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Abstract

We summarise Runge-Kutta type methods for the solution of
ordinary differential equations in models of economic dynamics.
In this work we are going to present explicit Runge-Kutta type
methods, a family of methods to solve numerically systems of
ordinary differential equations, without the need to evaluate high-
order derivatives.

We apply this numerical approach to solve a dynamic, general
equilibrium growth model of North-South technological-knowledge
diffusion by imitation.
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1 Introduction

A wide variety of economic problems is modelled through differential equa-
tions. Since most differential equations are not soluble analytically, numerical
solution of ordinary differential equations is a fundamental technique in con-
tinuous time dynamics to obtain information about the model’s behaviour.

A differential equation is an equation involving an unknown function, vy,
and its derivatives. A first order ordinary differential equation (ODE) has
the form

/ dy
y(t)=— ) = ft.y(t)) (1)

where f : R x R™ — R™ and y(¢) : [to, tr] C R — IR™.! For m = 1 we have a
single equation and for m > 2 we have a system of equations. Using matrix
notation we may write

Yo (1) fonlt, ()

Thus, basically, we know the derivative of an unknown function y(t) €
IR™ as a (nonlinear) function f of ¢ (the independent variable) and y(t)
(the dependent variable). From the resolution of (1) we obtain a family of
solutions determined by a constant. A particular solution is computed by
requiring that it goes through a specific point, say (to, 7). In other words,

y(to) = Yo, (2)

Yo = (Yo1,Y0,2: - ,Yom)- The initial condition can also be a terminal condi-
tion if it is imposed at the end of the interval. In practice a time span [to, t7],
the interval of time over which the problem is to be solved, is also given. The
problem specified by (1) and (2) is called an initial value problem (IVP), and
usually tg = 0, t7 = T'. Solving the IVP is to predict the path that a quantity
will take during a certain time interval, given an initial quantity.

Problems involving ODEs of higher order can be reduced to a system of
first order ordinary differential equations by introducing new variables. We
will not deal with other kind of problems like boundary value problems (BVP).
The system (1) is called non-autonomous but often economic problems are
time-autonomous, that is of the form

!The complex space can also be considered.



y(0) = 2(0) = flylt). ®)

Sufficient conditions are known under which an IVP has a unique solution.
For a unique continuous, differentiable function y(t) to exist, f must be con-
tinuous in ¢ and Lipschitz® continuous in y (||f(¢,y) — f(t,z)|| < L]y — =,
where L > 0 is the Lipschitz constant).

Unfortunately it is seldom that these equations have solutions which can
be expressed in closed form. And if they can, the analytical form is often
too cumbersome and the solution techniques are generally unable to deal
with large and nonlinear systems of equations that arise in real problems.
Numerical methods can often produce a solution to any degree of accuracy
that the computer can represent.

Our aim is to present (explicit) Runge-Kutta methods for the numerical
solution of IVP issued from economic problems. In particular, here we apply
this methodology to solve a dynamic, general equilibrium growth model of
North-South technological-knowledge diffusion by imitation, drawing heavily
on Afonso ([1], ch. 3) . In this model, it is assumed that the North has higher
(i) exogenous productivity related with the quality of institutions, (ii) ini-
tial level of human capital, (iii) aggregate domestic quality index measuring
technological-knowledge. This latter feature occurs because the North inno-
vates — Schumpeterian R&D, aimed at improving the quality of intermediate
goods, as in Aghion and Howitt [2] —, whereas the South imitates Northern in-
novations and imitation is a vehicle for international technological-knowledge
transfer, as in Grossman and Helpman ([7], ch. 11-12) and Barro and Sala-
i-Martin [4], among others.

2 How to solve IVPs in a computer?

To solve a continuous problem in a computer we need first to discretize
it. Initial value problems can be numerically solved using finite difference
methods and recursive procedures.

