
1
 

FACULDADE DE ECONOMIA

UNIVERSIDADE DO PORTO

Faculdade de Economia do Porto   - R. Dr. Roberto Frias - 4200-464 Porto  - Portugal  
Tel . +351 225 571 100 - Fax. +351 225 505 050 - http://www.fep.up.pt

WORKING PAPERS DA FEP

IMPROVED LOWER BOUNDS FOR
THE EARLY/TARDY SCHEDULING

PROBLEM WITH NO IDLE TIME

Jorge M. S. Valente
Rui A. F. S. Alves

Investigação - Trabalhos em curso - nº 125, Abril de 2003

www.fep.up.pt

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6379222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Improved Lower Bounds for the Early/Tardy

Scheduling Problem with No Idle Time

Jorge M. S. Valente and Rui A. F. S. Alves

Faculdade de Economia do Porto

Rua Dr. Roberto Frias, 4200-464 Porto, Portugal

e-mails: jvalente@fep.up.pt; ralves@fep.up.pt

April 28, 2003

Abstract

In this paper we consider the single machine earliness/tardiness scheduling problem

with no idle time. Two of the lower bounds previously developed for this problem are

based on lagrangean relaxation and the multiplier adjustment method, and require an

initial sequence. We investigate the sensitivity of the lower bounds to the initial sequence,

and experiment with different dispatch rules and some dominance conditions. The com-

putational results show that it is possible to obtain improved lower bounds by using a

better initial sequence. The lower bounds are also incorporated in a branch-and-bound

algorithm, and the computational tests show that one of the new lower bounds has the

best performance for larger instances.

Keywords: scheduling, early/tardy, lower bound

Resumo

Neste artigo é considerado um problema de sequenciamento com uma única máquina e

custos de posse e de atraso no qual não é permitida a existência de tempo morto. Dois dos

lower bounds anteriormente apresentados para este problema são baseados na relaxação

lagrangeana e no método de ajustamento dos multiplicadores, e requerem uma sequência

inicial. A sensibilidade destes lower bounds à sequência inicial é analisada, sendo tes-

tadas diversas heurísticas e algumas regras de dominância. Os resultados computacionais
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mostram que a utilização de melhores sequências iniciais permite melhorar os lower bounds.

Os lower bounds são também incorporados num algoritmo do tipo branch-and-bound e os

resultados computacionais mostram que um dos novos métodos permite a obtenção de

melhores desempenhos para as instâncias de maior dimensão.

Palavras-chave: sequenciamento, custos de posse e atraso, lower bound

1 Introduction

In this paper we consider a single machine scheduling problem with earliness and tar-

diness costs that can be stated as follows. A set of n independent jobs {J1, J2, · · · , Jn}
has to be scheduled without preemptions on a single machine that can handle at

most one job at a time. The machine and the jobs are assumed to be continu-

ously available from time zero onwards and machine idle time is not allowed. Job

Jj, j = 1, 2, · · · , n, requires a processing time pj and should ideally be completed on
its due date dj. For any given schedule, the earliness and tardiness of Jj can be re-

spectively defined as Ej = max {0, dj − Cj} and Tj = max {0, Cj − dj}, where Cj is

the completion time of Jj. The objective is then to find the schedule that minimizes

the sum of the earliness and tardiness costs of all jobs
Pn

j=1 (hjEj + wjTj), where

hj and wj are the earliness and tardiness penalties of job Jj.

The inclusion of both earliness and tardiness costs in the objective function is

compatible with the philosophy of just-in-time production, which emphasizes pro-

ducing goods only when they are needed. The early cost may represent the cost of

completing a project early in PERT-CPM analyses, deterioration in the production

of perishable goods or a holding cost for finished goods. The tardy cost can repre-

sent rush shipping costs, lost sales and loss of goodwill. The assumption that no

machine idle time is allowed reflects a production setting where the cost of machine

idleness is higher than the early cost incurred by completing any job before its due

date, or the capacity of the machine is limited when compared with its demand, so

that the machine must indeed be kept running. Korman [4] and Landis [5] provide

some specific examples.

