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ABSTRACT

In this work we address investment decisions using real options. A standard numerical approach

for valuing real options is dynamic programming. The basic idea is to establish a discrete-valued

lattice of possible future values of the underlying stochastic variable (demand in our case). For

most approaches in the literature, the stochastic variable is assumed normally distributed and

then approximated by a binomial distribution, resulting in a binomial lattice. In this work, we

investigate the use of a sparse Markov chain to model such variable. The Markov approach

is expected to perform better since it does not assume any type of distribution for the demand

variation, the probability of a variation on the demand value is dependent on the current demand

value and thus, no longer constant, and it generalizes the binomial lattice since the latter can be

modelled as a Markov chain. We developed a stochastic dynamic programming model that has
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been implemented both on binomial and Markov models. A numerical example of a production

capacity choice problem has been solved and the results obtained show that the investment

decisions are different and, as expected the Markov chain approach leads to a better investment

policy.

Keywords: Flexible Capacity Investments, Real Options, Markov Chains, Dynamic Program-

ming.

J.E.L. Classification. C61, G31.

1 INTRODUCTION

Manufacturing flexibility has become a very important competitive aspect for production ori-

ented companies. Many researchers, e.g. (Fine & Hax 1985) also rank manufacturing flexibility

as a competitive priority together with e.g. cost and quality. Several types of flexibility can be

evaluated. Here, we are concerned with the some times called “volume” flexibility, which can

be defined as the ability to operate with profit at different output levels. A possible way of

measuring flexibility is to estimate its value, which can be compared with the cost of acquiring

it. Some authors advocate that its value can be given by the Net Present Value (NPV) calcula-

tions, while others believe that flexibility can be best seen as options, or Real Options (RO) to

separate them from the more familiar financial options. The NPV analysis typically assumes

that an immediate accept-or-reject decision must be made and thus, it ignores the flexibility

to optimally time project initiation. NPV says that an investment should be made whenever

the expected discounted future cash-flows match investment costs. RO on the other hand, re-

quire that expected discounted future cash-flows to be significantly above the investment costs.

This happens, since making the investment implies the loss of the waiting option and hence, it

represents an opportunity cost.

The term “real options” was coined by Stewart Myers in 1977. It referred to the application of

option pricing theory to the valuation of non-financial or “real” investments with learning and

flexibility, such as multi-stage R&D, manufacturing plant expansion, and the like (Myers 1977).

This type of approach is based on three factors, namely: the existence of uncertainty about

the project rewards, i.e. future cash-flows; the investment irreversibility, at least partially, i.e.

money cannot be fully recovered once an investment decision has been done; and the invest-

ment timing, for which there is some flexibility that allows for the arrival of new information.
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A large and rapidly growing literature on investment under uncertainty interprets the firm as

consisting either wholly or in part of a portfolio of options, and uses options-based models

and option pricing techniques to study the investment decision. This approach also recognizes

the sequential nature of investment decisions as a key feature. The options studied include the

option to temporarily shut down (McDonald & Siegel 1985, Brennan & Schwartz 1985), the

option to continue or discontinue a planned series of investments (Majd & Pindyck 1987), the

option to defer investment (McDonald & Siegel 1986), the option to abandon project earlier

(Myers & Majd 1990), the option to increment capacity (Bollen 1999, Pindyck 1988, Kandel &

Pearson 2002), amongst others.

Managerial flexibility has been valued by option pricing for almost two decades and during

this time different kinds of real options have been treated. Kulatilaka (1988) uses a stochastic

dynamic programming model to evaluate the options in a flexible production process and incor-

porates the effects of switching costs. Andreou (1990) evaluates process flexibility in different

configurations of dedicated and flexible equipment when demand of two products is uncertain.

