bounded
(stochastically dominated) by the standard normal law. In addition, our present proof works only in
the cases q = dim(Z) = 1, 2 or 3. Despite these simplifications, a number of new theoretical difficulties
had still to be overcome. Moreover, since we expect the exact limit to be nonstandard (and bounded
by the standard limit law), our asymptotic result is quite sufficient from a practical perspective.

1.2 Economic motivation

Our other goal is to apply the obtained local and global rank tests to a demand system. In the context
of demand systems, Ỹi are budget shares for j goods, Xi are total expenditures (income, in short) and
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Zi are prices of j goods faced by the ith consumer. The corresponding varying-coefficient model is

Ỹi = θ̃(Zi)v(Xi) + εi, i = 1, . . . , N, (1.5)

where, similarly to (1.1), θ̃(z) is a j×n matrix of unknown functions and v(x) is a n×1 vector of known
functions. The models (1.5) represent the class of deterministic demand systems ỹ = f(x, z) = θ̃(z)v(x)
known as exactly aggregable demand systems. These demand systems are important in Economic The-
ory since they have nice theoretical properties, for example, related to aggregation and representative
consumer (Muellbauer (1975, 1976), Gorman (1981) and others), and also since they encompass many
well-known examples of demand systems, for example, AIDS, translog, PIGL and others, as their
special cases. They have been also widely used in applications (Hausman, Newey and Powel (1995),
Banks, Blundell and Lewbel (1997), Nicol (2001) and others).

An important departure from the earlier statistical works on demand systems is that we allow the
coefficient matrix θ̃ to depend on price variables. Most of the authors exclude variation in prices for
simplicity and also because commonly used data sets of demand systems, for example, the Consumer
Expenditure Surveys (CEX, in short) data set for the United States, does not contain information
on prices. The assumption of constant prices is not realistic. We shall use the CEX data set and
assign prices to its households by drawing prices from the American Chamber of Commerce Research
Association (ACCRA, in short) data set and by using some location variables in the CEX data set as
matching variables. It can be seen from the ACCRA data set that prices are quite different across the
United States.

We are interested in estimation of rk{θ̃(z)} and supz rk{θ̃(z)}. Following Lewbel (1991), a local
rank at z of a demand system ỹ = f(x, z) = (f1(x, z) . . . fj(x, z))′ is defined as the dimension of the
function space spanned by the coordinate functions of f(x, z) for fixed z. A global rank of a demand
system is defined as the maximum of local ranks over all possible values of z. It involves simple algebra
to see that a local rank rk{f(·, z)} of the exactly aggregable demand system ỹ = f(x, z) = θ̃(z)v(x) is
equal to rk{θ̃(z)} when v(x) consists of linearly independent functions of x (Proposition C.2 below).
Some theoretical studies on ranks can be found in Gorman (1981), Lewbel (1991, 1997), and others.
In particular, Gorman (1981) showed that exactly aggregable demand systems, when derived through
a utility maximization principle, have always rank less than or equal to 3.

To estimate rk{θ̃(z)} and supz rk{θ̃(z)}, observe, however, that one cannot readily apply the local
and global rank tests under the model (1.1). Since the elements of Ỹi are budget shares, they add up to
1 and hence the covariance matrix of εi is singular whereas that of Ui in (1.3) is assumed nonsingular.
To avoid singularity, one commonly drops one share of goods from the analysis which allows to assume
a nonsingular covariance matrix of the reduced error terms. To estimate rk{θ̃(z)}, it is then necessary
to be able to relate rk{θ̃(z)} to some characteristic of the matrix θ̃(z) with one row eliminated. When
v(x) = (1 V (x)′)′ as typically assumed in practice, we have that

rk{θ̃(z)} = rk{Θ(z)}+ 1, (1.6)

where Θ(z) is the matrix θ̃(z) with an arbitrary row and the first column eliminated (see Proposition
C.2 below). In view of this relation, we will therefore eliminate one budget share from Ỹi in the analysis
to obtain a vector Yi, estimate rk{Θ(z)} and supz rk{Θ(z)} in the model

Yi =
(
Θ0(Zi) Θ(Zi)

) (
1

V (Xi)

)
+ Ui, (1.7)

assuming that the covariance matrix of Ui is nonsingular, and then obtain estimates of rk{θ̃(z)} and
supz rk{θ̃(z)} by adding 1. We shall apply this estimation procedure to estimate local and global ranks
in the demand system constructed from the CEX and the ACCRA data sets. Related estimation of
local and global ranks in a demand system given by a nonparametric model can be found in Fortuna
(2004a, 2004b).
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1.3 Outline of the paper

The rest of the paper is organized as follows. In Section 2, we state the assumptions which are used
in connection to the model (1.1). In Section 3, we introduce an estimator for the matrix Θ(z) based
on (1.4) and, in particular, state its asymptotic normality result. Local and global rank tests for
the matrices Θ(z) are studied in Sections 4 and 5, respectively. Simulation experiment is presented
in Section 6. Estimation of local and global ranks in a demand system can be found in Section 7.
Most of technical proofs are postponed till Appendices A, B, and some auxiliary results are given in
Appendix C.

2 Assumptions

We shall use the following assumptions on the variables Xi, Zi and Ui, on the functions θ and v, and
on the kernel K. Some of these assumptions are in the spirit of those used by Donald (1997), Fortuna
(2004a, 2004b) in connection to rank estimation for nonparametric models.

Assumption 1: The function K is a symmetric kernel on IRq of order s, that is, K has a compact
support, is bounded and satisfies the following conditions: (i)

∫
IRq K(z)dz = 1 and (ii)

∫
IRq zbK(z)dz =

0 for any b ∈ (IN
⋃{0})q satisfying 1 ≤ |b| < s, where zb = zb1

1 . . . z
bq
q with z = (z1, . . . , zq), b =

(b1, . . . , bq) and |b| = b1 + . . . + bq. Suppose also that K is Lipschitz.
There are many possible choices for such kernels K. In the simulation experiment and the appli-

cation below, we use the popular Epanechnikov kernel K(z) = 3(1 − z2)/4, for |z| ≤ 1, of the order
s = 2. The kernel K(z) = 15(7z4 − 10z2 + 3)/32, for |z| ≤ 1, of the order s = 4, is another possibility.

Assumption 2: Suppose that (Xi, Zi) ∈ IRp × IRq, i = 1, . . . , N , are i.i.d. random vectors such
that the support of (Xi, Zi), denoted by Hx × Hz, is the Cartesian product of compact intervals
Hx = [a1, b1]× . . .× [ap, bp] and Hz = [c1, d1]× . . .× [cq, dq], and (Xi, Zi) are continuously distributed
with a density p(x, z). Suppose that the density p(x, z) has an extension to IRp × IRq with t ≥ s
continuous bounded derivatives in the variable z.

Assumption 3: Suppose that the error terms Ui, i = 1, . . . , N , are i.i.d. random vectors, independent
of the sequence (Xi, Zi) and such that EUi = 0 and

EUiU
′
i = Σ, (2.1)

where Σ is a m×m positive definite matrix. Suppose also that E|Ui|u < ∞ where u ≥ 4.
Local rank tests can also be obtained under a weaker, heteroscedasticity assumption on Ui, that

is, E(UiU
′
i |Xi = x,Zi = z) = Σ(x, z). Under the stronger condition (2.1), the limit covariance matrix

in the asymptotic normality result for θ̂(z) has a convenient Kronecker product structure. The proof
of the global rank tests uses this Kronecker product structure and hence the stronger condition (2.1).

Assumption L4: In the case of local rank tests, the function θ : Hz → IRmn is such that each of
its component functions has an extension to IRq with t ≥ s continuous bounded derivatives. The
component functions of v(x) have extensions to IRp which are bounded. Assumption G4: In the
case of global rank tests, suppose in addition that the component functions of θ(z) are real analytic
on Hz (see the discussion below).

