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1. Introduction

We develop a version of the multi-sector model of R&D-driven endogenous growth, with
quality ladders in the intermediate-good sector (e.g., Aghion and Howitt, 1992, and
Barro and Sala-i-Martin, 2004, ch. 7). As in the standard model, each quality-adjusted
intermediate good is produced by a single-product firm, only (potential) entrants do R&D
and innovation arrival follows a Poisson process. However, we merge the quality-ladders
with the expanding variety mechanism (e.g., Romer, 1990, and Barro and Sala-i-Martin,
2004, ch. 6) and thus the number of intermediate goods is not necessarily constant over
time. Following Dinopoulos and Thompson (1998), Young (1998), Aghion and Howitt
(1998, ch. 12) and Howitt (1999),' we define the expanding variety mechanism as the
addition of new intermediate product lines to the market, which is interpreted as an
expansion of the number of firms in the economy. Thus, we build our model on the
premise that industrial growth proceeds both along an intensive (increase of product
quality) and an extensive margin (introduction of new goods).

The seminal paper in this strand of the literature is Caballero and Jaffe (1993). The
authors describe a model where quality rises monotonically over time, so that the newest
goods are always the best, and new and old intermediate goods are imperfect substitutes.
Differently from Caballero and Jaffe (1993), the models of Dinopoulos and Thompson
(1998), Young (1998), Aghion and Howitt (1998, ch. 12) and Howitt (1999) interpret the
expanding variety mechanism as a process of adding new product lines, such that each
product line observes an independent quality-ladders process.? In Caballero and Jaffe
(1993), the expanding variety mechanism is, in itself, a quality ladder, an approach also
adopted in Jones and Williams (2000)’s model of “innovation clusters”.

Concerning the formal treatment of the horizontal entry process within the quality-
ladder literature, Aghion and Howitt (1998, ch. 12) establish an ezogenous dynamics for
the number of differentiated goods (these grow linearly with the population) justified by
an imitation mechanism, whereas Dinopoulos and Thompson (1998) and Young (1998)
build in an endogenous entry mechanism regulated by an ezogenous entry cost, constant
over time. Endogenous non-linear time-varying entry costs are postulated in Caballero
and Jaffe (1993), where the cost is a (negative) function of past knowledge accumulation,
and Howitt (1999), where the cost depends on the amount of resources allocated to entry
at each moment of time.

Outside the quality-ladders literature, we emphasise the contribution by Peretto (1998,
1999, 2003) and Peretto and Smulders (2002). In these endogenous growth models, in-
cumbents do in-house R&D, whose outcomes improve factor productivity in each in-
cumbent’s production function, but entrants bring new products to the market. These
models can be seen as “a smooth version (quality being a continuous variable) of the
quality-ladder model with an endogenous variety of goods (number of firms)” (Peretto,

!There are a number of papers developing on the latter, namely Segerstrom (2000), Cozzi and Spinesi
(2002) and Nicoletti (2003).

2We observe, however, that the latter two build on the tradition of the models of “competitive capital-
ism”, “tournament” or “patent race”’, whereas the other two are closer to the “trustified capitalism”
approach (see Thompson and Waldo, 1994). Our model follows the former approach.



1999, fn. 3). In Peretto (1998, 1999, 2003) entrants face an exzogenous constant entry cost,
whereas in Peretto and Smulders (2002) they face endogenous non-linear time-varying
entry costs, as these are a function of past knowledge accumulation. More recently, Funk
(2008) emphasises horizontal entry in the context of a vintage-knowledge model, where
endogenous growth is induced by old and new knowledge produced by cost-reducing
R&D. The number of firms in the R&D sector is endogenously determined, such that, in
equilibrium, the return from opening a new R&D-lab (extensive margin) has to match the
return of investing the same amount of additional R&D in existing R&D-labs (intensive
margin).

The main motivation behind the early models of quality ladders with expanding variety
is the removal of the scale effects of population growth. In consequence, the former
models predict that the flow of new goods grows at the same (exogenous) rate as the
population. However, drawing from Brito and Dixon (2008), our motivation is to explore
the view that, from the perspective of the households, wealth can be accumulated either
by creating new firms or by accumulating capital, in a setting with no population growth.
In this context, the mechanism of quality ladders provides the accumulation of non-
physical capital (technological knowledge), whilst the mechanism of expanding variety
provides the flow of new firms (new product lines) at an endogenously determined growth
rate.

Following Dinopoulos and Thompson (1998), we view the creation of new product
lines as an activity without any sort of positive spillovers. Differently from the standard
expanding-variety literature, we allow for entry as well as exit of product lines from the
market, that is, we do not assume irreversibility of investment in product development.
Moreover, we model the quality-ladders mechanism with intertemporal spillovers but no
intersectoral spillovers (e.g., Segerstrom and Zolnierek, 1999), consider that the input to
R&D and to differentiated-goods production is measured in units of the homogeneous
final good instead of labour units (e.g., Segerstrom and Zolnierek, 1999), and postulate
an endogenous time-varying horizontal-entry mechanism that takes into account dynamic
second-order effects. The latter is carried out by means of an entry-cost function that
merges the specification suggested by Romer (1990) and Barro and Sala-i-Martin (2004,
ch. 6), where the entry cost increases with the number of differentiated goods, with that
used by Datta and Dixon (2002) and Brito and Dixon (2008), and implicit in Howitt
(1999), such that the entry cost also increases with the number of goods entering (exiting)
the market at a given instant.

Within this framework, our model exhibits a steady-state equilibrium where the ag-
gregate growth rate exceeds the growth rate of the number of differentiated goods by an
amount corresponding to the growth of intermediate-good quality. All three growth rates
are constant and positive in steady state. This implies that the consumption growth rate
equals the growth rate of the number of varieties plus the growth rate of intermediate-
good quality, a result in line with the view that industrial growth proceeds both along
an intensive and an extensive margin, also apparent in, e.g., Dinopoulos and Thomp-
son (1998) and Peretto (1998). Nevertheless, differently from Peretto (1998) and the
quality-ladders models with expanding variety already quoted, in our model the growth
of the number of varieties is not linked to the (exogenous) population growth rate; it



is sustained by technological-knowledge accumulation resulting from R&D activities. A
similar result is obtained by Arnold (1998) and Funke and Strulik (2000), where, however,
knowledge accumulation occurs in the form of human-capital production. In our setting,
it is not necessarily the larger economy, measured by population size, that produces the
greater number of distinct goods, but that with the larger technological-knowledge stock.
Hence, the latter emerges as the relevant (endogenous) measure of economic size.

We perform a detailed comparative steady-state analysis and characterise qualitatively
the local dynamics properties in a neighbourhood of the interior balanced-growth equi-
librium, by studying the solution of the linearised system of properly rescaled variables.
The model produces specific results with respect to the impact of changes in the entry-
cost parameters and the fiscal-policy variables both in the aggregate growth rate and in
the market structure and industry dynamics in steady state. We also conclude that the
transitional dynamics is characterised by a catching-up effect, that is, our model exhibits
the convergence property that applies in the standard Ramsey model.

Mulligan and Sala-i-Martin (1993) lay down some important reasons to study transi-
tional dynamics in endogenous growth models. Our paper contributes to that strand of
the literature by building in a new mechanism that produces intermediate-term adjust-
ment with an empirically reasonable speed of convergence under standard calibration.
This mechanism hinges on a friction in the horizontal entry, similar to the one that char-
acterises the changes of the physical-capital stock in the literature of firm investment with
convex adjustment costs (e.g., Eisner and Strotz, 1963), whereas the aggregate production
function exhibits constant returns in the accumulated factor (the technological-knowledge
stock).

Hence, our contribution differs from the endogenous growth models with transitional
dynamics that feature physical-capital accumulation, either alone (e.g., Jones and Manuelli,
1990) or combined with some form of knowledge /ideas accumulation - human capital pro-
duction (e.g., Lucas, 1988; Rebelo, 1991; Barro and Sala-i-Martin, 2004, ch. 5),3quality
ladders (Aghion and Howitt, 1998, ch. 3, ch. 12) or expanding variety (Funke and Strulik,
2000). In these models, transitional dynamics originates ultimately from the decreasing
marginal returns of the accumulated factor(s) in the aggregate production function. In
particular, in the models with two types of factors, the transition to the steady state is
driven by the combination of decreasing marginal returns with imbalances that cannot
be instantaneously eliminated in the ratio between those two factors (e.g., due to irre-
versibility constraints or to different production technologies that make factors imperfect
substitutes).

Our model also differs from - but, yet, is closer to - the endogenous growth models
without physical capital in which the transitional-dynamics property results, e.g., from
time lags in the diffusion of knowledge (Caballero and Jaffe, 1993), decreasing marginal
returns in vertical R&D (Dinopoulos and Thompson, 1998; Acemoglu, 1998), positive
spillovers in horizontal R&D (Arnold, 1998), or from the flow-stock relationship between

3Barly detailed studies of the transitional dynamics in this class of models are Mulligan and Sala-i-
Martin (1993), Caballé and Santos (1993), Chamley (1993) and Faig (1995). A more recent contri-
bution, which explores a rather general setting of two-sector non-scale growth models, is Eicher and
Turnovsky (2001).



private and public R&D (Peretto, 1998).

In particular in Peretto (1998), the mechanism of transition operates through imbal-
ances between total employment and the number of differentiated goods, which is an
explicit measure of firm size. In our model, the transition to the steady state is driven
by imbalances in the ratio between the technological-knowledge stock and the number
of differentiated goods, which we interpret as an alternative measure of firm size. This
property allows us to insert this model in the literature that studies the interplay between
long-term growth and the factors usually studied in the domain of industrial organization
(I0). Whereas some papers emphasise the role of a specific factor within a monopolistic-
competition setting - e.g., the number of firms (Peretto and Smulders, 2002), average
firm size (Peretto, 1998) or firm size distribution (Thompson, 2001; Klette and Kortum,
2004) -, others explore the interdependence between market structure and growth by fo-
cusing on the strategic interaction of firms in an oligopolistic framework (van de Klundert
and Smulders, 1997; Peretto, 1999; Aghion, Harris, Howitt, and Vickers, 2001; Aghion,
Bloom, Blundell, Griffith, and Howitt, 2005; Minniti, 2006). Our contribution relates
more closely to the former set of papers and, in particularly, to Peretto (1998).

The model studied herein is broadly consistent with the well-established empirical
evidence on intermediate and long-run firm dynamics (e.g., Jovanovic, 1993; Maddison,
1994; and Laincz and Peretto, 2006), whilst it helps to shed light on the lack of clear-cut
empirical results with respect to the link between R&D intensity and both firm size and
aggregate growth (e.g., Bassanini, Scarpetta, and Visco, 2000; and Pagano and Schivardi,
2003).

The remaining of the paper is organised as follows. In Section 2, the model is pre-
sented, being given detailed account of the production, price and R&D decisions in the
intermediate-good sector. In Section 3, we construct the dynamic general equilibrium,
analyse the steady-state and local-dynamics properties of the model, and discuss their
consistency with the empirical literature. In Section 4, we study the growth and industry-
dynamics effects of fiscal policy instruments. Section 5 concludes.