The numerical procedures to be developed are based on approximations
Yo, Y1, ,yr to the exact solution y(ty),y(t1),- - ,y(t7) at the grid points:
a=ty <ty <---<tyr=>b. We call step sizes to the distances h,, = t, —1t,_1,
n=1,---,T and we are going to consider equal step sizes, that is, uniform
grids, where h = (b — a)/T. The aim is, starting with the initial value

2Rudolph Otto Sigismund Lipschitz (May 14, 1832 - October 7, 1903) was a German
mathematician.



Yo = y(to), find y,, which approximates y(t,), by recurrence relations in
such a way that the value of y,,.1 could be stated as a function of v, using
relations of the form

This numerical approach gives rise to the class of one-step (or self-starting)
and explicit methods, which use only data gathered in the current step.

Out of the scope of this work are the multistep methods where the value
of yn+1 is stated as a function of yx, k = n —r+1,--- i (r-step method)
and the implicit methods where v, 11 depends implicitly from itself through
f: for the one-step case

Yn+1 = Yn + hq)(tna tn+1a Yns Yn+1; h) (5)

A method is said to be convergent if

lim y, = y(tn) (6)
nh=t—a
and is said to be consistent if

2.1 Taylor series based methods

A first approach to solve equation (1) can be obtained by assuming that f
and its derivatives are well-defined over the interval of interest so that we
can use the truncated Taylor? series expansion for y(t) in o,

| —

(t —to) y®) (to) + O(RPHY).

3

) = ulto) + 3 5

The derivatives are not known since we don’t know the solution function.

Using the notation fU) = ZJ_J and t,, =ty +nh, n € Z*, we can approximate

p
y(t1) by y1,y(t) = y1 = y(te)+ > A" FE D (to, yo) +O(hP™). We now know
=1

the approximate value of y at time ¢; and we can obtain similarly ys & y(t5).
Now we start over and by this way we can obtain for each p a method (explicit
one-step) to approximate the solution y,, =~ y(t,) of the form (4)

p. 1
Ynt1 = Yn + h®(t, Yn; h) with ®(t,, y,; h) = ghkf(k‘”(tn, ya)- (8)
k=1 fv-

3Brook Taylor (August 18, 1685 — December 29, 1731) was an English mathematician.
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These are called Taylor methods. The simplest Taylor type method is
obtained for p = 1, ®(t,,yn; h) = f(tn,yn), and it is know as the explicit
Euler* method

Ynt1 = Yn + 0f(tn, Un); 9)

the Euler method is therefor a method of order 2 (O(h?)).

To improve the previous method we can truncate the Taylor series after
the first order. This will keep the errors small but has the disadvantage of
requiring the evaluation of higher derivatives. The Runge-Kutta approach is
to keep the desirable feature of Taylor method but with the replacement of
the high order derivatives evaluation requirement with the evaluation of f at
some points within the integration step from each ¢, to ¢, 1.

2.2 Runge-Kutta methods

The family of Runge’-Kutta® (RK) methods, that we will present next, is
then designed to approximate Taylor series but with the advantage of not
requiring explicit evaluations of the derivatives of f. The idea is to consider
time steps and to assume that the exact value of the slope of the step can be
written as a linear combination of the function evaluated at certain points in
the step.

Runge-Kutta methods compute approximations y, with initial values
Yo = y(tp) using the Taylor series expansion (8). Runge in 1875, based
on the knowledge of y(t,), took y(t, + h) = y(t,) + hf (tn + 2,y (t, +2))
and computed y (tn + %) using the Euler method with step %:

Yn+1 = yn+hk2

h h
k2 - f(tn+§ayn+§kl)

This method does not need to evaluate the derivatives of f and it is more
accurate than the Euler method. The explicit s-stage Runge-Kutta methods
are a generalization of this idea.

*Leonhard Euler (April 15, 1707 - September 18, 1783) was a Swiss mathematician and
physicist.

®Carle David Tolmé Runge (August 30, 1856 — January 3, 1927) was a German math-
ematician, physicist, and spectroscopist.