As a generalization of weighted tardiness scheduling ([6]), the problem is strongly

NP-hard. A large number of papers consider scheduling problems with both earliness

and tardiness costs. We will only review those papers that examine a problem that is

exactly the same as ours. For more information on earliness and tardiness scheduling,

interested readers are referred to Baker and Scudder [2], who provide an excellent
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review.

Abdul-Razaq and Potts [1] presented a branch-and-bound algorithm. Their lower

bound procedure is based on the subgradient optimization approach and the dy-

namic programming state-space relaxation technique. The computational results

indicate that the lower bound procedure is tight, but time consuming, and therefore

problems with more than 25 jobs may require excessive solution times. Ow and

Morton [9] develop several early/tardy dispatch rules and a filtered beam search

procedure. Their computational studies show that the early/tardy dispatch rules,

although clearly outperforming known heuristics that ignored the earliness costs,

are still far from optimal. The filtered beam search procedure consistently pro-

vides very good solutions for small or medium size problems, but requires excessive

computation times for larger problems (more than 100 jobs). Li [7] presented a

branch-and-bound algorithm as well as a neighbourhood search heuristic procedure.

The branch-and-bound algorithm is based on a decomposition of the problem into

two subproblems and two efficient multiplier adjustment procedures for solving two

Lagrangean dual subproblems. Their computational results show that the heuristic

procedure is superior to Ow and Morton’s filtered beam search approach in terms

of efficiency and solution quality, and the branch-and-bound algorithm can obtain

optimal solutions for problems with up to 50 jobs. Liaw [8] also proposed a branch-

and-bound algorithm. The lower bounding procedure is based on a Lagrangean

relaxation that decomposes the problem into two subproblems: a total weighted

completion time subproblem, solved by a multiplier adjustment method, and a slack

variable subproblem. Valente and Alves [14] propose two new heuristics, a dispatch

rule and a greedy procedure, and also consider the best of the existing dispatch

rules. They present functions that map some instance statistics into appropriate

values for a lookahead parameter used by both dispatch rules and consider the use

of dominance rules to improve the solutions obtained by the heuristics. The compu-

tational results show that the function-based versions of the heuristics outperform

their fixed value counterparts and that the use of the dominance rules can indeed

improve solution quality with little additional computational effort.

The multiplier adjustment procedures used in the lower bounds proposed by Li

and Liaw require an initial sequence. In this paper we experiment with different

initial sequences and analyse their effect on both the accuracy and the effectiveness

of the lower bounds. Li and Liaw used Smith’s [13] WSPT and WLPT rules to

generate the initial sequences. We consider these two rules, as well as Jackson’s [3]
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EDD rule, the ATC heuristic for the weighted tardiness problem presented in [12],

and an adaptation of the ATC heuristic to the weighted earliness problem, which

we will denote as AEC. We also consider using dominance rules to improve the

sequence generated by these heuristics. Rachamadugu’s [11] rule for the weighted

tardiness problem and a similar rule that is presented for the weighted earliness

problem are used for this purpose. The multiplier adjustment procedures developed

by Li assume that the initial sequences are produced by the WSPT and WLPT

heuristics. Therefore, we had to make some slight changes to these procedures so

that an arbitrary sequence could be used.

This paper is organized as follows. Section 2 describes the changes that had to

be made to Li’s multiplier adjustment procedures. The heuristics that were used

to generate the initial sequence are presented in section 3. Section 4 describes the

dominance rules that were used to improve the sequence generated by the heuristics.

Section 5 describes the lower bounds that were considered, as well as the details

of a branch-and-bound algorithm that was used to determine if the improvement

provided by the most promising lower bounds is worthwhile in the context of an

exact algorithm. The computational results are presented in section 6. Finally,

conclusions are provided in section 7.

