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ABSTRACT

In this work, we address the problem of finding a minimum cost spanning tree on a single source

flow network. The tree must span all vertices in the given network and satisfy customer demands

at a minimum cost. The total cost is given by the summation of the arc setup costs and of the

nonlinear flow routing costs over all used arcs. Furthermore, we restrict the trees of interest

by imposing a maximum number of arcs on the longest arc emanating from the single source

vertex. We propose a dynamic programming model an solution procedure to solve this problem

exactly. Intensive computational experiments were performed using randomly generated test
problems and the results obtained are reported. From them we can conclude that the method
performance is independent of the type of cost functions considered and improves with the

tightness of the constrains.

Keywords: Dynamic programming, network flows, constrained trees, general nonlinear costs.

J.E.L. Classification. CO2, C61.

1 INTRODUCTION

We consider a problem which is an extension of the classical Minimum Spanning Tree problem
(MST). As inthe MST problem we want to find a minimum cost tree, rooted at the single source,
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spanning all other vertices in a given network. However, we consider that all vertices, except
for the source vertex, have an integer nonnegative flow requirement and thus we must also find
the flow that must be routed along each used arc. A nonlinear flow dependent cost function is
associated with each arc. Furthermore, we also consider a limite on the maximum number of
arcs permitted on any of path emanating form the single source.

Network flow problems arise frequently in several application areas (Guisewite 1994): trans-
portation, communication, network design and distribution, production and inventory planning,
facility location, scheduling and air traffic control.

A limite on the number of arcs in any path from the root vertex is imposed to guarantee a
specified level of service, for example to guarantee a prescribed level of reliability to potential
arc or vertex failure (see e.g. (Woolston & Albin 1988)) or to avoid excessive delay of sending

a message since this delay is roughly proportional to the number of arcs the message has to
traverse (see e.g. (Chepoi & Vaxes 2002)).

The problem we address here is NRrd, which is not surprisingly since the problem the
problem of finding optimal trees for concave minimum cost network flow problems is also HP-
Hard, even for the simplest version (Guisewite & Pardalos 1991).

Some authors have looked at constraint versions of classical MST and Steiner tree problems,
see for example (Gouveia, Magnanti & Requejo 2004) and the references therein. Many other
authors have looked at Minimum Cost Network Flow Problems (MCNFPSs): for a recent discus-
sion on general concave MCNFPs, see for example (Burkard, Dollani & Thach 2001, Fontes,
Hadjiconstantinou & Christofides 2003) for approximate methods and (Fontes, Hadjiconstanti-
nou & Christofides 2006) for exact methods. However, as far as the authors are aware of, no
previous work has been reported on path constrained minimum spanning tree problems involv-
ing flow supply and general nonlinear cost functions. The dynamic programming model and
solution algorithm given here are an extension of the work given in (Fontes 2007).

The computational results have shown the method to be rather robust, since its performance
does not depend on the type of cost functions. Moreover, the computational results have also
shown that the methods performance increases with the tightness of the constraints.

2 PROBLEM DESCRIPTION AND FORMULATION

Let G = (W, A) denote a directed network with a 3ét of n + 1 vertices (the source vertex
andn demand vertices) and with a sétof m directed arcs. Vertices 1 t@ have associated

a nonnegative integer demangd which must be satisfied. The total cost, to be minimized, is
given by the summation of all costs incurred by both using an arc and routing flow through
it, since each ar¢i, j) € A has associated a general nonlinear and nonnegative cost function
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g;;- The cost of sending units of flow through an arc, say, j) is given by a monotonously

increasing functiory;;(r) which satisfiesy;;(0) = 0. (The flow that can be routed through
each ard, j) may have uppet;; and lowerl;; limits.) The arcs limitp forces all paths of the

minimum cost tree to have no more thaarcs.

For such a problem the state variable is defined as a tfiflet p) wheresS is the set of vertices

to be supplied and hence spanneds the vertex acting as a source gnis the maximum
number of arcs in any path. Therefore, at this state we want to find a minimum cost tree rooted
at vertexx that supplies all vertices in sétand has no more thatarcs in any of its paths.
Define f(S, x, p) to be the minimum cost of such a tree.