Triantis & Hodder (1990) evaluate process flexibility, in a given fixed capacity equipment as

a complex option. The profit margins of different products are assumed to be stochastic and

dependent on quantity produced. The latter effect is a result of allowing for downward sloping

demand curves. In their model there are no switching costs. Capacity constraints are considered

and the model allows the firm to temporarily shut down and restart operation. He & Pindyck

(1992) examine investments in flexible production capacity. Here, the capacity choice problem

is considered, i.e. whether to buy flexible or non-flexible equipment and how much capacity

with respect to the fact that investment is irreversible. As in (Tannous 1996) demand is un-

certain but in this case differs, via a demand shift parameter depending on whether market is

perfectly competitive or not. Kamrad & Ernst (1995) model multi-product manufacturing with

stochastic input price, output yield uncertainty and capacity constraints to value multi-product

production agreements. During one period, only one product type is produced with respect to

the inventory available. Tannous (1996) carries out capital budgeting for volume flexible equip-

ment and compares a non-flexible to a flexible system in a case based on a real company. In

his model, demand is uncertain and dependent on price and a stochastic factor. The effect of

having inventory available is also considered. Bollen (1999) evaluates the option to switch be-

tween production capacities. The demand stochastic process is governed by a stochastic product

life cycle which is modelled by using a regime switching process. In his study a comparison

between flexible and fixed capacity projects is also made.
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In this work, we present a model to evaluate investment decisions based on real options. In

the problem considered we incorporate partial reversibility into the model by letting the firm

reverse its capital investment at a cost, both fully or partially. Therefore, three options are con-

sidered: temporarily shutdown, defer investment, and switch between production capacities.

The standard RO approach considers the stochastic variable to be normally distributed and then

approximated by a binomial distribution, resulting in a binomial lattice. In this work, we pro-

pose to discretize the stochastic variable by means of a sparse Markov chain, which is derived

from the demand data previously collected. The main advantages of the proposed approach

are: i) the Markov chain does not assume any type of distribution for the stochastic variable,

ii) the probability of a variation is not constant, actually it depends on the current value, and

iii) it generalizes current literature using binomial distributions since they can be modelled by a

Markov chain. Nevertheless, the Markov approach is computationally more demanding. How-

ever, the sparsity of the Markov matrix, that naturally results from data streams like ours, can

be exploited to improve the computational performance of the algorithm.

2 PROBLEM DESCRIPTION ANDFORMULATION

Following the approach outlined in Dixit & Pindyck (1994) and Trigeorgis (1996), the oppor-

tunity of adopting a specific value of production capacity can be viewed as representing a real

option to the firm. This type of investment decisions can be casted as a sequence of embedded

decisions since the current capacity decision has implications on future decisions.

Our starting point is the irreversible investment model by Pindyck (1988), which is a flexible

and tractable example of the options-based models, and can be readily generalized to allow for

partial reversibility. In his model, a monopolist faces a demand function that shifts stochasti-

cally, towards and away from the origin, over time as given by

Q = θ − λP, (1)

whereQ is the industry output andθ models the dynamics of demand. Of course, for the case of

monopoly (1) is also the demand curve faced by the firm. (In financial options it is standard to

assume that the underlying security is traded in a perfectly competitive market. However, many

real asset markets are monopolistic or oligopolistic, rather than perfectly competitive.)

The total variable production costs are assumed to be a quadratic function of quantity produced,

which is a standard assumption, see for example (Pindyck 1988, Trigeorgis 1996, Bollen 1999).
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Thus, the total production costs are

C(Q,m) = c1Q +
c2

2m
Q2 + c3m, (2)

where the fixed and variable coefficients of the marginal cost function arec1 and c2
2m

Q, m is the

installed production capacity, and the fixed componentc3m represents the overhead costs.

The operating profit of periodt, given the demand and production capacity installed, is then

computed as

π (θt,mt−1) P (Qt)− C(Qt,mt−1) =

(
θt

λ
− c1

)
Qt −

(
1

λ
+

c2

2mt−1

)
Q2

t − c3mt−1. (3)

(It should be noticed that we are assuming that the capacity in place at periodt is the capacity

chosen in the previous period. This is not a limitation since the reasoning and formulae given

can be applied with any number of installation periods.)