2 Modification of Li’s lower bound procedure

In this section we describe how to modify Li’s multiplier adjustment procedures so

that any initial sequence can be used. Li decomposes the early/tardy problem into a

weighted earliness subproblem and a weighted tardiness subproblem. The multiplier

adjustment procedure presented by Potts and van Wassenhove [10] for the weighted

tardiness problem can replace the procedure used by Li for the tardiness subproblem.

In fact, Li’s procedure is a simplified version of Potts and van Wassenhove’s method,

in that it assumes that the initial sequence is generated by the WSPT heuristic.

Therefore, we will only focus on the changes required by the multiplier adjustment

procedure for the earliness subproblem, and the reader is referred to Potts and van

Wassenhove’s paper for details concerning the weighted tardiness procedure.

Throughout this section, assume the jobs have been renumbered so that the

initial sequence generated for the weighted earliness subproblem is (J1, J2, · · · , Jn).
Li shows that a lower bound for the weighted earliness subproblem can be obtained

by solving the following Lagrangean dual subproblem
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max
nX

j=1

λj
¡
dj − C∗j

¢
(D1)

subject to

λj
pj
≤ λj+1

pj+1
, j = 1, . . . , n, (1)

0 ≤ λj ≤ hj, j = 1, . . . , n. (2)

where the λj’s and C∗j ’s are, respectively, the Lagrange multipliers and the jobs’

completion times in the initial sequence (see Li’s paper for details on the derivation

of this dual subproblem). We define adjusted earliness penalties hj as

hj = pj ∗min
½
hi
pi
: i = j, j + 1, . . . , n

¾
.

When the jobs are ordered according to the WLPT rule, as is the case in the pro-

cedure proposed by Li, we have hj = hj for all j. We now show that constraints 2

can be replaced by

0 ≤ λj ≤ hj, j = 1, . . . , n, (3)

without altering the solution of problem (D1).

Lemma 1 Constraints (3) may replace constraints (2) without altering the solution
of problem (D1).

Proof. Suppose that for any job Jj we have hj = pj ∗ hi/pi for some i, j ≤ i ≤ n.

The definition of the adjusted earliness penalties then implies that hi = hi. From (1)

and (2) we then have λj/pj ≤ λi/pi ≤ hi/pi, which implies that λj ≤ pj ∗hi/pi = hj.

Therefore, constraints (3) are implicit in (1) and (2). From the definition of the

adjusted earliness penalties we have hj ≤ hj, so when constraints (3) are imposed,

constraints (2) are redundant and can therefore be dropped.

We now present a multiplier adjustment procedure that can be used to solve

problem (D1) after an arbitrary initial sequence is provided. This procedure replaces

hj with the adjusted penalties hj, but is otherwise identical to the method proposed

by Li.

Procedure Dual1. Multiplier adjustment procedure to solve (D1)
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Step 1: Set ej = dj − C∗j , for j = 1, . . . , n, and compute Vj =
Pn

i=j piei, for

j = 1, . . . , n.

Step 2: Set Vn+1 = 0, S1 = {n+ 1} and k = n.

While k ≥ 1 do

Let m be the smallest integer in S1.

If Vm < Vk, set S1 = S1 ∪ {k}.

Set k = k − 1.

Step 3: Set k = 1 and S1 = S1 − {n+ 1}.

Step 4: While k ≤ n do

If k ∈ S1, set λk = hk.

Else, if k = 1 set λk = 0 and if k 6= 1 set λk = λk−1 (pk/pk−1).

set k = k + 1.

In the above procedure S1 is the set of jobs that have a positive contribution to

problem (D1). Therefore, the larger λj is for j ∈ S1, the larger is the solution to

problem (D1) and the lower bound. In (D1), the largest feasible value for λj is hj.

Each job Jj with j /∈ S1 has a negative contribution to problem (D1), so the smaller

λj is for j /∈ S1, the larger is the solution to problem (D1) and the lower bound. In

(D1), the smallest feasible value for λj is λj−1 (pj/pj−1) for j /∈ S1 and j 6= 1, or 0
for j /∈ S1 and j = 1.