2. The model

Our basic setup is adapted from Segerstrom and Zolnierek (1999) and Barro and Sala-i-
Martin (2004, ch. 6; ch. 7). We build a dynamic general equilibrium model of a closed
economy where there is a single competitively-produced final good that can be used in
consumption, C, production of intermediate goods, X, and R&D activities, R.* The final
consumption good is produced by a (large) number of firms, indexed by h, each using
labour and a continuum of intermediate inputs indexed by w on the interval [0, N (t)].
The economy is populated by L identical dynastic families, each endowed with one
unit of labour that is inelastically supplied to final-good firms. Thus, the total labour

4Using Rivera-Batiz and Romer (1991)’s terminology, the assumption that final good is the R&D
input means that we adopt the “lab-equipment” version of R&D, instead of the “knowledge-driven”
specification, in which labour is the only input.



level is L, which, by assumption, is constant over time.? In turn, families invest in firms’
equity.

In the intermediate-good sector, firms can devote resources to R&D either to create
a new product line (a new industry) or, within an existing industry w, to improve the
quality of its good. Quality is indexed by j =0, 1,2, ..., where higher values of j denote
higher quality products. In particular, when a new quality rung is reached in w, the
jth innovator is the sole producer with the quality level A7) where the parameter
A > 1 measures the size of each quality upgrade. Moreover, by improving on the current
best quality index j, a successful R&D firm earns monopoly profits from selling the
leading-edge j(w) + 1 quality to final-good firms and, in equilibrium, lower qualities
of w are priced out of business. As each industry leader is driven out of business by
further innovation supported by other firm, the duration of the monopoly is finite. Over
time, as qualities rise, workers become more productive and thus R&D fuels per capita
consumption growth.

2.1. The final-good sector

We consider that each firm A in the final-good sector faces the following production
function

N@) - @
Vi, (t) = AL}~ /O [)\j(“”t)xh(w,t)] dw (1)
where A > 0 is a given scale parameter; Lj is labour input; (1 —a), 0 < a < 1, is
the labour share in production; xp(w,t) is the amount used of the intermediate good
w, weighted by its quality level M%) Tt is implicit in (1) that: (i) only the highest
grade of each w € [0, N(¢)] are actually produced and used in equilibrium, meaning
zp(jyw,t) = xp(w,t); thus, N(t) > 0 is the measure of how many different intermediate
goods (i.e., product lines) w exist at time ¢; (ii) the varieties of intermediate goods are
imperfect substitutes, in the sense that the elasticity of substitution with respect to a
given pair (z(w1), z(w2)), Ywr,ws € [0, N(t)], is 1= < oo for any value of N(t) > 0.

Letting final output be the numeraire (that is, setting its price equal to unity), each
firm A in the final-good sector seeks to maximise profit by solving

N(t)
max 1-Yht—thh—/ p(w, t)xp(w, t)dw 2

{xh(w),wE[O,N(t)}},Lh < ) ( ) 0 ( ) ( ) ( )
where p(w,t) is the price of w relative to the final-good price,®and w(t) is the labour
wage, also relative to the final-good price, at time ¢t. Both p and w are taken as given by
h. In particular, it results from the first-order condition with respect to x

5For sake of simplicity, we do not remove explicitly the scale effects associated to L and A (see Barro
and Sala-i-Martin, 2004, ch. 6, ch. 7). However, in due time, we normalize L and A to unity at
every t, so that the results of the model do not depend on the value of the growth rate of those two
variables, either zero or not (see Subsection 3.4, below).

6Once again, since only the producer of the highest quality in w sells goods, p(j,w,t) = p(w,t). Hence-
forth, we only use explicitly all arguments (j,w, ) when they are useful for convenience of exposition.



AaLy =N @D (w0, 1) = p(w, 1) (3)

for each w and ¢, where the left-hand side of (3) is the marginal product of w. Rearranging
(3) and noting that X (j,w,t) = X(w,t) = >_j zn(w,t), gives us the aggregate demand
of w

1
A)\j(“”t)aa> e

p(w, 1) @

X(w,t) :L<

2.2. The intermediate-good sector

R&D is carried out in the intermediate-good sector. Therefore, firms face a two-stage
decision process. In the first stage, since there is free-entry, they must decide how much
to invest in either vertical or horizontal R&D. In the second stage, the successful R&D
firms determine the price at which sell their previously invented goods to the producers
of final output. We proceed as usual by solving the problem backward.

2.2.1. Production and price decisions

Firms take into account that the government can subsidise the production of all inter-
mediates inputs by paying a fraction s, of each firm’s production costs; this subsidy
policy is fully financed by taxes. The intermediate good is nondurable and entails a unit
marginal cost of production, measured in terms of final-good output Y.” That is, the cost
of production is the same for all qualities 7. Thus, the latest innovator has an efficiency
advantage over the prior innovators in the sector but will eventually be at disadvantage
relative to future innovators. We assume that each innovator is a different firm.

Since there is a continuum of intermediate goods, one can assume that firms are atom-
istic and take as given the price of final output (numeraire). Monopolistic competition,
therefore, prevails and firms face isoelastic demand curves (4). Leading-edge intermedi-
ate input producers choose their prices p(w,t) to solve the profit maximization problem

;?%X (w,t) [p(w, 1) = (1 = s2)] (5)

Solving the first-order condition yields the optimal intermediate good price

1—s,;

(6)

"Since, by assumption, intermediate-goods production and R&D activities are financed by the saved
resources after consumption of the final good, the simplest hypothesis is to consider that the
intermediate-goods production function is identical to that of the final good or, equivalently, the
final good is the input in the production of each w. Thus, the marginal cost of producing w equals
the marginal cost of producing the final good, which, due to perfect competition in the final-good
sector, equals the price of the final good (numeraire), that is, unity.

ty=p=
p(w,t) =p -




which, since 0 < o < 1 and 1 — s, > «, is the usual monopoly price markup, constant
over time and across industries. As in Segerstrom and Zolnierek (1999), we assume that
é <)A& ﬁ < 1, that is, if é is the price of the leading-edge good, the price of the next
lowest grade, ﬁ , is less than the unit marginal cost of production. Only in this case are
the lower grades of w unable to provide any effective competition for the leading-edge
type, so that its producer can charge the unconstrained monopoly price (6).%

Given (4), (5) and (6), the aggregate quantity produced of w is

1 1
AN Wit)a 2| T-a AN Wity 2\ 1=
Xwt)=L |22 ) sawt =L, 2—% (7)
1—s, 1—s,
Using the results above we get the profit accrued by the monopolist in w
m(w,t) = ﬁAﬁ)\j(w’t)(ﬁ) (8)
where 7 = L (122) = (1- 31)%. Thus, the profit flow is constant in-between inno-

vations (note that, by assumption, L is constant over time) and jumps every time quality
is upgraded: 7(j + 1, w,t) = 7(j,w, t) - AT-a, with A\T-a > 1.

Substituting (7) in (1) and aggregating across final-good firms yields the aggregate
output

Y (1) = (“““2) Lo (9)

1—s,;
where

@

Qt) = /O N MO (23) do (10)

is the intermediate-input aggregate quality index, which can also be interpreted as the
technological-knowledge stock of the economy, since, by assumption, there are no intersec-
toral spillovers.” The total resources devoted to intermediate input production at time t
are also proportional to Q(t)

X(t) = /ON(t)X(w,t)dw - ( Ao’ >1_1QLQ(t) (11)

1-—s,

and the same happens with total profits

N () .
II(t) :/O m(w, t)dw = TAT Q(t) (12)

8In contrast, if é > ), the producer of the leading-edge good would have to engage in a limit-pricing
strategy in order to drive his competitors out of the market.

°It is noteworthy that the aggregate production function is linear in @, as this is the feature that
ultimately allows for endogenous growth, as we show below.



2.2.2. R&D decisions
Vertical R&D free-entry and dynamic arbitrage conditions

As in the standard model of quality ladders, firms decide over their optimal vertical-R&D
level, which constitutes the search for new designs (blueprints) that lead to a higher
quality of existing intermediate goods. Each new design is granted a patent, meaning
that a successful researcher retains exclusive rights over the use of his/her improved
intermediate good. In each industry only (potential) entrants can do R&D and innovation
arrival follows a Poisson process. There is free entry into each vertical R&D race and
each entrant possesses the same R&D technology. Since there is perfect competition
among entrants, the individual contribution of any particular entrant to the aggregate
R&D expenditures of all entrants is negligible.

Let I;(j,w, t) denote the instantaneous probability of R&D success by potential entrant
i in industry w when the highest quality is j (I is also interpreted as the vertical innovation
rate). This probability is independently distributed across firms, industries and over
time, and depends on the flow of resources Ry;(j,w,t) devoted to R&D by entrants in
each w at ¢ (measured in units of final-good output Y). As in Barro and Sala-i-Martin
(2004, ch. 7), we assume that each entrant’s instantaneous probability of R&D success
is given by a relation exhibiting constant returns in R&D expenditures, I;(j,w,t) =
Ryi(j,w,t)®(j,w,t), where the function ®, to be defined below, is the same for every
firm in w and captures the effect of the current technological-knowledge position j. We
can either have d(g;') < 0, assuming that a congestion effect prevails, or %}) > 0,
considering that a ’standing-upon-the-shoulders-of-giants’ effect is more important. In
either case, the R&D technology exhibits intertemporal spillovers but no intersectoral
spillovers (in contrast with, e.g., Aghion and Howitt, 1998, Dinopoulos and Thompson,
1998, and Howitt, 1999).

Now, let us define

B(j,w, 1) = TA-UEOD(E) (13)

Yl

where ¢ > 0 is a constant that stands for the fixed vertical-R&D cost.!? By aggregating
across firms in w, we get Ry (j,w,t) = >, Ryi(j,w,t) and I(j,w,t) = >, I;(j,w,t), such
that

1 . o
I(j,w, t) = Rvu‘,w,t)EW(w’”*”(ﬂ) (14)

From (14), we can aggregate across w to get the total resources devoted to vertical R&D,
R,(t), for a given N (t),

10Thus, we assume that a congestion effect prevails (e.g., Segerstrom and Zolnierek, 1999, and Barro
and Sala-i-Martin, 2004, ch. 7). The way ® depends on j implies that the increasing difficulty of
creating new product generations over time exactly offsets the increased rewards from marketing
higher quality products; see (13) and (8). This allows for constant probability over time and across
industries in balanced-growth path.
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Taking I(j,w,t) as given, it defines the probability of the incumbent losing his monopoly
position. Thus, the present value of an incumbent’s profits is a random variable be-
cause the terminal date to the monopoly of firm i arrives with probability I(j,w,t)
per (infinitesimal) increment of time. Let V(j,w,t) denote the expected discounted
value of profits earned by a monopolist when the highest quality in w is j.'' V can
be interpreted as the market value of the patent or the value of the monopolist firm
owned by households. The expected discounted value of profits can be written as
V(j,w,t) j; 7(j,w,t)e = Ji(r(0)+1 (Gww)dvgg  where r is the equilibrium market real
interest rate and 7(j, w t) is given by (8). The expression [ (r(v) + I(j,v)) dv simplifies
to (r+1I)(s—t)if r and I are constant over time (as expected in a balanced growth
equilibrium). The equation above reflects the fact that, if a profit flow can stop when a
Poisson event with arrival rate I occurs, then we can calculate the expected present value
of the stream of profit as if it never stops, but adding I to the discount rate. Thus, we
can interpret r 4+ I as an effective discount rate. Since 7(j,w,t) is constant in-between
innovations, we can further write

V(]a w, t) = 7T(j7 w, t) / e fts(r(v)—l—l(j,w,v))dvds (16)
t

Now, consider the average intermediate-good sector, @, for a given N(t).'2 Average

resources devoted to vertical R&D, R, (j,w,t) = ]]{\}J((tt)), can be put into (14) to yield an
expression for the probability of vertical innovation for w, I(j,w,t). With free-entry into

the vertical R&D business, we have the free-entry condition

I(j,w,t)-V(j+1,0,t) =(1—s,) Ry(j,w,1t) (17)

where we have considered that the government can subsidise vertical R&D by paying a
fraction s, of each firm’s expenditures.!3 By substituting (16) into (17), we get

I(G,@,t)-7(j + 1,@715)/ o= JEr)+I(G+10))dv g — (1—s.) Ro(j,@,1) (18)
t

whilst time-differentiating (18), bearing in mind Leibniz’s rule, yields

1YWe assume that entrants are risk-neutral and, thus, only care about the expected value of the firm.