The firm maximizes operating profit over produced quantity and hence, the optimum quantity

Q∗, which is obtained by solving∂π
∂Q

= 0, is given by

Q∗(θt) =
θt − λc1

2 + λc2/mt−1

. (4)

Furthermore, the quantity to be produce in each periodQt is bounded from above by the pro-

duction capacity and from below by zero, thus it is given as

Q∗∗(θt) = max (0,min (Q∗(θt),mt−1)) (5)

and therefore, the optimal operating profit is

π∗ (θt,mt−1) = P (Q∗∗(θt))− C (Q∗∗(θt),mt−1) . (6)

We also consider partial reversibility, which is incorporated into the model by letting the firm

reverse its capital investment at a cost. The ability to partially reverse the capital investment

is modelled through capacity sell out, which allows for recovering of a fraction of the pur-

chase price for each unit sold. More specifically, following the work by Bollen (1999), we use

S (m1,m2) to represent additional investment or recovered investment associated with changing

capacity level fromm1 to m2:

S (m1,m2) = s1c4 (m2 −m1) + s3, if m2 > m1,

S (m1,m2) = s2c4 (m1 −m2) + s3, otherwise.
(7)
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In the cost function (7), s1 ands2 are percentages of the initial capacity costc4 ands3 is a fixed

switching capacity cost. It should be noticed, that although in the example solved in this work

we sets1 = 1 and0 < s2 < 1, they could assume any positive or negative value. Moreover, the

switching costs could also be time dependent.

We assume that markets are dynamically complete, implying that there exists a risk-neutral

probability or equivalent martingale measure such that the value of the firm is given by the

expected discounted value of its profits less the investments in capacity. The assumption that

markets are dynamically complete amounts to assuming that stochastic changes in demand are

spanned by existing assets, or that markets are sufficiently complete that the firms decision to

invest does not change the opportunities available to investors.

3 SOLUTION METHODOLOGY

To solve the problem it is necessary to find the optimal sequence of capacity choices, namely:

invest in additional capacity, sell out excessive capacity, keep exactly the same capacity; and the

optimal production in each period given the capacity decision previously made. These two types

of decisions must be addressed simultaneously since the existence of switching costs implies

that a capacity decision made in a period alters future switching costs and future profits and thus,

future switching decisions. Therefore, the project value must be determined simultaneously

with the optimal production capacity policy. The solution approach we use is to discretize the

problem and set up a discrete-valued lattice or grid for which a dynamic programming model is

derived and then solved by backward induction.

The standard RO approach to discretize the stochastic variable is through the use of a binomial

lattice as explained in Section3.1. Here, we propose another approach to discretize the problem

that makes use of a Markov chain, a sparse one-step transition probabilities matrix. This is

further explained in Section3.2.

3.1 The Binomial Lattice

A standard assumption in the real options literature is that the underlying stochastic variable is

governed by a geometric diffusion, which implies that at each period there is only one constant

growth/decay rate. If this is assumed then a natural way of obtaining a valued-lattice for the
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stochastic variable (demand) is to discretized it through a standard binomial lattice, see Figure

1.
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Figure 1: A lattice discretizing demand.

A node of valueθi
t can lead to two nodes with their values being given byθj

t+1 = uθi
t and

θk
t+1 = dθi

t with probabilityqu andqd = 1 − qu, respectively. The probability of reaching each

of these nodes is the usual equivalent martingale measure used in the binomial option pricing

model of Cox, Ross & Rubinstein (1979):

qu =
(1 + rf )− d

u− d
and qd = 1− qu, (8)

whererf is the risk free rate over the interval∆t, u = exp(σ
√

∆t), andd = exp(−σ
√

∆t).