Theorem 2 Procedure Dual1 optimally solves (D1), i.e., the λ∗j , for j = 1, . . . , n

obtained from Dual1 are the optimal solution to (D1), where

λ∗1 = 0, if 1 /∈ S1 (4)

λ∗j = hj, if j ∈ S1 (5)

λ∗j = λ∗j−1 (pj/pj−1) , if j /∈ S1 and j > 1. (6)

Proof. The λ∗j are clearly feasible, so we need to prove their optimality. In procedure
Dual1, S1 can be regarded as an ordered integer set {sk, . . . , s1} with its elements
in decreasing order of their values, where k is the number of jobs in S1. Equations
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(4) and (6) were already present in the original procedure, and the proof of their

optimality is identical to the one presented by Li. To establish equation (5) we first

show, by contradiction, that λ∗sk = hsk . Suppose λ
∗
sk
< hsk . Then

nX
j=1

λ∗jej =

sk−1X
j=1

λ∗jej +
nX

j=sk

λ∗jej

=

sk−1X
j=1

λ∗jej +
nX

j=sk

¡
λ∗sk/psk

¢
pjej

<

sk−1X
j=1

λ∗jej +
nX

j=sk

³
h
∗
sk
/psk

´
pjej.

Setting

λ
0
j =

( ³
h
∗
sk
/psk

´
pj, j ∈ {sk, . . . , n} ,

λ∗j , j ∈ {1, . . . , sk − 1} .
we can obtain a solution λ

0
that is also feasible since λ∗sk−1/psk−1 ≤ hsk/psk (because,

by the definition of the adjusted earliness penalties, h
∗
sk−1/psk−1 ≤ hsk/psk and,

from constraint (3), λ∗sk−1 ≤ hsk−1). Furthermore, this new solution has a larger

objective function value, contradicting the assumption that the original solution

was optimal. Therefore we must have λ∗sk = hsk . The above argument can be

repeated for j = 1, . . . , sk − 1, thus establishing (5).

3 Heuristic procedures

In this section we describe the several dispatch heuristics that were used to generate

initial sequences for the lower bounding procedures. These heuristics and their main

characteristics are summarized in Table 1.

Rule Rank and priority index Time complexity

WSPT max
³
wj
pj

´
O (n log n)

WLPT max
³
pj
hj

´
O (n log n)

EDD min (dj) O (n log n)

ATC max
h
wj
pj
exp

³
− (dj−t−pj)+

kp

´i
O (n2)

AEC max
h
hj
pj
exp

³
− (t−dj)+

kp

´i
O (n2)

Table 1: Dispatch rules used in lower bounding procedures
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The weighted shortest processing time (WSPT) rule was introduced by Smith

[13] and sorts the jobs in non increasing order of the ratio wj
pj
. This rule is optimal

for the weighted tardiness problem if it results in a schedule that does not have any

early jobs. The weighted longest processing time (WLPT) rule was also introduced

by Smith and sorts the jobs in non increasing order of the ratio pj
hj
. If this rule results

in a schedule that does not have any tardy jobs, then it is optimal for the weighted

earliness problem with no idle time allowed (if idle time is allowed, we can simply

delay the jobs so that no job is completed before its due date). The earliest due

date (EDD) rule, presented by Jackson [3], simply sorts the jobs in non decreasing

order of their due dates. Since these three dispatch rules only involve simple sorting

procedures, their time complexity is O (n log n).

