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Abstract

In this paper, we consider the single machine scheduling problem with linear
earliness and quadratic tardiness costs, and no machine idle time. We propose
a genetic approach based on a random key alphabet. Several genetic algorithms
based on this approach are presented. These versions differ on the generation of the
initial population, as well as on the use of local search. The proposed procedures
are compared with the best existing heuristic, as well as with optimal solutions for
the smaller instance sizes.

The computational results show that the performance of the proposed genetic
approach is improved by the addition of a local search procedure, as well as by
the insertion of simple heuristic solutions in the initial population. Indeed, the
genetic versions that include either or both of these features not only provide
significantly better results, but are also much faster. The genetic versions that use
local search are clearly superior to the best existing heuristic, and the improvement

in performance increases with both the size and difficulty of the instances. These
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procedures are also quite close to the optimum, and provided an optimal solution
for most of the test instances.
Keywords: scheduling, single machine, linear earliness, quadratic tardiness,

genetic algorithms

1 Introduction

In this paper, we consider a single machine scheduling problem with linear
earliness and quadratic tardiness costs, and no machine idle time. Single ma-
chine scheduling environments actually occur in several practical operations
(for a recent example in the chemical industry, see [1]). Also, the performance
of many production systems is frequently determined by the quality of the
schedules for a single bottleneck machine. Moreover, results and insights
obtained for single machine problems can often be applied to more complex
scheduling environments, such as flow shops or job shops.

Earliness/tardiness scheduling models have received considerable and in-
creasing attention from the scheduling community, due to their practical im-
portance and relevance. In fact, scheduling problems with both earliness and
tardiness penalties are compatible with the concepts of just-in-time produc-
tion and supply chain management. These production strategies, which have
been adopted by many organisations, view both early and tardy deliveries as
undesirable.

We consider an objective function with linear earliness and quadratic
tardiness costs. On the one hand, early completions of jobs result in unnec-
essary inventory. A linear penalty is then used for the early jobs, since the
costs of maintaining and managing this inventory tend to be proportional to
the quantity held in stock. On the other hand, late deliveries can result in
lost sales, loss of goodwill, and disruptions in stages further down the sup-
ply chain. A quadratic tardiness penalty is appropriate in several practical
settings, and is then used for the tardy jobs. Indeed, the tardiness is an
important attribute of service quality, and a customer’s dissatisfaction tends
to increase quadratically with the tardiness, as proposed in the loss function

of Taguchi [2]. Also, a quadratic tardiness penalty can in some situations be



preferable to the more usual linear tardiness or maximum tardiness functions,
as discussed in [3].

The assumption that no machine idle time is allowed is also appropriate
for many production settings. In fact, idle time should be avoided when the
machine has limited capacity or high operating costs. This assumption is
also justified when starting a new production run involves high setup costs
or times. Some specific examples of production settings where the no idle
time assumption is appropriate have been given by Korman [4] and Landis
[5].

Formally, the problem we consider can be stated as follows. A set of n
independent jobs {.Ji,Js, -, J,} has to be scheduled on a single machine
that can handle at most one job at a time. The machine is assumed to
be continuously available from time zero onwards, and preemptions are not
allowed. Job J;,j7 = 1,2,---  n, requires a processing time p; and should
ideally be completed on its due date d;. For a given schedule, the earliness
and tardiness of J; are respectively defined as F; = max{0,d; — C;} and
T; = max {0, C; — d;}, where C} is the completion time of J;. The objective
is then to find a schedule that minimizes the sum of linear earliness and
quadratic tardiness costs Z?:l (Ej + Tf), subject to the constraint that no
machine idle time is allowed.

This problem has been previously considered, and both exact and heuris-
tic approaches have been proposed. Valente [6] developed both a lower
bounding procedure based on a relaxation of the job completion times, and a
branch-and-bound algorithm. Among the heuristics, both dispatching rules
[7] and beam search heuristics [8] have been proposed. The corresponding
problem with inserted idle time was studied by Schaller [9], who presented
a timetabling procedure, as well as a branch-and-bound algorithm and sim-
ple and efficient heuristics. Some problems with related objective functions
have also been considered. These include the minimization of the linear ear-
liness and tardiness costs ) 7, (£; + ;) [10, 11, 12], and the minimization
of the quadratic lateness [13, 14, 15, 16], where the lateness of J; is defined
as L; = C; —d,.

A large number of papers have been published on scheduling models with



earliness and tardiness costs. Baker and Scudder [17] provide an excellent
survey of the initial work on early/tardy scheduling. A recent survey of
multicriteria scheduling problems is given by Hoogeveen [18]. This survey
considers and reviews problems with earliness and tardiness penalties. Also,
Kanet and Sridharan [19] give a review of scheduling models with inserted
idle time that complements our focus on a problem with no machine idle
time.

In this paper, we present several genetic algorithms, and analyse their
performance on a wide range of instances. The proposed genetic approach
uses a random key alphabet, so each chromosome is encoded as a vector of
random numbers. The various versions of the genetic approach differ on the
generation of the initial population, as well as on the use of local search. The
genetic algorithms are compared with the best existing heuristic, as well as
with optimal solutions for some instance sizes.