3.2 The Markov Grid

If the stochastic variable under consideration is the demand, it seems unrealistic to assume

it to be governed by a geometric diffusion, since this implies that at each period demand

grows/decays at a constant rate. The implication of the constant rate of growth assumption

are twofold. On one hand, it undervalues the option to contract or abandon project, since it

underestimates the probability of low demand in future. On the other hand, it overvalues the

option to expand capacity as demand is able to increase forever.

We propose the use of a Markov chain. This way, not only we allow for demand variations

dependent on demand current value, but we also allow for probability values dependent on

demand current value. Moreover, the grid obtained by a Markov chain, generalizes the binomial
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lattice approach since it can be used to model a binomial lattice. We obtain the Markov chain

from data previously collected.

A Markov chain is defined by a one step transition probability matrix. The levels of demand can

be easily described by a square grid of all possible statesi = 1, 2, . . . , n, see Figure2, where

the planning horizon is discretized in∆t intervals and the state variable in∆θ.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

i=1

teta min

d
e
l
t
a
 
t
e
t
a

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

t=0
t=T

delta t

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

i=n

teta max

PSfrag replacements

t=0

t=T

∆t

i=1

i=n

θmin

θmax

∆θ

Figure 2: A grid for the Markov discretization of demand.

The Markov matrix of transition probabilities can be obtained from the data as follows. The

probability of reaching statej at some period of time being in statei at the previous time period

is given by the ratio between the number of transitions from demand valueθi to demand value

θj in consecutive periods and the total number of transitions out of demand valueθi to all other

possible demand values in consecutive periods, which can be written as

Prob (θj, θi) =

∑T
t=1

(
θt−1

i , θt
j

)
∑T

t=1

∑n
k=1

(
θt−1

i , θt
k

) (9)

where
(
θt−1

i , θt
j

)
denotes a transition from statei at periodt− 1 to statej at periodt. Note that

these probabilities are time invariant.

3.3 The Decision Process

Recall that, we have defined to have three options, namely temporarily shutdown, defer invest-

ment, and switching capacity. The temporarily shut down option is a reversible option that is

only taken if we are better off not producing, which in our problem is done implicitly. Such

a decision is reached whenever the optimal quantity to be produced is determined to be zero.
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The defer investment option corresponds to a capacity switch to the same value and thus, it can

be simultaneously addressed with the capacity switching option. This way, we only have to

explicitly address the capacity switching option.

In each period the firm must make two decisions, one regarding the quantity to be produce

Qt and another regarding the production capacitymt that is to be in place for the following

period. The decision on the quantity to be produce is given by maximizing the operating profit

and hence, the optimal quantityQt to be produced in periodt is given as in equation (5). The

decision about the production capacity is related to the future periods profits since the chosen

capacity will be available from next period. Recall that an increase in installed capacity requires

an investment, while a sell out of capacity leads to a partial recover of investment, as given in

equation (7). Therefore, at each period the project value is dependent on the level of demand

and production capacity and is obtained by maximizing the sum of the optimal current period’s

profit with the optimal continuation value for each possible capacity. The latter value is given

by the discounted expected future profits net of switching costs.

Before proceeding let us review the notation:

• π∗ (θt,mt−1) represents the optimal operating profit at state (demand value)θt when the

installed production capacity ismt−1. Recall thatπ∗ is computed as in equation (6).

• f (θt,mt−1, t) represents the optimal value of the project at stateθt when the installed

production capacitymt−1, assuming optimal future switching decisions.

• mt represents the optimal production capacity value to be installed and working at period

t + 1 given that at periodt stateθt is entered with production capacitymt−1.

• E [ ] is the risk neutral expectations operator.

• S (m1,m2) represents the cost to be paid for to switch production capacity fromm1 to

m2.