The Apparent Tardiness Cost (ATC) heuristic, presented in [12], selects, when-

ever the machine becomes available, the unscheduled job with the highest priority

index wj
pj
exp

³
− (dj−t−pj)+

kp

´
, where p is the average processing time, t is the current

time and k is a lookahead empirical parameter. The priority of a job is low when

that job is still quite early, and gradually increases until it achieves its maximum

value of wj
pj
when the job is late (or on time). Several computational studies have

consistently shown that the ATC is one of the best dispatch heuristics available for

the weighted tardiness problem. If the WSPT sequence results in a schedule that

does not have any early jobs, and is therefore optimal for the weighted tardiness

problem, the ATC rule will always generate that optimal WSPT sequence. The

Apparent Earliness Cost is an adaptation of the ATC rule to the weighted earliness

problem with no idle time allowed. It differs from the ATC rule in that the schedule

is built backwards, i.e., at each iteration we select a job that will be scheduled just

before the current partial sequence. At each iteration we select the unscheduled job

with the highest priority index hj
pj
exp

³
− (t−dj)+

kp

´
, where p is the average processing

time, k is an empirical parameter and t is the time at which the next selected job

will be completed. The priority of a job is low when that job is still quite tardy, and

gradually increases until it achieves its maximum value of hj
pj
when the job is early

(or on time). The time complexity of both the ATC and AEC heuristics is O (n2). If

the WLPT sequence results in a schedule that does not have any tardy jobs, and is

therefore optimal for the weighted earliness problem, the AEC heuristic will always

produce this optimal WLPT sequence. In the first iteration, there exists at least one

job that is early or on time: the job scheduled last in the WLPT sequence. This job

will have the highest hj/pj of all jobs (since it was selected last by the WLPT rule),
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which is also the highest priority any unscheduled job can attain. Therefore, this

will indeed be the job selected by the AEC heuristic. This reasoning can be repeated

for the remaining iterations, thus proving that the AEC heuristic will generate the

WLPT sequence.

4 Dominance rules

In this section we present two dominance rules that were used to improve the se-

quences generated by the heuristics described in the previous section. These domi-

nance rules identify a condition that holds for adjacent jobs in an optimal sequence.

The following rule has been developed by Rachamadugu [11] for the weighted tar-

diness problem.

Theorem 3 Consider any two adjacent jobs in an optimal sequence for the weighted
tardiness problem. Either the following condition holds or an alternative optimal se-

quence can be constructed by interchanging the adjacent jobs in the optimal sequence:

wi

pi

µ
1− (di − t− pi)

+

pj

¶
≥ wj

pj

µ
1− (dj − t− pj)

+

pi

¶
.

In this expression i denotes the index of the job in the ith position, j is the index of

the job in the (i+ 1)st and t is the start time of Ji.

Proof. See the proof of Proposition 1 in [11].
If this condition does not hold for two adjacent jobs, interchanging them will

either lower the schedule cost, or leave it unchanged when both jobs are early in

either position. We now present an adaptation of this rule to the weighted earliness

problem.

Theorem 4 Consider any two adjacent jobs in an optimal sequence for the weighted
earliness problem. Either the following condition holds or an alternative optimal se-

quence can be constructed by interchanging the adjacent jobs in the optimal sequence:

hi
pi

µ
1− (t+ pi + pj − di)

+

pj

¶
≤ hj

pj

µ
1− (t+ pi + pj − dj)

+

pi

¶
.

In this expression i denotes the index of the job in the ith position, j is the index of

the job in the (i+ 1)st and t is the start time of Ji.
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Proof. We must show that when the condition does not hold for two adjacent jobs,
interchanging those jobs either lowers the schedule cost or leaves it unchanged. This

can be done using simple pairwise interchange arguments. When the interchange of

two adjacent jobs is considered, there are 9 possible cases, as shown in Table 2 (E

is for early and T is tardy). Jobs that are on time are considered tardy, since both

have no cost. Let Cij be the cost of the subsequence (Ji, Jj) and let Cji be the cost

of the reversed subsequence (Jj, Ji). In case 1 both jobs are tardy in either position,

so Cij = Cji = 0. Therefore, if the rule is violated, the jobs can be interchanged

without changing the schedule cost. In all other cases, the condition is necessary, i.e.,

if the rule is violated, interchanging jobs will lower the schedule cost. In case 2, both

jobs are early even when scheduled on the second position, so we have t+pi+pj < di

and t+ pi + pj < dj. Therefore, the rule reduces to hi/pi ≤ hj/pj or hj/pi ≥ hi/pj.