The remainder of this paper is organized as follows. In section 2, we
describe the proposed genetic algorithm approach, and present the several
versions that were considered. The computational results are reported in

section 3. Finally, we provide some concluding remarks in section 4.

2 The genetic algorithm procedures

In this section, we begin by briefly describing the main features of genetic
algorithms. The encoding used to represent the problem solutions is then
presented. The evolutionary strategy, i.e. the transitional process between
consecutive populations, is also described. Finally, we present the four dif-

ferent versions that were considered for the proposed approach.

2.1 Genetic algorithms

Genetic algorithms are adaptive methods that can be used to solve optimiza-
tion problems. The term genetic algorithm was first used by Holland [20],
whose book Adaptation in Natural and Artificial Systems, published in 1975,

was pivotal to the creation of what is now a large and quite active field of



research. Actually, optimization played only a small part in Holland’s work,
even though it has since been the focus of the majority of the research on
genetic algorithms. The literature on genetic algorithms includes a quite
large number of papers; for some references describing in detail the genetic
algorithm approach and its applications see [21, 22, 23].

Genetic algorithms are based on the evolution process that occurs in
natural biology. Over many generations, natural populations tend to evolve
according to the principles of natural selection or survival of the fittest, as first
stated by Charles Darwin in The Origin of the Species. Genetic algorithms
mimic this process, evolving populations of solutions to real world problems.

In order to apply a genetic algorithm to a specific problem, a suitable
encoding or representation must first be devised. In this encoding, a solution
to the problem is represented by a set of parameters. These parameters
(known in genetic terminology as genes) are joined together in a string of
values that represents or encodes the solution to the problem. In genetic
terminology, this string is referred to as a chromosome or individual. A
fitness value is associated with each chromosome. This value measures the
quality or merit of the solution associated with that chromosome.

At each iteration, the genetic algorithm evolves the current population of
chromosomes into a new population, using selection, crossover and mutation
mechanisms. Some of the current individuals may be simply selected and
copied to the new population. Additionally, the reproduction phase uses a
crossover operator to combine individuals selected from the current popula-
tion, producing offspring which are placed in the new population. The parent
chromosomes are randomly selected from the current population, usually us-
ing a scheme which favours fitter individuals. The crossover operator then
combines the genes of the two parents, yielding one or more offspring. Fi-
nally, a mutation operator is applied to some individuals, in order to change
their genetic material (i.e. one or more of their genes).

The reproduction phase and the crossover operator tend to increase the
quality of the populations. However, they also tend to force convergence of
those populations. The mutation process can offset this convergence effect.

Indeed, the mutation operator tries to guarantee the population diversity,



and ensure an extensive search of the solution space.

2.2 Chromosome representation and decoding

The genetic algorithm approach proposed in this paper uses a random key
alphabet U (0, 1) [24] to encode the chromosomes. In this alphabet, each gene
is a uniform random number between 0 and 1. Therefore, a chromosome is
encoded as a vector of random keys (random numbers). In our algorithms,
each chromosome is made of n genes g;, so the size of each chromosome is
equal to the number of jobs: chromosome = (g1, g2, ..., gn)-

In order to evaluate the fitness of an individual, it is necessary to decode
its chromosome into the corresponding solution to the problem, i.e. into a
sequence of the jobs. The decoding or mapping of a chromosome into a se-
quence is accomplished by sorting the jobs. The priorities used in this sorting
operation are given by the genes. More specifically, the sorting priority of
job J; is equal to g; (see figure 1 for an example).

An important feature of the random key alphabet is the fact that all
offspring generated by crossover are feasible solutions. This is accomplished
by moving the feasibility issue into the chromosome decoding procedure.
If any vector of random numbers can be decoded into a feasible solution,
then any chromosome obtained via crossover also corresponds to a feasible
solution. Through its internal dynamics, the genetic algorithm then learns
the relationship between random key vectors and solutions with good fitness
and objective function values.

This feature is a significant advantage of the random key alphabet over
the more natural encoding where each chromosome is a permutation of the
job indexes. Indeed, with the natural encoding, the crossover operation is
made more difficult and complicated by the need to assure that the resulting

offspring correspond to a feasible solution.

2.3 Evolutionary strategy

A great number of genetic algorithm variants can be obtained by varying the

selection, reproduction, crossover and mutation operators. We now describe
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the evolutionary strategy used in the proposed approach, i.e. the mechanisms
that are used to generate a new population from the current set of individuals.
The size of the population is kept constant throughout the procedure. This
size is set as a multiple pop mult of the size of the problem (i.e. the number
of jobs n), where pop mult is a user-defined parameter. This strategy has
proved appropriate in our previous experience with genetic algorithms based
on the same evolutionary approach [25, 26, 27].

Given a current population, the next population is obtained through
elitist selection, crossover and migration mechanisms. We defer the discus-
sion of the generation of the initial population to the next section. The
calculation of the fitness value will also be addressed in that section.