6Martin Wilhelm Kutta (November 3, 1867 - December 25, 1944) was a German math-
ematician.



3 Explicit s-stage Runge-Kutta methods

A Runge-Kutta s-stage (RKs) method is obtained by doing s function eval-
uations per step, giving rise to

Yn+1 = Yn T h®(tn, yn; ), (tn,yni h) = ;wk (10)
where .
ki=f (tn + hei, yn + hl‘_zj.ai’jkj> , ¢ =0, (11)
j=
for an explicit method and
b= f (tn + heqy o + h ilaivjkj> (12)
j=

for an implicit one. A usual way to present such methods is to use the
Butcher tableau

cl A

w
where w = [wy, wa, -+ ,wy], ¢ = [c1, ¢, ,¢s]T and A = [a;4],i=2,--- s,
j=1,---,5s—1. The components of the vector w are the weights in the

combination of the intermediate values k;, the components of vector ¢ are
the increments of t,, and the entries of the matrix A are the multipliers of the
approximate slopes. Explicit methods can be viewed as a subset of implicit
methods with a; ; = 0, j > ¢ and ¢; = 0. For an implicit RKs method the j
index goes from 1 to s and the Butcher tableau is represented for A = [a; ;],
ij=1,--,s.

For a method of order p we wish to find values for Butcher’s tableau such
that equation (10) matches the first p + 1 terms in equation (8).

3.1 Explicit 2-stage and 2" order Runge-Kutta meth-
ods

So lets consider that we want to build a 2-stage and 2" order method,
s=p=2.

7J. C. Butcher is Honorary Research Professor at the Department of Mathematics of
the University of Auckland, New Zealand.



From equation (10) we have

Yn+1
ky =
kg -

or using the Butcher tableau

But

= Yn+ hw1k1 + hw2k2

(13)
I (tnsyn)
f (tn + hea, yn + hag k)

0

Co | Q21

|w1 %)

0
f (o, yn + hag k) + hCz—f (tn, Yn + hag k) + O(h?)

oz

0
= f(tnayn) + ha'Z,lkl_f(tnayn) +

dy

0
theg=—f (tn, Yn + hag,1ky) + O(h?)

ox

0
= f (tnayn) + ha'Z,lkl_f (tna yn) +

0
+h02%

dy

|:f (tna yn) + ha2,1k1g (tna yn):| + O(h2)

dy

0 0
= f (tnu yn) + hCQ_f (tna yn) + haQ,lkl_f (tnu yn) + O(h2),

So equation (13) becomes

Yn+1 =

oz

dy

Yn + hwlf (tm yn) + hw,.

. (f (tna yn) + hc2ﬁ (tna yn) + ha2,1% (tna yn) f (tna yn)) +

Yn+1 =

or Jy
+0(h?)
0 0
: (wz@a—i (tns Yn) + w2a2,1a_g]; (s Yn) -f (tn,yn)> +O(h?).
From equation (8) we shall write
1 /
Yn+ 1 f (b yn) + 502 (tn, 9) + O(?)
= Yo+ hf(tn, yn) + h2 (15)

10f

19f

Ea_y(tna Yn)-f (tn, yﬂ)) + O(hg)'
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To achieve a 2-stage 2"¢ order method we must take into account equa-
tions (14) and (15) :

_ 1
wl—I—ZUQ:l w1—1—2—02
_ 1 _ 1
Waly = 5, o ’LU2—2—C2
1
Wal21 = 5 Q21 = Cg

Several solutions can be obtained since this is an underdeterminated linear
system of equations. Well-know methods can be obtained:

e modified Fuler method

- fOI‘CQ:%:w:[:O,wQ:].,aQJ:%

1 1
Ynt1 = Yn + hf t, + éh’ Yn + éh'f(tna yn) )

that is

e improved Fuler method

—for02:1:w1:%,w2:%,a2,1:1

Ynt+1 = Yn + %h Lf (tny yn) + f (b + Dy + B (tns yn))]

that is 1 .
T 1
1

2

3.2 Explicit 4-stage and 4" order Runge-Kutta meth-
ods

We can proceed similarly to develop higher order methods, but this requires
hard and complicated work. One of the most frequently used methods of the