The optimal project value at periodt given the demandθt and available production capacity

mt−1 is then given by

f (θt,mt−1, t) = π∗ (θt,mt−1) + max
m

{
E [f (θt+1,mt, t + 1)]

1 + rf

+ S (mt−1,mt)

}
. (10)

As said before, and in order to allow for earlier exercise, the valuation procedure begins at the

last stage and works backwards to initial time. At the final periodt = T , for each demand value
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and capacity available, the project value is given by the final operating profit plus the capacity

salvage value

f (θT ,mT−1, T ) = π∗ (θT ,mT−1) + S (mT−1, 0) . (11)

The implementation of the Dynamic Programming recursion, given by equation (10), on a stan-

dard binomial lattice computes expected value of future profits as

E [f (θt,mt−1, t)] = quf (uθt,mt, t + 1) + qdf (dθt,mt, t + 1) , (12)

wherequ, qd, u, andd are as explained in Section3.1, while the implementation on a Markov

grid is computed as

E [f (θt,mt−1, t)] =
n∑

i=1

Pθt,θi
f (θi,mt, t + 1) , (13)

wherePθi,θj
is the transition probability from demand valueθi to demand valueθj in consecutive

periods.

4 RESULTS

In order to test our methodology we have implemented, in MATLAB, the dynamic program-

ming model on the binomial lattice and on the Markov grid, both derived from the collected

data. These models differ only in the way of taking the expectation of future profits. The bino-

mial lattice model takes the expectation by considering that from each node only two nodes can

be reached at the following period, as given in equation (12), while the Markov model considers

that regardless the current node, i.e. demand value, all possible demand values can be reached

in the following period, as given in equation (13). As we have considered the initial production

capacity also to be decided we have to solve

Project V alue = max
m0

{f (θ1,m0, 1)} /(1 + rf )− c4m0 (14)

using the dynamic programming recursion given in equation (10) and the terminal conditions

of equation (11).

Both the Binomial and Markov models have been used to find out an optimal capacity invest-

ment policy, which we call a priori solution. The quality of these models is then tested by

evaluating the policy performance on specific data realization sets, which we call a posteriori

solution.
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We have collected monthly sales data for a 48 months period, given in the Appendix. The first

24 months of data are used to set up both the Binomial and the Markov models. These models

are then used to obtain the optimal capacity policy and the predicted project value.

It follows the description of the specific problem solved. The values for the parameters asso-

ciated with selling price, production and switching costs, and production capacity have been

taken from Bollen (1999). The demand data collected has been scaled in order to be of the

same magnitude of demand values used in (Bollen 1999). The initial demand was set to the

average demand over the first 24 months period.

Production costs: c1 = 0.1, c2 = 0.5, andc3 = 0.1.

Capacity and capacity switching costs: c4 = 2, s1 = −1, s2 = 0.85, ands3 = 0.05.

Production capacity values: ranging from 0 up to 2.5 with capacity step values varying be-

tween 0.05 and 0.5.

Price parameter: λ = 1.

Annual risk free rate. rf = 10%.

The binomial lattice parameters have been computed by using the first 24 months of data, as

given in Section3.1: u = 1.695, d = 1/u, qu = 0.378, andqd = 1/qu. The Markov grid was

computed as in equation (9) also by using the first 24 months of data, see Appendix.

Several tests have been performed in order to compare the results obtained by each methodol-

ogy. For these tests we have used both the collected data and randomly generated data.

4.1 Comparing the Accuracy of the Models

To evaluate project value accuracy, we compare the predicted project value (or model value) to

the value obtained by applying the policy found to the data used to derive the model (months

1 to 24), see Table1. For each possible value of capacity changing step, we report the model

value, i.e. the predicted project value which is computed as given in equation (14), and the

corresponding initial capacity. We also give the data value, which is the value obtained by

applying the optimal capacity changing policy to the data set used to set up the model.