Assuming smoothness (i.e. continuity of derivatives of some order) of the function θ(z) is standard
for varying-coefficient models (see the references provided in Section 1.1). The assumption of analytic
θ(z) for global rank tests is less common and requires further explanation. According to one possible
definition, a function f is analytic if its Taylor series converges to the function f at a neighborhood
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of each point. We assume analyticity just in order to have smoothness of the eigenvectors of some
analytic matrices involving θ(z). It is well known that smoothness of a matrix is not sufficient to have
smooth eigenvectors (see, for example, Kato (1976), Bunse-Gerstner, Byers, Mehrmann and Nichols
(1991)).

Assumption L5: The n× n matrix

ψ(z) = p(z)E(v(X1)v(X1)′|Z1 = z) =
∫

IRp
v(x1)v(x1)′p(x1, z)dx1 (2.2)

is positive definite. Assumption G5: In the case of global rank tests, suppose in addition that the
components of ψ(z) are real analytic.

In addition to (2.2), we shall also use the d× d matrix Ψ(z) such that

Ψ(z)−1 = α′ψ(z)−1α, (2.3)

where α is defined in (1.2). Observe that, if the matrix ψ(z) is positive definite, then Ψ(z) is positive
definite and, if ψ(z) is real analytic, then Ψ(z) is also real analytic.

Assumption G6: Suppose that q = 1, 2 or 3.
In fact, our proof for global rank tests depends on this assumption. We do not expect that the

assumption can be removed unless an alternative proof is found.

3 Kernel-based estimator

Let K be a kernel defined in Assumption 1 of Section 2, and set Kh(z) = h−qK(h−1z), where h > 0
is a bandwidth. We shall use throughout a kernel-based estimator θ̂(z) for the matrix θ(z) defined by
(1.4). The estimator θ̂(z) can also be expressed as

θ̂(z) = Y Dzv
′(vDzv

′)−1 =:
1
N

Y Dzv
′ψ̂(z)−1, (3.1)

where Y = (Y1 . . . YN ), v = (v(X1) . . . v(XN )) and Dz = diag{Kh(z−Z1), . . . , Kh(z−ZN )}. A more
general estimator for θ(z) can be defined based on the idea of local linear regression (Fan and Gijbels
(1996), Fan and Zhang (1999)). We work with the estimator (3.1) for proof simplicity, especially in
the context of global rank tests.

Define the estimator Θ̂(z) for the submatrix Θ(z) of θ(z) by using (1.2) as Θ̂(z) = θ̂(z)α. The
following result establishes the asymptotic normality of Θ̂(z). The proof can be found in Appendix
A. The notation ‖K‖2

2 below stands for
∫
IRq |K(z)|2dz.

Theorem 3.1 Under Assumptions 1–3, L4, L5 of Section 2, we have, for fixed z,
√

Nhq vec(Θ̂(z)−Θ(z)) d−→N (0,Ω(z)), (3.2)

as
N →∞, h → 0, Nhq →∞ and Nhq+2s → 0, (3.3)

with
Ω(z) = (Ψ(z)−1 ⊗ Σ)‖K‖2

2, (3.4)

where the matrix Ψ(z) is defined by (2.3). Suppose in addition that N1−2/uhq/ lnN →∞. Then, the
limiting covariance matrix Ω(z) in (3.4) can be estimated consistently by

Ω̂(z) = (Ψ̂(z)−1 ⊗ Σ̂)‖K‖2
2, (3.5)
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where Ψ̂(z)−1 = α′ψ̂(z)−1α, and

Σ̂ =
1
N

N∑

i=1

(Yi − θ̂(Zi)v(Xi))(Yi − θ̂(Zi)v(Xi))′. (3.6)

4 Local rank tests

We consider here the hypothesis testing problem of H0 : rk{Θ(z)} ≤ r against H1 : rk{Θ(z)} > r,
where z and r are fixed. Since Θ̂(z) is an asymptotically normal estimator of Θ(z) and the related
covariance matrix Ω(z) can be consistently estimated by Ω̂(z) in (3.5) (Theorem 3.1), this problem can
be readily addressed by one of the rank tests available in the literature. Three such tests, mentioned
in Section 1.1, are the LDU-based test, the minimum-χ2 test and the ALS-based test. We recall below
the minimum-χ2 test only because its integrated version will be used for global rank tests.

Minimum-χ2 rank test: Applied to the matrix Θ̂(z) with the covariance matrix Ω̂(z), the
minimum-χ2 test is based on the statistic

T̂ (r, z) = Nhq min
rk{Θ}≤r

vec(Θ̂(z)−Θ)′Ω̂(z)−1vec(Θ̂(z)−Θ)

= Nhq‖K‖−2
2

m−r∑

i=1

λ̂i(z), (4.1)

where 0 ≤ λ̂1(z) ≤ . . . ≤ λ̂m(z) are the ordered eigenvalues of the matrix

Γ̂(z) = Σ̂−1Θ̂(z)Ψ̂(z)Θ̂(z)′. (4.2)

The last equality in (4.1) is standard for the covariance matrix Ω̂(z) having a Kronecker product
structure, and can be proved as, for example, Theorem 3 in Cragg and Donald (1993).

The next result follows from Cragg and Donald (1997), and Robin and Smith (2000). Let Ya×b

be a a × b matrix with independent N (0, 1) entries and set Xa,b = Ya×bY ′a×b. Let also λ1(Xa,b) ≤
. . . ≤ λa(Xa,b) be the ordered eigenvalues of the matrix Xa,b. The notation χ2(k) below stands
for a χ2-distribution with k degrees of freedom, and a stochastic dominance ξ ≤d η means that
P (ξ > x) ≤ P (η > x) for all x ∈ IR.

Theorem 4.1 Under the Assumptions of Theorem 3.1, we have:
(i) when r < rk{Θ(z)},

lim(p) T̂ (r, z) = +∞, (4.3)

(ii) when r ≥ rk{Θ(z)} =: l(z),

lim(d) T̂ (r, z) =
m−r∑

i=1

λi(Xm−l(z),d−l(z))
d≤ χ2((m− r)(d− r)), (4.4)

where the inequality ≤d becomes the equality =d for r = rk{Θ(z)}.

Theorem 4.1 can be used to test for H0 : rk{Θ(z)} ≤ r against H1 : rk{Θ(z)} > r in a standard way.
The resulting local rank tests can be used to estimate rk{Θ(z)}, for example, by using a sequential
procedure (see, for example, Donald (1997), Robin and Smith (2000)).
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5 Global rank tests

Let T̂ (r, z) be the minimum-χ2 statistic defined by (4.1) and used in the local rank tests. Consider
the statistic

T̂glb(r) =

∫
Hz

T̂ (r, z)dz − |Hz|(m− r)(d− r)

hq/2|Hz|1/2
√

(m− r)(d− r)
‖K‖2

2

‖K‖2
, (5.1)

where |Hz| =
∫
Hz

dz and K(z) =
∫

K(w)K(z + w)dw is the convolution kernel derived from K.
The next result establishes the asymptotics of the statistic T̂glb(r). We write lim sup(d) ξ̂ ≤d η if

lim supP (ξ̂ > x) ≤ P (η > x) for all x ∈ IR.

Theorem 5.1 Under the Assumptions 1–3, G4, G5 and G6 of Section 2, and when

Nhq/2 →∞, N1−2/uhq+2/ ln N →∞, Nhq+2s → 0, h2−q/2 ln N → 0,

we have:
(i) when r < supz∈Hz

rk{Θ(z)},
lim(p) T̂glb(r) = +∞, (5.2)

(ii) when r ≥ supz∈Hz
rk{Θ(z)},

lim sup(d) T̂glb(r)
d≤ N (0, 1), (5.3)

where lim sup becomes lim and the inequality ≤d becomes the equality =d when r = rk{Θ(z)} for all
z ∈ Hz.