We also have

Cij = hi (di − t− pi) + hj (dj − t− pi − pj)

Cji = hj (dj − t− pj) + hi (di − t− pi − pj)

= Cij + hjpi − hipj.

Therefore, when the rule does not hold we have Cij > Cji, and an interchange will

decrease the schedule cost. The same procedure can be repeated for the remaining

cases to complete the proof. For the sake of brevity, we omit the details.

Case 1 2 3 4 5 6 7 8 9
before interchange
Job i T E E T E E E E T
Job j T E E T T T T T E
after interchange
Job i T E T T E T E T T
Job j T E E E T E E T E

Table 2: Possible cases for job interchanges

5 Lower bounds and implementation of the branch-

and-bound algorithm

In this section we describe the lower bounds that were considered, as well as the

details of a branch-and-bound algorithm that was used to compare the best of the
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existing bounds with the most promising of the new methods. We considered 6 lower

bounds based on the procedure presented by Li, with the adaptations described in

this paper. The first of these lower bounds, denoted by Li, is simply the original

procedure that uses the WLPT and WSPT rules to generate the initial sequences

for the weighted earliness and weighted tardiness subproblems, respectively. Lower

bound Li EDD uses the EDD rule to generate the initial sequence for both subprob-

lems, while Li AC denotes the procedure that uses the AEC (ATC) heuristic for

the earliness (tardiness) subproblem. The remaining 3 lower bounds based on Li’s

procedure use these same heuristics and then apply the dominance rules presented

in the previous section to improve the sequences generated by the heuristics. These

lower bounds will be denoted by appending DR to the identifier of the corresponding

lower bound where no dominance rules are applied. Rachamadugu’s rule is used for

the weighted tardiness subproblem and the rule we have developed for the earliness

criterion is used for the weighted earliness subproblem. When a pair of adjacent

jobs in a sequence violates a rule, those jobs are swapped if that change reduces

the objective function value. The rules are applied repeatedly until no improvement

is found in a complete iteration. The complexity of the dominance rules is O (n)

per iteration, and the total complexity depends on the number of times the rule

produces an improvement.

Similarly, we considered 6 lower bounds based on the procedure presented by

Liaw. The first of these, denoted by Lw, is once again the procedure originally

proposed by Liaw. In this procedure, the initial sequence is generated by the WLPT

rule when the lateness factor of a problem is low (≤ 0.5), and by the WSPT rule
when the lateness factor is high (≥ 0.5). The lower bound denoted by Lw EDD

uses the EDD rule, while Lw AC uses the AEC (ATC) rule when the lateness factor

is low (high). The remaining 3 lower bounds, that will once more be denoted by

appending DR to the identifiers of the simpler procedures, use the same heuristics

and then apply the dominance rules. Rachamadugu’s rule is used when the tardiness

factor is high and the weighted earliness rule is used when the tardiness factor is

low.

We now consider the implementation details of the branch-and-bound algorithm.

We first present two dominance rules for the early/tardy scheduling problem that

were used to reduce the number of nodes in the search tree. In the following,

Theorem 5 is a result presented in [9] and Theorem 6 is developed in [8].

Theorem 5 All adjacent pairs of jobs in an optimal schedule must satisfy the fol-

11



lowing condition:

wipj − Ωij (wi + hi) ≥ wjpi − Ωji (wj + hj)

where job Ji immediately precedes Jj, and Ωij and Ωji are defined as

Ωxy =


0 if sx ≤ 0
sx if 0 < sx < py

py otherwise,

where sx = dx− t− px is the slack of job Jx and t is the sum of the processing times

of all jobs preceding Ji.

Proof. See the proof of Theorem 1 in [9].

Theorem 6 All non-adjacent pairs of jobs Ji and Jj with pi = pj and Ji preceding

Jj must satisfy the following condition in an optimal schedule:

wi (pj +∆)− Λij (wi + hi) ≥ wj (pi +∆)− Λji (wj + hj)

with Λij and Λji defined as

Λxy =


0 if sx ≤ 0
sx if 0 < sx < py +∆

py +∆ otherwise,

where sx = dx − t− px is the slack of job Jx, ∆ is the sum of the processing times

of all jobs between Ji and Jj and t is the sum of the processing times of all jobs

preceding Ji.