At each state, the set of verticésis to be partitioned into two subsetss’, 5’} whereS” C
S\ {z} and S’ is the complement 0§’ in the setS, that isS” = S\ S’. Then an immediate
decision on a vertex to act as a source forgéteceiving the necessary commodity from vertex
r) is made. Therefore, three costs are incurred: one associated with supplyffig=sét\ S’
from vertexx using at mosk arcsf(S'\ .S’, z, k), another associated with supplying séfrom
the chosen vertex, sayusing at mosp — 1 arcsf(S’,z,p — 1) (since ardz, z) has already
been used), and finally a cost associated with making the flow required by the vertitesag

r, available at vertex g, (r).

We can then model the above problem as follows:

f(S,ZL‘,p) = S’g@l\r}[m} f (S - S/ax>p) + erélsr,l [f(Slv Z,p— 1) + ga:z(r)] . (1)

lez<r<ugz

An illustration, forp = 3, is given in Figure 1.

Figure 1: Possible directed trees with arcs limit 3.

Recursion (1) applies for alt C W and allx € S. Hence, the cost of an optimal tree supplying
all demand vertices in sét” from the source vertexwith limit p, is given byf (W, ¢, P), if one
exists.



ff=f(W,t,P)= min

't P
min £V P)+

+ min
zes’!
ltzﬁziesf TiSugy

F(S" 2, P —1) + gs. (Z ri> ”

€S’

Initial conditions are provided by

0, ifS={z}forallk

. (2)
oo, if S # {x} forallk.

f (S, x, k)= {

3 THE DYNAMIC PROGRAMMING ALGORITHM

In an initial procedure we label all states as not computed and then initialize states as given
by equation (2). The optimal treg(WV,¢, P) is obtained by calling the recursive function
ComputeWV, ¢, P).

Computés, z, k)

If state (S,z,k) has already been computed then return f (S, x,k)
Set min = oo

For each S’ C S [+ recall that a set is represented by an integer, therefore to consider
all subsets it is enoughto do afori =1to 251 —1 =/

Call  Compute(S\ S, z, k)
If  f(S\S, zk)>min then get another S’
For each =z € S" /+* hereacyclefor z =i to n followed by a bit test is performed */
If (z,2) ¢ A then get another z
= e i
If r>wu,, or r<lI, then get another z
If  f(S\ S, 2,k)+g..(r) >min then get another z
Call Compute(S', z, k —1)
If  f(S\S" 2, k)+ g..(r)+ f(S, 2,k —1) > min then get another 2
min = f(S\ S, x,k) + go. (r) + f (S, 2,k — 1)

Store information on:



subsetsS’, vertexz, flow=r, and f(S,z)= min.
End for
End for
Return  f(S,x,k)

At the end of the procedure, ff(IW,t, P) = oo then no tree network exists satisfying the the
arcs limit P and the flow limits; otherwis¢ (W, ¢, P) gives the cost associated with an optimal
path constrained tree. The solution structure, i.e. the arcs used and the amount of flow routed
through these arcs, is obtained by a recursive routine that backtracks through the information
stored (subset, vertex, and flow) during the computation of intermediate states.

The complexity of the DP algorithm, as expected, increases exponentially with problem size.
On the other hand, the DP model performance does not deteriorates with the type, nature, or
form of the cost functions used and its performance actually improves with the tightness of the
arcs limit constraints.

4 COMPUTATIONAL RESULTS

The algorithm presented in this paper was implemented in Fortran 90 and computationally
evaluated by solving a set of randomly generated test problems.

The problems considered are amongst the most difficult problems as all arcs have cost functions
that are neither convex nor concave. The problems data can be downloaded from the OR-Library
(Beasley n.d.) and a thorough description of the generation procedure is provided in (Fontes
et al. 2003).

Three different types of cost functions are considered: type G1 and type G2 are variations of
the fixed-charge cost function where discontinuities other than at the origin are introduced and
type G3, for which we consider that arc costs are initially concave and then convex having a
discontinuity at the break point. The discontinuity poiRtwas set to 50% of the total demand

R.



Types G1 and G2 correspond, respectively, to the so called staircase and sawtooth cost func-
tions, see (Kim 2003), in our case with two segments.

07 |f r = O,
9i5(r) = ¢ —a;r? 4+ bijr + ¢ if r <R,
ai;r® + byr + ci; + k- otherwise,

wherea,;; = 0 for G1 and G2k = b;; for G1, andk = —b,; for G2 and G3.

