
Faculdade de Economia do Porto - R. Dr. Roberto Frias - 4200-464 - Porto - Portugal
Tel . (351) 225 571 100 - Fax. (351) 225 505 050 - http://www.fep.up.pt

WORKING PAPERS

Beam search algorithms for the
early/tardy scheduling problem with

release dates

Jorge M. S. Valente

and

Rui A. F. S. Alves

Investigação - Trabalhos em curso - nº 143, Abril 2004

FACULDADE DE ECONOMIA

UNIVERSIDADE DO PORTO

www.fep.up.pt

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6379319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Beam search algorithms for the early/tardy

scheduling problem with release dates

Jorge M. S. Valente and Rui A. F. S. Alves

Faculdade de Economia, Universidade do Porto

April 13, 2004

Abstract

In this paper we consider the single machine earliness/tardiness scheduling problem

with different release dates and no unforced idle time. We present several heuristic al-

gorithms based on the beam search technique. These algorithms include classical beam

search procedures, with both priority and total cost evaluation functions, as well as the

filtered and recovering variants. Both priority evaluation functions and problem-specific

properties were considered for the filtering step used in the filtered and recovering beam

search heuristics. Extensive preliminary tests were performed to determine appropriate

values for the parameters used by each algorithm.

The computational results show that the recovering beam search algorithms outper-

form their filtered counterparts in both solution quality and computational requirements,

while the priority-based filtering procedure proves superior to the rules-based alternative.

The beam search procedure with a total cost evaluation function provides very good

results, but is computationally expensive and can therefore only be applied to small or

medium size instances. The recovering algorithm is quite close in solution quality and is

significantly faster, so it can be used to solve even large instances.

Keywords: scheduling, early/tardy, beam search, heuristics

Resumo

Neste artigo são apresentadas diversas heurísticas baseadas na técnica beam search para

o problema de sequenciamento com um único processador, custos de posse e atraso, datas

de disponibilidade distintas e inexistência de tempo morto não forçado. Estas heurísticas

1

incluem procedimentos beam search clássicos (utilizando funções prioridade e funções custo

total), bem como as variantes filtered e recovering beam search. Dois diferentes tipos de

procedimentos de filtragem - funções prioridade e regras relativas ao problema em causa

- foram considerados para as heurísticas baseadas em filtered e recovering beam search.

Diversos testes computacionais foram efectuados para determinar valores apropriados para

os parâmetros usados pelos diversos algoritmos.

Os testes computationais mostram que os procedimentos de recovering beam search

superam os algoritmos baseados em filtered beam search não só na qualidade da solução

obtida, como também no tempo de computação. O método de filtragem qua utiliza funções

prioridade revelou-se substancialmente melhor do que o baseado em regras. O procedi-

mento de beam search com uma função custo total proporcionou muito bons resultados,

mas exige um elevado esforço computacional, pelo que apenas pode ser aplicado a instân-

cias de dimensão pequena ou média. A heurística de recovering beam search gera soluções

com uma qualidade bastante próxima e o seu tempo de computação é substancialmente

inferior, pelo que pode ser utilizada para resolver instâncias de dimensão elevada.

Palavras-chave: sequenciamento, custos de posse e atraso, beam search, heurísticas

1 Introduction

In this paper we consider a single machine scheduling problem with release dates

and earliness and tardiness costs that can be stated as follows. A set of n inde-

pendent jobs {J1, J2, · · · , Jn} has to be scheduled without preemptions on a single
machine that can handle at most one job at a time. The machine is assumed to be

continuously available from time zero onwards and unforced machine idle time is not

allowed. Job Jj, j = 1, 2, · · · , n, becomes available for processing at its release date
rj, requires a processing time pj and should ideally be completed on its due date dj.

For any given schedule, the earliness and tardiness of Jj can be respectively defined

as Ej = max {0, dj − Cj} and Tj = max {0, Cj − dj}, where Cj is the completion

time of Jj. The objective is then to find a schedule that minimises the sum of the

earliness and tardiness costs of all jobs
Pn

j=1 (hjEj + wjTj), where hj and wj are

the earliness and tardiness penalties of job Jj.

The inclusion of both earliness and tardiness costs in the objective function is

compatible with the philosophy of just-in-time production, which emphasizes pro-

ducing goods only when they are needed. The early cost may represent the cost

of completing a project early in PERT-CPM analyses, deterioration in the produc-

2

tion of perishable goods or a holding cost for finished goods. The tardy cost can

represent rush shipping costs, lost sales and loss of goodwill. It is assumed that no

unforced machine idle time is allowed, so the machine is only idle if no job is cur-

rently available for processing. This assumption reflects a production setting where

the cost of machine idleness is higher than the early cost incurred by completing any

job before its due date, or the capacity of the machine is limited when compared

with its demand, so that the machine must indeed be kept running. Some specific

examples of production settings with these characteristics are provided by Korman

[5] and Landis [6]. The existence of different release dates is compatible with the

assumption of no unforced idle time, as long as the forced idle time caused by the

presence of distinct release dates is small or inexistent. If that is not the case, that

assumption becomes unrealistic, since it is then highly unlikely that either the ma-

chine idleness cost is higher than the early cost or the machine capacity is limited

when compared with the demand.

As a generalization of weighted tardiness scheduling [7], the problem is strongly

NP-hard. To the best of our knowledge, the only work in this problem is due to

Valente and Alves ([16], [17]). In [16] they presented a branch-and-bound algorithm

based on a decomposition of the problem into weighted earliness and weighted tardi-

ness subproblems. Two lower bound procedures were presented for each subproblem,

and the lower bound for the original problem is then simply the sum of the lower

bounds for the two subproblems. In [17] they analyse the performance of various

heuristic procedures, including dispatch rules, a greedy procedure and a decision the-

ory search heuristic. The early/tardy problem with equal release dates and no idle

time, however, has been considered by several authors, and both exact and heuristic

approaches have been proposed. Among the exact approaches, branch-and-bound

algorithms were presented by Abdul-Razaq and Potts [1], Li [8] and Liaw [9]. The

lower bounding procedure of Abdul-Razaq and Potts was based on the subgradient

optimization approach and the dynamic programming state-space relaxation tech-

nique, while Li and Liaw used Lagrangean relaxation and the multiplier adjustment

method. Among the heuristics, Ow and Morton [11] developed several dispatch rules

and a filtered beam search procedure. Valente and Alves [18] presented an additional

dispatch rule and a greedy procedure, and also considered the use of dominance rules

to further improve the schedule obtained by the heuristics. A neighbourhood search

algorithm was also presented by Li [8].