12The usual procedure in the quality-ladders literature is to consider the average intermediate-good sector
in order to avoid any jumpiness in quality levels that would occur if the behaviour of an individual
sector were contemplated. Among other things, this allows us to characterise the aggregate dynamics
of the model by using the standard techniques of deterministic-dynamics analysis (see Section 3,
below).

13V denotes an expected value to the extent that it captures the effect of Poisson death on the monopo-
list’s profits; the term I-V, in (17), captures the effect of Poisson innovation arrival on the entrant’s
(expected) profits. See Appendix A for derivation.
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t

rt)+1(+1,,t) = (1—s) - Ro(j,0,1)

B 77+ 1,w,t) I(j,w,t) Ry(j,w,t) (19)
m(j+1,w,t)  I(j,w,t) Ry(j,w,t)
This can be interpreted as an arbitrage condition, which equates the effective rate of
return on capital (i.e., the market rate of return augmented by the Poisson arrival rate)
to the rate of return on vertical R€D, where the latter equals the profit rate earned by
setting up now a new firm with an existing intermediate good of improved quality minus
the increase in the profit rate due to the next innovation in that intermediate good (which
is accrued to the next innovator).'4As a result of (8) and (14) applied to @, we have,

after time differentiation,
RGen = 10eg e e (s )m) e

and
T(j+1,0,t) 75 t) R o
= =1 t t In\ 21
Hence, given (20) and (21), we can rewrite (19) as

r(t) = p—
( ) (l_ST)'R’U<]7w7t)
Thus, the market interest rate is equated to a dividend term that captures the ex-
pected profit rate from the next innovation, minus an obsolescence term that captures
the Schumpeterian concept of creative destruction caused by the next successful innova-
tion (which leads to the obsolescence of the preceding one). Substituting (8) and (14) in
the right-hand side of (22), yields
o e
T j ey T l—«
rt) = — I+ 1,0, t) &)= — — I(t 23
(1) = i 1 )& 1(0) = s — 110 (23
According to (23), the relationship between r and I is independent of ¢, w, and 7, implying
I(t) =1(j + 1,w,t). Thus, if I is constant over time, then r is also constant.

Horizontal R&D free-entry and dynamic arbitrage conditions

Variety expansion results from R&D aimed at creating a new intermediate-good line,
corresponding to a new firm, at a cost of n units of final output. In particular, we view

M1n (19), Z (as well as %’Z and §) must be interpreted in ezpected terms, since it reflects the stochastic

s
process of innovation arrival.
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the creation of new product lines as a product development activity without positive
spillovers (e.g., Dinopoulos and Thompson, 1998) and allow for entry as well as exit of
product lines from the market - that is, we do not assume irreversibility of investment in
product development.

After a new product is launched, an initial quality level is observed, drawn at ran-
dom from the distribution of quality indexes matching the existing product lines. Let
q(j,w,t) = N @t)(27) be an alternative measure of product quality, as, e.g., in Segerstrom
(2007). Then, from (10), we have

N(t)
Q) = /0 40w, t)dw = q(j, 2, )N (1) (24)

where ¢(j,@,t) = E,(q) is the average of ¢ over industries.!® Taking into account that
the government can subsidise horizontal R&D by paying a fraction s, of each firm’s
expenditures, entry costs (1 — s,,)n and generates value V(q(j,,t)) = V(j,,t). A free-
entry equilibrium requires that new product lines are created (or destroyed) at a rate N
(henceforth, the dot denotes time derivative) necessary to ensure that

V(]v w, t) = (1 - Sn)77 (25)

such that the total flow of resources devoted to horizontal R&D is

Ry (t) = N (t) (26)

Henceforth, we explore the case where 7 is time-varying.' In particular, let

n=n(N,Rn) = p1(N) - p2(Rn) (27)

where ¢1(-) and o(-) are positive, invertible functions.!” This specification of the entry
cost function merges the one suggested by Romer (1990) and Barro and Sala-i-Martin
(2004, ch. 6), ¢1(IN), where the entry cost increases with the number of differentiated
goods in the market,'®with the one implicit in Howitt (1999), o(R,,), where the ag-
gregate function of horizontal innovation exhibits decreasing marginal returns in total
horizontal R&D expenditures.'® Let ¢1(N) = ¥ N(t)"* and pa(R,) = R,(t)"2, where
the parameter ¢ > 0 stands for a fixed horizontal-R&D cost, v1 > 0 measures the neg-
ative spillover effect related to the accumulation of intermediate-good varieties, whilst

5Hence, from (7), (8), (11) and (12), we have X (q(j,@,t)) = X (4, @, 1), 7(q(j,®,t)) = 7(j,®,t), X(t) =
X (j,0,t)N(t) and II(t) = 7(j,®, t) N (¢).

16The case where 7 is a fixed-entry cost, constant over time, is analysed in Appendix B.

17 Appendix B also explores alternative specifications of time-varying entry costs.

'8 The basic specification in Romer (1990) is similar to the one used by Barro and Sala-i-Martin (2004,
ch. 6) in that it implies the entry cost, measured in wage labour units in Romer (1990), raises with
N, since an increase in the latter raises the marginal product of labour and, thus, the real wage rate.

19Gee the arbitrage condition (10) in that paper
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0 < o < 1 measures the degree of the increasing returns of the marginal horizontal
innovation function, po(R,)~!. By substituting (26) in (27), we arrive at

1) = ON(W" (nON@)” & n() = $TEN@TEN(TE = oN@TN () (28)

where ¢ = ¢ﬁ > 0,0 =14 >0and vy = {2 > 0. Equation (28) shows the
link between our specification of the horizontal entry-cost function with respect to R,
and that used by Datta and Dixon (2002) and Brito and Dixon (2008), where the entry
cost increases with the number of goods entering the market at a given instant, N.
This mechanism, which introduces dynamic second-order effects in entry,is also similar
to the one that characterises the changes of the physical-capital stock in the literature of
firm investment with convex adjustment costs, where the cost of installing (dismantling)
capital increases with the amount of investment (disinvestment) at a given instant (e.g.,
Eisner and Strotz, 1963).

By substituting (16) into (25), where n = n(-) is a time-varying function, we have

00 s -
7(j,0,t) / e SOWHGLDNgs = (1 - 5,) () (29)
t

If we time-differentiate (29), assuming 7 is differentiable with respect to time, we get

W(],@,t) W(],L_d7t) 77()
- — — —~ (30)
(L=su)n(-)  \7(,@.t)  n()

This is another arbitrage equation, according to which the effective rate of return on
capital equals the rate of return on horizontal RED, where the latter equals the profit rate
earned by setting up now a mew firm with a new product line minus the increase in the
profit rate due to the next innovation in that intermediate good (which is accrued to the

next vertical innovator).?"

r(t) + 1(j,w,t) =

Consistency arbitrage condition

Finally, a consistency condition between vertical and horizontal arbitrage conditions is
needed. First, we find an expression for R,(j — 1,®,t), by applying (15) to j — 1 and
combining it with (24), for a given N(t),

NO B 1w e
R - 1,6, = 2 TU L0 IGO0 _ 6.0 o

where we used I(t) = I(j — 1,w,t). Then, from the vertical free-entry condition, (17),
solved in order to V, we get V(j + 1,00,t) = (1 — ST)R”(]"”’t) = V(j,w,t) = (1 —

o 1(j,w,t)
sr)%. Together with (31), we have

V(j,@,t) = (1 - S?")CQ(jvajvt) (32)

20Remember that %, in (30), must be interpreted in ezpected terms.
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At last, equating (32) and the horizontal free-entry condition, (25), yields

. Q(t) 1— sy 77()
t) = = — 33

q(j,@,t) NG s ) ¢ (33)
As one can see, the consistency condition (33) ties up the average quality to the ratio of
the cost of horizontal entry, 7(-), to the fixed cost of vertical R&D, ¢.2!

2.3. The consumer sector

The economy consists of L identical dynastic families who consume and collect income
(dividends) from investments in financial assets (equity) and labour income. They choose
the path of final-good aggregate consumption {C(t),t > 0} to maximise discounted life-

time utility
[eS) t 1-60 _ 1
U= / <C()> e Pldt (34)
0 1-0

where p > 0 is the subjective discount rate and € > 0 is the constant elasticity of
marginal utility with respect to consumption. We assume consumers have perfect fore-
sight concerning the aggregate rate of technological change over time and choose their
expenditure paths accordingly to maximise their discounted utilities, dispensing with the
time expectations operator, E(.), in (34).22

Intertemporal utility is maximised subject to the flow budget constraint

a(t) = (1 — 1) r(t)a(t) + (1 — ) w(t)L — C(t) (35)

where a stands for households’ financial assets (equity) holdings, measured in terms
of final-good output Y. Households take the real rate of return on financial assets, r
(that is, dividend payments in units of asset price corrected by the Poisson death rate,
r = § —1%) and the real labour wage, w, as given. The initial level of wealth a(0) is also

given, whereas the condition lim;_,e™ Jo T(S)dsa(t) = 0 is imposed in order to prevent
Ponzi schemes. We assume the households can be subject to government-imposed income
taxes, at a rate 7, on labour income and 7, on assets income, in case they are needed
for a balanced government budget.

*INote that if we equate the two arbitrage conditions (30) and (23), each solved in order to r 4 I, and
use (33) to simplify, one obtains 2 = = % — 2. But this result does not imply a further constraint
on 7 since it also obtains from direct time-differentiation of (33). Thus, the latter can indeed be
interpreted as an arbitrage consistency condition. In any case, we are implicitly assuming that both
the real rate of return to vertical R&D and to horizontal R&D equal r for every ¢, meaning that the
(competitive) capital market is always willing to finance both activities.

22The uncertainty associated with R&D at the industry level creates jumpiness in microeconomic out-
comes. However, as the probabilities of successful R&D across industries are independent and there
is a continuum of industries this jumpiness is not transmitted to macroeconomic variables.

Z3This equation can be read as an arbitrage condition for investors, which requires that the real interest

rate equals the dividend rate, 7, plus the rate of capital gain, —I. This condition can be derived,

e.g., by solving (17) in order to V and substituting the result in (22).
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The optimal path of consumption satisfies the well-known differential Euler equation

ct) 1
SO [(1 = 7a) r(t) = p] (36)
as well as the transversality condition
lim e P'C(t)%a(t) =0 (37)

2.4. The government budget

We assume that the government budget is balanced at each point in time. The govern-
ment can support subsidies for intermediate goods production, s, for vertical R&D, s,
and horizontal R&D, s,, paid to firms, and can collect tax revenue from assets income,
Ta, and from labour income, 7, both supported by households. Thus,

TwW ()L + Tor(t)a(t) — s, X (t) — sy Ry(t) — spnRy(t) =0 (38)
holds for every ¢.