In tables 1 to 3 we summarize the results obtained for uncapacitated problems involving cost
functions of types G1, G2, and G3 with the discontinuity point occurring at 50%, aind
considering eight different limites on the number of arcs in each path 3, 4, ..., 9, or 10.

We report on the average, maximum, and minimum computational time and on the standard
deviation, in minutes, required to solve the problems. For each size, cost function type and
value we solve 30 problem instances.Thus, overall we have solved 450 problem instances for
each limite valueP.

In order to better analise the results obtained we also give their graphical representation. It
should be noticed that each of the figures shown in the table and in all graphs were obtained as
averages over 30 problem instances of a given problem size, cost function type, and arcs limit
value. The computational time is reported in minutes and also in logarithmic scale. The latter
one is provided since the range magnitude of the computational times is quite large.

As it can bee seen, for all cost functions, the computational time required increases slowly with
the increase of the arcs limit value, except for= 5, which typically is much larger than for

any other arcs limit value. For very smallvalues, in particular fo”” = 3 the computational

time is smaller since the constraint are very restrictive, possibly eliminating many solutions
otherwise feasible. For large values the computational time increases since the constrained
problem becomes harder due to the enlargement of the solution domain. However, for much
larger values,P being greater than or equal to 8, the computational time remains basically
constant, which is probably do to the fact that for such values the constrains are no longer
effective.

To illustrate that the methods performance is independent on the cost function type we have
plotted the computational time, again in logarithmic scale and in minutes, for problems of all
sizes and for all three cost type functions in figures 3 to 7.

Unlike diameter-constrained minimum spanning trees, path constrained minimum cost flow
spanning trees do not seem to be more difficult for odd constraint values then for even values.



Aver Max Min StDev

0.001 0.017 0.000 0.004
0.002 0.017 0.000 0.005
0.002 0.017 0.000 0.006
0.002 0.017 0.000 0.005
0.002 0.017 0.000 0.005
0.002 0.017 0.000 0.005
0.002 0.017 0.000 0.006
0.001 0.017 0.000 0.004
0.009 0.017 0.000 0.008
0.012 0.017 0.000 0.007
0.029 0.029 0.029 0.012
0.018 0.033 0.000 0.009
0.019 0.033 0.000 0.008
0.020 0.033 0.000 0.009
0.021 0.033 0.017 0.007
0.019 0.033 0.000 0.009
0.225 0.333 0.167 0.045
0.363 0.550 0.250 0.072
0.755 0.755 0.755 0.160
0.501 0.767 0.367 0.110
0.558 0.850 0.400 0.121
0.567 0.867 0.417 0.127
0.603 0.917 0.450 0.139
0.572 0.867 0.417 0.132
2.191 3.683 1.317 0.598
3.647 5.433 2.050 0.973
8.081 8.081 8.081 2.238
5.543 8.467 3.133 1.593
6.353 9.683 3.583 1.876
6.518 10.033 3.633 2.003
6.939 10.717 3.783 2.168
6.780 10.550 3.600 2.159
19.724 33.433 9.733 5.550
32.304 55.183 14.833 9.078
68.093 68.093 68.093 23.176
50.032 89.583 22.183 14.730
55.684 102.867 24.417 17.129
58.486 109.800 24.550 18.520
59.748 113.383 24.683 19.318
10| 61.289 117.600 25.200 20.228
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12

15

17

19
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Table 1: Computational performance for problems with cost functions of type G1.