From the results reported it can be concluded that the strategies proposed by the two models

are different since the initial capacity values are different. As expected, the better values for the
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Binomial Lattice Markov Grid Data

Cap. Model Init. Data Mod/Data Model Init. Data Mod/Data Mark/Bin

Step Value Cap. Value Ratio (%) Value Cap. Value Ratio (%) Ratio (%)

0.5 7.91 0.5 4.80 165.03 5.63 1.0 5.28 106.63 140.48

0.4 7.93 0.8 5.13 154.93 5.78 0.8 5.45 106.11 137.12

0.3 7.94 0.6 5.10 155.94 5.74 0.6 5.44 105.67 138.16

0.2 7.94 0.6 4.97 160.16 5.78 0.8 5.45 106.11 137.30

0.1 7.94 0.7 5.13 155.20 5.79 0.7 5.47 105.87 137.12

0.05 7.95 0.65 4.90 162.58 5.79 0.75 5.47 106.00 137.15

Table 1: Predicted project value for binomial and Markov models (months 1-24).

predicted project value are obtained for smaller capacity steps, in both models. Furthermore,

the predicted project value is larger for the Binomial model, which although might seem to

be an advantage is actually a drawback since in both cases the project value tends to be an

overestimation. This can be observed in the columns giving the model to data project value

ratio, where we have computed the ratio between the predicted project value and the project

value obtained by applying the optimal capacity policy to the data which was used to set up the

model. The project value obtained for the first 24 months period data, is better if the capacity

changing policy used is the one provided by the Markov model. The Markov model provides

values between 37% and 40% better than the Binomial model, as can be seen in the Mark/Bin

Ratio column.

4.2 Comparing the Performance of the Models onRealData

To test the efficiency of the models we used the capacity policies of each model on 7 different

sets of data as given in Tables2 and3. Data sets 1 and 2 correspond to, respectively, the first

and the last 24 months of the collected data. The remaining data sets were randomly generated

between the minimum and maximum values of the data collected having demand averages of

1.4, 1.5, 1.6, 1.7, and 1.8.

As it can be seen, thereal project values are higher when the Markov policies are used. Only in

1 out of the 42 values computed the Binomial model performs better. Furthermore, the project

values obtained by using the Markov model vary from 99.99% to 114.95% of the project values

obtained by using the Binomial model.

12



Binomial - Project Value

Step Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

0.5 4.804 6.729 5.573 5.835 7.357 7.852 9.078

0.4 5.130 7.304 6.075 6.168 8.296 8.600 10.353

0.3 5.101 7.075 5.895 6.011 7.881 8.416 9.744

0.2 4.969 7.075 5.895 6.011 7.881 8.416 9.744

0.1 5.131 7.246 6.052 6.147 8.182 8.734 10.153

0.05 4.900 7.178 5.992 6.097 8.058 8.602 9.978

Table 2: Project values for specific data realizations using the Binomial model policy.

Markov - Project Value

Step Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

0.5 5.280 7.230 5.939 6.037 8.271 8.866 10.435

0.4 5.449 7.304 6.075 6.168 8.296 8.862 10.353

0.3 5.435 7.075 5.895 6.011 7.881 8.416 9.744

0.2 5.449 7.304 6.075 6.168 8.296 8.862 10.353

0.1 5.473 7.246 6.052 6.147 8.181 8.734 10.153

0.05 5.467 7.287 6.077 6.168 8.257 8.816 10.275

Table 3: Project values for specific data realizations using the Markov model policy.

4.3 Comparing the Effect of Project Duration on the Models Performance

In order the analyze the impact of project life in the models performance, we have considered

horizons of 12, 36, 48, and 60 months in addition to the 24 months horizon previously consid-

ered. In Tables4 and5, project values are reported for data sets 3 to 7 considering capacity

steps of 0.5 and 0.1, respectively . Data sets 1 and 2 cannot be considered for horizons larger

than 24 months since they consist of 24 demand values only.

Again, it can observed that the performance of the Markov model is better. For a capacity

changing value of 0.5, the Binomial project value is never better than the Markov project value

and the latter one can be up to 15.8% better.