3. General equilibrium

In this section, we construct the general equilibrium, discuss the comparative statics of
the interior steady state and characterise the local dynamics in its neighbourhood. For
sake of simplicity, we abstract from then on from government intervention (i.e., we set
Sp = 8p = 8y = T = 0), saving the analysis of its effects for Section 4 and Appendix J.

3.1. The aggregate resource constraint
The balance sheet of households equates the value of equity holdings to the market value
of firms, that is

a(t) =V (j,0,t)N(t) =n()N(t) (39)
Hence, we can characterise the change in the value of equity as

a(t) =n(-)N () +9()N(?) (40)

Substituting (39), (35) and (30) (the latter solved in order to 7)) in (40), yields, after
some algebric manipulation,

Y () = X(£) + C(t) + Ru(t) + Ro(t) (41)

Equation (41) tells us that total final-good output, Y, is allocated among total consump-
tion, C, total production of intermediate goods, X, total vertical R&D expenditures,
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R,, and total horizontal R&D expenditures, R,, thus being a product market equilib-
rium equation. The results above also imply that households’ gross savings equal total
investment at every ¢, meaning that

a(t) = Ru(t) + Ro(t) — I(t)a(t) (42)

which is the accumulation equation for a.2* The first two terms on the right-hand side
of (42) represent the gross investment in technological knowledge at time ¢, whereas
the third term represents the depreciation (obsolescence) of the existing technological-
knowledge stock due to the stochastic arrival of vertical innovations (i.e., as j jumps to j+
1). Equation (42) has obvious similarities to the accumulation equation of physical capital
in the standard Ramsey model. However, the depreciation rate of the technological-
knowledge stock displayed by our model is not exogenous, but rather an endogenous
function of vertical R&D activity, in line with the notion of “endogenous obsolescence”
explored by Caballero and Jaffe (1993). Our concept of technological-knowledge stock can
be linked to the measure of knowledge stock proposed by Griliches (1979) and analysed
recently by Klette and Kortum (2004).2

According to (42), the dynamics of a depends on the dynamics of Y, C, R,, and R,,
which in turn depend ultimately on the dynamics of (). To see this, first note that

N(t) o
Ry (t) = /0 B, w, 1) (jyw, D) = TN Q) (43)

obtained by using I(t) = I(j,w,t) in (15).25 Second, recall the consistency condition
(33), from Section 2.2.2; since, in balanced-growth path, gy = % = R, =nN =ngnN,
R, grows with N and n; in turn, from (33),  grows with % Therefore, R, grows at the
same rate as @ in balanced-growth equilibrium. Finally, recall from (9) and (11) that

24Using (39) together with (33) (with s, = s, = 0), we get a = (Q, from which we conclude that (42)
is equivalent to Q = % (Rn + Ry) — IQ. See Appendix C for a detailed derivation of (41) and (42),
considering government intervention.

ZFor Griliches, the stock of “technical knowledge” is the discounted sum of past R&D, which he denotes
by K. Klette and Kortum (2004) propose a measure of the knowledge stock conditional on past
R&D expenditures, R, considering that the appropriate discount rate on past R&D is the intensity
of creative destruction. In our model, this is the Poisson arrival rate I, which may be time variable.
Hence, we have

t t
K(t) :/ e~ 1M R(s)ds
to

where tg is the date on which the first intermediate-good line was born. If we time-differentiate this
expression, we get K (t) = R(t) — I(t)K(t), which is similar to (42). This result should apply to the
whole class of lab-equipment quality-ladders models, as discussed in Gil and Afonso (2008). (For an
alternative measure of knowledge stock, set within a model that takes into account obsolescence and
diffusion effects, see Caballero and Jaffe, 1993).

#From (41), we also know that R, = (175"> - (InN + ZnN) (see Appendix C), which means that

1—sp

we must have (i:i’:) ~(I(t)nN + EnN) = I¢AT-5 Q. Using the fact that =1 [] <ﬁ> lnA] =
1

I (Aﬁ — 1) for j = 1 and small \, the above implies, for I > 0, % =

consistency condition (33).

75") %7 which is the

1—sp
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Y and X exhibit direct linear dependence on ). Thus, in balanced growth equilibrium,
when I is constant, (41) holds with Y, X, R,, R, and C growing at the same rate.

However, in the medium term (i.e., during the transition to the balanced-growth equi-
librium), only Y and X grow at the same rate (the growth rate of @), and the growth
rate of C'is determined residually after the dynamics of R, and R,,. Using (9), (11) (with
sy = 0) and (43) in (41) yields

HyQ(t) = HxQ(t) + C(t) + n(-)N () + I(H)CAT=Q(1) (44)

where Hy = L (Aéoﬂ) % and Hx=1L (AaQ)ﬁ.

3.2. The dynamic system

The general equilibrium is defined by the system of six equations: the Euler equation for
consumption (36); the households’ transversality condition (37); the horizontal arbitrage
condition (30); the vertical arbitrage condition (23); the arbitrage consistency condition
(33); the product market equilibrium equation (44), plus the necessary initial conditions.

We substitute (28) in the dynamic horizontal arbitrage equation (30) and take into
account (23) (with s, = s, = 0) and (24) in order to get

%:I(t) (Aﬁ—l) (HU)JF

g

7ATa (”(') - Q(t)) —vmn(-)] 3 <1> (45)

N(t) n(-) \o

and

+

! <1> (46)
¢ N@) n(-) \o
where we have considered that the number of sectors, N, is large enough to treat @
as time-differentiable and non-stochastic (two dots denote a second-order time deriva-
tive).2"By subtracting (46) to (45), we can see that

QW) M@ (e
o~ Mo =1 (/\ - 1) (47)

which tells us that the gap between the growth rate of () and the growth rate of N is
always positive, provided there is vertical R&D activity, i.e., I > 0. Moreover, as we
show below, this gap is constant and positive along the balanced-growth path.

(-4

27See Appendix D for a detailed derivation, considering government intervention.
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Equations (45) and (46) define a system of non-linear ordinary differential equations
whose solution, together with the initial conditions N(0) and @Q(0), gives us the time-
paths of N and @ (and thus of Y, X, R,, and R,) as a function of I. On the other hand,
those two differential equations are of second-order in N. To obtain a fully workable
dynamic system we need to add (36) and (44) to the system, reduce the order of (45)
and (46) and simplify across using (33). Firstly, we solve (33) (with s, = s, = 0) in
order to N, to obtain an ordinary differential equation (ODE) in N. Secondly, we solve
(46) in order to N, replace in (45) and use (33) to simplify, so that we have an ODE in
Q. Together with the Euler equation for consumption, (36) (with 7, = 0), the dynamic
system reads

N(t) = z(Q,N) - N(1) (48)
Ot) = (I(Q.N.C) - =+ 2(Q, N)) Q(¢) (19)
o) = <u o 0)) 0 (50)

where Z = ()\ﬁ - 1), = % <77A1_a - p), the latter obtained by replacing (23) in
(36), and

2(Q,N) = (f;) Towine (757 (51)
1(Q,N,C) = ; (Hy ~Hy - gg; —¢-2(Q, N)> (52)

Equation (52) results from solving (44) in order to I and using (33) and (48) to simplify,
such that I E'I(Q,N, (). Thus, we are able to define a system of three ODE’s @ =
Fo(Q,N,C), N = Fy(Q,N), and C = Fz(Q, N, C).

3.3. The steady state

3.3.1. Steady-state equilibrium

Now, we derive and characterise the interior steady-state equilibrium. First, it is con-
venient to find a transformation of the system (48)-(50) such that we can work with
an equivalent system whose equilibria are fixed points. The stability and unicity of the
interior steady-state equilibrium are shown within this framework.

Proposition 1. Let g, = §/y, the growth rate of a variable y along the balanced-growth
path. In this model, steady-state equilibria have the following characteristics: (i)
go =gq = g; (i) g1 = 0; and (iii) 7% = (0 +y+1), 2 #0.

Proof: See Appendix E.
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Having the above in mind, and following, e.g., Mulligan and Sala-i-Martin (1993), we
transform the system (48)-(50) into a system of rescaled variables. Recall (51) and let

2(t)= =) (53)

with the property that, in the steady state, = Z = 0. After time-differentiating (51)
and (53), and substituting with (48), (49) and (50) where necessary, we get the system

(10 oty +1\N@B| =l (211 .
x(t)—[Q ( > ]m(t)-[(w,z) = —x(t) ( +1> (t)? (54)

7 Q) g N(t) g g
2(t) = (ggg - gg;) z(t) = pz(t) — (; + E> I(x, z)z(t) — z(t)2(t) (55)

where I(z,z) = I(Q,N,C) (see (52)). Thus, we find a system of rescaled variables
equivalent to (48)-(50) which comprises two ODE’s, & = F,(z,z)z and 2 = F,(z,2)z.
Notably, (54) and (55) are quasi-linear ODE’s, whereas I is a linear function of x and
z. Equations (54) and (55), plus the transversality condition and the initial condition
x(0), describe the transitional dynamics and the steady state of the model, by jointly
determining the variables (z(t), 2(t)). From these we can determine the original variables
N(t) and C(t), for a given Q(t). That is, the system is undetermined in Q(t).2®

As usual, the fixed points of the system are found by equating ¢ = 0 and z = 0.
It is straightforward to show that there are four fixed points, but only is an interior
equilibrium, i.e., z* #0 A 2" # 0, where * indicates steady-state value. Let I(z,z) =

Iy + 11z 4 Iz, where Iy = wl% (Hy — Hx), I = == and I, = ——&—. Then, we

have, for the interior steady-state,
2= |-Iy— L+ ——12") — (56)

= Il
* p=
Tt = o7
E(c+y+1)+35(c+7) &7
From (48) and (51), we find that

gy =" (58)

and, from Proposition 1-(iii),

28This means that one of the three eigenvalues associated to the original dynamic system equals zero.
Thus, the Jacobian of the original system has a null determinant, which guarantees the existence of an
equilibrium with non-null growth rates of @ and N. Caballé and Santos (1993) give a detailed analysis
of this sort of indeterminacy in the context of an endogenous growth model with both physical and
human-capital accumulation.
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pE(c+v+1
g*:'_‘ ( - ) (59)
E(c+v+1)+5(0+7)

Finally, using (56) and the definition of Iy, I; and I3, we find

e p(o+7) (60)
= Ec+y+1)+5(0+7)
and
o+ HE
= Hy —Hy—¢ (1422 )H 61
- =< () s e oy
The condition Hy — Hx > C(l—i— UIV) = +7+¥)E+1( o is required in order to have
— =\ 50’

2* > 0.22We conclude that the fundamental determinants of vertical innovation intensity,
I, are the technological parameters (i.e., the production parameters A and «, the vertical-
innovation parameters A and ¢, and the horizontal-entry parameters v and o), and the
preferences parameters (p and ). The link to the preferences side of the model runs
primarily through the relationship between I and r represented by the arbitrage equation
(23). This relation is in line with the Schumpeterian early view that the market real
interest rate must evolve in tandem with the process of creative destruction. Note also
that, as one should expect,

- * 71z * %
Lim g” = 1M 9" = Gno—entry

Let N = E, where E stands for the instantaneous rate of entry. The steady-state values
of N, E and C are derived from (51) and (53), given (). Thus,

= (5)7 @y () @ (©

The results above can be summarized in the following proposition.