Runge-Kutta family is the (classical) 4 order method:

1
Yntl = Yn+ gh (k1 + 2ky + 2ks + ky) (16)
kl = f (tmyn)
ko = ft —l—lh + lhk
2 n 2 7yn 2 1

2
k4 = f(tn_l'hayn‘l‘hk??,)

1 1
]Cg - f(tn+§h>yn+_hk’2>

The values of k3 and k3 represent approximations to the derivative i’ at points
intermediate between (¢, y(t,)) and (f,11,y(tn11)) ; the value of ®(t,, y,; h)
is the weighted average of the k;, i+ = 1,--- ,4. Using Butcher tableau we
have

= O

ol O Ol
oI Dol

oI —

1
6

The slope used in this case is the weighted mean of the slope of these 4
points, being the 2 midpoint values those which contribute the most for the
slope.

3.3 Accuracy of Runge-Kutta methods

Taking into consideration equations (7) and (10) we obtain
i=1

as a condition for RK methods to be consistent. It is easy to verify that
all the RK versions derived above fulfill this requisite. All RK methods are
convergent since consistency is a necessary and sufficient for convergence [8].

When solving ODE’s in a computer using numerical algorithms we must
take care of roundoff and truncation errors. The first are due to finite pre-
cision arithmetic and they increase proportionately to the total number of
integration steps used, while the later are due to the truncation of the Taylor
series. From the first, we shall point out that the use of very small step
length can be risky.



We should also distinguish between local and global (truncation) errors.
The local truncation error, 7),,1, is introduced in each step,

Tor = [[y(tns1) — y(tn) — h®(t,, y(tn); h)|] (17)

and the global truncation error, e, 1, corresponds to the overall error result-
ing from all integration steps

€nt+1 = Hy(tn-&-l) - yn—f—lH : (18)

A p—order method has local error of O(h?™!) and global error of O(h?).
To prove the last proposition, we can write from (18)

ent1 = ||y(tns1) — Ynall

= |y(tns1) = Yn — h®(tn, Yu; h)||
Iy (tnta) = y(tn) — h®(Ln, y(tn); h)] +
+[y(tn) = yn] + (W@ (ta, y(ta); h) — h(tn, yui W]
Toi1+en+hle, =T,11+(1+hLl)e,
= T, + (1 +hL)[T,+ (14 hL)e, 1]
Tos1 (1 +(14+hL))+ (1 +hLl) e,

IN

IN

Toi1 Y (14 RL) + (1+hL)" e
=0
Tpir (L+ AL — 1
L Y

as Tp,11 = O(hPT1) it follows that e, 1 = O(hP).

IN

3.4 Relation between s-stage and p-order in Runge-
Kutta methods and embedded Runge-Kutta meth-
ods

From the previous developments it is not difficult to understand that it is
not possible to obtain an explicit RK method of order p with less than s = p
stages. What it is not so immediate to conclude is that this equality is only
true until p = 4. Indeed, to obtain a RK method of order greater than p
we need to add more than s = p stages. The minimum number of stages
necessary to develop a method of order p is still an open problem. For
example for p = 5 one needs s = 6 and for p = 8 one needs s = 11; for values



of p larger than 8, the minimum number for s is bounded but not determined
yet. From this simple facts, it is clear why RK4 methods are so popular.

To implement an efficient code, one needs to have access to error estimates
in order to be able to obtain valid numerical results. In the case of Runge-
Kutta methods we need to have access to information during the computation
to control the step length on a computationally inexpensive way. Several
techniques can be used. One of them consists on embedded pairs of Runge-
Kutta methods of orders p and p + 1; the difference between the higher and
lower order solutions, 4,11 — Yn+1, is used to control the local error. Maybe
the most famous of these methods of order 4 and 5 are the Runge-Kutta-
Fehlberg and the explicit Runge-Kutta (4,5) pair of Dormand and Price [6].
The later is drawn in the following Butcher tableau (imagine all the hard
work needed to develop such a method !...)

