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Abstract

The Apparent Tardiness Cost (ATC) heuristic is one of the best performing dispatch

rules for the weighted tardiness scheduling problem. This heuristic uses a lookahead pa-

rameter whose value must be specified. In this paper we develop a function that maps some

instance statistics into an appropriate value for the lookahead parameter. This function

is compared with some fixed values that have been previously used. The computational

results show that the ATC heuristic performs better when the lookahead parameter value

is determined by the proposed function.
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Resumo

A Apparent Tardiness Cost (ATC) é uma das melhores heurísticas de construção para

o problema de sequenciamento que visa minimizar a weighted tardiness. Esta heurística

utiliza um parâmetro de pesquisa cujo valor é necessário especificar. Neste artigo é de-

senvolvida uma função que determina um valor apropriado para este parâmetro com base

em determinadas estatísticas da instância em causa. Esta função é comparada com al-

guns valores fixos habitualmente utilizados. Os resultados computacionais mostram que a

função proposta permite melhorar o desempenho da heurística ATC.
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1 Introduction

In this paper we consider the single machine total weighted tardiness scheduling

problem. This problem can be stated as follows. A set of n independent jobs

{J1, J2, · · · , Jn} has to be scheduled without preemptions on a single machine that
can handle only one job at a time. The machine and the jobs are assumed to be

continuously available from time zero onwards. Job Jj, j = 1, 2, · · · , n, requires a
processing time pj and has a due date dj and a positive weight or penalty wj. For

any given schedule, the tardiness of Jj can be defined as Tj = max {0, Cj − dj},
where Cj is the completion time of Jj. The objective is then to find the schedule

that minimizes the total weighted tardiness
Pn

j=1wjTj.

Lenstra, Rinnooy Kan and Brucker [5] show that the total weighted tardiness

problem is strongly NP-hard. Several exact approaches used in solving this problem

have been surveyed and tested by Abdul-Razaq, Potts and Van Wassenhove [1].

Hoogeveen and Van de Velde [3] show that better Lagrangean lower bounds can be

obtained by reformulating the problem using slack variables. Akturk and Yildirim

[2] present a new dominance rule that can be used to eliminate nodes in an exact

procedure, as well as to improve both lower and upper bounding schemes. Several

heuristics and dispatch rules have also been proposed. The Apparent Tardiness Cost

(ATC) dispatch rule was developed by Rachamadugu and Morton [7], and several

computational studies ([6], [8]) have shown that it’s one of the best construction

heuristics available for the weighted tardiness problem.

The effectiveness of the ATC heuristic depends on the value of a lookahead pa-

rameter. In previous studies, this parameter is set at a fixed value. In this paper

we propose using certain instance statistics, or factors, to determine an appropri-

ate value for the lookahead parameter. The computational results show that this

approach improves the performance of the ATC heuristic.

The remainder of the paper is organized as follows. In section 2 we describe the

instance factors and the experiments performed to determine the function that maps

those instance statistics into a value for the lookahead parameter. Computational

results are reported in section 3. Finally, some concluding remarks are given in

section 4.
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2 A function for determining the lookahead pa-

rameter value

The ATC heuristic uses the following priority index Ij (t) to determine the job Jj

to be scheduled at any instant t when the machine becomes available:

Ij (t) =
wj

pj
exp

µ
− [dj − t− pj]

+

kp

¶
,

where p is the average processing time and k is the lookahead parameter. The value

of k should be releated to the number of competing critical and near-critical jobs.

We now describe the factors or statistics that characterize an instance and may

affect the choice of k. The instance size n and variability of the processing times pj
and the penalties wj may influence the most effective value of k. The remaining two

factors, which are associated with the due dates, are the tardiness factor TF and

the range of due dates RDD. The factor TF can be defined as TF = 1− ¡d/Cmax¢,
where d is the average of the due dates and Cmax is the makespan. If the tardiness

factor is high, the average due date will be low, and most jobs will likely be tardy.

Conversely, when TF is low, most jobs should be completed on time. The factor

RDD, which is a measure of the due dates dispersion around their average, is defined

as (dmax − dmin) /Cmax, where dmax and dmin are, respectively, the maximum and the

minimum value of the due dates.

The experiments performed to determine the mapping function were similar to

those used by Lee, Bhaskaran and Pinedo [4] for the weighted tardiness problem

with sequence-dependent setups. A set of problems with 25, 50, 100, 250, 500 and

1000 jobs was randomly generated as follows. For each job Jj an integer processing

time pj and an integer penalty wj were generated from one of the two uniform

distributions [1, 10] and [1, 100], to create low and high variability, respectively.