Proposition 2. There is a unique interior steady-state equilibrium, as defined by equa-
tions (57)-(64).

Proof: See derivations above and Appendix F.

29¥et, in our numerical simulations this constraint was not binding even for a wide range of parameter
values.
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Finally, g* > 0 requires p = % ( — - p) > 0. Since, from (36), g = gc = %(r - ),

then r > p must occur. This condition also guarantees g3 > 0. On the other hand,
according to the transversality condition, (37), together with (39) and (33), we have

-0

lime P'C(t)~9¢Q(t) = lime " (C(t)) cQt)?=o0 (65)

t—o0 0o Q(t)
where € is stationary in steady-state, as shown above. Let Q = Qegt, where Q denotes
detrended @ (thus stationary in steady-state), and substitute in (65), to see that the
transversality condition implies p > (1 — #)g; using again g = %(r — p), the latter
condition can be written alternatively as » > ¢g. As it happens, this condition also
guarantees that attainable utility is bounded, i.e., the integral (34) converges to infinity.

Thus, our model predicts, under a sufficiently productive technology, a steady-state
equilibrium with constant positive g and gy, where the former exceeds the latter by
an amount corresponding to the growth of intermediate-good quality, driven by vertical
innovation (see (47)). This implies that the consumption growth rate equals the growth
rate of the number of varieties plus the growth rate of intermediate-good quality, in line
with the view that industrial growth proceeds both along an intensive and an extensive
margin. A similar result can be found, e.g., in Dinopoulos and Thompson (1998), Peretto
(1998) or Arnold (1998).3°

But differently from Peretto (1998) and the already quoted quality-ladders models
with expanding variety, in our model the growth of the number of varieties is not linked
to the (exogenous) population growth rate. The negative spillover effect in (28), de per
se, determines a constant number of varieties in balanced-growth equilibrium(see Barro
and Sala-i-Martin, 2004, ch. 6); however, variety expansion is sustained by endogenous
technological-knowledge accumulation (independently of population growth), as the ex-
pected growth of intermediate-good quality due to vertical R&D makes it attractive for
potential entrants to always put up an entry cost, in spite of its increase with N.3! In
this sense, our model predicts that it is not necessarily the larger economy, measured
by population size, that produces the greater number of distinct goods, but that with
the larger technological-knowledge stock, which thus emerges as the relevant endogenous
measure of economic size. The positive steady-state relation between N and @, for a
given z, is made clear by (62), above.

Arnold (1998) and Funke and Strulik (2000) also obtain a positive growth rate of the
number of varieties in the steady state that is solely driven by knowledge accumulation.
However, in their models, this occurs in the form of human-capital production, with the
latter counterbalancing the increasing entry cost due to rising real wages caused by the
positive impact of a growing N in labour marginal productivity. The monotonic positive

39Tn Peretto (1998)’s model of endogenous growth with cost-reducing R&D, the intensive margin is due
to productivity growth, whilst in Arnold (1998) it reflects human-capital accumulation.

3n fact, as shown in Appendix B, the dependence of n on N is necessary to eschew the explosive
balanced-growth path that would occur in our model if  were constant over time (or depended solely
on N). This is not the case in Barro and Sala-i-Martin (2004, ch. 6)’s basic model of pure expanding
variety.
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relationship between the steady-state values of g and gn observed in our model (see
Proposition 1-(iii), above) is qualitatively similar to the one in Funke and Strulik (2000)
(see their Proposition 1).

We interpret the technological-knowledge stock per firm, %, as a measure of average
firm size.3? According to (47), it expands at the growth rate of intermediate-good quality
in steady state. Alternative measures of firm size such as production (or sales) per firm,
%= Hx% (see (44)), or financial assets per firm, & = n = C% (see (39) and (33))
produce the same result.?® Peretto (1998) takes employment per firm as an explicit
measure of firm size, while physical capital per firm in efficiency units and human capital
per firm can be interpreted as measures of firm size in Aghion and Howitt (1998, ch.
12) and Funke and Strulik (2000) and Arnold (1998), respectively. All three ratios are
constant in the steady state.?*

These results are broadly supported by historical empirical evidence. The increase of
sales per firm over time is referred, e.g., by Jovanovic (1993) for the US, whilst Ehrlich
(1985) finds a “relative stability of establishment sizes”, measured as employment per
establishment, in a long time-series data base for the US, Japan and eight European
countries. The increase of the number of firms and establishments over the long run is
reported, e.g., by Maddison (1994).3° The last two empirical regularities are confirmed
by Laincz and Peretto (2006), who analyse more recent data for the US.3¢

3.3.2. Comparative steady-state analysis

Now, we discuss the comparative statics of the interior steady-state. The following
proposition summarizes the main results with respect to the structural parameters.

32Gince our model exhibits a symmetric equilibrum, the number of firms determines the two dimensions
of market structure that have deserved the bulk of attention in IO literature, which are firm size
(relative to market size) and concentration. This property allows us to focus on only one variable to
describe market structure, which is firm size. Note also that our general-equilibrium framework makes
explicit the endogenous determination of market structure, in line with the more recent literature
that develops the “Schumpeterian hypotheses” by recognising the feedbacks between market structure
and economic performance (see Peretto, 1999).

33The conditions of interchangeability among alternative measures of firm size at the empirical level
are discussed by, e.g., Smyth, Boyes, and Peseau (1975), Shalit and Sankar (1977) and Jackson and
Dunlevy (1982).

34To see the parallel with the results of the standard growth model, suppose that the number of firms
increases at the (exogenous) population growth rate, total sales increase at the output growth rate
and technological progress is exogenous. Hence, in steady state, sales per firm grow at the rate of
technological progress, whereas employment per firm and the capital stock per firm in efficiency units
are constant.

35See Gil (2008) for a discussion of the empirical literature relating firm dynamics with long-run economic
growth.

36 As regards the relationship between economic size and the number of firms, Sherer and Ross (1990,
ch. 3) state the robustness of the cross-sectional evidence that shows that large countries (measured
by population size) tend to have a larger number of firms (and lower concentration rates) than small
countries. However, they also note that the relationship is far less clear when the comparison stands
between intermediate and large-size countries. An explanation for this result may be that population
size is not the best measure of economic size. As already said, our model suggests that one should
rather focus on endogenous measures of economic size, such as the technological-knowledge stock.
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Proposition 3. The aggregate growth rate, g, and the growth rate of the number of vari-
eties, gy, are decreasing in the fixed cost of vertical R&D, ¢, and in the elasticities
of the horizontal entry cost function, ¢ and =, are increasing in the size of quality
upgrade, A\, and do not depend on the fixed cost of horizontal entry, ¢. For a given
@, the number of firms in the differentiated-good sector, N, (alternatively, firm size
as measured by the technological-knowledge stock per firm, %) is decreasing (in-
creasing) in o, ¢ and \, and is increasing (decreasing) in v and .37 Instantaneous
entry, E, for a given @), is decreasing in o, ¢ and (, and is increasing in v and A.

Proof: Differentiate (57), (59), (62) and (63) with respect to the relevant parameters.

See Table 1, in Appendix G, for the complete set of qualitative results concerning g, gn,
I, N, and F. Below, we comment the main results.

The lack of relationship between the steady-state growth rate, g, and the fixed cost
of horizontal entry, ¢, is noteworthy. Intuitively, it results from the dominant effect
exerted by the vertical-innovation mechanism (the intensive margin) over the horizontal
entry dynamics (the extensive margin). Given the postulated horizontal entry technol-
ogy, a steady state with positive net entry occurs ultimately because entrants expect
incumbency value to grow propelled by quality-enhancing R&D. However, ¢ influences
the steady-state levels of the industry variables N and E, reducing both - and thus in-
creasing firm size - for a given value of @), due to its impact on the arbitrage consistency
condition (33). Arnold (1998) and Funke and Strulik (2000) obtain a similar result with
respect to both the aggregate growth rate and firm size, while Peretto (1998) predicts a
similar relationship with firm size but he instead establishes a positive relationship with
the aggregate growth rate.?®

With respect to the elasticities of the horizontal entry cost function, both changes in
o and in v have a negative impact on g, as intuition suggests, but their effects contrast
when it comes to the impact on N and E. The parameter o exerts a first-order effect
on N and FE, qualitatively similar to the impact due to changes in ¢, whereas v exerts a
second-order effect. These results suggest that industry policies aiming at reducing the
variable costs faced by entrants may have opposing outcomes with respect to their impact
on the market structure and industry dynamics, depending on whether they target o or
5.

For a given (@), the correlation between the number of firms and the growth rate of
the number of varieties tends to be negative in steady state. This conforms with some
of the empirical evidence on the rate of entry and the number of firms reported, e.g.,

37In some particular cases, the alternative measures of firm size % = Hz% and & = ¢ % yield different

comparative static results than those in the text. For example, is increasing in ¢, whilst % and

% are both decreasing in that parameter.

38In the three models, the fixed cost of horizontal entry is represented by the reciprocal of the efficiency
parameter in the production function of new varieties. However, in Arnold (1998) and Funke and
Strulik (2000) new varieties are produced with human capital, which can be accumulated, whereas
in Peretto (1998) they are produced with labour, which follows an exogenous growth process. Thus,
in the latter, an increase in the cost of entry diverts resources from the production of new varieties

to cost-reducing R&D activities, which enhances the aggregate growth rate.

a
N
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by Sherer and Ross (1990, ch. 3). Since the same relationship applies to the aggregate
growth rate, our model also predicts that economies with higher long-run growth rates
tend to have a market structure characterised by larger firms, in line with Peretto (1998)
and Aghion and Howitt (1998, ch. 12).3% A positive empirical relation between firm size
(employment per firm) and the aggregate growth rate is found by Pagano and Schivardi
(2003).

Our model offers mixed results with respect to the steady-state correlation between
the rate of vertical innovation and both the aggregate growth rate and firm size. Shifts
in the steady state due to changes in the elasticities of the horizontal entry cost function,
o and 7, yield a negative relationship between the two variables, whilst changes in the
preferences parameters or in ¢ give rise to a positive correlation. The impact of changes
in o and 7 is explained as follows: an increase in those two parameters induces a shift
of resources from horizontal entry to vertical R&D, but the effect of the increment in
the latter is dominated by the decrease in the former, thus yielding a lower g.The same
results apply to the relationship between the aggregate growth rate (or firm size) and
the aggregate investment rate, measured as %.This ratio is also known as “R&D
intensity” in IO literature.4°

According to Bassanini, Scarpetta, and Visco (2000), empirical studies in general find
a strong positive relationship between R&D intensity and growth at the sectoral and
firm level, but a clear link is usually difficult to establish at the aggregate (cross-country)
level. On the other hand, Pagano and Schivardi (2003) note that empirical firm-level
studies on the relationship between firm size and innovation have failed to reach a clear
conclusion. Yet, those authors conduct a cross-section study at the aggregate level and
find that average firm size matters for growth through its effects on R&D intensity, thus
implying a positive correlation between firm size and innovation intensity. The literature
often places the emphasis on the several conceptual and measurement problems that still
afflict empirical analysis in this field to explain the lack of robust results. In contrast,
by producing mixed theoretical results with this respect, our model lends theoretical
support to the lack of clear-cut empirical findings.