0
i
15} 15}
31 3 9
1
P i 86 32
g 45 15 9
g 19572 25360 64448 212
9 1 2187 6561 729
1 859+ A ) 49 5103
3168 33 5247 176 186576
1 >38¢ 0 500 153 it 1
384 1113 192 6784 84
~ 5179 0 7571 393 92097 187 1
Yn+1 57600 16695 640 339200 2100 40
55 0 500 155 ) i 17 0
Yn+1 384 1113 192 6784 4
5783653 O 466123 41347 16122321 _ ri1v 183
Yn+0.5 57600000 1192500 1920000 339200000 20000 10000

4 Economic evidence

For the numerical results of the economic problem considered, to be shown in
this section, we consider the explicit Runge-Kutta (4,5) pair of Dormand and
Price. We require a precision of 1075 for the relative error, re, and of 107
for the absolute error, a, in order to obtain an approximation that satisfies

|yz(tn) - yn,i| S re ‘yz(tn)| + ae;

for each component of the solution.

4.1 Modelisation of economies

Final goods, continuously indexed by n € [0, 1], are produced in perfect com-
petition. Following the Schumpeterian set-up, each final good is produced

10



by human capital, H, and by a continuum of intermediate goods indexed by
j €0, J]. The output of n, Y, at time ¢ is,

Yo(t) = A [ /0 (¢"0 2, (K, , t))“ dj | [Hyn ()] (19)

The production function is the same in both countries, except for term A,
which is a positive exogenous variable representing the level of productivity,
dependent on the country’s institutions (where Ag < Ay, indexing the South
by S and the North by N). The integral sums up the contributions of inter-
mediate goods to production. In the Schumpeterian tradition, the quantity
of each j, z, is quality-adjusted. The constant quality upgrade is ¢ > 1,
and k is the highest quality rung at time ¢. The expression with exponent
« €0, 1] represent the role of the H input, and index w in H,, identifies the
quantity of H employed in the production of n, i.e., that works and earns a
wage (as opposed to H in accumulating human capital).

In particular, by taking into consideration the profit maximisation by
producers of final goods and the profit maximising limit pricing by monopolist
producers of intermediate goods, the aggregate output (normalising its price
at each time ¢ to one), Y, is

11—«
q

: 120

V= [ mi v an=at (F22) T Qo Ao, o
0

where Q(t) = foJ qk(jvt)[%] dj is the aggregate domestic quality index, mea-

suring domestic technological knowledge.

With regards to the R&D sector, the value of the leading-edge patent
depends on the duration of the monopoly, which, in turn, depends on the
probability of successful R&D [2]. Let Z index the country, and pbz(k, j,t)
denote the instantaneous probability of successful innovation Z = N or imi-
tation Z = S in the next higher quality [£k(j,t) + 1] of intermediate good j.
Formally,

pbz(k,j,t) = rsz(k,j.t) - DCy(k,j,1) - [CU(H)]"7 (21)
where: (i) rsz(k,j,t) is the flow of domestic Y in (20) devoted to R&D
in j; (ii) DCy = By, qu(j’tx%) -H;}Z, B, > 0, represents the domestic
causes promoting domestic R&D; (iii) [CU;(t)]"? (where Ty = 0 and T’y = 1)
is a catching-up term, specific to the South, which sums up the positive
effects of imitation capacity and backwardness on the probability of successful

imitation. By considering ¢ = 1,2,3, we take the following three different
specifications:

11



cui(t) = explonen) - {£ [B0] " {o @014} 0 220
CU(t) = exp(sep) - exp {73 b | Hu(t), Q1) d] } (22b)

5

CUs(t) = exp(Sren) - {f [ﬁw(t)} }El - exp {g [@(t), d} }Eﬁg(t) i (22¢)