In this paper we present several heuristic algorithms based on the beam search

3

technique. These algorithms include classical beam search procedures, with both

priority and total cost evaluation functions, as well as the filtered and recover-

ing variants. We have considered both priority evaluation functions and problem-

specific properties for the filtering step used in the filtered and recovering beam

search heuristics. Extensive computational tests were performed to determine the

parameter values that provided the best balance between solution quality and com-

putational effort for each algorithm. We also consider using some dominance rules

to improve the solutions obtained by the heuristics.

The remainder of the paper is organized as follows. In section 2 we describe the

beam search approach and its several variations. The proposed algorithms and the

choices made for their main components are presented in section 3. The computa-

tional results are reported in section 4 and some concluding remarks are given in

section 5.

2 The beam search approach

Beam search is a heuristic method for solving combinatorial optimization problems.

It consists in an adaptation of branch and bound in which only some nodes are eval-

uated. In the beam search procedure, only the most promising nodes at each level

of the search tree are selected for further branching, while the remaining nodes are

pruned off permanently. Since a large part of the search tree is pruned aggressively,

and only some nodes are retained at each level, the running time is polynomial in

the problem size.

Beam search was first used in the artificial intelligence community for the speech

recognition [10] and the image understanding [14] problems. A number of applica-

tions to scheduling problems have appeared in the literature since then. Fox [3] and

Ow and Smith [13] have incorporated a beam search procedure in systems designed

for complex job shop environments. Sabuncuoglu and Bayiz [15] presented beam

search algorithms for the job shop problem with both makespan and mean tardiness

as performance measures. Ow and Morton ([12], [11]) proposed a variation of this

technique called filtered beam search and applied it to the single machine early/tardy

problem. Recently, Della Croce and T’kindt [2] presented another variation of the

beam search approach. This new algorithm, called recovery beam search, was tested

on the single machine completion time problem with release dates.

The classic beam search approach consists in a truncated branch and bound

4

where only the most promising β nodes (instead of all nodes) at each level of the

search tree are retained for further branching; β is the so-called beam width. The

other nodes are simply discarded and there is no backtracking, since the intent

of this technique is to search quickly. Therefore, beam search methods are not

guaranteed to find an optimal solution and cannot recover from wrong decisions: if

a node leading to the optimal solution is discarded during the search process, there

is no way to reach that optimal solution afterwards. The beam search approach

recognizes this danger by selecting a number (the beam width) of promising paths

to search concurrently. A wider beam width allows greater safety, but at the cost of

increased computational effort.

The node evaluation process at each level is a key issue in the beam search tech-

nique. Two different types of evaluation functions have been used: priority evalu-

ation functions and total cost evaluation functions. A priority evaluation function

simply calculates a priority or urgency rating, typically by computing the priority

of the last job added to the sequence using a dispatch rule. A total cost evaluation

function calculates an estimate of the minimum total cost of the best solution that

can be obtained from the partial schedule represented by the node. This is usually

done by using a dispatch rule to complete the existing partial schedule. The priority

evaluation function has a local view of the problem, since it considers only the next

decision to be made (the next job to schedule), whereas the total cost evaluation

function has a more global view, since it projects from the current partial solution

to a complete schedule in order to estimate the total cost.

The priority evaluation function approach can pose a slight problem. The dis-

patch rules used for calculating the urgency rating of the last scheduled job are usu-

ally functions of the current partial schedule, namely functions of the current time.

Different nodes on the same level correspond to different partial schedules and have

different completion times. Therefore, the priorities obtained for the offspring of a

node cannot be legitimately compared with the priorities obtained from expanding

another node at the same level; these priorities are then context-dependent. This

problem can be overcome by initially selecting the best β children of the parent or

root node (i.e., the node containing only unscheduled jobs). At lower levels of the

search tree we find the most promising descendant of each node and retain it for the

next iteration. Thus, only the best descendant of each beam node is saved for the

next iteration. The total cost evaluation function is not affected by this problem,

since the total cost estimates are context-independent and can be compared. We

5

now present the main steps of both Priority Beam Search and Detailed (or Probe)

Beam Search algorithms. Priority beam search uses a priority evaluation function,

while detailed beam search uses a total cost evaluation function. Let B be the set of

nodes retained in the beam for further branching and C be a set of offspring nodes.

Also let n0 be the parent or root node, i.e., the node that contains only unscheduled

jobs.

Priority Beam Search:

1. Initialization:

Set B = ∅, C = ∅.

Branch n0 generating the corresponding children.

Perform a priority evaluation for each child node (usually by calculating the

priority of the last scheduled job using a dispatch rule).

Select themin {β, number of children} best child nodes (usually the nodes with
the highest priority value) and add them to B.

2. For each node in B:

Branch the node generating the corresponding children.

Perform a priority evaluation for each child node (usually by calculating the

priority of the last scheduled job using a dispatch rule).

Select the best child node and add it to C.

3. Set B = C.

Set C = ∅.

4. Stopping condition:

If the nodes in B are leaf (they hold a complete sequence), select the node

with the lowest total cost as the best sequence found and stop.

Otherwise, go to step 2.

Detailed (Probe) Beam Search:

1. Initialization:

Set C = ∅.

Set B = {n0}.

6

2. For each node in B:

(a) Branch the node generating the corresponding children.

(b) Perform a detailed evaluation for each child node (usually by calculating

an upper bound on the optimal solution value of that node)

(c) Select themin {β, number of children} best child nodes (usually the nodes
with the lowest upper bound) and add them to C.

3. Set B = ∅.

Select the min {β, |C|} best nodes in C (usually the nodes with the lowest

upper bound) and add them to B.

Set C = ∅.

4. Stopping condition:

If the nodes in B are leaf (they hold a complete sequence), select the node

with the lowest total cost as the best sequence found and stop.

Otherwise, go to step 2.