By performing a simple numerical exercise, we conclude that the impact of a change
in A on g is the higher among the parameters analysed in Proposition 3, followed closely
by ¢. Changes in ¢ and 7 have a similar, relatively small, impact on ¢.*!

39A positive correlation between firm size and the aggregate growth rate is the general case in our model.
However, that correlation is negative when a shift in the steady-state equilibrium is due to a variation
in 0. Likewise, in Aghion and Howitt (1998, ch. 12), a change in the exogenous labour growth rate
(implying a change in the rate of creation of differentiated goods, an effect qualitatively similar to a
change in o in our model) also implies a negative relationship between those two variables.

49The negative correlation associated with changes in ¢ and ~y reflects the negative correlation between g
and R, (and thus the vertical-innovation rate), whose effect overweights the positive relation between
g and R,.

41'Whenever we perform numerical exercises, we use the baseline parameters in Section 3.4, below.
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3.4. Aggregate transitional dynamics

Next, we characterise qualitatively the local dynamics properties in a neighbourhood of
the interior steady state, by studying the solution of the linearised system obtained from

(54) and (55)
T . J11 J12 .%'(t) —z*
< z > N ( Jo1 J22 > ( z(t) — 2* (66)
given the initial condition x(0) and the transversality condition (65). The elements of
the Jacobian matrix in (66), denoted by J, are

in==[(57) 5@ o

o (68)

ngz—[— <;+:> (Eil)ﬂ} o (69)

N A

(24+1) =
It is clear that Ji1, Jis < 0, whereas Jo; < 0 iff & > 1. It can also be shown that Jys > 0

provided g > 0(= g > 0). This last condition ensures that det(J) = Jy11Ja2 — Ji2Jo1 <
0,Vg>o , such that J has two distinct real eigenvalues with opposite signs

51 = % <tr(J) - A%) <0 (71)
5y = % <tr(J) + A%) >0 (72)

where A = tr(J)? — 4 - det(J) and tr(J) = Ji1 + Jaa. Therefore, the dynamics are
saddle-path stable, where §; determines the dynamics for the transversality condition to
hold. Having solved (66), the dynamics of I, g and r are derived from (52), (49) and
(23), whereas the dynamics of E, C' and N are obtained from (51) and (53).

We focus on the empirically relevant case of 8 > 1. In Appendix I, Figure 2 shows the
phase diagram with the linearised isoclines for & and z, whereas Figure 3 illustrates the
transitional dynamics by considering deviations of x above its steady-state value, i.e.,
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2(0) = zg > 2*.*2 This would be the case of an economy with a N too low relatively
to @ and, thus, firm size too large (e.g., an emergent-market economy, displaying a
shallow market of differentiated goods, in contrast to a mature-market economy, which
is expected to boast a deep market of differentiated goods). Thus, we have

Proposition 4. Consider an economy initially endowed with N(0) varieties, such that
x(0) > x*, and @ > 1. The transitional dynamics is characterised by a catching-up
effect. The economy experiences a decreasing z and x (= gn); this implies that
more resources become available to R,, boosting I and reducing r; consequently, g
falls due to the downward movement of gx but less so due to the effect of accelerated
vertical innovation, reflecting the increase in I. In stationarized terms, both N and
Q grow along the transition path,*3 but the former grows more than the latter,
implying a falling firm size; also, C' grows less than @), whereas F decreases.

Proof: See Appendix H.

According to Proposition 4, our model exhibits the convergence property that applies
in the standard Ramsey model (falling aggregate growth rate and real interest rate to-
wards the steady state), although through a distinct mechanism - one which introduces
dynamic second-order effects in horizontal entry (see (28)),similarly to the mechanism
that regulates the changes of the physical-capital stock in the literature of firm invest-
ment with convex adjustment costs.**An economy with too few varieties relatively to the
technological-knowledge stock (i.e., a too high firm size) starts with a smaller I, a higher

42We use the following set of baseline parameter values: y=1,0 =1, ¢ =1, { = 0.9, A = 2.5, p = 0.02,
0 =15, a =04, A =1, L = 1. The values for A\, 8, p and a where set in line with previous
work on growth and guided either by empirical findings or by theoretical specification. The values
of the remaining parameters were chosen in order to calibrate the steady-state aggregate growth
rate around 2.5 percent/year. Note that the obtained Poisson arrival rate is of nearly 3 percent in
steady state, corresponding to the average of the estimates provided by Caballero and Jaffe (1993)
for the creative-destruction rate in the US, whilst the real interest rate value of around 6 percent
conforms more with the long-run average real rate of return on the stock market than with the
risk-free rate on treasury bills (see Mehra and Prescott, 1985). On the other hand, the choice of
values for o and ~ implies that, in steady state, the entry-cost function 7(-) takes a quadratic form:
N =gy N = n(N, N) = ¢NN = ¢)$(N)2. This is a widely used specification for the adjustment-
cost function in the literature of firm investment with convex adjustment costs of the capital stock
(e.g., Eisner and Strotz, 1963). Finally, the normalization of A and L to unity at every ¢ implies that
the results do not depend on the value of the growth rate of those two variables (either zero or not),
and also that all aggregate magnitudes can be interpreted as per capita magnitudes.

43In order to compute stationarized Q, Qsiat, let Q = QmagQ(t)t (with Qo > 0) and Qstar = Qefg*t;
hence, Qstat = Qoe(gQ(”_g*)t. Stationarized N, C' and F are computed from Qsiq¢, after numerical
integration.

“Barro and Sala-i-Martin (2004, ch. 6)’s model of expanding variety is able to produce transitional
dynamics based on an entry-cost function with N as the single argument; however, in the steady
state, N is constant. By repeating the steps used to derive (45) and (46), it can be shown that with
such an entry-cost function our model displays notransitional dynamics, but N exhibits positive
steady-state growth (see Appendix B): in short, under the arbitrage consistency condition (33), the
trajectory in the phase space collapses into a singular point (the steady-state equilibrium). Finally,
as shown above, we are able to reintroduce transitional dynamics in our model when we specify an
entry cost function with N and N as arguments.
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gn, a higher g and a higher r than a mature market economy. A lower I (which is also
the obsolescence hazard rate associated to vertical R&D activities) implies a higher r
(see (23)) and a lower R, (see (14)), which secure the larger resources allocated to R,,.
Note also that the higher g is solely justified by the higher gn. Along the transition path,
g and gn decrease, whereas part of the resources allocated to R, is gradually re-targeted
to R,. The consequent increase in I implies a falling 7.

Thus, in our model, the aggregate growth rate and the vertical-innovation rate are
negatively related during the transitional dynamics. The same applies to the relation
between the aggregate growth rate and the aggregate investment rate, %. The
quality-ladder model with expanding variety by Dinopoulos and Thompson (1998) ob-
tains a similar re-balancing effect between R, and R,; however, in their model, the
vertical innovation rate falls in parallel with ¢ and r along the transition path. On the
contrary, the medium-run negative relationship between the vertical-innovation rate and
the aggregate growth rate is also apparent in the quality-ladders model by Aghion and
Howitt (1998, ch. 3), but only for a specific set of parameter values.*®

The latter results may give theoretical support to the lack of positive correlation be-
tween innovation intensity (measured as R&D intensity) and economic growth found
recently (e.g., OECD, 2006), particularly in countries situated below the technological
frontier. In the context of our model, these would be countries approaching steady-state
equilibrium from above, and exhibiting a low speed of transition.*6

With respect to firm size (technological-knowledge stock per firm) and the aggregate
growth rate, they are positively related during transitional dynamics. In Aghion and
Howitt (1998, ch. 12), firm size, measured as the physical-capital stock per firm in
efficiency units, is commanded by the physical-capital stock along the transition path.4”
As long as the model exhibits the convergence property, it produces a positive relationship
between firm size and the aggregate growth rate. The models by Peretto (1998), Arnold
(1998) and Funke and Strulik (2000) also generate a positive relationship along the
transition path between the aggregate growth rate and firm size, measured as employment
per firm in the former and the human-capital stock per firm in the other two.*® The

45These authors develop a quality-ladders model with intersectoral spillovers and a constant number of
differentiated products, combined with physical-capital accumulation. The latter is a direct input to
intermediate-good production and, indirectly, an input to R&D. Innovation is stimulated by a rise in
capital intensity, whilst diminishing marginal returns to physical capital per capita imply, for some
parameter values, a decrease in aggregate growth rate as the capital stock approaches its steady-state
level from below. If this is the case, economic growth and innovation move in opposite directions
along the transition path.

46 Available empirical evidence suggests slow transitions are the case in general. See Proposition 5, below,
and ensuing discussion.

“TThis model has a structure similar to Aghion and Howitt (1998, ch. 3) (see fn. 45), but where the
number of differentiated goods varies over time. More precisely, the number of goods follows an
exogenous growth process according to which it increases linearly with labour.

“8In Dinopoulos and Thompson (1998), there is no assumption with respect to the span of firms, meaning
that there can be both single and multi-product firms. Nevertheless, their model also displays a
positive relationship between the aggregate growth rate and employment per differentiated good
(which is a measure of firm size, if we postulate that the number of goods per firm is constant across
the economy).

27



results described above imply that, in our model, the rate of vertical innovation (or
the aggregate investment rate) and firm size display a negative relationship along the
transition path, although their correlation may be either positive or negative in steady
state (see Subsection 3.3.2, above).

Empirical evidence of a positive correlation between the aggregate growth rate and
firm size (employment per firm) in the intermediate-run is provided by Jovanovic (1993)
and Laincz and Peretto (2006), whilst Campbell (1998) reports evidence on the positive
correlation between the aggregate growth rate and the rate of entry (corresponding, in
our model, to the growth rate of the number of varieties). With respect to the latter
relationship, it is noteworthy that the value of less than unity predicted by our model is
clearly matched by the empirical findings in Campbell (1998).49

To give account of the dynamics of households’ gross savings, let us define the gross

saving rate as sv = % Using the relationship between Y, X and @ obtained above
(see (44)), we get

woit) - o= QO —CW) _ | =)
(Hy - Hm) Q(t) Hy - Hm

(73)

Consider again a deviation of x above its steady-state value for the case # > 1.5 Since
z decreases along the transition path (see Proposition 4), then, according to (73), sv
increases towards the steady state. Hence, our model predicts that a shallow-market
economy is inequivocally characterised by a too low gross saving rate (and, consequently,
a too low investment rate), but which gradually raises during transition, as income per
capita increases. Since the real interest rate, r, decreases during transition, we conclude
that the income effect from the interest rate dominates.?® This accords with the available
empirical evidence regarding transition (Barro and Sala-i-Martin, 2004, ch. 12).°2 The
standard Ramsey model is also capable of predicting a moderately increasing gross saving
rate along the transition path in an economy that starts with scarcity of physical capital
per capita, but only for a particular combination of parameter values (in particular, for
0 sufficiently above 1; e.g., Barro and Sala-i-Martin, 2004, ch. 2).