D= o= = = .= . = ) 7 — Hus A —
where: @1, G9, 04, 05, Sprep > 0; 00 > Q; 03 > 1,0 < H, = HwN’Q =

8_; < 1 ﬁw is the South’s relative level of employed human capital and @ is
the relative technological-knowledge level of the South’s intermediate good;
the exponential exp(sgrgp) captures one important determinant of imitation
capacity, which are the policies promoting R&D [3]; and functions f, g and
h are formally given, at each ¢, by:

_ exp ( H,
f (Hw) —14 %; (23a)
g(é’d):{—@2+(1o+d)©—d ﬁgi%if ; (23b)
h (Efw, 0, d) e (é, d) i,. (23¢)

That is, in the lines of, e.g., Nelson and Phelps [11], from f, human cap-
ital at work enhances the imitation capacity and so speeds up convergence
with the North, and parameter 7; indicates how quickly pbs(k, j,t) rises as
f[w also rises. Function g attempts to capture the benefits obtained from
relative backwardness, i.e., provided that the technological-knowledge gap is
not very wide, the South can benefit from an advantage of backwardness.®
This is because low-income countries, which are far from the technological-
knowledge frontier, are stagnant and show no potential for rapid growth [13].
Function h brings together the role of the gap in human-capital employed
and the role of the technological-knowledge gap. Equations (23b) and (23c)

8However, when the gap is wider such that @ is below threshold d, backwardness is no
longer an advantage. Hence, the rule that the wider the initial technological-knowledge
gap, the higher the catching up, does not apply unconditionally.

12



guarantee that functions g and h are non-negative and so economically feasi-
ble. Moreover, they are quadratic over the range of main interest, and, once
affected by the exponents, yield an increasing (in the technological-knowledge
gap) advantage of backwardness.

Assuming free-entry equilibrium into R&D, which is defined by the equal-
ity between expected revenue and resources spent, the equilibrium growth
rate of the technological knowledge is given by

B,

@ = {cz

cun () 1Az -t rat)} [o05)-1).
(24)

Concerning the consumption and human-capital accumulation, a time-
invariant number of heterogeneous individuals decides on the allocation of
time and income. Time is divided between accumulation of human capital
and working to earn a share of Y, proportional to the individual’s human
capital. Income is partly spent directly on the consumption of Y, and partly
lent in return for future interest.

The maximization of the lifetime utility (assuming a CIES instantaneous
utility function), taking into account the individual budget constraint, which
equalizes savings (i.e., the accumulation of financial assets K, with return r)
to income earned minus consumption, and the production function of human
capital a la Lucas [10],? yields the solution for the consumption path, which
is the standard Euler equation

ay=C)y=51[rt)-pl, (25)

where: ¢ is the growth rate of ¢; ¢ is the individual consumption; C is the
aggregate consumption; # > 0 is the constant elasticity of marginal utility
with respect to consumption; and p > 0 is the homogeneous discount rate.
An interior solution to the maximization problem requires positive amounts
of both assets, K and H, which is not sustainable unless their returns are
equalized at all times, and the following resulting condition ensures this:

w(t) =r(t) — xr+6, (26)

where: w(t) is the wage per unit of human capital; x, measures the produc-
tivity of formation; and ¢ is the depreciation rate of human capital.

9That is, the productivity of the time spent in human capital accumulation, uz(t),
increases with the amount of human capital at each time ¢t. Thus, u,(t) = 1 — up(t) is
the fraction of time ¢ that is spent at work.

13



4.2 Steady state and Southern transitional dynamics

AsY, X, Rand C are all multiples of Q- H,,, the constant and unique steady-
state endogenous growth rate, which, through the Euler equation (25), also
implies a constant steady-state interest rate, r*, denoted by ¢* is

g*=@*+ﬁ;=?*:)?*:§*:6*zrH_p. (27)
Thus, 7* is obtained by first plugging (24) into the human capital demand
path obtained from (20), resulting in @(t) = Q(t), and then by equating
this latter expression to the condition for optimization by individuals (26).
In particular, the constant r} (and g3 ) is a direct result. However, the
constant r§ (and g%) requires that @* and I;T;; must be constant as well.
Thus, it is due to the North-South technological-knowledge diffusion that
both countries grow at the same rate, g* = gy = g5.