Priority evaluation functions are computationally cheap, but are potentially in-

accurate and may result in discarding good nodes. Total cost evaluation functions,

on the other hand, are more accurate but require a much higher computational ef-

fort. The filtered beam search method uses both crude and accurate evaluations in

a two-stage approach, thus trying to provide a computationally efficient evaluation

that does not degrade the quality of the search. A computationally inexpensive

filtering procedure is first applied in order to select some of the children of each

beam node for a more accurate evaluation. The selected nodes are then accurately

evaluated using a total cost evaluation function and the best β nodes are retained

for further branching. Typically, the filtering procedure uses a priority evaluation

function to calculate an urgency value for each offspring and then selects the best

α children of each beam node for the detailed evaluation step; α is the so-called

filter width. Recently, a different filtering procedure was used by Della Croce and

T’kindt [2]. This new procedure uses problem-specific properties to determine the

nodes that advance to the detailed evaluation step. We now present the main steps

of the filtered beam search algorithm.

Filtered Beam Search:

7

1. Initialization:

Set C = ∅.

Set B = {n0}.

2. For each node in B:

(a) Branch the node generating the corresponding children.

(b) Add to C the child nodes that are not eliminated by the filtering proce-

dure.

3. Set B = ∅.

For all nodes in C:

(a) Perform a detailed evaluation for that node (usually by calculating an

upper bound on the optimal solution value of that node)

(b) Select the min {β, |C|} best nodes in C (usually the nodes with the lowest
upper bound) and add them to B.

(c) Set C = ∅.

4. Stopping condition:

If the nodes in B are leaf (they hold a complete sequence), select the node

with the lowest total cost as the best sequence found and stop.

Otherwise, go to step 2.

The recovering beam search algorithm, like the filtered beam search method,

also uses both crude and accurate evaluations in a two-stage approach. However,

it differs from filtered beam search in three major ways. First, only one node is

retained at each level of the search tree in order to minimise the computation time

required by the procedure; this means the beam width has a pre-defined value of

one (β = 1). Second, the accurate evaluation is performed by calculating a weighted

sum of both lower and upper bounds on the total cost of the best solution that

can be obtained from the partial schedule represented by the node. Finally, once

the best node and the corresponding best partial solution are retained at each level

of the search tree, a recovering step is then applied. This recovering step checks

whether the current partial solution σ is dominated by another partial solution σ

8

having the same level of the search tree (typically by applying interchange operators

to the current partial solution); if so, σ becomes the new current partial solution.

Since the recovering step can only replace a partial solution with another partial

solution with the same depth of the search tree, the total number of explored nodes

is polynomial. Recovering beam search and classic or filtered beam search methods

deal in different ways with the danger of discarding a node leading to the optimal

solution during the search process. While classic or filtered beam search allow a

number of paths to be searched concurrently, recovering beam search retains only

one node at each level and relies on the recovering step to recover from previous

wrong decisions. We now present the main steps of the recovering beam search

algorithm; let σ denote the node that is retained in the beam and 0 ≤ γ ≤ 1 be the
upper bound weight in the weighted sum of lower and upper bounds.

Recovering Beam Search:

1. Initialization:

Set C = ∅.

Set σ = n0.

2. Branch σ generating the corresponding children. Add to C the child nodes

that are not eliminated by the filtering procedure.

3. For all nodes in C:

(a) Calculate a lower bound LB and an upper bound UB on the optimal

solution value of that node.

(b) Compute the evaluation function V = (1− γ)LB + γUB.

4. Let σ∗ be the node in C with the lowest value of V .

Set σ = σ∗.

Set C = ∅.

5. Recovering step: search for a partial solution σ that dominates σ by means of

interchange operators. If σ is found, set σ = σ.

6. Stopping condition:

If σ is a leaf node (it holds a complete sequence), stop; σ’s total cost is the

best objective function value found.

9

Otherwise, go to step 2.

3 The proposed heuristic procedures

In this section we describe the several algorithms that were considered. We tested

both priority and detailed classic beam search algorithms, as well as filtered and

recovering beam search procedures. In order to apply these algorithms to the

early/tardy problem, it is necessary to specify their main components, namely the

branching scheme, priority evaluation function, upper and lower bounding proce-

dures, filtering procedure and recovering step. The branching scheme, common to

all algorithms, is the usual n-ary forward branching: the sequence is constructed

by adding one job at a time starting from position 1; the search tree is such that a

branch at level l indicates the job scheduled in position l. The priority evaluation

function required by the priority beam search algorithm is provided by the LINET

dispatch rule. This heuristic (originally developed by Ow and Morton [11] for the

problem with identical release dates) provided the best results of all the dispatch

rules analysed by Valente and Alves [17]. The priority index of the LINET heuristic

is used to calculate the priority of the last scheduled job in each node. The detailed

beam search procedure also uses the LINET dispatch rule in its total cost evaluation

function. The LINET heuristic is used to complete the existing partial schedule and

therefore calculate a total cost estimate.

The filtering procedure is used by both filtered and recovering beam search ap-

proaches. We considered the two types of filtering procedures that have been pre-

viously proposed. The first requires a priority evaluation function and selects the

α best children of each beam node for the detailed evaluation step. This priority

evaluation function is identical to the one used in the priority beam search algo-

rithm. The second filtering procedure uses problem-specific properties to determine

the nodes that advance to the detailed evaluation step. Let x be a partial sequence

and let i, j /∈ x be a pair of jobs that can be feasibly scheduled in the next position

in the sequence. We now present three criteria that were used to determine the

nodes that are eliminated and do not advance to the detailed evaluation step.

Criterion 1 If i and j are both early, regardless of their order, in the next two

positions in the sequence, and hi/pi ≤ hj/pj, then job j is eliminated.

Criterion 2 If i and j are both tardy, regardless of their order, in the next two

10

positions in the sequence, and wi/pi ≥ wj/pj, then job j is eliminated.

Criterion 3 If j is always early and i is always tardy when scheduled in the next

two positions in the sequence, then job j is eliminated.

Criteria 1 and 2 are based on local optimality conditions for weighted earliness

and weighted tardiness scheduling, respectively. Criterion 3 simply eliminates a job

that is early in the next two positions whenever a tardy job is present. The filtered

beam search procedure also requires a total cost evaluation function. The LINET

dispatch rule is used to complete the existing partial schedule and calculate a total

cost estimate, just as in the detailed beam search. The detailed evaluation step in the

recovering beam search algorithm requires both upper and lower bound procedures.