The elitist selection strategy [21] consists in copying some of the best
individuals in the current population to the new population. The number
of individuals that are copied in the elitist selection phase is equal to a
proportion elit _prop of the population size, where elit _prop is a user-defined
parameter.

The advantage of the elitist selection strategy over the traditional ap-
proach where the entire population is completely replaced with new chro-
mosomes is that the best individual in the population is monotonically im-
proving over time. A potential downside is population convergence to a local
minimum. This, however, can be overcome by high mutation or migration
rates.

The migration mechanism replaces the traditional gene-by-gene mutation
operator. In the migration phase, new individuals are randomly generated
and added to the new population. The number of new randomly generated
individuals is equal to a proportion mig prop of the population size, where
mig prop is a user-defined parameter. As previously mentioned, the pur-
pose of the migration mechanism is to prevent premature convergence and
to assure the diversity of the population (like in the traditional mutation
operator). This phase also guarantees that, if allowed to run for a sufficient
amount of time, the proposed genetic approach will visit all possible solutions
(and therefore also an optimal one).

The remaining individuals of the new population are generated via crossover.



In the reproduction and crossover phase, two parents are initially selected.
The first parent is randomly chosen from the elite individuals in the current
population, i.e. the individuals that are copied to the new population in
the elitist selection phase. The second parent is randomly selected from the
full current population. The parameterized uniform crossover method [28],
described below, is then used to obtain an offspring that is added to the new
population. This process is repeated until the new population has been fully
generated.

In the parameterized uniform crossover method, a random uniform num-
ber between 0 and 1 is generated for each gene. This random number is
then compared with the user-defined parameter cross prob. If the random
number is less than or equal to cross prob, the gene in the offspring is set
equal to the corresponding gene in the first parent; otherwise, the value of
the gene is copied from the second parent (see figure 2 for an example).

This evolutionary strategy is repeated until a stopping criterion is met.
In our approach, the number of iterations without improvement stopping
criterion was chosen. Therefore, the algorithms terminate when stop iter
populations have been generated without improving the best solution found
so far, where stop iter is a user-defined parameter. Figure 3 depicts the
evolutionary strategy, while the main steps of the proposed approach are

given in figure 4.

2.4 Genetic algorithm versions

The discussion of both the generation of the initial population and the calcu-
lation of the fitness value has been deferred to this section. In fact, two differ-
ent strategies were used for each of these two issues. Therefore, we considered
four genetic algorithm versions, corresponding to the various combinations
of these strategies.

In the version denoted as GA, on the one hand, the initial population is
randomly generated. The fitness value of a chromosome, on the other hand,
is set equal to the symmetric of the objective function value of the corre-

sponding sequence (i.e. the sequence obtained by decoding the chromosome,



as previously described).

The GA _IN version differs from GA only in the initial population, which
is not fully randomly generated. In the GA IN version, we first introduce
in the initial population three non-random chromosomes (we refer to this as
initializing the first population). These three chromosomes are created so
that their corresponding sequences are equal to the schedules generated by
the EDD, SPT_s; and EQTP_EXP dispatching heuristics analysed in [7].
The EDD (SPT _s;) heuristic performed well for instances where most jobs
are early (tardy). The EQTP_EXP dispatching rule was the best-performing
of the heuristics considered in [7].

The MA and MA _IN versions differ from their GA and GA _IN counter-
parts only in the calculation of the fitness value. Indeed, these two versions
additionally use a local search procedure in order to improve the decoded
sequence. More precisely, in order to calculate the fitness of an chromosome,
we first decode its corresponding sequence. A local search procedure is then
used to improve this sequence. The fitness is set equal to the symmetric of
the objective function value of the improved sequence. Finally, the chromo-
some is changed (i.e. its genes are rearranged) so that it corresponds to the
improved sequence obtained after the application of the local search proce-
dure. Since these two versions of the proposed genetic approach combine a
genetic evolutionary strategy with a local search procedure, they can also be
viewed as memetic algorithms [29].

We considered three simple local search procedures: adjacent pairwise
interchange (API), 3-swaps (3SW) and largest cost insertion (LCI). The API
procedure, at each iteration, considers in succession all adjacent job positions.
A pair of adjacent jobs is then swapped if such an interchange improves the
objective function value. This process is repeated until no improvement is
found in a complete iteration. The 3SW procedure is similar, but it consid-
ers three consecutive job positions instead of an adjacent pair of jobs. All
possible permutations of these three jobs are then analysed, and the best
configuration is selected. Once more, the procedure is applied repeatedly
until no improvement is possible. The LCI method selects at each iteration

the job with the largest objective function value. The selected job is then



removed from its position ¢ in the schedule, and inserted at position j, for
all j # 7. The best insertion is then performed if it improves the objective

function value. This process is repeated until no improving move is found.

3 Computational results

In this section, we first present the set of problems used in the computa-
tional tests, and specify the values that were used for the various parameters
required by the genetic algorithms. The proposed genetic procedures are
then compared with the best existing heuristic, namely the recovering beam
search (RBS) procedure presented in [8]. Finally, the heuristic results are
evaluated against the optimum objective function values for some instance

sizes.