Proof. See Theorem 5 in [8].

We can now describe the implementation of our branch-and-bound algorithm.

First, we use one of the heuristic procedures presented in [14] to calculate an upper

bound on the optimal schedule cost. This procedure is a modified version of the

EXP-ET heuristic developed in [9], since the value of a lookahead parameter is

determined by a function, and dominance rules are used to further improve the

sequence generated by this heuristic. The upper bound is updated whenever a

feasible schedule with a lower cost is found during the branching process. Motivated
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by results presented in [7] and [8], when the lateness factor of a problem is high,

we adopt a forward-sequencing branching rule where a node at level l of the search

tree corresponds to a sequence with l jobs fixed in the first l positions. When the

lateness factor is low, we adopt a backward-sequencing branching rule where a node

at level l of the search tree corresponds to a sequence with l jobs fixed in the last l

positions.

The depth-first strategy is used to search the tree, and ties are broken by selecting

the node with the smallest value of the associated partial schedule cost plus the

associated lower bound for the unscheduled jobs. We apply the following three tests

to decide whether a node should be discarded or not. In the first test, the adjacent

dominance rule of Theorem 5 is applied to the two jobs most recently added to the

node’s partial schedule. In the second test, the non adjacent rule of Theorem 6 is

applied. Finally, if the node is not eliminated by the two previous tests, a lower

bound is calculated for that node. If the lower bound plus the cost of the associated

partial schedule is larger than or equal to the current upper bound, the node is

discarded.

6 Computational Results

The lower bounds were tested on a set of randomly generated problems with 15,

20, 25, 30, 40, 50, 100, 500 and 1000 jobs. These problems were generated as fol-

lows. For each job Jj an integer processing time pj, an integer earliness penalty hj

and an integer tardiness penalty wj were generated from one of the two uniform

distributions [1, 10] and [1, 100], to create low and high variability, respectively.

For each job Jj, an integer due date dj is generated from the uniform distribution

[P (1− LF −RDD/2) , P (1− LF +RDD/2)], where P is the sum of the process-

ing times of all jobs, LF is the lateness factor, set at 0.0, 0.2, 0.4, 0.6, 0.8 and

1.0, and RDD is the range of due dates, set at 0.2, 0.4, 0.6 and 0.8. The values

considered for each of the factors involved in the instance generation process are

summarized in Table 3. For each combination of problem size, processing time and

penalty variability, LF and RDD, 20 instances were generated. All the algorithms

were coded in Visual C++ 6.0 and executed on a Pentium IV-1500 personal com-

puter. Throughout this section, and in order to avoid excessively large tables, we

will sometimes present results only for some representative cases.

In Table 4 we present the average value of the lower bounds before and after
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Factors Settings
Number of jobs 15, 20, 25, 30, 40, 50, 100, 500, 1000
Processing time and penalties variability [1, 10], [1, 100]
Lateness factor 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
Range of due dates 0.2, 0.4, 0.6, 0.8

Table 3: Experimental design

applying the dominance rules, and the average of the relative improvements (%

imp.), calculated as LBDR−LB
LB

∗ 100, where LB and LBDR represent the values of

the lower bound before and after the use of the dominance rules, respectively. In

Table 5 we give the number of instances for which the lower bounds that use the

dominance rules perform better (>), equal (=) or worse (<) than the corresponding

lower bounds that do not use those rules. We also performed a test to determine if

the differences between these lower bounds are statistically significant. Given that

the lower bounds were used on exactly the same instances, a paired-samples test

is appropriate. Since some of the hypothesis of the paired-samples t-test were not

met, the non-parametric Wilcoxon test was selected. In Table 5 we also present the

significance (sig.) values of this test, i.e., the confidence level values above which

the equal distribution hypothesis is to be rejected.