The upper bound is once again calculated using the LINET heuristic. The lower

bound is computed using a procedure presented by Valente and Alves [16]. This

procedure relaxes the assumption that a job cannot be scheduled before its release

date in order to calculate a lower bound for a problem with identical release dates.

Finally, the recovering step uses an insertion procedure to detect whether the current

partial solution is dominated by another partial solution having the same level of

the search tree. The last job in the current partial schedule is inserted before the

previously scheduled jobs until a maximum of δ (n− 1) , 0 ≤ δ ≤ 1 insertions have
been performed; this insertion procedure is also stopped if the next insertion would

lead to an infeasible schedule (i.e., the last job in the current partial sequence would

be scheduled to start before its release date). The parameter δ controls the extent

of the local search performed during the recovering step, since it determines the

maximum number of insertions (alternative schedules) that are considered.

From now on the priority and detailed (or probe) beam search algorithms will be

denoted as PBS and DBS, respectively. The filtered beam search algorithms with

priority evaluation function and problem-specific rules filtering procedures will be

respectively identified as FBS_P and FBS_R. Similarly, RBS_P and RBS_R will

denote the recovery beam search algorithms with priority-based and rules-based

filtering procedures. We must also remark that the existence of different release

dates motivated a slight change in the PBS, FBS_P and RBS_P procedures. In

the previous section we indicated that the PBS procedure selects only the best child

of each beam node, while the other two algorithms will also select just a single child

node for detailed evaluation when the filter width is one. When release dates are

allowed to be different, it is quite possible that the root node has only one (or very

11

few) offspring. If no correction was made to the algorithms, only one node would be

retained in the beam throughout the whole procedure, independently of the beam

width. Therefore, in such situations the number of chosen offspring is increased

temporarily in order to allow the number of beam nodes to increase up to β. The

proposed algorithms were compared with two other heuristics, namely the LINET

dispatch rule and the Decision Theory Search (DTS) algorithm analysed in Valente

and Alves [17]. The DTS algorithm is based on the decision theory approach of

Kanet and Zhou [4], but is identical to the detailed beam search algorithm with a

beam width of one.

Ow and Morton [11] and Liaw [9] developed dominance rules for the problem

with identical release dates. Ow and Morton’s rule imposes a condition on adjacent

pairs of jobs, while the dominance rule presented by Liaw applies to non-adjacent

jobs with identical processing times. These rules can still be used when the release

dates are allowed to differ, provided care is taken to avoid making unfeasible job

swaps. Valente and Alves [17] showed that these dominance rules could be used

to improve the solution quality of several heuristic procedures with little additional

computational effort. We also consider using these dominance rules as an improve-

ment step. Once an initial solution has been obtained by the heuristics, these rules

are applied as follows. First, the adjacent dominance rule of Ow and Morton is

used. When a pair of adjacent jobs violates that rule, those jobs are swapped. This

procedure is repeated until no improvement is found by the adjacent rule in a com-

plete iteration. Then the non-adjacent rule is applied. Once again, if a pair of jobs

violates the rule those jobs are swapped, and the procedure is repeated until no

improvement is made in a complete iteration. The above two steps are repeated

while the number of iterations performed by the non-adjacent rule is greater than

one (i.e., while that rule detects an improvement).

4 Computational results

In this section we present the results from the computational tests. A set of problems

with 15, 20, 25, 30, 50, 75, 100, 200, 250, 300, 400, 500 and 1000 jobs was randomly

generated as follows. For each job Jj an integer processing time pj, an integer

earliness penalty hj and an integer tardiness penalty wj were generated from one of

the two uniform distributions [1, 10] and [1, 100], to create low and high variability,

respectively. For each job Jj, an integer release date rj was generated from the

12

uniform distribution
h
0, R

Pn
j=1 pj

i
, where R was set at 0.25, 0.50 and 0.75. The

maximum value of the range of release dates R was chosen so that the forced idle

time would be small or inexistent. Preliminary tests showed that R = 1.00 would

lead to excessive amounts of forced idle time, which would be incompatible with

the assumption that no unforced idle time may be inserted in a schedule. Instead

of determining due dates directly, we generated slack times between a job’s due

date and its earliest possible completion time. For each job Jj, an integer due date

slack sdj was generated from the uniform distribution
h
0, D

Pn
j=1 pj

i
, where the due

date slack range D was set at 0.10, 0.25 and 0.50. The due date dj of Jj was then

set equal to dj = (rj + pj) + sdj . For each combination of instance size, processing

time and penalty variability, R and D, 50 instances were randomly generated. All

the algorithms were coded in Visual C++ 6.0 and executed on a Pentium IV -

1500 Mhz personal computer. Due to the large computational times that would be

required, the DTS heuristic was not applied to the 1000 job instances, while the

DBS algorithm was only used to solve instances with up to 400 jobs. Throughout

this section, and in order to avoid excessively large tables, we will sometimes present

results only for some representative cases.

Extensive computational tests were first performed to determine appropriate val-

ues for the parameters used by the several algorithms. A trade-off exists between

solution quality and computational time, since increasing the value of the para-

meters usually improves the objective function value, but at the cost of increased

computation times (the only exception being the γ parameter). Therefore, we tried

to determine the values that provided the best balance between solution quality and

computational effort. The following values were considered for the several parame-

ters:

α = {1, 2, . . . , 10},
β = {1, 2, . . . , 8},
γ = {0.1, 0.2, . . . , 0.9},
δ = {0.05, 0.10, . . . , 0.50}.
The algorithms were then applied to selected problem sizes for all combinations

of the relevant parameter values. The objective function values and runtimes were

then thoroughly analysed and the parameter values that seemed to provide the

best trade-off between solution quality and computation time were selected. These

values are presented in table 1 and they provided an adequate compromise between

schedule quality and computational effort for all the problem types considered in

13

these preliminary tests.

Heur α β γ δ
PBS – 4 – –
DBS – 3 – –
FBS_P 3 3 – –
FBS_R – 3 – –
RBS_P 3 – 0.8 0.10
RBS_R – – 0.8 0.10

Table 1: Heuristic parameter values

In table 2 we present the average objective function value (mean ofv) for each

heuristic, both before (bfr) and after (aft) the application of the dominance rules,

and the average of the relative improvements in the objective function values (%ch),

calculated as (H −HDR) /H ∗ 100, where H and HDR are the objective function

values of a heuristic before and after the dominance rules, respectively. We also give

the number of times each heuristic produces the best result when compared with the

other heuristics (#best), both before and after the use of the dominance rules. A test

was also performed to determine if the differences between the heuristic objective

function values before and after the dominance rules are statistically significant.