For each job Jj, an integer due date dj is generated from the uniform distribution

[Cmax (1− TF −RDD/2) , Cmax (1− TF +RDD/2)], where TF was set at 0.0, 0.2,

0.4, 0.6, 0.8 and 1.0, and RDD was set at 0.2, 0.4, 0.6 and 0.8. The values of the

factors involved in the instance generation process are summarized in Table 1. For

each combination of instance size, processing time and penalty variability, TF and

RDD, 20 instances were randomly generated.

An initial test was first performed to determine, for each factor combination,

the range where the best values of k were concentrated. A more detailed test was
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Factors Settings
Number of jobs 25, 50, 100, 250, 500, 1000
Processing time and penalty variability [1, 10], [1, 100]
Tardiness factor 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
Range of due dates 0.2, 0.4, 0.6, 0.8

Table 1: Experimental design

then performed on these ranges. In this test, we considered values of the lookahead

parameter ranging from the lower to the upper limit of the range, with 0.2 incre-

ments, and computed the total weighted tardiness for each instance and each value

of the lookahead parameter. For each instance we then identified all values of the

parameter k which led to objective function values which were less than or equal to

(1 + α)Z, where Z is the minimum of the computed objective function values and

α > 0. The α is introduced so that a certain proportion of the lookahead parameter

values that lead to an objective function value near the minimum are considered,

instead of only the value (or values) that lead to the best schedule. The value of

α was selected so that, for each factor combination, an average of three values of

k were selected per instance. The method chosen for determining the value of α

automatically compensates for the different variability the objective function value

may exhibit for different factor combinations. The average of the lookahead pa-

rameter values selected for each instance is taken as the best estimate of k for that

instance. The best estimate of the parameter k for a given factor combination is

then given by the average of the best estimates for all twenty instances sharing that

factor combination.

From the results of these experiments we could conclude the following. The

processing time and penalty variability does not have a significant impact on k. The

lookahead parameter is sensitive to the remaining instance factors (instance size, TF

and RDD). The value of k is non-decreasing in the instance size, non-increasing in

RDD and symmetric around TF = 0.5. These factors, however, are interrelated,

since their effect on k depends on the values of the other factors. A simple formula

would then fail to capture the variety of effects and interactions among the factors,

and we therefore decided to develop separate formulas for different TF values. This

approach yields a mapping function that is more accurate, even though it’s also

somewhat more cumbersome. In table 2 we present formulas that determine the

value of k as a function of n and RDD for TF values of 0.0, 0.2 and 0.4. Given

the symmetry in the lookahead parameter values, any TF > 0.5 is converted to an
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equivalent value of 1 − TF . Linear interpolation is then used to determine k for

other TF values. When the tardiness factor is equal to 0.2 or 0.4, we present the

formulas for selected RDD values. The lookahead parameter is linear (or piecewise

linear) in the RDD factor for these two TF values, but the straight line expression

is unwieldy, so we chose to present these simpler expressions. The experiments also

showed that the best values of k are rarely below 0.6. Therefore, if the function ever

returns a value lower than 0.6, k is set to 0.6 instead.

TF RDD k
0.0 all 0.6

0.2
0.2
≥ 0.4

0.115n0.8

(0.22− 0.175 (RDD − 0.4)) ln (n)
0.4

0.2
0.8

0.07n
0.31n0.35

Table 2: Mapping function

3 Computational results

In this section we present the results from the computational tests. The set of test

problems was generated as described in the previous section. The algorithms were

coded in Visual C++ 6.0 and executed on a Pentium IV-1700 personal computer.

Previous studies have indicated that k should be set at a value between 0.5 and

2.0. Therefore, we compared the function-based version of the ATC heuristic with

the fixed values 0.5, 1.0, 1.5 and 2.0. In the following, and for each combination of

instance size and processing time and penalty variability, we only present the results

for the best fixed value (best k). Computational times will not be presented, since

the increased computational effort required by the mapping function could hardly

be noticed, even for the largest instances.