Theorem 5.1 is proved in Appendix B. It can be used to test for H0 : supz∈Hz
rk{Θ(z)} ≤ r against

H1 : supz∈Hz
rk{Θ(z)} > r in a standard way. (In practice, the integral over z in (5.1) is approximated

by a sum and Hz is replaced by the support of the data Zi.) Several remarks regarding Theorem 5.1
are in place.

Remark 5.1 Observe that the term |Hz| appearing in (5.1) twice is consistent with a linear transfor-
mation of the data Zi. For example, when m = 1 and Hz = [a, b], we have

∫ b

a
T̂ (L, z)dz = (b− a)

∫ 1

0
T̂ ∗(L,w)dw, (5.4)

where T̂ ∗(L,w) is defined as T (L, z) by using the data Wi = (Zi − a)/(b − a) and the bandwidth
h/(b−a). Then, in view of (5.1), T̂glb(L) = T̂ ∗glb(L), where the latter is defined by (5.1) using the data
Wi = (Zi − a)/(b− a) and the bandwidth h/(b− a).

Remark 5.2 Observe also that the centering term |Hz|(m − r)(d − r) and the normalization
hq/2|Hz|1/2

√
(m− r)(d− r) used in (5.1) are meaningful. Suppose for instance, that m = 1 and

Hz = [0, 1]. The statistic T̂ (r, z) can be thought as independent χ2
k((m − r)(d − r)) over disjoint

intervals [(k − 1)h, kh), and constant within each of the intervals. Hence,

∫ 1

0
T̂ (r, z)dz

d≈ h
h−1∑

k=1

χ2
k((m− r)(d− r)) d= h χ2((m− r)(d− r)h−1), (5.5)

which has mean (m− r)(d− r) and variance h(m− r)(d− r).
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6 Simulation study

Using Monte Carlo simulations, we examine here the performance of our proposed rank tests. For
shortness sake and since usual rank tests (in particular, local rank tests) have already been studied,
we shall focus only on global rank tests. We shall use the model of the type (1.1) given by

Yi = δΘ(Zi)V (Xi) + Ui, i = 1, . . . , N, (6.1)

where we suppose, for simplicity, θ(z) = Θ(z) (or n = d) in (1.1). The sequence (Xi, Zi) consists of
independent random vectors with Xi and Zi being independent and uniformly distributed on [0, 1]
and [−1, 1], respectively. The sequence Ui consists of independent N (0, 1) random variables. δ = 1/2
or δ = 1/4 is the signal-to-noise ratio. The sample size is N = 500 or N = 1000.

The coefficient matrix Θ(z) and the vector of regressors V (x) are given by

Θ(z) =




1 1 + z2 z 1
0 1

2 − z 1
2 − z z(2z − 1)

0 0 z(1− 2z) z(1
2 − z)

0 0 0 0


 D, V (x) =




1
x
x2

x3


 . (6.2)

The symmetric, positive-definite matrix D = Ψ−1/2 ≡ Ψ(z)−1/2 is such that DΨ(z)D = I4 with Ψ(z)
given by (2.3) (or (2.2) in our case). Using such matrix D is standard in simulation studies for rank
tests. Its role can be explained as follows. The matrix D ensures that the non-zero eigenvalues of
the matrix Γ(z) given by (4.2) without the hats, are not too close to zero. From another perspective,
it ensures that, for fixed z, coordinate functions of Θ(z)V (x) appear quite different when plotted as
functions of x. (See Figure 1 below.)

We are interested in testing for supz rk{Θ(z)} through the global rank tests. Observe that
supz rk{Θ(z)} = 3 and, in particular, rk{Θ(1/2)} = 1, rk{Θ(0)} = 2 and rk{Θ(−1/2)} = 3. In
Figure 1, we plot the coordinate functions of Θ(z)V (x) at z = −1/2, 0 and 1/2. Adding the noise Ui

and taking into account the signal-to-noise ratio δ, the reader may easily visualize how much noise is
present in data. Note that δ = 1/2 (1/4, resp.) corresponds to a moderate (large, resp.) amount of
noise. Note also that, when the noise is added, one can informally think of the local ranks as changing
from 1 to 3 when z moves from 1 to −1.

We shall now examine the performance of the global rank tests through a number of PP-plots in
Figures 2-3. These plots have probability p ∈ (0, 1) on the vertical axis against αr(p) = P (T̂glb(r) >
cr(p)) on the horizontal axis. Throughout the simulation study, the probability αr(p) is computed
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Figure 1: Coordinate functions fi(x) in f(x) = (fi(x)) = Θ(z)V (x) for z = −1/2, 0 and 1.
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based on 500 Monte Carlo replications, and cr(p) is the nominal critical value such that P (N (0, 1) >
cr(p)) = 1−p. In kernel smoothing, we use a popular Epanechnikov kernel, and choose the smoothing
parameter h = 0.1, 0.2 or 0.4. If T̂glb(r) has the limiting distribution N (0, 1), then αr(p) = p. The
case αr(p) > p (αr(p) < p, resp.) corresponds to T̂glb(r) ≥d N (0, 1) (T̂glb(r) ≤d N (0, 1), resp.).

In Figure 2, we provide the PP-plots for various combinations of the considered values of the
parameters N , δ, h and r. In particular, the PP-plots in the first column correspond to testing for
the rank r = 2, and those in the second column correspond to testing for r = 3. (Testing for r = 4
is meaningless since matrices Θ(z) are 4 × 4. The PP-plots for the cases r = 1 and 0 would appear
as the corresponding ones for r = 2 with the graphs for the 3 values of h stretching even more along
the bottom-right corner.) Several basic observations can be made at this point. The plots in the
second column (see the bottom-left corner) show that the global rank tests are undersized, even for
a large sample size such as N = 1000. This is perhaps not surprising in view of our limiting result
in Theorem 5.1, (ii), showing that T̂glb(r) is asymptotically dominated by (and not convergent to)
N (0, 1). Observe also that, as the signal-to-noise ratio δ decreases (more noise), the test is obviously
more likely to accept a global rank which is too low. Note also that, when h decreases, accepting
too low a rank is more likely as well. For fixed z, smaller h means averaging over fewer data points,
leading to a smaller value of a test statistic. Smaller test values over z lead to smaller averaged global
test value, leading to a smaller global rank.

In terms of size, larger h (oversmoothing) performs better in all plots of Figure 1. Focusing on
the first column, oversmoothing also leads to greater power. Though observe that these are not size-
adjusted powers. Taking size-adjusting into account would improve the power for smaller h. If the size
of test is better when oversmoothing, and the power is better or about the same, we should perhaps
use larger h in global rank tests, corresponding to oversmoothing. Note, however, that this may also
be the result of our particular model where the local rank changes relatively slowly as z moves from
−1 to 1.

Consider now Figure 3 where, in the same PP-plots, we compare the results for N = 500 and 1000.
Interestingly, note that the plots for the two sample sizes are close together, especially for h = 0.4.
This supports our previous conjecture that the global test statistic T̂glb(r) has a nonstandard limit
(dominated by N (0, 1) according to Theorem 5.1, (ii)).

In conclusion to this section, we find the simulation results positively surprising. Observe from
Figure 1 that the test does quite well even in the “worst” case N = 500, δ = 1/4. Despite intrinsic
mathematical proofs, the test therefore seems quite practical, at least for the types of models (6.1)–
(6.2) considered here.