Given that the heuristics were used on exactly the same problems, a paired-samples

test is appropriate. Since the hypothesis of the paired-samples t-test were not all

met, the non-parametric Wilcoxon test was selected. The significance values of this

test, i.e., the level of significance values above which the equal distribution hypothesis

is to be rejected, were nearly always equal to 0.000, and were never larger than 0.05.

From the objective function values, and the number of times each heuristic is

the best, we can conclude the following. The best results are usually given by the

DBS heuristic. The DTS and RBS_P are then the best performing algorithms,

followed by the FBS_P procedure. The RBS_P and DTS algorithms, in particular,

are quite close to the best heuristic procedure, providing results that are usually

less than 0.5% (1%) above those of the DBS algorithm for instances with low (high)

processing time and penalty variability. The CBS procedure provides better results

than the LINET dispatch rule, particularly for instances with high variability. The

performance of the FBS_R and RBS_R algorithms is comparatively poor, since

they are outperformed by even the simple LINET dispatch procedure. The algo-

rithms with a priority evaluation function filtering procedure clearly outperform

their rules-based counterparts. The simple rules that were used cannot avoid elim-

14

low var high var
mean ofv # best mean ofv # best

n Heur bfr aft %ch bfr aft bfr aft %ch bfr aft
50 PBS 6116 5993 2.5 0 20 463630 455351 2.4 0 15

DBS 5862 5813 1.1 132 199 442640 439277 1.0 140 216
DTS 5924 5854 1.5 27 99 446444 441617 1.4 32 123
FBS_P 5875 5844 0.7 107 164 444064 442086 0.6 84 161
FBS_R 6210 6109 1.9 13 26 471941 467434 1.2 8 26
LINET 6174 6048 2.5 1 15 469706 461679 2.3 0 11
RBS_P 5842 5823 0.3 228 169 441436 440634 0.2 230 174
RBS_R 6179 6109 1.2 35 27 468312 466825 0.3 34 28

100 PBS 21914 21546 2.1 1 3 1688047 1668808 1.6 0 2
DBS 21115 20898 1.4 153 192 1615371 1602600 1.1 162 205
DTS 21264 20991 1.7 29 85 1627424 1612292 1.3 25 82
FBS_P 21216 21086 0.8 81 72 1629726 1624045 0.5 74 68
FBS_R 22197 21828 2.1 0 4 1722101 1707834 1.1 0 2
LINET 22052 21665 2.1 0 2 1705855 1686123 1.6 0 1
RBS_P 21124 20996 0.7 190 136 1618767 1614084 0.4 196 140
RBS_R 22089 21791 1.6 6 4 1711754 1706704 0.3 5 2

250 PBS 129856 127219 2.2 3 9 9763218 9696879 0.9 0 1
DBS 126444 124716 1.8 169 169 9413967 9362293 0.7 217 234
DTS 127172 125077 2.3 44 91 9446220 9389107 0.8 45 88
FBS_P 127418 125904 1.4 88 57 9531987 9508352 0.3 73 45
FBS_R 131051 128155 2.4 0 1 9895687 9828904 0.9 0 0
LINET 130382 127601 2.3 1 2 9802122 9731758 0.9 0 1
RBS_P 126958 125301 1.5 144 123 9500053 9471279 0.4 122 104
RBS_R 130583 127992 2.1 1 0 9853781 9820274 0.3 2 1

500 PBS 502348 490681 2.5 7 8 37199701 36978650 0.7 0 0
DBS – – – – – – – – – –
DTS 494202 484877 2.6 183 246 36072578 35916221 0.6 294 329
FBS_P 496529 488347 1.8 84 56 36598921 36489490 0.3 65 37
FBS_R 504867 492401 2.7 0 0 37528605 37286214 0.8 0 0
LINET 503212 491349 2.5 0 9 37303483 37072673 0.7 0 0
RBS_P 494709 486566 1.8 173 128 36536430 36383156 0.5 91 84
RBS_R 503587 491907 2.4 3 3 37419585 37253876 0.4 0 0

1000 PBS 1954877 1899942 2.9 13 33 145069697 143974245 0.8 0 2
DBS – – – – – – – – – –
DTS – – – – – – – – – –
FBS_P 1941260 1895334 2.5 121 123 143641142 142860758 0.5 200 185
FBS_R 1958266 1903105 2.9 0 14 145899873 144652625 0.9 0 1
LINET 1956643 1901018 2.9 10 19 145251244 144108069 0.8 1 4
RBS_P 1935456 1890361 2.4 300 246 143460049 142472835 0.7 249 258
RBS_R 1955269 1901935 2.8 6 15 145664958 144614087 0.7 0 1

Table 2: Heuristic results: objective function value and number of times each heuris-
tic gives the best result

15

inating nodes that would lead to good solutions and better rules would therefore

be required in order to make the rule filter procedures competitive. The recovering

beam search algorithms also provide better results than their filtered beam search

alternatives, for both types of filtering procedure. From table 2 we can also see that

the use of the dominance rules improves the heuristic results. The Wilcoxon test

values also indicate that the difference in distribution between the heuristic results

before and after the dominance rules is statistically significant. The improvement

provided by the dominance rules is much higher for instances with low processing

time and penalty variability. For these problems, even the best heuristics can benefit

from a 1% to 2% decrease in objective function value.