Finally, in practice, one should be interested not only in the sign of the effects of
some change in the parameters of the model, but also in how rapidly those effects occur,
as emphasized, e.g., by Mulligan and Sala-i-Martin (1993). We highlight the following
comparative statics results with respect to the speed of convergence.

Proposition 5. The speed of convergence (measured by the modulus of the stable eigen-

Oail (2008) presents a discussion of the empirical literature on the relationship between firm dynamics
and growth over the short and intermediate run.

OWe see from (61) that, in steady-state, the gross saving rate is given by sv* =
ﬁg (1 + ‘7;7) Wﬁ%(v-ﬂ)' Hence, sv™ > 0 trivially requires H, — H, >0< Y — X > 0,
besides the already imposed p > 0.

511¢ results from Appendix H that, with 8 < 1, we have vi; < 0 (v11 is the first element of the stable
eigenvector). In this case, z increases towards the steady state, and, thus, both sv and r decrease
along the transition path, meaning that the substitution effect from the interest rate dominates.

52However, in our model, the relevant dynamics for Y is defined in stationarized terms. As already
shown, Y dynamics follows directly from Q. See Proposition 4, above.

28



value, d1) depends positively on the elasticity of the horizontal entry cost function,
o, and the vertical innovation step, A. It depends negatively on the elasticity of
marginal utility, 8, the elasticity of the horizontal entry cost function, v, and the
fixed cost of vertical R&D, (. It does not depend on the fixed cost of horizontal

entry, ¢.

Proof: Taking into account (67)-(70), differentiate (71) with respect to the relevant pa-
rameters.

In particular, it is noteworthy that ¢ and v exhibit effects of opposite signs on the speed
of convergence to the steady state, with the latter having a rather higher magnitude
than the former. The impact of a change in A on 47 is the highest among the parameters
analysed in Proposition 5, followed at some distance by ¢ and « (the impact of the former
doubles, in absolute terms, the impact of the last two).

With the chosen set of baseline parameters (see fn. 42), the speed of convergence to the
steady state is 2.2 percent /year, implying an half-life of roughly thirty-two years, which is
within the range of estimates given by Barro and Sala-i-Martin (2004, ch. 11) for the US,
Japan and several European countries. This result contrasts with the rather higher values
obtained with the standard Ramsey model calibrated with reasonable parameter values.
As shown by Ortigueira and Santos (1997) in a two-sector endogenous growth model
with physical and human capital, “the presence of a simple adjustment costs technology
reasonably can reduce the rate of convergence without altering substantially some other
relevant predictions” (Ortigueira and Santos, 1997, p. 384). In the class of models studied
therein, the adjustment costs originate from the distinct technologies used to accumulate
human and physical capital, whereas, in ours, the adjustment costs relate directly to the
parameter « in the horizontal entry-cost function.

4. The effects of fiscal-policy instruments

We now study the role of taxes on assets income and of subsidies to intermediate-goods
production and to vertical and horizontal R&D, under the assumption that the govern-
ment budget is balanced at each point in time.?® The steady-state values of g, gn, 2, I
and N are given by the expressions in Appendix J. There we also present the expres-
sions for the alternative measures of firm size (production, or sales, per firm and financial
assets per firm) and for the aggregate investment rate.

The steady-state growth and level effects of fiscal policy instruments are described by
the following proposition.

Proposition 6. The aggregate growth rate, g, is decreasing in the tax rate on assets

income, 74,°* is increasing in the subsidies granted to intermediate goods produc-

3By assumption, increases in subsidies and reductions in taxes on assets income are financed with
nondistortionary taxes, which, in our model, are the labour income taxes, 7.

541t is easily shown that the tax on households’ assets income is equivalent to a tax on firms’ profits gross
of R&D expenditures (i.e., operational profits, IT) and net of the effect of depreciation of non-physical
capital (i.e., obsolescence of technological knowledge, Ia): Tora = 7 (Il — Ia).
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tion, s;, and to vertical R&D, s;., and does not depend on the subsidies granted to
horizontal entry, s,. For a given (), the number of firms in the differentiated good
sector, N, (alternatively, the average firm size, %) is decreasing (increasing) in sy
and s, and is increasing (decreasing) in 7, and s,,.%> Instantaneous entry, E, for a
given @, is decreasing in 7, and increasing in Sy, S, and ;.

Proof: See Appendix J(a).

Peretto (1998) carries out an analysis very similar to ours. In order to contrast his results
to our own, see that, according to Proposition 6, our model predicts that (i) in response
to a subsidy granted to vertical R&D, the economy converges to a steady-state with a
larger firm size in the differentiated good sector and faster aggregate growth (this result
is similar to Peretto’s “Result 47);%% (ii) in response to a subsidy granted to horizontal
entry, the economy converges to a steady-state with smaller firm size, but unchanged
aggregate growth (Peretto’s “Result 5 establishes a slower aggregate growth); and (iii)
in response to a tax on firms’ operational profits (net of capital depreciation)®”, the
economy converges to a steady-state with smaller firm size and slower aggregate growth
(Peretto’s “Result 8” establishes a larger firm size and unchanged aggregate growth). The
results in (iii) are, in qualitative terms, the reverse of (i). As far as the growth rate of
the number of differentiated goods (which Peretto refers to as “entry”) is concerned, its
steady-state value is pegged to the population growth rate in Peretto (1998) - hence,
unchanged across (i)-(iii) -, whilst in our case it is pegged to the aggregate growth rate.

From above, we emphasise the lack of relationship between g and s,, in contrast to
the effect of the latter on firm size. In order to gain further insight, notice that s,
increases the aggregate investment rate, %, while it decreases investment per

firm, measured as %, for a given Q. Yet, changes in s,, s, (7,) increase (decrease)

both ratios. The corollary is that investment per firm is the relevant investment rate
as far as the effect of fiscal variables on long run growth is concerned. This theoretical
result is strongly underlined by Peretto (2003),5® and corroborated by Laincz and Peretto
(2006)’s empirical findings.

By performing a numerical exercise, we also conclude that the effect of s, s, and 7, on
g are very close in absolute magnitude, although somewhat higher when s, is the chosen
policy variable.

We add to Proposition 6 the following second-order results.

% The alternative measures of average firm size pointed out in Appendix J(b) yield different comparative
static results in some particular cases. For example, - is decreasing in s, whereas % and % are
both increasing in that parameter. With respect to changes in s, the sign of variation is the same
for all three measures of firm size, but a numerical exercise shows that % exhibits a rather higher
sensitivity, in relative terms, than the other two. Regarding changes in s, and 7., both sign and
relative magnitude of variation are identical for all three measures of firm size.

56The aggregate growth rate, g, in our model is comparable with the consumption growth rate in Peretto
(1998).

"This effect is absent from Peretto (1998).

%8Peretto (2003) conducts an extensive analysis of the effect of fiscal variables on long-run growth by

augmenting Peretto (1998)’s model with endogenous labour and public goods supply.
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Proposition 7. The positive effect of s, and s, on ¢ diminishes rapidly as s, and s,
increase, that is, the marginal returns to granting subsidies to intermediate good
production and vertical R&D have a steep negative slope. On the other hand, the
higher the elasticities in the entry cost function, o and -y, the lower is the impact
of s, and s, on g.

Proof: See Appendix J(a).

These results suggest that industry policies favouring the reduction of the variable costs
faced by entrants - through a reduction of either o or 7, or both - may have an indirect
positive effect on g by alleviating the decreasing marginal returns associated to s, and
sz. This effect reinforces the direct effect described in Proposition 6, above.

Finally, we present the comparative statics results with respect to the speed of conver-
gence.

Proposition 8. The speed of convergence (measured by the modulus of the stable eigen-
value, d1) depends positively on s,, s, and s, and depends negatively on 7,.

Proof: See Appendix J(c).

In particular, it is noteworthy that, in contrast to ¢ (see Proposition 5), s, has a positive
(although small) impact on the speed of convergence, in spite of the fact that both
parameters have no influence on the steady-state value of g.

5. Conclusion

In this paper, we develop a version of the multi-sector model of R&D-driven endogenous
growth, with quality ladders in the intermediate-good sector (e.g., Aghion and Howitt,
1998, ch. 3, and Barro and Sala-i-Martin, 2004, ch. 7). In particular, we merge the
expanding variety (e.g., Romer, 1990, and Barro and Sala-i-Martin, 2004, ch. 6) with the
quality-ladders mechanism and thus the number of intermediate goods is not necessarily
constant over time. Within our framework, the assessment of the effects of R&D on
economic growth and on firm dynamics comprised two analytical stages: balanced-growth
path and transitional dynamics.

Our paper contributes to the literature of endogenous growth models with transitional
dynamics by building in a new mechanism that produces intermediate-term adjustment
with an empirically reasonable speed of convergence, without relying on an aggregate pro-
duction function with decreasing marginal returns in the accumulated factors. Owing to
this mechanism, transition is driven by imbalances in the ratio between the technological-
knowledge stock and the number of differentiated goods, which is our measure of average
firm size. This property allows us to insert our model in the literature that studies the
interplay between long-term growth and the factors usually studied in the domain of 10.
We conduct this study in the context of monopolistic competition,®*using average firm
size as the pivotal IO variable.

59Note that monopolistic competition is the limiting market structure for Bertrand oligopoly as the
number of firms becomes very large.
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The model predicts, under a sufficiently productive technology, a steady-state equi-
librium with constant positive growth rates, and where the consumption growth rate
equals the growth rate of the number of varieties plus the growth rate of intermediate-
good quality, in line with the general view that industrial growth proceeds both along
an intensive and an extensive margin. The growth of the number of varieties is sus-
tained by (endogenous) technological-knowledge accumulation, as the expected growth
of intermediate-good quality makes it attractive for potential entrants to always put up
an entry cost, in spite of its upward trend. In this setting, it is not necessarily the larger
economies, measured by population size, that produce the greater number of distinct
goods. Instead, the relevant distinction herein is based on an endogenous measure of
economic size, such as the technological-knowledge stock.

We obtain specific results with respect to the impact of changes in the entry-cost
parameters and the fiscal policy variables both in the aggregate growth rate and in
the market structure in steady state. We emphasise (i) the lack of relationship between
economic growth and the fixed cost of horizontal entry (government subsidy to horizontal
entry), but the positive (negative) relation between the latter and firm size, (ii) the
negative impact of the government tax on firms’ operational profits on both economic
growth and firm size, (iii) the relevance of investment per firm, instead of aggregate
investment rate, to assess the effect of the fiscal variables on economic growth, (iv) the
contrasting effect of changes in the two elasticity parameters of the entry cost function
in firm size, and (v) the positive correlation between firm size and economic growth.
The model offers a mixed result with respect to the steady-state relation between R&D
intensity and both the aggregate growth rate and firm size.