7 Application to demand system

We apply here the introduced global rank test to estimate the global rank of a demand system. See
Section 1.2 for motivation, discussion and relevant notation. In the data set used here, budget shares Ỹi

and income Xi are taken from the U.S. CEX micro data of the first quarter of 2000.1 We consider only
those households which contain married couples, whose tenure status is renter household or homeowner
with or without mortgage, whose age of the head is between 25 and 60, and whose total income is
between $3,000 and $75,000. (We also only consider households in the so-called metropolitan statistical
areas because we can associate prices only to these households.) The total number of households which
met these criteria was N = 897 (out of 7860 in the CEX data set). The number of the budget shares

1U.S. Dep. of Labor, Bureau of Labor Statistics. Consumer Expenditure Survey, 1999: Interview Survey and Detailed
Expenditure Files [Computer file]. Washington, DC: U.S. Dept. of Labor, Bureau of Labor Statistics [producer], 2001.
Ann Arbor, MI: Inter-University Consortium for Political and Social Research [distributor], 2001.
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Figure 2: PP-plots in a simulation study.
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Figure 3: PP-plots in a simulation study.

11



considered is j = 6. They are expenditures on food, health care, transportation, household, apparel
(clothing) and miscellaneous goods.

The prices Zi are drawn from the ACCRA data set.2 ACCRA provides a composite price index
and also price indices for 6 different categories of goods for various cities across the U.S. We use
throughout only a composite price index and therefore have dim(Zi) = q = 1. The prices Zi are
assigned to (Yi, Xi) by using some location variables in the CEX data set as matching variables, and
also some confidential information kindly provided by the Bureau of Labor Statistics. (Details on
matching procedure are available from the authors upon request.) In the data set constructed, the
values of Zi range from zmin = 0.911 to zmax = 1.251.

We estimate the global rank in the considered demand system as described at the end of Section
1.2. First, one budget share is eliminated from the data set, leading to vectors Yi consisting of 6−1 = 5
budget shares. (The test statistic is invariant to which share is eliminated.) Then, the model (1.7) is
assumed, where we take

V (x) =




1
ln x

(lnx)2

(lnx)3


 . (7.1)

The global rank of the original (full) demand system is estimated by adding 1 (see (1.6)) to the
estimated global rank of the model (1.7).

The results of estimation for the original demand system are reported in Table 1. We use the data
interval [zmin, zmax] = [0.911, 1.251] for the range of z, and try several values h = 0.05, 0.10 and 0.15
for the smoothing parameter h.

Global rank estimation
h r = 1 r = 2 r = 3 r = 4

0.05 70.1211 11.3627 -2.7714 -2.5609
0.10 88.7294 18.1172 -1.9534 -1.8108
0.15 100.6408 22.4453 -1.9972 -1.4785

Table 1: Values of test statistic Tglb(r) in global rank estimation for a demand system.

Note from Table 1 that the estimated global rank is 3 for all considered values of h. This perhaps
should not be surprising. The same rank can also be found in other work on ranks in demand systems:
Lewbel (1991), Donald (1997) where variation in prices is ignored, and Fortuna (2004b) where local
ranks are considered.

Global rank estimation
h r = 1 r = 2 r = 3 r = 4

0.05 17.9940 0.7217 -1.9894 -1.8108
0.10 30.2089 6.2713 -1.1757 -1.2805
0.15 42.4361 10.2029 -1.2834 -1.0455

Table 2: Values of test statistic Tglb(r) in global rank estimation for a demand system.

Note that Table 1 above is based on the interval [zmin, zmax] = [0.911, 1.251] spanning the whole
range of the values of Zi. It may be interesting to see whether global rank remains the same over

2ACCRA Cost of Living Index, Data for First Quarter 2000, ACCRA, July 2000, 33(1). For more information, see
http://www.accra.org
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smaller subintervals of [zmin, zmax]. Experimenting with several possibilities of such subintervals, we
generally found the global rank to be the same (equal to 3). A potential, interesting exception to
the rule, however, seems to be the case of larger values of z. Table 2 presents global rank estimation
results over the interval [1.081, 1.251]. Observe that the global rank is estimated as 2 for the smallest
considered value of h.

The statement above is also supported by local rank tests at larger values of z. For example, Table
3 gives the P -values for local rank tests at z = 1.2. Note that, except h = 0.15, the test points to
the local rank 2 at z = 1.2. Local rank smaller than 3 for larger values of z was also found in the
same data set but using nonparametric model by Fortuna (2004b). To complement Table 1, Table 4
presents the P -values for the local rank test at z = 1. Tests for all the considered values of h suggest
the local rank 3 at z = 1.

Local rank estimation at z = 1.2
h r = 1 r = 2 r = 3 r = 4

0.05 0 0.4645 0.5522 1
0.10 0 0.1706 0.8072 1
0.15 0 0.0067 0.9671 1

Table 3: P -values for local rank test at z = 1.2.

Local rank estimation at z = 1
h r = 1 r = 2 r = 3 r = 4

0.05 0 0 0.876 1
0.10 0 0 0.9938 1
0.15 0 0 0.9943 1

Table 4: P -values for local rank test at z = 1.

A Technical proofs for asymptotic normality

Proof of Theorem 3.1: It is enough to prove the theorem for d0 = 0, that is, Θ(z) = θ(z),
Ψ(z) = ψ(z), Ω(z) = w(z) = (ψ(z)−1 ⊗ Σ)‖K‖2 and similar expressions with the hats. The proof is
straightforward but we outline it for completeness. Observe that

θ̂(z) = θ(z) + (∆̂1(z) + ∆̂2(z)) ψ̂(z)−1, (A.1)

where

∆̂1(z) =
1
N

N∑

i=1

(θ(Zi)− θ(z))v(Xi)v(Xi)′Kh(z − Zi), ∆̂2(z) =
1
N

N∑

i=1

Uiv(Xi)′Kh(z − Zi).

To prove the theorem, it is enough to show that

ψ̂(z)
p−→ ψ(z) (A.2)

∆̂1(z) = op

(
(Nhq)−1/2

)
, (A.3)

(Nhq)1/2∆̂2(z) d−→ N (0, w0(z)), (A.4)

Σ̂
p−→ Σ, (A.5)
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where w0(z) = (ψ(z)⊗ Σ)‖K‖2. The convergence (A.5) follows from Proposition C.4 below.

The convergence (A.2) is standard. Letting M2 = MM ′ for a matrix M , consider

E(ψ̂(z)− ψ(z))2 = Eψ̂(z)2 −Eψ̂(z)ψ(z)′ − ψ(z)Eψ̂(z)′ + ψ(z)2.

Since Eψ̂(z) =
∫
IRn {∫IRm v(x1)v(x1)′p(x1, z1)Kh(z − z1)dz1} dx1, by applying Proposition C.1 to the

integral in the braces, we obtain that Eψ̂(z) =
∫
IRn v(x1)v(x1)′p(x1, z)dx1 + O(hs) = ψ(z) + O(hs).

As for Eψ̂(z)2, by using independence of (Xi, Zi) and (Xj , Zj) for i 6= j, we have

Eψ̂(z)2 =
‖K‖2

2

Nhq
E

(
(v(X1)v(X1)′)2K2,h(z − Z1)

)
+

N − 1
N

(
E(v(X1)v(X1)′Kh(z − Z1)

)2
.

with the kernel K2(z) = K(z)2/‖K‖2
2. By using Proposition C.1, the first term above is of the

order O((Nhq)−1). The order of the second term is that of (Eψ̂(z))2 = ψ(z)2 + O(hs). Combining all
asymptotic relations above yields ψ̂(z) = ψ(z) + Op(hs + (Nhq)−1/2).

To show (A.3), suppose for simplicity that m = n = 1. By using Proposition C.1, E∆̂1(z) = O(hs).
Similarly,

Var(∆̂1(z)) = ‖K‖2
2(Nhq)−1E

(
(θ̂(Zi)− θ(z))2v(Xi)2K2,h(z − Zi)

)
= O

(
(Nhq)−1h2

)
.