The effect of the R and D parameters on the relative objective function value

improvement is given in table 3 for the RBS_P heuristic. The relative improvement

is usually non-decreasing with the due date slack range D, and the highest relative

improvement values occur when D is equal to 0.50. The improvement provided by

the dominance rules is usually lower when D is equal to 0.10 and the range of release

dates R is set at 0.25 or 0.50.

low var high var
n R D=0.10 D=0.25 D=0.50 D=0.10 D=0.25 D=0.50
100 0.25 0.3 0.7 0.8 0.1 0.1 0.2

0.50 0.1 0.5 1.1 0.1 0.3 0.6
0.75 0.5 0.5 1.4 0.4 0.3 1.0

300 0.25 0.6 1.7 3.2 0.1 0.3 0.5
0.50 0.7 1.4 2.3 0.1 0.3 0.5
0.75 1.1 1.2 1.8 0.4 0.4 0.8

500 0.25 0.8 2.1 3.9 0.2 0.4 0.8
0.50 0.9 2.0 2.9 0.1 0.4 0.6
0.75 1.4 1.2 1.3 0.5 0.5 1.0

Table 3: Relative improvement for the RBS_P heuristic

In table 4 we present the heuristic runtimes (in seconds); results obtained after

the application of the dominance rules are indicated by appending "+ DR" to the

heuristic identifiers. The dominance rules require little additional computational

effort, and their use is therefore recommended, since they allow for improvements in

solution quality. The DBS and DTS heuristics are computationally demanding, and

can therefore be used only for small or medium size instances. The filtered beam

16

search algorithms, and particularly the PBS and recovering beam search procedures,

are much faster and be applied even to large instances. The variability of the

processing times and penalties only has a significant effect on the runtimes of the

FBS_R and RBS_R procedures, which require lower computation times when the

variability is high. The algorithms with a rule-based filtering procedure are faster

than their priority evaluation function counterparts. The recovering algorithms are

also much faster than their filtered alternatives, and can solve even medium and

large instances within reasonable computation times.

low var high var
Heur n=200 n=400 n=500 n=1000 n=200 n=400 n=500 n=1000
PBS 0.192 1.484 3.038 28.341 0.184 1.464 2.950 27.674
DBS 8.459 146.384 – – 8.451 148.175 – –
DTS 2.484 35.235 83.383 – 2.488 35.983 83.938 –
FBS_P 0.565 4.871 9.710 83.023 0.612 4.889 9.703 83.176
FBS_R 0.377 3.221 6.551 66.426 0.313 2.427 4.742 41.565
LINET 0.001 0.001 0.003 0.009 0.000 0.002 0.002 0.010
RBS_P 0.326 2.266 4.251 31.948 0.334 2.315 4.351 33.103
RBS_R 0.215 1.538 2.957 26.681 0.180 1.180 2.151 17.111

PBS + DR 0.195 1.503 3.072 28.596 0.185 1.470 2.962 27.758
DBS + DR 8.461 146.402 – – 8.453 148.182 – –
DTS + DR 2.487 35.248 83.405 – 2.489 35.987 83.945 –
FBS_P + DR 0.568 4.888 9.740 83.245 0.613 4.895 9.713 83.256
FBS_R + DR 0.381 3.240 6.584 66.662 0.314 2.433 4.754 41.650
LINET + DR 0.003 0.014 0.025 0.138 0.001 0.005 0.009 0.043
RBS_P + DR 0.329 2.285 4.285 32.189 0.335 2.322 4.364 33.199
RBS_R + DR 0.218 1.558 2.991 26.939 0.181 1.186 2.162 17.201

Table 4: Runtimes (in seconds)

The heuristic results were also compared with the optimum objective function

values for instances with up to 30 jobs. In table 5 we present the average of the

relative deviations from the optimum (%dev), calculated as (H −O) /O∗100, where
H and O are the heuristic and optimum objective function values, respectively. The

number of times each heuristic generates an optimum schedule (#opt) is also given.

All heuristics are usually somewhat closer to the optimum for problems with a

low processing time and penalty variability. The average performance of the DBS

heuristic is quite good, since it provides results that are 0.5% to 1.5% above the

optimum and it generates an optimum solution for over 70% (40%) of the 20 (30)

17

job test instances. The RBS_P procedure also performs quite well. This heuristic

provides solutions that are about 1% to 2% above the optimum and it calculates an

optimal schedule for roughly 60% (30%) of the 20 (30) job test instances.

low var high var
Heur n=20 n=30 n=20 n=30

%dev #opt %dev #opt %dev #opt %dev #opt
PBS 6.3 37 7.5 5 6.5 35 9.0 6
DBS 1.0 292 2.3 121 1.1 285 2.4 118
DTS 2.3 182 3.6 54 2.3 168 3.7 52
FBS_P 1.2 266 2.3 111 1.2 271 2.6 114
FBS_R 5.6 146 9.4 48 5.7 155 9.2 36
LINET 7.5 31 9.5 4 8.2 28 10.6 5
RBS_P 1.1 254 2.0 136 1.0 269 2.3 129
RBS_R 5.1 170 8.4 68 4.9 190 8.4 59

PBS + DR 3.2 151 4.5 59 3.4 153 5.8 47
DBS + DR 0.5 343 1.5 192 0.8 327 1.6 188
DTS + DR 1.2 263 2.3 138 1.4 251 2.4 123
FBS_P + DR 0.8 311 1.8 169 0.9 313 2.1 172
FBS_R + DR 4.3 185 7.5 73 4.8 195 8.1 62
LINET + DR 4.2 136 6.4 49 5.0 136 7.3 41
RBS_P + DR 0.9 265 1.8 145 1.0 276 2.0 143
RBS_R + DR 4.5 180 7.2 72 4.8 192 8.1 63

Table 5: Comparison with optimum objective function values

In table 6 we present the effect of the R and D parameters on the relative

deviation from the optimum for the RBS_P + DR heuristic. The relative deviation

appears to increase with the due date slack range D, particularly when R is lower

than 0.75. The heuristic performance is worst when D is equal to 0.50 and R is

equal to 0.25 or 0.50. The heuristics are usually closer to the optimum when D is

equal to 0.10 and the range of release dates R is set at 0.25 or 0.50. These results are

similar to those reported for the relative improvement provided by the dominance

rules, and seem to indicate that the problem is harder when the due date slack range

is high and the release dates are not widely spread.

The DBS procedure provides very good results, but its computational require-

ments are only acceptable for small or medium size instances. The RBS_P heuristic

is close to the DBS algorithm in solution quality and is significantly faster, solving

even large instances within reasonable computation times. Therefore, this procedure

is the heuristic of choice for medium and large size problems.