3.1 Experimental design and preliminary tests

The computational tests were performed on a set of problems with 10, 15,
20, 25, 30, 40, 50, 75 and 100 jobs. These problems were randomly generated
as follows. For each job J;, an integer processing time p; was generated from
one of the two uniform distributions [45,55] and [1, 100], in order to obtain
low (L) and high (H) variability, respectively, for the processing time values.
For each job J;, an integer due date d; was generated from the uniform
distribution [P (1 —T — R/2),P (1 — T + R/2)|, where P is the sum of the
processing times of all jobs, T is the tardiness factor, set at 0.0, 0.2, 0.4, 0.6,
0.8 and 1.0, and R is the range of due dates, set at 0.2, 0.4, 0.6 and 0.8.

For each combination of problem size n, processing time variability (var),
T and R, 50 instances were randomly generated. Therefore, a total of 1200
instances were generated for each combination of problem size and process-
ing time variability. All the algorithms were coded in Visual C++ 6.0, and
executed on a Pentium IV - 2.8 GHz personal computer. Due to the large
computational times that would be required, the GA heuristic was not ap-
plied to the instances with 100 jobs.

We performed preliminary experiments to determine adequate values for
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the parameters required by the genetic algorithms. A separate problem set
was used to conduct these preliminary experiments. This test set included
instances with 25 and 50 jobs, and contained 5 instances for each combination
of instance size, processing time variability, 7" and R. The instances in this
smaller test set were generated randomly just as previously described for
the full problem set. We considered the following values for the several
parameters required by the proposed genetic algorithms:

pop_mult = {1, 2, 3};

elit_prop = {0.05, 0.10, 0.15, 0.20};

mig_prop = {0.10, 0.15, 0.20, 0.25};

cross_prob = {0.6, 0.7, 0.8};

stop_iter = {10, 30, 50}.

The intervals for the elit prop, mig prop and cross prob values were
based on our previous experience with genetic algorithms based on the same
evolutionary approach [25, 26, 27]. Indeed, we have consistently obtained
good results with values inside the considered ranges. The intervals for the
pop mult and stop_iter parameters were determined after some initial test-
ing. For the MA and MA 1IN versions, we additionally considered the API,
3SW and LCI local search procedures, as previously mentioned.

The genetic algorithms were then applied to the test instances for all
parameter (and local search procedure, for the MA and MA 1IN versions)
combinations. A thorough analysis of the objective function values and run-
times was then conducted, in order to select the values that provided the
best trade-off between solution quality and computation time. The parame-
ter values and local search procedure selected for the several genetic versions
are given in table 1.

The same elit prop, mig prop and cross_prob values proved adequate
for all the versions. For the more sophisticated MA and MA 1IN versions,
the results were actually virtually identical for all the combinations of these
parameters. For the GA and GA 1IN versions, there were some small differ-
ences in performance, and the chosen values provided good results across all
instance types.

Table 1 shows that smaller values are required for the parameters pop mult
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and stop _iter as the genetic version becomes more sophisticated. Indeed, as
local search and/or population initialization are introduced, smaller popula-
tions and/or a lower number of iterations without improvement can be used
without compromising the solution quality.

Finally, the API local search procedure was selected. This procedure
provided results that were quite close to those given by the 3SW method,
and was significantly faster. The LCI procedure was outperformed by the
APT and 3SW methods in both solution quality and computation time.

We recall that the parameter values were selected with the objective of
obtaining the best trade-off between solution quality and computation time.
Therefore, lower objective function values can still be obtained for some of
the test instances, at the cost of increased computation times, by increas-
ing the pop mult or stop iter values, or by selecting the 3SW local search

procedure.

3.2 Comparison with the best existing heuristic

In this section, we compare the proposed genetic algorithms with the RBS
heuristic proposed in [8]. For each instance, 10 independent runs were per-
formed for all versions of the genetic algorithms.

Table 2 provides the mean relative improvement in objective function
value over the RBS procedure (%imp), as well as the percentage number of
times that the same objective function value is obtained for all of the 10
independent runs (all _equal). In table 3, we give the percentage number of
times each genetic version performs better (<), equal (=) or worse (>) than
the RBS procedure.

The relative improvement over the RBS heuristic is calculated as (rbs_ofv
- ga_version_ofv) / rbs_ofv x 100, where rbs_ofv and ga_version_ofv are
the objective function values of the RBS procedure and the appropriate ge-
netic version, respectively. The avg column provides the relative improve-
ment calculated with the average of the objective function values obtained
for all the 10 runs. In the best (worst) column, the relative improvement is

calculated using the best (worst) result among the 10 runs.
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The results in the avg column provide an indication of the relative im-
provement we will obtain if the algorithm is executed only once, while the
best column shows the improvement that can be achieved by performing 10
runs. The worst results are analogous to a lower bound on the performance
of the genetic algorithms. Indeed, even when executed only once, the genetic
algorithms will provide better results than those in the worst column, since
no single seed gives the worst results for all instances.