In table 3 we present the average objective function values (mean ofv) and the

relative difference in average weighted tardiness, calculated as F−K
K
∗ 100, where F

and K are the average weighted tardiness values of the function and fixed value

versions, respectively. Table 4 gives the number of instances for which the function-

based version performs better (<), equal (=) or worse (>) than the fixed value

version. We also performed a test to determine if the difference between the two

versions is statistically significant. Given that the heuristics were used on exactly
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the same problems, a paired-samples test is appropriate. Since some of the hypoth-

esis of the paired-samples t-test were not met, the non-parametric Wilcoxon test

was selected. Table 4 also includes the significance (sig.) values of this test, i.e.,

the confidence level values above which the equal distribution hypothesis is to be

rejected. From the results presented in these two tables, we can conclude that the

function-based version outperforms its fixed value counterpart, since the average

objective function value is lower and it provides better results for most of the test

instances. The Wilcoxon test values also indicate that the differences in distribution

between the two versions is statistically significant. The relative improvement over

the fixed value version increases with the instance size and the processing time and

penalty variability.

var. 1-10 var. 1-100
mean ofv mean ofv

n function best k % ofv ch. function best k % ofv ch.
25 1759 1764 -0,27 138001 138119 -0,09
50 6532 6582 -0,75 501234 505127 -0,77
100 25114 25520 -1,59 1895957 1930072 -1,77
250 152441 156304 -2,47 11630510 11986324 -2,97
500 600742 618276 -2,84 46154087 47787819 -3,42
1000 2382689 2454444 -2,92 182334086 189148723 -3,60

Table 3: Average weighted tardiness and relative difference

var. 1-10 var. 1-100
function vs best k function vs best k

n < = > sig. < = > sig.
25 163 263 54 0,000 187 215 78 0,000
50 250 152 78 0,000 241 149 90 0,000
100 300 130 50 0,000 310 131 39 0,000
250 304 137 39 0,000 302 142 36 0,000
500 302 133 45 0,000 312 131 37 0,000
1000 305 135 40 0,000 307 130 43 0,000

Table 4: Comparison of heuristic average weighted tardiness values and statistical
test

In table 5 we present the effect of TF and RDD on the relative difference in

average weighted tardiness for instances with 100 jobs and low processing time and

penalty variability. The results for other instances are similar to those presented.

Both versions of the heuristic generate a schedule with no tardy jobs for all instances
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with TF = 0.0 or TF = 0.2 and RDD = 0.6; 0.8. The weighted tardiness problem

is easier when TF is equal to 0.0 (1.0), since most jobs will be on time (tardy).

For these instances, there is usually little room for improvement, as can be seen

from the results in table 5. As the tardiness factor comes closer to 0.5, the problem

becomes harder, and the improvement provided by the function version increases

significantly, particularly for a range of due dates of 0.2 or 0.4.

RDD
TF 0.2 0.4 0.6 0.8
0.0 – – – –
0.2 -11,04 -29,11 – –
0.4 -25,95 -11,30 -1,24 -5,91
0.6 -15,34 -10,12 -3,94 0,22
0.8 -2,13 0,05 -0,45 -0,29
1.0 -0,10 -0,11 -0,14 -0,12

Table 5: Relative difference in average weighted tardiness for instances with 100
jobs and low processing time and penalty variability

We also compared the function and fixed value versions on instances with TF

and RDD values of 0.1, 0.3, 0.5, 0.7 and 0.9. The results for these instances are

presented in tables 6 and 7. The function-based heuristic once again outperforms

the fixed value approach, and the relative improvement is even higher for this second

set of instances. These results confirm the validity of the proposed mapping function

(and the linear behaviour it assumes between TF values), and illustrate its improved

performance over a wide range of test instances.

var. 1-10 var. 1-100
mean ofv mean ofv

n function best k % ofv ch. function best k % ofv ch.
25 1456 1460 -0,31 106896 107154 -0,24
50 5187 5230 -0,82 398953 401601 -0,66
100 19897 20422 -2,57 1426281 1464787 -2,63
250 119601 124866 -4,22 8994431 9470246 -5,02
500 470984 497043 -5,24 35676414 38045419 -6,23
1000 1880019 1992808 -5,66 140870384 151089892 -6,76

Table 6: Average weighted tardiness and relative difference (second set of instances)

7



var. 1-10 var. 1-100
function vs best k function vs best k

n < = > sig. < = > sig.
25 209 209 82 0,000 196 221 83 0,000
50 240 165 95 0,000 233 161 106 0,000
100 299 129 72 0,000 294 123 83 0,000
250 303 120 77 0,000 311 119 70 0,000
500 309 120 71 0,000 312 120 68 0,000
1000 314 120 66 0,000 317 120 63 0,000

Table 7: Comparison of heuristic average weighted tardiness values and statistical
test (second set of instances)

4 Conclusion

The ATC heuristic is one of the best dispatch rules available for the weighted tar-

diness scheduling problem, as several studies have shown. This heuristic uses a

lookahead parameter whose value must be specified. Previously, this parameter

had been set at a fixed value. We developed a function that maps some instance

statistics into an appropriate value for the lookahead parameter. This approach was

compared with some fixed values that have been recommended. The computational

results showed that using the mapping function improves the performance of the

heuristic over a wide range of instances.
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