18

low var high var
n R D=0.10 D=0.25 D=0.50 D=0.10 D=0.25 D=0.50
20 0.25 0.4 0.6 2.2 0.1 1.1 2.5

0.50 0.5 0.9 1.9 0.9 1.0 1.7
0.75 0.4 1.1 0.4 0.3 0.4 1.1

30 0.25 0.3 2.1 3.4 0.3 1.5 5.0
0.50 0.7 1.6 4.4 0.5 2.2 4.2
0.75 0.8 1.6 1.5 1.6 1.0 1.7

Table 6: Relative deviation from the optimum for the RBS_P + DR heuristic

5 Conclusion

In this paper we considered the single machine scheduling problem with earliness and

tardiness penalties, different release dates and no unforced idle time. We considered

heuristics based on the beam search technique and presented classical beam search

algorithms, as well as the filtered and recovering variants. Both priority evaluation

functions and problem-specific properties were considered for the filtering step used

in the filtered and recovering beam search heuristics. The algorithms use several

parameters whose value must be specified. We performed extensive computational

tests to determine the parameter values that provided the best balance between

solution quality and computational effort. The use of some dominance rules to

improve the solutions obtained by the heuristics was also considered.

The computational results show that the use of the dominance rules is recom-

mended, since they can improve the solution quality, particularly for instances with

a low processing time and penalty variability, and require little additional computa-

tional effort. The algorithms with a priority evaluation function filtering procedure

outperform their rules-based counterparts in solution quality. The recovering beam

search procedures are clearly superior to the filtered beam search alternatives, since

they not only provide better solutions, but are also faster. The best results are given

by the DBS heuristic, but this algorithm is computationally demanding and can be

applied only to small or medium size instances. The RBS_P procedure provides

results that are quite close to the best in solution quality and is significantly faster.

Therefore, this procedure is then the heuristic of choice for medium and even large

size problems. The performance of the recovering beam search algorithm was quite

adequate, and this heuristic approach seems to achieve a good balance between solu-

tion quality and computational efficiency. These results confirm the potential of this

19

recently introduced technique, and as a possible step for future research it certainly

seems worthy to investigate its behaviour on other problems.

References

[1] Abdul-Razaq, T., and Potts, C. N. Dynamic programming state-space

relaxation for single machine scheduling. Journal of the Operational Research

Society 39 (1988), 141—152.

[2] Della Croce, F., and T’kindt, V. A recovering beam search algorithm for

the one-machine dynamic total completion time scheduling problem. Journal

of the Operational Research Society 53 (2002), 1275—1280.

[3] Fox, M. S. Constraint-Directed Search: A Case Study of Job-Shop Scheduling.

Ph.d. thesis, Carnegie-Mellon University, USA, 1983.

[4] Kanet, J. J., and Zhou, Z. A decision theory approach to priority dispatch-

ing for job shop scheduling. Production and Operations Management 2 (1993),

2—14.

[5] Korman, K. A pressing matter. Video (February 1994), 46—50.

[6] Landis, K. Group technology and cellular manufacturing in the westvaco

los angeles vh department. Project report in iom 581, School of Business,

University of Southern California, 1993.

[7] Lenstra, J. K., Rinnooy Kan, A. H. G., and Brucker, P. Complexity

of machine scheduling problems. Annals of Discrete Mathematics 1 (1977),

343—362.

[8] Li, G. Single machine earliness and tardiness scheduling. European Journal of

Operational Research 96 (1997), 546—558.

[9] Liaw, C.-F. A branch-and-bound algorithm for the single machine earliness

and tardiness scheduling problem. Computers & Operations Research 26 (1999),

679—693.

[10] Lowerre, B. T. The HARPY Speech Recognition System. Ph.d. thesis,

Carnegie-Mellon University, USA, April 1976.

20

[11] Ow, P. S., and Morton, E. T. The single machine early/tardy problem.

Management Science 35 (1989), 177—191.

[12] Ow, P. S., and Morton, T. E. Filtered beam search in scheduling. Inter-

national Journal of Production Research 26 (1988), 35—62.

[13] Ow, P. S., and Smith, S. F. Viewing scheduling an an opportunistic problem-

solving process. Annals of Operations Research 12 (1988), 85—108.

[14] Rubin, S. The ARGOS Image Understanding System. Ph.d. thesis, Carnegie-

Mellon University, USA, April 1978.

[15] Sabuncuoglu, I., and Bayiz, M. Job shop scheduling with beam search.

European Journal of Operational Research 118 (1999), 390—412.

[16] Valente, J. M. S., and Alves, R. A. F. S. An exact approach to early/tardy

scheduling with release dates. Working Paper 128, Faculdade de Economia do

Porto, Portugal, 2003.

[17] Valente, J. M. S., and Alves, R. A. F. S. Heuristics for the early/tardy

scheduling problemwith release dates. Working Paper 129, Faculdade de Econo-

mia do Porto, Portugal, 2003.

[18] Valente, J. M. S., and Alves, R. A. F. S. Improved heuristics for the

early/tardy scheduling problem with no idle time. Working Paper 126, Facul-

dade de Economia do Porto, Portugal, 2003.

21

Working papers mais recentes
Nº 142 Jorge M. S. Valente and Rui A. F. S. Alves, Filtered and Recovering

beam search algorithms for the early/tardy scheduling problem with
no idle time, April 2004

Nº 141 João A. Ribeiro and Robert W. Scapens, Power, ERP systems and
resistance to management accounting: a case study, April 2004

Nº 140 Rosa Forte, The relationship between foreign direct investment and
international trade. Substitution or complementarity? A survey,
March 2004

Nº 139 Sandra Silva, On evolutionary technological change and economic
growth: Lakatos as a starting point for appraisal, March 2004

Nº 138 Maria Manuel Pinho, Political models of budget deficits: a literature
review, March 2004

Nº 137 Natércia Fortuna, Local rank tests in a multivariate nonparametric
relationship, February 2004

Nº 136 Argentino Pessoa, Ideas driven growth: the OECD evidence,
December 2003

Nº 135 Pedro Lains, Portugal's Growth Paradox, 1870-1950, December 2003
Nº 134 Pedro Mazeda Gil, A Model of Firm Behaviour with Equity Constraints

and Bankruptcy Costs, November 2003
Nº 133 Douglas Woodward, Octávio Figueiredo and Paulo Guimarães,

Beyond the Silicon Valley: University R&D and High-Technology
Location, November 2003.