The best performance is given by the MA 1IN heuristic, closely followed
by the MA algorithm. These two genetic versions are clearly superior to
the RBS procedure. Indeed, these procedures provide an average relative
improvement of about 2-3% (0.8%) for the largest high (low) variability in-
stances. Also, these two heuristics give better results for a quite large per-
centage of the test instances, and are seldom inferior to the RBS procedure.

The GA _IN heuristic, on average, is somewhat outperformed by the RBS
procedure for the smaller instance sizes. For the medium and large instances,
however, the GA IN algorithm is superior to the RBS heuristic. The GA
procedure is the worst-performing of the genetic versions. When the best re-
sult over the 10 runs is considered, this heuristic does provide an improvement
over the RBS procedure. However, the average results are usually inferior to
those obtained with the RBS heuristic.

The best-performing MA IN and MA versions are also quite robust. In
fact, the best and worst results over the 10 runs are usually close. Also,
the percentage of instances for which the same objective function value was
obtained for all of the 10 runs is quite high for these two heuristics.

The performance of the genetic versions is improved by both the initial-
ization of the first population, and the addition of a local search procedure.
Indeed, the initialization of the first population improves the results, par-
ticularly when no local search is performed. Also, the use of a local search
procedure leads to a substantial improvement, especially when the initial
population is fully random. As previously mentioned, the best performance
is achieved by the MA IN version, which uses both initialization and local
search.

The improvement given by the genetic algorithms over the RBS proce-
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dure is much larger when the processing time variability is high. Also, this
improvement increases with the instance size. Indeed, the best-performing
genetic versions provide an average improvement of less than about 0.5% for
the smallest instances with high variability. For the largest instances, how-
ever, this improvement is over 2.5%. Also, these genetic versions are quite
rarely outperformed by the RBS procedure for the larger instances.

In table 4, we present the effect of the T" and R parameters on the relative
improvement (calculated with the average objective function value) over the
RBS procedure, for instances with 50 jobs. The relative difference in objective
function values is minor when most jobs are early (7' = 0.0), and when a
larger number of jobs are tardy (7' > 0.6). Actually, when most jobs are
tardy (T'" = 1.0), the objective function values are quite close for all the
heuristics.

The relative difference in objective function values is much larger for the
instances with a tardiness factor of 0.2 or 0.4. In fact, for these instances, the
best-performing MA and MA 1IN versions provide a relative improvement
that can be as high as about 12% (6%) for the high (low) variability problems.

The heuristic runtimes (in seconds) are presented in table 5; for the ge-
netic versions, we provide the average runtime (i.e. the average of the run-
times for each of the 10 runs). The RBS procedure is faster than the genetic
algorithms. Nevertheless, the GA IN, MA and MA _IN versions are still ef-
ficient, since they are capable of solving instances with 100 jobs in less than
about 2 seconds.

The GA procedure is significantly more computationally demanding than
the other genetic versions. Indeed, the GA IN, MA and MA IN versions
are much faster, even though they perform an initialization of the first pop-
ulation, and/or use a local search procedure. This is due to the lower values
required for the pop mult and stop iter parameters, as previously men-
tioned. Therefore, the more sophisticated versions not only perform better,
but are also faster, since they require smaller populations and/or a lower
number of iterations without improvement.

The MA 1IN version is then the recommended heuristic for small and

medium instance sizes. This procedure provides the best results, and is rel-
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atively efficient. For quite large problems, however, a genetic approach (as
well as beam search algorithms) will require excessive time, and a dispatch-
ing heuristic will then be the only procedure that can provide results in

reasonable computation times.

3.3 Comparison with optimum results

In this section, we compare the heuristic procedures with the optimum ob-
jective function values, for instances with up to 20 jobs. Table 6 gives the
average of the relative deviations from the optimum (%dev), calculated as
(H —0) /O x 100, where H and O are the heuristic and the optimum ob-
jective function values, respectively. The percentage number of times each
heuristic generates an optimum schedule (%opt) is also provided.

The MA IN and MA versions perform extremely well. Indeed, the rel-
ative deviation from the optimum is quite small (usually less than 0.1%)
for these heuristics. Also, these procedures provide an optimum solution for
over 90% (and in some cases nearly all) of the test instances. The remaining
algorithms also provide good results, but they are clearly outperformed by
the MA IN and MA procedures.

The heuristics perform better when the processing time variability is low.
This is particularly clear for the worst performing heuristics (RBS, GA and
GA _IN). In fact, for low variability instances, the RBS procedure provides
objective function values that are less than 0.2% above the optimum, and also
generates an optimum solution for over 70% of the instances. For instances
with high variability, however, the performance deteriorates somewhat.

These results are in line with those presented in the previous section for
the relative improvement provided by the genetic algorithms. Indeed, the
relative improvement was lower (higher) for the instances with low (high)
variability. This is in accordance with the results given in table 6, since there
is more room for improvement over the RBS heuristic when the variability is
high.

In table 7, we present the effect of the T" and R parameters on the relative

deviation from the optimum, for instances with 20 jobs. The heuristics are

15



closer to the optimum when most jobs are early (7" = 0.0), and when a
larger number of jobs are completed after their due dates (7' > 0.6). Indeed,
when most jobs are tardy (7' = 1.0), all the heuristic procedures are usually
optimal or nearly optimal.