We also conclude that the model exhibits the convergence property that applies in the
standard Ramsey model, although based on a rather distinct mechanism. The model
produces results that differ from (or expand the results from) the early models of quality
ladders with expanding variety. In particular, we obtain as a general result that medium-
term economic growth and firm size are positively correlated, whereas R&D intensity
and both medium-term economic growth and firm size move in opposite directions. The
former result adds to the theoretical predictions already found in the literature of positive
correlation between economic growth and firm size measured either as employment per
firm, human-capital stock per firm or physical-capital stock per firm in efficiency units,
and which have had wide empirical support. The latter result - together with the mixed
steady-state comparative result mentioned above -, on the contrary, helps to shed light
on the lack of clear-cut findings with this respect at the empirical level.
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Appendix

A. Derivation of equation (17)

With respect to the incumbent in industry w, and bearing in mind that the monopoly
profit has Poisson death, we apply the Bellman Principle to get the Hamilton-Jacobi-
Bellman equation (henceforth, we omitt the dependence on w and ¢ for sake of simplifi-
cation and take j(w,t) as the relevant state variable)

V() = () + Z E{AV ()} &

. . N : m(j)
S rVij) = —IHV(H) V(Y =—"= 74
rV(i) =7(j) = 1)V () < V() TEI0) (74)
where r is the equilibrium market real interest rate, to be determined in general equilib-
rium.%® In the first line of (74), the second term on the right-hand side of the equation

reflects the Poisson process followed by ;.61

50This is a recursive formulation that depends on the constancy of r and I over time. This is a suitable
assumption when analysing a balanced growth equilibrium.
5'Here we used the version of It6’s Lemma for Poisson jump processes (e.g., Dixit and Pindyck, 1994).
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On the other hand, an entrant ¢ chooses the flow of resources R,; devoted to vertical
R&D in order to maximise expected discounted profits, taking into account that the
government subsidises vertical R&D by paying a fraction s, of each firm’s total vertical
R&D expenditures. Let Vy;(j) denote the expected discounted profits earned by an
entrant ¢ when the highest quality in w is j(w,t). The relevant Hamilton-Jacobi-Bellman
equation in this case is

rVyi(j) = RT-(?)xzoIi(j) V(G +1) = V5G] = (1= s) - Rui(d)+

15 (5) V(G + 1) = V(5] (75)

where I_; is the instantaneous probability that all the other entrant firms in w combined
innovate.

Now, we compute the first-order condition for profit maximization for entrant i in w
by equating the derivative of the right-hand side of (75) with respect to R,; (or I;) to
zero, with I;(j) = Ryi(7)®(j) in mind, such that

PHVE+1) = V() =1 —=s) =0 (76)

With free-entry into the vertical R&D business, and assuming that the individual con-
tribution of any particular entrant ¢ to the aggregate innovation rate of all entrants, I,
is negligible, we have

Vyi(j) =0 (77)

that is, the market value of each entrant firm equals zero at each point in time. Therefore,
using (77) in (76) and aggregating across firms in w yields

2G)-Vi+1) = =s)=0=1() - V([E+1) =(-s) Ru(j)

which is (17) applied to w. Note that, since [ is a linear function of R,, the result above
could be obtained by using directly (77) in (75), without going through the computation
of the first-order condition for profit maximization.%?

B. Behaviour of the aggregate quality index and the
number of firms
In this appendix, we study the impact of alternative specifications of the horizontal entry

cost function, 7, in the behaviour of @ and N along the balanced growth path. For the
sake of simplicity, we abstract from government intervention.

52This explains why Barro and Sala-i-Martin (2004, ch. 7) consider (17) without any derivation.
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Constant fixed entry cost

Consider the free-entry condition

V(@) =n (78)

where 7 is a fixed-entry cost, constant over time, and ¢(t) = q(j,w,t) = % This is

the basic specification in Barro and Sala-i-Martin (2004, ch. 6). In a balanced growth
path, with r and I also constant over time, ¢ must be constant so that (78) is verified.
From (24), this is only possible if % = % = g, where g is the growth rate of Q
in balanced-growth path. In this case, Ry(t) = nN(t) = ngN(t) and thus Ry(t) =
ngN(t) = gxg% = % = g, as expected in a balanced-growth path.

Next, recall that

N(t)
Q(t) = /0 4(w, )

We assume that the number of sectors, IV, is large enough to treat @ as time-differentiable.
Thus, by Leibniz’s rule, we have

. N(t) .
Q) = /0 i(w, )dw + q(N, )N (1) &

) N(t)
@0 = [ it (7205 )

where we used q(j,w,t) = q(t) = % and N(t) = Q(t)% = Q(t)ﬁ, in balanced
growth path.

On the other hand, the probability per unit of time of R&D success in an industry is
the Poisson rate I. As the quality index ¢ evolves over time according to j, we cannot
assume that ¢ is time-differentiable. The expected change in ¢ per unit of time is, in
fact, given by

B(Aq) = 1 (AT(R) - 30(78)) = 1 (A7) —1) g(w, ) (80)

Assuming that the number of sectors, IV, is large enough to treat ) as time-differentiable,
from (79) and (80) we have

BQ() =1 () ~1). /N(t) a(w, t)dw - E (q(t)> o
0

q(t) —a(N. 1)
. -1
o B2 1 (36 —1) - [ (1- 400)] (51)
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Therefore, our model of quality ladders with constant entry cost 7 is characterised by

% = oo, whatever N, since E(q(t)) = E(q(N,t)).93Moreover, if N is very large and

the time interval dt is very small we can treat Q(t) as nonstochastic; hence, we conclude
also that % = 00.64

This result should be contrasted with the ones obtained by Dinopoulos and Thompson
(1998), Aghion and Howitt (1998, ch. 12) and Howitt (1999). The last two works explore
a model of quality ladders with expanding variety and vertical intersectoral spillovers,
where the aggregate growth rate is determined by the technological knowledge (quality
index) of the most advanced industry. In this model, the authors posite that as the
economy develops an increased number of specialised goods, an innovation of a given size
with respect to any given good will have a smaller impact on the aggregate economy.
This yields an aggregate rate of technological-knowledge progress finite and independent
of N, thus echewing any possible explosive feedback running from the expanding-variety
mechanism to the equilibrium aggregate growth rate. In addition, entry cost per each
new good grows with the size of the economy in this model.

Dinopoulos and Thompson (1998) also study a model of quality ladders with expand-
ing variety and vertical intersectoral spillovers, but where the aggregate growth rate is
determined by the average technological knowledge over industries. In this model, there
is a constant entry cost measured in labour cost units. However, in free-entry equilib-
rium, this entry cost must equal the value of the incumbent firm in terms of the relative
quality of its product, which follows a stationary process. Both models described above
(similarly to the model by Young, 1998, and others) generate a steady state with a finite
positive aggregate growth rate and in which the flow of new goods grows at the same
rate as the population.

In our model with constant entry costs, such dampening mechanisms are absent. As
in Segerstrom and Zolnierek (1999) and Barro and Sala-i-Martin (2004, ch. 7), entry
costs are measured in output units against the value of the incumbent firm in terms
of the absolute quality of its good, whereas the aggregate growth rate is determined
by the proportional growth in ), which reflects the impact of independent innovations
over N industries over time, without any intersectoral spillover effects. As the value of
incumbency grows due to vertical innovations, the entry costs become smaller in relative
terms, imposing an ever decreasing constraint on entry, which, in turn, propels @ and
the aggregate growth rate.

53These are the unconditional expectations of stochastic variables governed by the same stochastic

process.
%4There is another solution to (79), but it is trivial. If fON(t> G(w,t)dw = 0 then there are no quality
ladders and 28 = M)

Q@) — N()
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Time-varying entry cost
Entry-cost function (V)

Consider now the free-entry condition, in line with, e.g., Romer (1990) and Barro and
Sala-i-Martin (2004, ch. 6)

V(q) =n(N) (82)
where q(t) = q(j,0,t) = % Let n(N) = ¢N(t)?, with ¢ > 0 and o > 0 exogenous
constants. In a balanced growth path, with r and I constant over time, (82) implies that

_ S(eW _NOY _ o NE
. 1 )(t
&N = (11 Qgt;N(t) (83)

On the other hand, we have

) N(t) .
Qt) = /0 G(w,t)dw + q(N,t)N(t) <

& Q) = /ON(t)q'<w7t>dw-[1—q<N’”( ! )] (34)

qt) \l+o

where we used the result in (83). In expected terms, we have

o(36) 16 ) PR )]

Since E(q(t)) = E(q(N,t)), equation (85) becomes

E(Q(t)) (A=) ). <1+0)

g

which implies that

QU) _ (=) ). (Lt
o0 —1( 1) ( = ) (86)
for N large enough. From (83) and (86), we see also that

N(t) o 1

W:I()\< =) -1). 2 (87)

The growth rates of () and N are constants if I is constant over time. Thus, this model
produces a balanced-growth path with ever increasing @@ and N. This result contrasts with
Barro and Sala-i-Martin (2004, ch. 6)’s model of expanding variety in which the cost
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of horizontal R&D is an increasing function of the number of product lines previously
introduced and the long-run equilibrium implies a constant number of products (as long
as L is constant, as in our model).

Entry-cost function n(Q, N)

Inspired in Peretto and Smulders (2002), we also consider the free-entry condition

V(q) =n(Q,N) (88)

Let n(Q,N) = ¢Q(t)?* N(t)~72, with ¢ > 0, v > 0 and o1 > 0 exogenous constants. In
a balanced growth path, with r and I constant over time, (88) implies that

V()=n()e=
o N() = G - Z;) QEE;N(L‘) (89)

Following the same steps as before, we get

ggg 1 (=) ). (;—_ f;) (90)

and

% .y (A(ﬁ) - 1) : (;;_2) (91)

for N large enough. Again, the growth rates of @ and N are constants if I is constant
over time. This model yields a balanced-growth path characterised by positive growth
ratesif o1 > o9 Ao <1Aoga<loroi<ogAoy>1Aoyg > 1.

In the case 01 < 09, the entry-cost fuction can be written as n(Q, N) = ¢Q(t)°* N(t) 772 =
¢ (%), which means that the entry cost increases with the productivity level at
which a new firm is established, g, and decreases with the (intertemporal) spillovers avail-
able post-entry to each firm, @), closely resemblying the entry-cost function posited by

Peretto and Smulders (2002).

Entry-cost function n(R,,)

Finally, consider the free-entry condition

V(q) = n(Rn) (92)

where R,, denotes total horizontal R&D expenditures. Let n(R,,) = ¥R, (t)", with ¢» > 0
and 0 < v < 1 exogenous constants. The rational to this entry cost function can be
found, e.g., in the aggregate function of horizontal innovation in Howitt (1999), which
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exhibits decreasing marginal returns in total horizontal R&D expenditures.%®> But since
R, =nN, then _
n(:) = ¢¥n(-)"(N)” (93)

Consecutive substitution of 7 in the right-hand side of (93) yields

77() — ¢(1+V+V2+...)nl/(3+"‘) (N)(V+V2+l/3+...) (94)

The exponents in (94) are geometric series. Since v < 1, we have v>® =0, > 22 v’ = ﬁ
and ) 72, V' = 1%, which means that n(Ry) has only dependence of infinitesimal order
on 7 itself, and thus

1. v .
n(:) == N({E) 1= = 6N (t)" (95)
where ¢ = w% > 0 and v = 1%, > 0. The result above shows that n(R,) 2 n(N),

offering a rational to the entry technology implicit in the entry-cost function n(N ), postu-
lated, e.g., in Datta and Dixon (2002) and Brito and Dixon (2008). In this light, n(N)~*
can be interpreted, through n(R,) ™!, as a marginal horizontal-innovation function with
increasing returns, where v measures a third-order effect. Notice that the elasticity of Ry,
in the marginal innovation function n(R,) ldetermines the elasticity of N in 77(N )~L
For example, 7(N) = ¢N, as in Brito and Dixon (2008), defines implicitly an elasticity
of 0.5 in the marginal innovation function.

In 