Hence, E(∆̂1(z))2 = O((Nhq)−1h2 + h2s) = o((Nhq)−1).

To show (A.4), write (Nhq)1/2vec(∆̂2(z))) = N−1/2 ∑N
i=1 ξN,i with ξN,i = hq/2(v(Xi)⊗IG)UiKh(z−

Zi). By the Cramér-Wold theorem, we need to show that

1√
N

N∑

i=1

ηN,i
d−→N (0, ω1(z)), (A.6)

where ηN,i = λ′ξN,i, λ ∈ IRmn \ {0} is an arbitrary vector and ω1(z) = λ′ω0(z)λ. By using the
Lyapunov’s version of Central Limit Theorem for triangular arrays and since EηN,i = 0, this follows
from

Eη4
N,1

N(Eη2
N,1)4

→ 0, (A.7)

E(ηN,1)2 → ω1(z). (A.8)

The convergence (A.8) follows from Eξ2
N,1 → w0(z). For this, observe that Eξ2

N,1 = ‖K‖2
2E(((v(X1)⊗

IG)U1)2K2,h(z−Z1)) = ‖K‖2
2E((v(X1)v(X1)′⊗Σ)K2,h(z−Z1)) = ω0(z)+O(h2). For the convergence

(A.7), observe that Eη4
N,1 ≤ constE|ξN,1|4 ≤ consth−qE|v(X1)|4|U1|4K4,h(z − Z1) with the kernel

K4(z) = K(z)4/‖K‖4
4. By using Proposition C.1, we conclude that Eη4

N,1 = O(h−q). By using (A.8),
we deduce the convergence (A.7). 2

B Technical proofs for global rank tests

Notation and its simplification: We suppose for simplicity that d0 = 0, that is, Θ(z) = θ(z),
Ψ(z) = ψ(z) and similar expressions with the hats. We shall write

g(z) = θ(z)ψ(z).

Observe that we have Γ(z) = Σ−1g(z)ψ(z)−1g(z)′ and a similar expression with the hats. To simplify
notation further, we shall drop throughout the proofs dependence on z. We shall write, in particular,
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g = g(z), ψ = ψ(z), Γ = Γ(z), λi = λi(z), with similar expressions with the hats, and l = rk{Γ},
sup = supz∈Hz

. We shall also write
ξ̂ = Op,sup(aN )

for ξ = ξ(z) when a−1
N sup |ξ̂(z)| = Op(1).

Let also C0 = (C̃ C) be a m ×m matrix consisting of the eigenvectors of Σ−1gψ−1g′ such that a
m × l matrix C̃ corresponds to l nonzero eigenvalues, a m × (m − l) matrix C corresponds to m − l
zero eigenvalues, and

C ′
0ΣC0 = Im. (B.1)

Similarly, let D0 = (D̃ D) be a n× n matrix consisting of the eigenvectors of ψ−1g′Σ−1g such that a
n× l matrix D̃ corresponds to l nonzero eigenvalues, a n× (n− l) matrix D corresponds to n− l zero
eigenvalues, and

D′
0ψD0 = In. (B.2)

The next result shows that, under our assumptions, the eigenvectors in C0, D0, can be chosen
smooth.

Lemma B.1 Under Assumptions G4 and G5, the matrices C0 and D0 above can be chosen analytic.

Proof: By Assumptions G4 and G5, the matrix Σ−1/2gψ−1/2 is analytic. By using the analytic
Singular Value Decomposition (Bunse-Gerstner et al. (1991)), there are m × m, m × n and n × n
analytic matrices U, T and V , respectively, such that Σ−1/2gψ−1/2 = UTV ′, where T = diag(t1, . . . , tk)
with k = min(m,n), t1 ≥ . . . ≥ tk are the singular values, and orthogonal matrices U and V consist
of the eigenvectors of Σ−1/2gψ−1g′Σ−1/2 and ψ−1/2g′Σ−1gψ−1/2, respectively. Now take C0 = Σ1/2U .
Then, C0 is analytic, satisfies gψ−1g′Σ−1C0 = C0T

2 and C0Σ−1C0 = Im. The case of the matrix D0

can be considered similarly. 2

The next result allows to replace λ̂i by the eigenvalues that are easier to work with asymptotically.
The result is standard for fixed z.

Lemma B.2 Under Assumptions 1, 2, 3, G4 and G5, we have, for i = 1, . . . , m− l,

sup |λ̂i − η̂i| = Op

(
(Nhq)−3/2(lnN)1/2

)
, (B.3)

where η̂1 ≤ . . . ≤ η̂m−l are the ordered eigenvalues of the matrix

C ′(ĝ − g)DD′(ĝ − g)′C. (B.4)

Proof: Let T = Nhq. As on p. 173 of Robin and Smith (2000), λ̂i satisfy

0 = det
(
ĝψ̂−1ĝ′ − λ̂iΣ̂

)
= det

(
(C̃ T 1/2C)′(ĝψ̂−1ĝ′ − λ̂iΣ̂)(C̃ T 1/2C)

)

= det

(
C̃ ′(ĝψ̂−1ĝ′ − λ̂iΣ̂)C̃ C̃ ′(ĝψ̂−1ĝ′ − λ̂iΣ̂)T 1/2C

T 1/2C ′(ĝψ̂−1ĝ′ − λ̂iΣ̂)C̃ TC ′(ĝψ̂−1ĝ′ − λ̂iΣ̂)C

)
.

By using the relation det((A C;B D)) = det(A)det(D −BA−1C), we further obtain that

0 = det(Ŝ) det
(
Ŵ − T λ̂iV̂

−1
)
, (B.5)
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where Ŝ = C̃ ′(ĝψ̂−1ĝ′ − λ̂iΣ̂)C̃, V̂ −1 = C ′Σ̂C, and

Ŵ = TC ′ĝψ̂−1ĝ′C − TC ′ĝψ̂−1ĝ′C̃ Ŝ−1 C̃ ′ĝψ̂−1ĝ′C

+T λ̂iC
′Σ̂C̃ Ŝ−1 C̃ ′(ĝψ̂−1ĝ′ − λ̂iΣ̂)C + T λ̂iC

′(ĝψ̂−1ĝ′ − λ̂iΣ̂)C̃ Ŝ−1 C̃ ′Σ̂C. (B.6)

By using Propositions C.3–C.5 and the smoothness of C̃ by Lemma B.1, observe that

Ŝ = C̃ ′gψ−1g′C̃ + Op,sup

(
(Nhq/ ln N)−1/2

)
. (B.7)

As in the proof of Lemma A.1 of Robin and Smith (2000), observe also that

C̃ ′g = diag(λ1/2
m , . . . , λ

1/2
m−l+1) D̃′

∗, (B.8)

where D−1
0 = (D̃∗ D∗)′ is the inverse of D0 with a n× (n− l) matrix D̃∗. Since D̃′∗ψ−1D̃∗ = In−l by

(B.2), we obtain from (B.7) and (B.8) that

Ŝ = diag(λm, . . . , λm−l+1) + Op,sup

(
(Nhq/ ln N)−1/2

)
. (B.9)

Relation (B.9) shows that, asymptotically, det(Ŝ) > 0. Hence, in view of (B.5), we may suppose
without loss of generality that det(Ŵ − T λ̂iV̂

−1) = 0, that is, T λ̂i are the eigenvalues of the matrix
V̂ 1/2Ŵ V̂ 1/2. Since this matrix is symmetric, applying the Wielandt-Hoffman theorem (Golub and
Van Loan (1996), Stewart and Sun (1990)), we obtain that

sup |T λ̂i − T η̂i|2 ≤ sup
m−l∑

i=1

|T λ̂i − T η̂i|2 ≤ sup
∣∣∣V̂ 1/2Ŵ V̂ 1/2 − TC ′(ĝ − g)DD′(ĝ − g)′C

∣∣∣
2
. (B.10)