The relative deviation from the optimum is larger for the instances with
T =0.2 or T = 0.4. The performance improvement provided by the MA IN
and MA heuristics is much clearer for these instances. In fact, for these
instances, the relative deviation from the optimum for RBS algorithm can
be as high as about 4% (2%) for the instances with high (low) variability.
For the MA IN procedure, the relative deviation does not exceed 0.5% and
0.06% for the high and low variability instances, respectively. Again, these

results are in line with those previously presented in table 4.

4 Conclusion

In this paper, we presented a genetic approach for the single machine schedul-
ing problem with linear earliness and quadratic tardiness costs, and no ma-
chine idle time. Several genetic algorithms based on this approach were
presented. These versions differ on the generation of the initial population,
as well as on the use of local search.

Initial experiments were first performed, in order to determine appropri-
ate values for the parameters required by the genetic algorithms. The pro-
posed procedures were then compared with the best existing heuristic (the
RBS procedure), as well as with optimal solutions for the smaller instance
sizes.

The MA _IN and MA genetic versions provided the best results, and are
clearly superior to the RBS procedure. These heuristics are also quite close
to the optimum, and provided an optimal solution for over 90% (and in some
cases nearly all) of the test instances. The improvement in performance
provided by the genetic algorithms is larger for the more difficult instances,
i.e. instances with high variability and/or a tardiness factor of 0.2 or 0.4.
Also, this improvement increases with the instance size.

The performance of the proposed genetic approach was improved by both
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the initialization of the first population, and the addition of a local search
procedure. Indeed, the MA IN, MA and GA _IN versions not only provided
much better results than the GA heuristic, but were also much faster. The ad-
ditional time required by the population initialization and /or the local search
procedure is more than offset by the fact that the more sophisticated ver-
sions require smaller populations and /or a lower number of iterations without
improvement.

The MA IN genetic algorithm is then recommended. This procedure
provided the best results, and can solve medium size problems within rea-

sonable computation times.
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job index: 1 2 3 4 5
chromosome: ( 032 , 0.77 , 0.10 , 0.53 , 0.85)

> o<

sorted gene values: ( 0.10 , 0.32 , 0.53 , 0.77 , 0.85)
decoded sequence: 3 1 4 2 5

Figure 1: Chromosome decoding example

parent 1: ( 032 , 0.77 , 0.10 , 0.53 , 0.85)
parent 2: q 0.26 | 0.15 18 0.65 |4 0.91 |§ 0.44 )

random number: 0.58 0.75 0.93 0.42 0.15
(cross prob=0.7) <07 >07 >07 <07 <0.7

offspring: ( 0.32 ,,m, 0.53 , 0.85)

Figure 2: Parameterized uniform crossover example
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Current Population New Population

elitist selection

elit_prop

Crossover

mig_prop

/

migration

Figure 3: Evolutionary strategy

GA GA IN MA MA IN
pop mult 3 2 1 1
elit _prop 0.05 0.05 0.05 0.05
mig prop 0.25 0.25 0.25 0.25
cross_prob 0.7 0.7 0.7 0.7
stop_iter 50 30 10 10
local search — — API API

Table 1: Parameter values
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Genetic approach

{
Generate Initial Population Py = Py;
Evaluate Population Py;
Update Best Solution;
Set iter no_improv = 0;
While (iter no_improv < stop _iter)
{
Generate New Population P+q
{
Perform Elitist Selection;
Perform Migration;
Perform Crossover;
}
Evaluate P
If (new best solution is found)
{
Update Best Solution;
Set iter no_improv = 0;
}
Else
Set iter no_improv = iter no_improv + 1;
Set Py = Py,
}
}

Figure 4: Genetic approach
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low var high var
Yoimp Yoimp
n heur best avg worst all equal best avg worst all equal