Having established that in steady state there is a world growth rate com-
mon to both countries. However, it is necessary to find out whether the South
converges towards that steady state or not, by assuming that the North is and
remains always in steady state. Thus, first, the system of differential equa-
tions governing the transitional dynamics needs to be obtained, and then it
can be solved through numerical integration. By considering the human cap-
ital market equilibrium, the free-entry condition into R&D, individual utility
maximization with individual optimal time allocation and that the North
is in steady state, we will be able to characterize the Southern transitional
dynamics.

Due to the exploitation of technological-knowledge backwardness, the
Southern growth rate can be higher than the Northern one during the transi-
tional phase, i.e., from ¢t = 0, when imitation starts, until ¢*, when the South
reaches the Northern steady state. In this phase, the probability of success-
ful imitation changes with variations in both ) and H,, towards Q* and H,
respectively. The Southern transitional path is fully described by a system
of differential equations in @, Hy, ¥ = C/QsH, s, urs and u, s =1 —urg,
which must be constants in steady state.

4.3 Numerical computation

As stated, for the numerical solution of the ODEs system describing Southern
transitional dynamics, we use the explicit Runge-Kutta (4,5) pair of Dormand
and Price ([6]; [14]). We solve the above system for a set of baseline parameter
values and initial conditions in the Appendix. In particular, the values for
T3, 04 and T35 in the two alternative specifications for the catching-up term

14



rQ Hy us
case 1 56 0.55 0.40 0.72
case 2 200 0.55 0.26 0.72
case 3 360 0.55 0.14 0.72

Table 1: Steady-state values of the relative technological-knowledge level of
the South @), of the South’s relative level of employed human capital H,
and of the Southern fraction of time spent at work w,, ¢ for the three cases
considered.

are chosen in order to get the same steady-state technological-knowledge gap
between countries under all specifications. In all computations we require a
relative error tolerance of 10~° and an absolute error tolerance of 1077,
Table 1 condenses the main results, by comparing initial and steady-state
values of the relevant variables under the three catching-up specifications.

First, from Table 1, we can immediately observe that the adjustment pro-
cesses are globally stable. Moreover, the speed of convergence towards the
steady state is different according to the case. The fastest speed of conver-
gence is observed in case 1, where the steady state is reached after 56 years.
In cases 2 and 3, the steady state is reached after, respectively, 200 and 360
years. The prolonged time scale towards the steady state is not however sur-
prising. For example, in the model without human-capital accumulation and
with scale effects proposed by Papageorgiou [12], the steady state emerges at
the end of 160 years. The long time towards the steady state suggests that
transitional dynamics is important and should not be neglected.

Regardless of the case, the South improves its relative technological knowl-
edge (from 0.34 to 0.55) and, in case 1, its relative level of human capital at
work (from 0.30 to 0.40). However, under cases 2 and 3, its relative human
capital at work decreases (from 0.30 to 0.26 and 0.14, respectively), which
partly offsets the benefit obtained in terms of technological knowledge. This
question is not analyzed in the standard technological-knowledge literature,
since human-capital accumulation is not taken into account.

Table 1 also shows, as expected, that the fraction of time spent working
in steady state is the same in all cases, which, in turn, corresponds to the
Northern value. _
_ Figure 1 completes the set of results, by showing the path of variables @,
H, and u, s under the catching-up specification (22a). For the other two
cases, the behaviour of these variables is similar.
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Figure 1: Transitional dynamics towards the steady state of @ (dashdot line),
H,, (solid line) and w,, s (dotted line).