Aver Max Min StDev

0.001 0.017 0.000 0.004
0.001 0.017 0.000 0.004
0.003 0.017 0.000 0.006
0.002 0.017 0.000 0.005
0.003 0.017 0.000 0.006
0.002 0.017 0.000 0.006
0.002 0.017 0.000 0.006
0.002 0.017 0.000 0.006
0.009 0.017 0.000 0.008
0.013 0.017 0.000 0.007
0.028 0.050 0.017 0.009
0.018 0.033 0.000 0.009
0.020 0.033 0.000 0.010
0.018 0.033 0.000 0.010
0.019 0.033 0.000 0.010
0.020 0.033 0.000 0.008
0.227 0.333 0.167 0.044
0.363 0.533 0.250 0.073
0.753 1.117 0.500 0.157
0.515 0.783 0.350 0.114
0.558 0.883 0.400 0.130
0.562 0.850 0.400 0.133
0.571 0.867 0.417 0.131
0.586 0.900 0.417 0.135
2.182 3.667 1.267 0.606
3.585 5.333 2.067 0.959
8.025 11950 4350 2.174
5.637 8.583 3.133 1.608
6.356 9.900 3.583 1.899
6.562 10.067 3.683 1.995
6.814 10.550 3.700 2.136
6.812 10.533 3.733 2.134
19.926 33.383 10.100 5.543
32.112 54.133 14.267 8.919
53.940 107.400 19.167 20.091
51.138 89.967 22.017 14.639
56.766 105.033 23.550 17.585
58.878 109.033 24.650 18.519
60.971 115.267 25.167 19.841
10| 61.416 115.633 25.450 19.972

10

12

15

17

19
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Table 2: Computational performance for problems with cost functions of type G2.



Aver Max Min StDev
0.001 0.017 0.000 0.004
0.001 0.017 0.000 0.004
0.003 0.017 0.000 0.006
0.002 0.017 0.000 0.005
0.001 0.017 0.000 0.004
0.002 0.017 0.000 0.006
0.002 0.017 0.000 0.006
0.001 0.017 0.000 0.004
0.009 0.017 0.000 0.008
0.012 0.017 0.000 0.008
0.027 0.033 0.017 0.008
0.018 0.033 0.000 0.008
0.020 0.033 0.000 0.008
0.019 0.033 0.000 0.008
0.019 0.033 0.000 0.010
0.019 0.033 0.000 0.010
0.231 0.333 0.167 0.044
0.347 0.533 0.250 0.069
0.752 1.167 0.517 0.159
0.504 0.783 0.350 0.111
0.546 0.833 0.400 0.123
0.558 0.883 0.417 0.127
0.572 0.900 0.433 0.131
0.571 0.900 0.433 0.131
2.178 3.700 1.300 0.606
3.493 5.367 1.983 0.963
7.972 12400 4.450 2.271
5.497 8.700 3.117 1.655
6.083 9.617 3.483 1.908
6.376 10.117 3.633 2.050
6.647 10.667 3.717 2.170
6.635 10.800 3.617 2.215
19.853 33.617 9.950 5.600
32.441 55.617 14.900 9.197
71.023 125.400 31.983 20.372
49.828 90.167 22.283 14.835
55.967 105.633 24.350 17.571
58.187 111.400 24.700 18.962
60.133 116.717 25.400 20.131
10| 60.969 118.417 25.233 20.604

10

12

15

17

19
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Table 3: Computational performance for problems with cost functions of type G3.
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This can be seen in Figure 8 where we have plotted the computational time for all problem sizes
considering constraint values to be a) odd, b) even, and c) the best and worst performance for
even and odd values.

5 CONCLUSIONS

In this paper we have presented a DP methodology for finding path constrained trees that satisfy
customer demands at minimum cost. The constraints considered, force the paths in the trees to
have no more than a predefined numbBeaf arcs. The cost functions considered may be neither
differentiable nor continuous. Also, they might be neither convex nor concave having only to
be separable and additive.

No other works have been founded in the literature for path constrained trees that involve gen-
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c) Best and worst, odd and even values.
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Figure 10: The effect of having odd and even constraint values on computational time, for

problems type G3.

c) Best and worst, odd and even values.
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eral nonlinear arc costs that are neither convex nor concave. Furthermore, the works found are
on graphs and do not involve flow routing on the arcs and flow supplying to the customers.

A large number of randomly generated test problems of varying size and complexity was used
to evaluate the algorithms performance. Overall, computational experiments were carried out
on 450 problem instances for each of the eight limit values for number of arcs considered. The
results have shown the DP algorithm to be effective at solving such a problem for any type of
cost function. Furthermore, the algorithm is also efficient, although only for small and medium
size problem instances, since computational requirements grow rapidly with problem size.

A major advantage of the methodology proposed in this work, is that it is independent of the cost
function type as well as of the number of nonlinear arcs (which have been shown to be the major
factors defining problem complexity, see (Burkard et al. 2001, Hochbaum & Segev 1989)):
Furthermore, the proposed methodology can address the path constraints and, actually take
advantage of them, specially if they are very tight.
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