10 GA 0.02 -0.18 -1.58 18.83 0.36 -0.31 -2.42 8.67
GA _IN 0.02 -0.01 -0.10 47.83 0.35 -0.17 -1.48 24.00

MA 0.02 0.01 -0.09 96.67 0.37 035 0.28 94.67

MA IN 0.02 0.02 0.02 99.17 0.37 037 0.35 98.17

20 GA 0.11 -0.26 -1.74 0.08 0.36 -0.96 -3.95 0.00
GA IN 0.10 0.05 -0.03 28.33 0.51 -0.17 -1.33 10.00

MA 0.11 0.07 -0.13 74.50 0.66 0.50 0.02 62.33

MA IN 0.11 0.11 0.08 85.08 0.66 0.60 0.45 73.00

30 GA 0.22 -0.20 -1.42 0.00 0.35 -0.96 -4.07 0.00
GA IN 0.23 0.18 0.11 23.67 0.71 0.14 -0.67 5.33

MA 0.25 0.21 0.03 67.00 098 0.76 0.23 47.17

MA IN 025 0.24 0.22 75.92 098 0.89 0.71 56.75

40 GA 043 -0.03 -1.49 0.00 0.59 -0.70 -3.40 0.00
GA IN 045 0.40 0.33 18.92 1.08 0.56 -0.18 3.33

MA 0.48 0.44 0.37 63.58 1.45 1.23 0.81 41.08

MA IN 048 0.46 0.44 72.50 1.46 1.36 1.17 50.08

50 GA 042 -0.05 -1.63 0.00 0.68 -0.41 -2.48 0.00
GA IN 0.44 0.40 0.33 18.67 1.27 0.80 0.17 2.00

MA 047 045 0.39 62.25 1.67 1.45 1.06 38.58

MA IN 047 046 0.44 70.83 1.69 1.9 1.42 45.58

75 GA 063 0.14 -1.15 0.00 1.00 -0.05 -2.01 0.00
GA IN 0.71 0.67 0.61 27.42 1.76 1.40 0.94 4.92

MA 0.74 0.72 0.67 60.42 214 194 1.66 35.33

MA IN 0.74 0.73 0.72 66.83 218 2.09 1.96 41.08

100 GA — — — — — — — —

GA _IN 0.76 0.73 0.68 29.00 231 201 1.62 5.00

MA 0.80 0.78 0.76 58.58 2.73 257 235 32.50

MA IN 080 0.79 0.77 64.08 2.78 2.69 2.58 35.58

Table 2: Comparison with the RBS heuristic - relative improvement
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GA GA_IN MA MA_IN

var n < = > < = > < = > < = >

L 10 21 79.7 18.1 21 784 194 29 96.8 0.3 3.0 96.9 0.1
20 144 258 59.8 16.8 42.7 40.5 245 711 44 25,6 73.1 1.3

30 171 9.0 74.0 274 31.0 41.6 39.9 56.8 3.3 41.9 574 0.7

40 188 4.3 76.9 344 24.8 40.9 48.3 49.7 2.0 49.4 50.3 0.3

50 163 29 80.8 34.9 227 424 01.0 472 1.8 024 474 0.2

7 160 14 826 38.9 275 33.6 53.7 453 1.0 04.3 456 0.1

00 - —  — 40.0 24.8 35.3 074 419 0.7 7.8 422 0.0

H 10 84 63.6 28.0 74 57.0 356 109 883 0.7 11.1 88.7 0.2
20 177 10.5 71.8 185 17.3 64.2 38.6 544 7.0 40.8 56.2 3.1

30 20.7 15 77.8 272 81 64.7 59.3 335 7.2 62.9 344 2.7

40 227 0.2 77.2 379 54 56.6 72.5 222 53 76.0 2277 14

50 234 0.1 76.5 41.7 5.1 53.2 83.0 13.0 4.0 85.9 13.2 0.9

7 241 01 757 50.6 81 41.2 90.3 7.9 1.8 91.8 &1 0.1

w0 - - — 55.0 93 357 945 4.6 0.9 95.3 4.6 0.1

Table 3: Comparison with the RBS heuristic - percentage of better, equal
and worse results

25



low var high var

hewr 7T R=02 R=04 R=0.6 R=0.8 R=02 R=04 R=06 R=038
GA 0.0 -0.006 -0.013 -0.020 -0.019 -0.554 -0.700 -0.950 -1.130
0.2 6.784 1.062 -0.037 0.131 11.251  -3.144 -4.203 -3.117

04 -0.026 -0.112 -0.632 -7.333 0.405 -0.012 -0.493 -6.172

0.6 -0.019 -0.055 -0.159 -0.451 0.202 0.016 -0.182 -0.622

0.8 -0.014 -0.033 -0.049 -0.078 0.055 -0.056 -0.098 -0.127

1.0 -0.008 -0.015 -0.021 -0.030 -0.030 -0.044 -0.052 -0.061
GA_IN 0.0 -0.001 -0.006 -0.011 -0.013 -0.090 -0.120 -0.153 -0.134
0.2 6.801 1522  0.177  0.258 11.361 2408  1.955  1.615