Finally, we bound the right-hand side of (B.10) by examining the terms of the matrix Ŵ in (B.6).
By using C ′g = 0 and Proposition C.3, we have

TC ′ĝψ̂−1ĝ′C = TC ′(ĝ − g)ψ−1(ĝ − g)′C + Op,sup

(
T (Nhq/ ln N)−1/2

)
. (B.11)

Similarly, by using (B.8), (B.9) and the relation ψ−1D̃∗ = D̃, we obtain that

TC ′ĝψ̂−1ĝ′C̃Ŝ−1C̃ ′ĝψ̂−1ĝ′C = TC ′(ĝ − g)D̃D̃′(ĝ − g)′C + Op,sup

(
T (Nhq/ lnN)−1/2

)
. (B.12)

The last two terms of Ŵ are also Op,sup((Nhq/ ln N)−1/2). By using ψ−1 − D̃D̃′ = DD′, we conclude
from (B.11) and (B.12) that

Ŵ = TC ′(ĝ − g)DD′(ĝ − g)′C + Op,sup

(
T (Nhq/ ln N)−1/2

)
. (B.13)

By using Proposition C.4 and the fact C ′ΣC = Im−l, we have V̂ 1/2 = Im−l +Op,sup((Nhq/ lnN)−1/2).
Hence, in view of (B.13), the right-hand side of (B.10) is Op,sup(T 2(Nhq/ ln N)−1). This implies the
result (B.3). 2

Suppose now that sup l ≤ r. Lemma B.1 will be used to replace λ̂i in T̂glb(r) by η̂i. To establish a
limit, we bound η̂i in the lemma below. Let

C1 = C

(
0r−l×m−r

Im−r

)
, D1 = D

(
0r−l×n−r

In−r

)
, (B.14)
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be the last m− r and n− r columns of C and D, respectively. Observe from (B.1) and (B.2) that

C ′
1ΣC1 = Im−r, D′

1ψD1 = In−r. (B.15)

Let also 0 ≤ ξ̂1 ≤ . . . ≤ ξ̂m−r be the ordered eigenvalues of the matrix

C ′
1(ĝ − g)D1D

′
1(ĝ − g)′C1. (B.16)

Lemma B.3 We have η̂i ≤ ξ̂i, i = 1, . . . , m− r.

Proof: Applying the Poincaré separation theorem (Magnus and Neudecker (1999), p. 209, or Rao
(1973), p. 65), we have η̂i ≤ ζ̂i, where ζ̂i are the ordered eigenvalues of the matrix C ′

1(ĝ − g)DD′(ĝ −
g)′C1. These are also the eigenvalues of the matrix D′(ĝ − g)′C1C

′
1(ĝ − g)D. Applying the Poincaré

separation theorem again, we further obtain that η̂i ≤ ξ̂i, where ξ̂i are the eigenvalues of D′
1(ĝ −

g)′C1C
′
1(ĝ − g)D1. These are also the eigenvalues of the matrix in (B.16). 2

Define the local and global rank test statistic through the eigenvalues ξ̂i of (B.16) as

Ŝ(r) = Nhq‖K‖−2
2

m−r∑

i=1

ξ̂i, Ŝglb(r) =

∫
Hz

Ŝ(r)dz − |Hz|(m− r)(n− r)

hq/2|Hz|1/2
√

(m− r)(n− r)
‖K‖2

2

‖K‖2
. (B.17)

Combining Lemmas B.1 and B.3, we obtain the following result.

Corollary B.1 We have

lim sup(d) T̂glb(r)
d≤ lim sup(d) Ŝglb(r). (B.18)

We will finally show that
Ŝglb(r)

d→ N (0, 1). (B.19)

Observe that

‖K‖2
2 Ŝ(r) = Nhq tr{C ′

1(ĝ − g)D1D
′
1(ĝ − g)′C1} = Nhq tr{C ′

1ĝD1D
′
1ĝ
′C1}, (B.20)

where the equality before holds since C ′
1g = 0. In order to integrate Ŝ(r) over z, we shall replace

D1 = D1(z) and C1 = C1(z) in (B.20) by

D1,i = D1(Zi), C1,i = C1(Zi).

Lemma B.4 Under Assumptions 1, 2, 3, L4, and when N1−2/uhq+2/ lnN →∞, we have

‖K‖2
2 Ŝ(r) =

Nhq

N2

∑

i,j

v(Xi)′D1,iD
′
1,jv(Xj)′ U ′

iC1,iC
′
1,jUj Kh(z − Zi)Kh(z − Zj)

+ Op,sup(h2 ln N). (B.21)

Proof: Observe from Proposition C.6 below that

sup
∣∣∣C ′

1ĝD1 − 1
N

N∑

i=1

C ′
1,iYiv(Xi)D1,iKh(z − Zi)

∣∣∣ = Op

(
h(Nhq/ lnN)−1/2

)
. (B.22)

Relations (B.20) and (B.22) imply (B.21) where the sum on the right-hand side is

Nhq

N2

∑

i,j

tr
{
C ′

1,iYiv(Xi)′D1,iD
′
1,j(Yjv(Xj)′)′C1,j

}
Kh(z − Zi)Kh(z − Zj).
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Finally observe that C ′
1,iYi = C ′

1,iUi since C ′
1θ = 0, and use the fact tr{AA′} = vec(A)′vec(A). 2

Lemma B.4 implies that

‖K‖2
2

∫

Hz

Ŝ(r)dz =
‖K‖2

2

N

∑

i

v(Xi)′D1,iD
′
1,iv(Xi)′ U ′

iC1,iC
′
1,iUi

+
Nhq

N2

∑

i 6=j

v(Xi)′D1,iD
′
1,jv(Xj) U ′

iC1,iC
′
1,jUj Kh(Zi − Zj) + Op

(
h2 lnN

)

=: ‖K‖2
2 Ŝ1,glb(r) + Ŝ2,glb(r) + Op

(
h2 ln N

)
. (B.23)

The convergence (B.19) follows from the next two results. Observe that Assumption G6 is used here
to have h2−q/2 ln N → 0.

Lemma B.5 Under Assumptions 2,3, we have

Ŝ1,glb(r) = |Hz|(m− r)(n− r) + Op(N−1/2). (B.24)

Proof: The result follows by using (B.15) from

EŜ1,glb(r) = E

(
v(Xi)′D1(Zi)D1(Zi)′v(Xi)′E

(
(C1(z)′Ui)′C1(z)′Ui

)∣∣∣
z=Zi

)

= (m− r)E
(
v(Xi)′D1(Zi)D1(Zi)′v(Xi)′

)

= (m− r)
∫

Hz

p(z)E
(
(D1(z)′v(Xi))′(D1(z)′v(Xi))

∣∣∣Zi = z
)
dz

= (m− r)(n− r)
∫

Hz

dz = (m− r)(n− r)|Hz|. 2

Lemma B.6 Under Assumptions 2,3, we have

lim(d)
Ŝ2,glb(r)

hq/2|Hz|1/2 ‖K‖2

√
(m− r)(n− r)

d= N
(
0, 1

)
.