Thus, @ increases from its initial value, 0.34, towards its steady-state
value, 0.55, because initially the probability of successful imitation rises.
However, as the rung of quality left to be copied decreases, the cost of imi-
tation increases and the probability of successful imitation falls towards the
steady-state value.

The paths of H,, and u,, s indicate that there is an initial abrupt surge in
the South’s relative level of employed human capital owing to the immediate
increase in the share of time dedicated at work. After that, H,, drops due to
the greater share of time devoted to work in the South in comparison to the
North. Thus, the drop is a result of the (relatively) smaller Southern human-
capital accumulation during the transition phase. As shown in Table 1, the
biggest drop occurs under case 3, which generates the smallest Southern
human-capital accumulation. In light of the initial values, at the end of the
adjustment process, a new higher steady-state level of H,, is only reached in
case 1. B B

The joint behaviour of () and H,, implies that initially the South grows
at a higher rate than the North owing to the immediate jump in the South-
ern share of time devoted to work. Afterwards, it is the magnitude of the
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probability of successful imitation when compared with the probability of
successful innovation that accounts for the higher Southern growth rate. Fi-
nally, both countries grow at the same rate due to the successive increases in
the cost of imitation, which represents a form of diminishing returns. In the
end, both the technological-knowledge gap and the gap in human capital at
work remain constant. That is, the interest rate and the growth rate of the
South fall steadily towards their (or Northern) steady-state values.

The initial conditional value of u,, ¢ indicates that the South starts with
a relative scarcity of human capital, due to the smaller value of u, g at
t = 0. The differential is greater in case 1 (see the Appendix). As reported
above, at the beginning of the transitional phase, the growth rate of human
capital at work drives economic growth, due to both the previous increase
in the amount of human capital and the reallocation of human capital to
production. After that, when the economy moves towards the steady state,
R&D becomes the main engine of growth.

We also checked the robustness of the results of the transitional dynamics
to shocks. The results were obtained from numerical simulations in which
one parameter or an initial condition at a certain time is allowed to deviate
from its baseline value. The general conclusion is that the model’s qualitative
behaviour is similar for the ranges of parameter values tested. In fact, similar
stable saddle paths to steady state were obtained, differing only slightly in
the specific levels of the steady state of the variables which they approach.

We report that the simulation only took 1.0, 0.5 and 24.5 second for cases
1, 2 and 3, respectively, to be performed on a PIV 3.0 GHz Hyper-Threaded
machine, in spite of (and due to) the sophisticated numerical method.

5 Concluding remarks

In this paper, we summarise Runge-Kutta type methods for the solution of
ordinary differential equations in models of economic dynamics. In partic-
ular, we apply this methodology in an endogenous growth model through
human-capital accumulation and R&D, which, in turn, is induced by inno-
vations in the North and by imitations in the South.

The argument is based on the premise that the process of Northern tech-
nological-knowledge progress can only favour some Southern countries. In
this case, technological-knowledge imitation is a window of opportunity for
the South, since, during the transition towards the steady state, it achieves
higher growth rates. Moreover, it is shown that the Southern convergence
depends on the connection between the North-South technological-knowledge
gap and the South’s relative level of employed human capital.
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Appendix: Baseline parameter values and initial condi-
tions

Baseline parameter values
AN 1.56 65 = 61 — SR&D 0.25 55 0.23
Ag | 1.00 d 0.10 6 | 1.05
a | 0.60 o) 0.60 p | 0.03
q | 2.50 T3 3.92 0 |0.02
By | 0.80 T4 0.05 xr | 0.09

Parameters are chosen to calibrate the steady-state world growth rate

around 2%, which approximately matches the average per capita growth
rate of the U.S. in the post-war period [9]. For some parameters the choice
is guided by empirical findings, while other parameter values are based on
theoretical specifications. When the range of choice is large we have opted
for a value close to some critical value.

Initial values of the variables
Q | 0.34 U S |case 1 | 0.44
H, | 0.30 U S |case 2 | 0.51
¥ | 0.20 U, S |case 3 | 0-50
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