When comparing the project values by considering 0.1 and 0.5 as the capacity changing steps,

the Binomial model improves more than the Markov model. Nevertheless, project values given

by using the Markov policy are still larger. Only in 2 out of the 25 values computed the Bi-

13



Binomial Lattice Markov Grid

T Set 3 Set 4 Set 5 Set 6 Set 7 Set 3 Set 4 Set 5 Set 6 Set 7

12 1.749 2.639 4.407 4.521 4.598 1.749 2.639 4.407 4.521 4.598

24 5.573 5.835 7.357 7.852 9.078 5.939 6.037 8.271 8.866 10.435

36 8.567 10.162 9.947 11.151 12.7349.390 10.364 11.058 12.578 14.610

48 10.112 12.803 12.661 15.211 16.58810.913 13.226 14.133 17.352 19.110

60 12.221 15.387 15.215 18.342 20.24213.198 16.145 16.938 20.936 23.444

Table 4: Project value for varying time horizon using a 0.5 capacity changing step.

Binomial Lattice Markov Grid

T Set 3 Set 4 Set 5 Set 6 Set 7 Set 3 Set 4 Set 5 Set 6 Set 7

12 1.802 2.744 4.760 4.872 4.942 1.800 2.766 4.966 5.075 5.161

24 6.052 6.147 8.182 8.734 10.1536.052 6.147 8.181 8.734 10.153

36 9.436 10.338 10.979 11.675 14.2199.436 10.338 10.979 12.363 14.219

48 11.053 13.182 14.002 15.276 18.55911.053 13.182 14.002 16.951 18.559

60 13.342 16.057 16.777 18.291 22.71713.432 16.239 16.995 20.800 23.184

Table 5: Project value for varying time horizon using a 0.1 capacity changing step.

nomial model produced a better value. The Markov project values are now between 99.91%

and 113.72% of the Binomial project values. It should be noticed that except for a capacity

changing value of 0.4, the best performance of the Binomial model was observed when it was

0.1, see Table2 above, which is not the case for the Markov model.

5 CONCLUSIONS

In this work, we address the problem of making investment decisions on a flexible production

capacity firm. The problem involves deciding not only the optimal quantity to be produced

at every single period but also the in place production capacity policy throughout the whole

planning period. We consider the investments to be, at least, partially reversible since capacity

sell out allows for partial investment recovering.

We propose to address this problem by using dynamic programming implemented on a Markov

grid rather than on the standard binomial lattice. The Markovian approached was expected to

perform better since it is a generalization of the binomial lattice in the sense that is can be

14



used to model the latter one. Furthermore, the binomial approach assumes that demand varies

according to normal distribution and the lattice is constructed based on demand constant growth

rates at constant probabilities. Moreover, the Markov grid takes into account the current value

of demand not only into the growth rate but also into the probabilities.

An example usingreal data for the stochastic variable (demand) has been solved, using both

discretization approaches. It has been shown that the Markov approach is more reliable and

leads to a better decision policy. The computational tests performed, also allowed for the con-

clusion that the Markov model is less sensitive to project time horizon and to capacity changing

steps.
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Monthly Demand

Month 2000 2001 2002 2003

January 1117 1288 1342 1566

February 1520 1558 1767 1696

March 1758 1656 1724 1608

April 1099 1105 1630 1473

May 1669 1675 1851 1480

June 1345 1148 1717 1241

July 1456 1872 2322 1763

August 611 726 867 536

September 1363 1657 1951 1409

October 1664 1703 2152 1549

November 1811 1734 1981 1110

December 1033 1388 1465 998

Table 6: Collected data – monthly demand.

Collected data

Markov transition probability matrix




0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1/4 0 1/2 0 1/4

0 0 0 0 0 0 1/2 1/2 0 0 0

0 0 0 0 0 0 0 0 1 0 0

1/2 0 0 0 0 0 0 0 0 1/2 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 2/7 1/7 1/7 0 0 2/7 1/7 0

0 0 1/2 1/2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0



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