Proof: Observe that Ŝ2,glb(r) =
∑

i<j Wij with

Wij = W ((Xi, Zi, Ui), (Xi, Zi, Ui)) =
2hq

N
v(Xi)′D1,iD

′
1,jv(Xj) U ′

iC1,iC
′
1,jUj Kh(Zi − Zj),

and that E(Wij |Xi, Zi, Ui) = 0, i < j. Hence, by applying Proposition 3.2 in de Jong (1987), it is
enough to prove that

E(Ŝ2,glb(r))2

hq|Hz| ‖K‖2
2(m− r)(n− r)

→ 1 (B.25)

and ∑

i<j

EW 4
ij = o(h2q), (B.26)

∑

i<j<k

(
EW 2

ijW
2
ik + EW 2

jiW
2
jk + EW 2

kiW
2
kj

)
= o(h2q), (B.27)
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∑

i<j<k<l

(
EWijWikWljWlk + EWijWilWkjWkl + EWikWilWjkWjl

)
= o(h2q). (B.28)

The convergence (B.25) follows from

h−qN

‖K‖2
2(N − 1)

E(Ŝ2,glb(r))2

=
hq

‖K‖2
2N(N − 1)

∑

i6=j

E
(
(v(Xi)′D1,iD

′
1,jv(Xj))2 (U ′

iC1,iC
′
1,jUj)2 (Kh(Zi − Zj))2

)

= E
(
(v(Xi)′D1,iD

′
1,jv(Xj))2 U ′

iC1,i

(
C ′

1,jUjU
′
jC1,j

)
C ′

1,iUi K2,h(Zi − Zj)
)

= E
(
(v(Xi)′D1,iD

′
1,jv(Xj))2 U ′

iC1,i

(
C ′

1,jΣC1,j

)
C ′

1,iUi K2,h(Zi − Zj)
)

= E
(
(v(Xi)′D1,iD

′
1,jv(Xj))2 U ′

iC1,iC
′
1,iUi K2,h(Zi − Zj)

)

= (m− r)E
(
(v(Xi)′D1,iD

′
1,jv(Xj))2 K2,h(Zi − Zj)

)

= (m− r)E
(
v(Xi)′D1,i

(
D′

1,jv(Xj)v(Xj)′D1,j

)
D′

1,iv(Xi) K2,h(Zi − Zj)
)

= (m− r)E
(
v(Xi)′D1,i

(
D′

1,jψ(Zj)D1,j

)
p(Zj)−1D′

1,iv(Xi) K2,h(Zi − Zj)
)

= (m− r)E
(
v(Xi)′D1,iD

′
1,iv(Xi) p(Zj)−1K2,h(Zi − Zj)

)

= (m− r)E
(
v(Xi)′D1,iD

′
1,iv(Xi)

)
+ o(h2) = (m− r)(n− r)|Hz|+ o(h2).

For the relation (B.26), the sum is O(N−2) = O((Nhq)−2h2q) = o(h2q). Consider now the relation
(B.27). For the first term in the sum, observe that

EW 2
ijW

2
ik

16‖K‖4
2

=
h2q

N4
E

{(
v(Xi)′D1,iD

′
1,jv(Xj)

)2(
U ′

iC1,iC
′
1,jUj

)2
K2,h(Zi − Zj)·

·
(
v(Xi)′D1,iD

′
1,kv(Xk)

)2(
U ′

iC1,iC
′
1,kUk

)2
K2,h(Zi − Zk)

}

=
h2q

N4
E

{(
v(Xi)′D1,iD

′
1,jv(Xj)

)2(
v(Xi)′D1,iD

′
1,kv(Xk)

)2(
U ′

iC1,iC
′
1,iUi

)2
K2,h(Zi−Zj)K2,h(Zi−Zk)

}

=
h2q

N4
E

{(
v(Xi)′D1,iD

′
1,iv(Xi)

)2(
U ′

iC1,iC
′
1,iUi

)2
p(Zj)−1p(Zk)−1K2,h(Zi − Zj)K2,h(Zi − Zk)

}

=
h2q

N4

{
E

(
v(Xi)′D1,iD

′
1,iv(Xi)

)2(
U ′

iC1,iC
′
1,iUi

)2
+ o(h2)

}
= O

(
h2q

N4

)
.

The other two terms of the sum in (B.27) can be considered similarly. This yields (B.27).
For the first term in the sum of (B.28), one may similarly show that

N4

16h4q
EWijWikWljWlk

= (m− r)(n− r)E
{
Kh(Zi − Zj)Kh(Zi − Zk)Kh(Zl − Zj)Kh(Zl − Zk)

}
= O

(
h−2q

)
.

Other terms in the sum can be considered similarly. This establishes (B.28). 2
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Suppose now that r < sup l(z). Then, by smoothness of θ(z), there is an interval H0 ⊂ Hz such
that r < l(z) for all z ∈ H0. By using Proposition C.3, it follows that

sup
z∈H0

∣∣∣(Nhq)−1T̂ (r, z)− T0(r, z)
∣∣∣ d→ 0,

where
T0(r, z) = min

rk{θ}≤r
vec(θ(z)− θ)′w(z)−1vec(θ(z)− θ)

and
sup
z∈H0

T0(r, z) > 0.

Hence,

T̂glb(r) ≥ Nhq/2

∫
H0

(Nhq)−1T̂ (r, z)dz − (Nhq)−1|Hz|(m− r)(n− r)

|Hz|1/2
√

(m− r)(n− r)
d−→ +∞,

which implies (5.2).

C Auxiliary proofs

The following localization property of kernel functions can be easily proved by using Taylor expansions
and the definition of the order of a kernel function. We omit its proof for shortness sake.

Proposition C.1 Let K be a kernel on IRq of order r ∈ IN. Suppose that a function g : IRq → IR is
r-times continuously differentiable in a neighborhood of z0 ∈ IRq. Then, as h → 0,

∫

IRq
g(z)Kh(z − z0)dz = g(z0) + O(hr). (C.1)

Moreover, if the function g has its r-order derivatives bounded on IRq, then the term O(hr) in (C.1)
does not depend on z0.

The next elementary result allows us to determine a local rank in a demand system.

Proposition C.2 Let ỹ = f(x, z) = θ̃(z)v(x) be a demand system with a j × n matrix θ̃(z) and a
n× 1 vector v(x) = (1 V (x)′)′ of n linearly independent functions of x. Then, for fixed z,

rk{f(·, z)} = rk{θ̃(z)} = rk{Θ(z)}+ 1, (C.2)

where Θ(z) is the matrix θ̃(z) with an arbitrary row and the first column eliminated. The second
equality in (C.2) holds for any matrix θ̃(z) where the entries in the first column add up to 1 and those
in the other columns add up to 0.

Proof: For notational simplicity, we omit z throughout the proof. We shall prove the first equality
in (C.2). Let r = rk{f(·)} and l = rk{θ̃}. By the definition of rk{f(·)}, there are j − r elements of
a vector f(x) = θ̃ v(x) that can be expressed as linear combinations of the rest r elements of f(x).
Supposing without loss of generality that these are the last j− r elements of f(x), we obtain that, for
i = r + 1, . . . , j,

θ̃i1 v1(x) + · · ·+ θ̃in vn(x) =
r∑

k=1

cik(θ̃k1 v1(x) + · · ·+ θ̃kn vn(x)), (C.3)
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where θ̃ = (θ̃ik), v(x) = (vl(x)) and cik are some vectors. Since the functions v1(x), . . . , vn(x) are
linearly independent by the assumption, relation (C.3) implies that θik = ci1θ̃1k + · · · + cirθ̃rk, for
i = r + 1, . . . , j and k = 1, . . . , n. This shows that l ≤ r since j − r rows of the matrix θ̃ can be
expressed as linear combinations of the other r rows. To obtain the converse inequality r ≤ l, observe
that θ̃ = θ1θ2 where θ1 is a j× l matrix and θ2 is a l×n matrix. Then, ỹ = f(x) = θ̃ v(x) = θ1(θ2 v(x)).
Since θ2 v(x) is a l × 1 vector, we obtain from the definition of local rank that r ≤ l. Hence, l = r
which concludes the first part of the proof.