Nº 132 Pedro Cosme da Costa Vieira, The Impact of Monetary Shocks on
Product and Wages: A neoclassical aggregated dynamic model, July
2003.

Nº 131 Aurora Teixeira and Natércia Fortuna, Human Capital, Innovation
Capability and Economic Growth, July 2003.

Nº 130 Jorge M. S. Valente and Rui A. F. S. Alves, Heuristics for the
Early/Tardy Scheduling Problem with Release Dates, May 2003.

Nº 129 Jorge M. S. Valente and Rui A. F. S. Alves, An Exact Approach to
Early/Tardy Scheduling with Release Dates, May 2003.

Nº 128 Álvaro Almeida, 40 Years of Monetary Targets and Financial Crises in
20 OECD Countries, April 2003.

Nº 127 Jorge M. S. Valente, Using Instance Statistics to Determine the
Lookahead Parameter Value in the ATC Dispatch Rule: Making a
good heuristic better, April 2003.

Nº 126 Jorge M. S. Valente and Rui A. F. S. Alves, Improved Heuristics for
the Early/Tardy Scheduling Problem with No Idle Time, April 2003.

Nº 125 Jorge M. S. Valente and Rui A. F. S. Alves, Improved Lower Bounds
for the Early/Tardy Scheduling Problem with No Idle Time, April
2003.

Nº 124 Aurora Teixeira, Does Inertia Pay Off? Empirical assessment of an
evolutionary-ecological model of human capital decisions at firm
level, March 2003.

Nº 123 Alvaro Aguiar and Manuel M. F. Martins, Macroeconomic Volatility
Trade-off and Monetary Policy Regime in the Euro Area, March 2003.

Nº 122 Alvaro Aguiar and Manuel M. F. Martins, Trend, cycle, and non-linear
trade-off in the Euro Area 1970-2001, March 2003.

Nº 121 Aurora Teixeira, On the Link between Human Capital and Firm
Performance. A Theoretical and Empirical Survey, November 2002.

Nº 120 Ana Paula Serra, The Cross-Sectional Determinants of Returns:
Evidence from Emerging Markets' Stocks, October 2002.

Nº 119 Cristina Barbot, Does Airport Regulation Benefit Consumers?, June

http://www.fep.up.pt/investigacao/workingpapers/04.02.23_WP137_Nat�rcia Fortuna.pdf
http://www.fep.up.pt/investigacao/workingpapers/04.02.23_WP137_Nat�rcia Fortuna.pdf

2002.
Nº 118 José Escaleira, A Procura no Sector das Artes do Espectáculo. Tempo

e Rendimento na Análise das Audiências. Um Estudo para Portugal,
June 2002.

Nº 117 Ana Paula Serra, Event Study Tests: A brief survey, May 2002.
Nº 116 Luís Delfim Santos and Isabel Martins, A Qualidade de Vida Urbana -

O caso da cidade do Porto, May 2002.
Nº 115 Marcelo Cabús Klötzle and Fábio Luiz Biagini, A Restruturação do

Sector Eléctrico Brasileiro: Uma análise comparativa com a
Califórnia, January 2002.

Nº 114 António Brandão and Sofia B. S. D. Castro, Objectives of Public
Firms and Entry, December 2001.

Nº 113 Ana Cristina Fernandes and Carlos Machado-Santos, Avaliação de
Estratégias de Investimento com Opções, December 2001.

Nº 112 Carlos Alves and Victor Mendes, Corporate Governance Policy and
Company Performance: The Case of Portugal, December 2001.

Nº 111 Cristina Barbot, Industrial Determinants of Entry and Survival: The
case of Ave, October 2001.

Nº 110 José Rodrigues de Jesús, Luís Miranda da Rocha e Rui Couto Viana,
Avaliação de Pequenas e Médias Empresas e Gestão de Risco,
October 2001.

Nº 109 Margarida de Mello and Kevin S. Nell, The Forecasting Ability of a
Cointegrated VAR Demand System with Endogeneous vs. Exogenous
Expenditure Variable: An application to the UK imports of tourism
from neighbouring countries, July 2001.

Nº 108 Cristina Barbot, Horizontal Merger and Vertical Differentiation, June
2001.

Nº 107 Celsa Machado, Measuring Business Cycles: The Real Business Cycle
Approach and Related Controversies, May 2001.

Nº 106 Óscar Afonso, The Impact of International Trade on Economic
Growth, May 2001.

Nº 105 Abraão Luís Silva, Chamberlain on Product Differentiation, Market
Structure and Competition: An essay, May 2001.

Nº 104 Helena Marques, The "New" Economic Theories, May 2001.
Nº 103 Sofia B. S. D. Castro and António Brandão, Public Firms in a

Dynamic Third Market Model, January 2001.
Nº 102 Bernard Friot, Bernadette Clasquin & Nathalie Moncel, Salaire,

Fiscalité et Épargne dans le Finacement de l ’Emploi et de la
Protection Sociale: l'Example Européen, January 2001.

Nº 101 Paulo Beleza Vasconcelos, Resolução Numérica de Modelos
Macroeconómicos com Expectativas Racionais, 2000.

Nº 100 Luis David Marques, Modelos Dinâmicos com Dados em Painel:
Revisão da Literatura, 2000.

Nº 99 Rui Henrique Alves, Da Moeda Única à União Política?, 2000.
Nº 98 Paulo Guimarães, Octávio Figueiredo & Doug Woodward, A Tractable

Approach to the Firm Location Decision Problem, 2000.
Nº 97 António Brandão & José Escaleira, Trade Policy and Tacit Collusion

with Price and Quantity Competition, 2000.
Nº 96 Sandra Silva & Mário Rui Silva, Crescimento Económico nas Regiões

Europeias: Uma Avaliação sobre a Persistência das Disparidades
Regionais no Período 1980-95, 2000.

Editor: Prof. Aurora Teixeira (ateixeira@fep.up.pt)
Download dos artigos em:
http://www.fep.up.pt/investigacao/workingpapers/workingpapers.htm

mailto:ateixeira@fep.up.pt
http://www.fep.up.pt/investigacao/workingpapers/workingpapers.htm

FACULDADE DE ECONOMIA

UNIVERSIDADE DO PORTO

www.fep.up.pt

FACULDADE DE ECONOMIA

UNIVERSIDADE DO PORTO

www.fep.up.pt