0.4 0.003 0.018 0.061 0.759 0.455 0.134 0.117  1.665

0.6 0.000 -0.001 -0.002 -0.003 0.202  0.073 -0.024 -0.188

0.8 -0.001 -0.001 0.000 -0.001 0.037 -0.024 -0.012 -0.006

1.0 -0.001 0.000  0.000  0.000 -0.002 -0.010 -0.006 -0.003

MA 0.0 0.000 0.000 0.002 0.010 0.029 0.104 0.166 0.272
0.2 6.867 1.649 0.292 0.430 12.032 4.003  3.389  3.887

0.4 0.003 0.025 0.096  1.442 0.513 0336 0.875  8.437

0.6 0.002 0.001 0.001 0.000 0.257  0.153  0.121  0.064

0.8 0.001  0.000 0.000 0.000 0.107  0.034 0.023  0.022

1.0 0.000  0.000  0.000 0.000 0.001  0.002  0.004  0.003

MA IN 0.0 0.000 0.001 0.004 0.013 0.0564 0.130 0.214  0.322
0.2 6.875 1.703  0.338  0.467 12.145  5.190  4.380  4.463

0.4 0.007 0.026 0.097  1.538 0.562 0381 0.893 8.634

0.6 0.002 0.001 0.001 0.000 0.274 0.156  0.126  0.065

0.8 0.001  0.000 0.000 0.000 0.107  0.034 0.023  0.022

1.0 0.000 0.000  0.000 0.000 0.001  0.002 0.004 0.003

Table 4: Relative improvement over the RBS heuristic for instances with 50

jobs
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var heur

n=10 n=20

n=30

n=40 n=>50

n="75

n=100

L  RBS
GA
GA_IN
MA

MA _IN

H  RBS
GA

GA_IN
MA
MA_IN

0.001
0.012
0.003
0.003
0.004

0.001
0.013
0.004
0.004
0.004

0.004
0.074
0.015
0.011
0.011

0.004
0.080
0.020
0.013
0.011

0.009
0.221
0.042
0.037
0.033

0.009
0.242
0.052
0.041
0.036

0.019 0.033
0.492 0.932
0.088 0.158
0.089 0.172
0.079 0.153

0.020 0.035
0.549 1.051
0.106 0.192
0.102 0.203
0.089 0.172

0.100
3.028
0.480
0.612
0.545

0.109
3.476
0.593
0.767
0.649

0.227

1.070
1.617
1.445

0.250
1.353

2.108
1.790

Table 5: Runtimes (in seconds)

n=10

n=15

n=20

var heur %dev

Yoopt

Y%dev

%opt

%dev

Y%opt

L  RBS 0.02
GA 0.0

GA IN  0.03
MA  0.01
MA_IN  0.00

H  RBS 0.46
GA  0.69

GA IN 0.5
MA  0.02

MA IN  0.00

97.00
81.09
79.59
99.56
99.89

88.83
68.87
60.18
98.98
99.73

0.03
0.30
0.05
0.02
0.00

0.89
1.26
0.89
0.09
0.03

83.17
50.83
96.53
97.31
98.41

75.83
33.03
28.88
93.80
96.03

0.13
0.38
0.06
0.04
0.01

0.81
1.66
0.86
0.16
0.06

73.25
29.98
44.23
91.75
95.53

56.83
12.58
17.48
84.37
89.33

Table 6: Comparison with optimum objective function values
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low var high var

heur T R=0.2 R=04 R=0.6 R=0.8 R=0.2 R=04 R=0.6 R=0.8

RBS 0.0 0.000 0.000 0.003 0.007 0.040 0.115 0.279  0.147
0.2 1.857 0.208 0.227  0.266 3.974 4516 2308 1.423
04 0.012 0.031 0.077  0.505 0.682 0.335 0.718  3.790
0.6 0.003 0.002 0.000 0.000 0.673  0.133  0.057  0.045
0.8 0.000 0.000 0.000 0.000 0.043 0.059 0.001  0.008
1.0 0.000  0.000  0.000 0.000 0.000  0.000 0.001  0.000

GA 0.0 0.014 0.022 0.031 0.039 0.418 098  1.623 1.620
0.2 0.073 0.25 0.397 0.458 1.013  5.955 7.442 6.676
04 0.043 0.182 0.741 5.253 0.243 0424 1469 9.291
0.6 0.031 0.106 0.236 0.737 0.148 0.256 0.451  0.853
0.8 0.023 0.054 0.086 0.127 0.101  0.144 0.206  0.229
1.0 0.013 0.025 0.037 0.058 0.050 0.082 0.086  0.107

GA IN 0.0 0.010 0.009 0.019 0.022 0.191 0317 0515 0.529
0.2 0.038 0.200 0.236 0.341 0.749  3.215 3.761 3.581
0.4 0.011 0.020 0.057 0.460 0.240 0.390 1.058 4.114
0.6 0.009 0.007 0.004 0.004 0.161 0.228 0.320 0.641
0.8 0.004 0.003 0.002 0.001 0.094 0.175 0.134 0.135
1.0 0.001 0.001 0.000 0.001 0.012 0.029 0.030 0.034

MA 0.0 0.001 0.004 0.004 0.008 0.025 0.075 0.129 0.114
0.2 0142 0125 0.192 0.101 0.338 0993 0992  0.578
04 0.029 0.045 0.013 0.325 0.108 0.086 0.114 0.267
0.6 0.001 0.000 0.000 0.000 0.031  0.023 0.002  0.000
0.8 0.000 0.000 0.000 0.000 0.002  0.001  0.000  0.000
1.0 0.000  0.000  0.000  0.000 0.000  0.000  0.000  0.000

MA IN 0.0 0.000 0.000 0.001 0.000 0.015 0.027 0.026  0.030
0.2 0.009 0.058 0.045 0.049 0.098 0.343 0.453 0.255
0.4 0.000 0.001 0.003 0.038 0.026 0.015 0.036 0.145
0.6 0.000 0.000 0.000 0.000 0.008 0.002 0.001  0.000
0.8 0.000 0.000 0.000 0.000 0.002  0.000 0.000 0.001
1.0 0.000  0.000  0.000 0.000 0.000  0.000  0.000  0.000

Table 7: Relative deviation from the optimum for instances with 50 jobs
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