We will now prove the second equality in (C.2). Set θ̃ = (θ̃1 θ̃2) where θ̃1 is a j × 1 vector and θ̃2

is a j × (n− 1) matrix. Since the functions vk(x), k = 1, . . . , n are linearly independent and v1(x) = 1
by assumption, and since the j budget shares add up to 1, we obtain that the elements of the first
column of the matrix θ̃ add up to 1 and those in the other columns add up to 0. We want to show
first that rk{θ̃} = rk{θ̃2} + 1. If the first column of θ̃ can be written as a linear combination of the
other columns, that is, for k = 1, . . . , n, θ̃1k = λ2θ̃2k + . . . + λnθ̃nk, λ2, . . . , λn ∈ IR, by summing up all
the equations over k, we get

n∑

k=1

θ̃1k = λ2

n∑

k=1

θ̃2k + . . . + λn

n∑

k=1

θ̃nk. (C.4)

We know that
∑n

k=1 θ̃1k = 1 and, for i = 2, . . . , j,
∑n

k=1 θ̃ik = 0. Therefore (C.4) is not true and hence
the first column of θ̃ is linearly independent of the other columns. This implies that rk{θ̃} = rk{θ̃2}+1.
Finally, it is enough to show that rk{θ̃2} = rk{Θ}. This holds since the rows of θ̃2 add up to 0 and
hence the last row of θ̃2 is a linear combination of the other rows. 2

The next three lemmas were used in the proof of global rank tests.

Proposition C.3 Under Assumptions 1, 2, 3, L4 and L5, and N1−2/uhq/ ln N → ∞, Nhq+2s → 0,
we have

sup
z∈Hz

∣∣∣(ψ̂(z))k − (ψ(z))k
∣∣∣ = Op

(
(Nhq/ ln N)−1/2

)
, k = −1, 1, (C.5)

and
sup
z∈Hz

|θ̂(z)− θ(z)| = Op

(
(Nhq/ ln N)−1/2

)
. (C.6)

Proof: To prove (C.5), we consider only the case k = 1. Under the assumptions of the proposition
and by using Lemma B.1 in Newey (1994) (see also Lemma 1 in Fan and Zhang (1999)), we have

sup
z∈Hz

|ψ̂(z)−Eψ̂(z)| = Op

(
(Nhq/ lnN)−1/2

)
.

By using Proposition C.1 above and the assumptions,

sup
z∈Hz

|Eψ̂(z)− ψ(z)| = O (hs) .

This implies (C.5) with k = 1. Relation (C.6) follows similarly by using (C.5). 2

Proposition C.4 Under the assumptions of Proposition C.3 above, we have

Σ̂− Σ = Op

(
(Nhq/ lnN)−1/2

)
.
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Proof: Write

Σ̂ =
1
N

N∑

i=1

UiU
′
i +

1
N

N∑

i=1

(θ(Zi)− θ̂(Zi))v(Xi)v(Xi)′(θ(Zi)− θ̂(Zi))′

+
1
N

N∑

i=1

Uiv(Xi)′(θ(Zi)− θ̂(Zi))′ +
1
N

N∑

i=1

(θ(Zi)− θ̂(Zi))v(Xi)U ′
i .

The first term on the right-hand side is Σ + Op(N−1/2). By using Proposition C.3, the second
term is Op((Nhq/ lnN)−1). Similarly, the third and fourth terms are Op((Nhq/ ln N)−1/2) since
N−1 ∑N

i=1 |Ui| = Op(1). 2

Proposition C.5 Let l(z) = rk{Γ(z)}. Under the assumptions of Proposition C.3 above, for i =
1, . . . ,m,

sup
z∈Hz

|λ̂i(z)− λi(z)| = Op

(
(Nhq/ ln N)−1/2

)
.

Proof: Observe by the Wielandt-Hoffman theorem (Golub and Van Loan (1996), Stewart and Sun
(1990)) that

sup
z∈Hz

m∑

i=1

|λ̂i(z)− λi(z)|2

≤ sup
z∈Hz

∣∣∣Σ̂−1/2Θ̂(z)Ψ̂(z)Θ̂(z)′Σ̂−1/2 − Σ−1/2Θ(z)Ψ(z)Θ(z)′Σ−1/2
∣∣∣
2
,

which is Op((Nhq/ ln N)−1) by Propositions C.3 and C.4. 2

Proposition C.6 Let f(z) be a bounded function, g(z) be a Lipschitz function on z ∈ Hz and set

Ĝ(z) =
1
N

N∑

i=1

Yiv(Xi)′f(Zi)
(
g(z)− g(Zi)

)
Kh(z − Zi).

Then, under Assumptions 1, 2, 3, L4, and when N1−2/uhq+2/ ln N →∞, we have

sup
z∈Hz

|Ĝ(z)| = Op

(
h(Nhq/ ln N)−1/2

)
.

Proof: The result can be proved by adapting the proof of Lemma B.1 in Newey (1994). Let

G̃(z) =
1
N

N∑

i=1

YiNv(Xi)′f(Zi)
(
g(z)− g(Zi)

)
Kh(z − Zi),

where YiN = sign(Yi)(|Yi| ∧ LN1/u) with a constant L. Set also δ = h(Nhq/ ln N)−1/2. As in (B.2) of
Newey (1994),

P
(
Ĝ(z) 6= G̃(z) for some z

)
≤ L−uE|Yi|u. (C.7)

Since g and K are Lipschitz, we have (with C denoting a generic constant throughout)

sup
|z1−z2|≤N−3

∣∣∣G̃(z1)− G̃(z2)
∣∣∣ ≤ C h−q−1N1/u−3. (C.8)
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Since Hz is a compact, it can be covered by the balls B(zj , N
−3), j = 1, . . . , CN3k, at the centers zj

and of radius N−3. For z ∈ Hz, let zj(z) be such that z ∈ B(zj(z), N−3). Then, by (C.8),

sup
z∈Hz

∣∣∣G̃(z)
∣∣∣ ≤ Ch−q−1N1/u−3 + sup

j

∣∣∣G̃(zj)
∣∣∣ (C.9)

Note that, for large M, N ,

2Mδ − C h−q−1N1/u−3 = 2Mδ

(
1− C

(M2N5−2/uhq+4 ln N)1/2

)

≥ 2Mδ

(
1− C

(M2N1−2/uhq+2(Nhq)4 ln N)1/2

)
≥ Mδ. (C.10)

Then, by (C.9) and (C.10), for large M, N ,

P
(

sup
z∈Hz

|Ĝ(z)| > 2Mδ
)
≤ P

(
sup

j
|Ĝ(zj)| > Mδ

)
≤

CN3q∑

j=1

P
(
|Ĝ(zj)| > Mδ

)
. (C.11)

Observe now that

E|YiNv(Xi)′f(Zi)(g(z)− g(Zi))Kh(z − Zi)| ≤ E|YiNv(Xi)′f(Zi)(g(z)− g(Zi))Kh(z − Zi)| ≤ C h−q+2,

and |YiNv(Xi)′f(Zi)
(
g(z) − g(Zi)

)
Kh(z − Zi)| ≤ C N1/uh−q. Then, by the Bernstein inequality, for

large M, N ,

P
(
|Ĝ(zj)| > Mδ

)
≤ 2 exp

{
−C

NMδ2

h−q+2 + N1/uh−qδ

}

≤ 2 exp
{
−C

M lnN

1 + (N1−2/uhq+2/ lnN)−1/2

}
≤ 2 exp

{
− C M ln N

}
. (C.12)

By (C.11) and (C.12), for large M,N ,

P
(

sup
z∈Hz

|Ĝ(z)| > 2Mδ
)
≤ C exp

{
− C(M − 3q) lnN

}
.

This shows that supz∈Hz
|G̃(z)| = Op(δ). By using (C.7), one may conclude as in Newey (1994) that

supz∈Hz
|Ĝ(z)| = Op(δ) as well. 2
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