n = 25 n = 50 n = 100
var. LB before after % imp. before after % imp. before after % imp.
low Li 2848 2884 1,27 11177 11336 1,12 43700 44455 1,32

Li EDD 1253 2523 84,86 3810 8906 104,85 12027 30347 108,71
Li AC 2887 2888 0,06 11348 11352 0,05 44182 44190 0,03
Lw 2877 2913 1,27 11239 11398 1,11 43823 44579 1,31

Lw EDD 1341 2579 75,42 4006 9031 97,76 12446 30666 104,97
Lw AC 2915 2917 0,32 11414 11417 0,04 44335 44343 0,02

high Li 219836 223302 1,68 858537 875108 1,67 3379035 3451238 1,60
Li EDD 76489 192715 196,97 187091 648861 250,49 460196 2212643 346,00
Li AC 223520 223716 0,14 876627 877132 0,08 3437143 3438207 0,04
Lw 222136 225596 1,58 863673 880230 1,63 3389548 3461669 1,58

Lw EDD 83319 196716 151,23 202679 659598 208,15 493318 2234936 303,52
Lw AC 225847 226042 0,12 881968 882462 0,05 3449396 3450485 0,04

Table 4: Lower bound average values and relative improvement

From these results, we can see that both Li and Liaw’s lower bounds are sensitive

to the choice of the initial sequence. The EDD rule, particularly when not followed

by the dominance rules, is clearly inferior to the other heuristics. For instances
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n = 25 n = 50 n = 100
var. LB > = < sig. > = < sig. > = < sig.
low Li DR 248 232 0 0,000 254 226 0 0,000 262 218 0 0,000

Li EDD DR 414 66 0 0,000 403 77 0 0,000 395 85 0 0,000
Li AC DR 183 297 0 0,000 249 231 0 0,000 299 181 0 0,000
Lw DR 271 170 39 0,000 323 81 76 0,000 364 18 98 0,000

Lw EDD DR 434 23 23 0,000 431 15 34 0,000 430 5 45 0,000
Lw AC DR 185 277 18 0,000 269 148 63 0,000 355 22 103 0,000

high Li DR 252 228 0 0,000 266 214 0 0,000 259 221 0 0,000
Li EDD DR 410 70 0 0,000 427 53 0 0,000 421 59 0 0,000
Li AC DR 235 245 0 0,000 276 204 0 0,000 295 184 1 0,000
Lw DR 251 220 9 0,000 291 167 22 0,000 275 156 49 0,000

Lw EDD DR 413 62 5 0,000 434 40 6 0,000 432 37 11 0,000
Lw AC DR 235 241 4 0,000 279 189 12 0,000 316 133 31 0,000

Table 5: Comparison of lower bound values and statistical test

with up to 50 jobs the AEC/ATC heuristics provided the best results, while the

WSPT/WLPT rules produced the highest lower bounds for the larger (500 and

1000 jobs) instances. The use of the dominance rules leads to improved lower bound

performance, since the average lower bound value is larger (particularly for the EDD

rule), and the results are better or equal for most, or even all, of the test instances.

The Wilcoxon test values also indicate that the difference is statistically significant.

The effect of the dominance rules also seems to be higher for instances with a larger

processing time and penalty variability.

In Table 6 we present the number of times each version of Liaw’s lower bound

performs better (>), equal (=) or worse (<) than the corresponding Li lower bound,

and the average of the relative improvements (% imp.), calculated as Lw−Li
Li
∗ 100,

where Lw and Li represent Liaw and Li’s lower bound values, respectively. A test

was also performed to determine if the differences are statistically significant. The

Wilcoxon test was once again chosen and its significance values (sig.) are given in

Table 6. In Table 7 we present the LF and RDD effect on the average relative

improvement for the original versions on instances with 50 jobs and low variability.

From Tables 4, 6 and 7 we can conclude that Liaw’s lower bound is superior: the

average lower bound value is higher, and for most or even all of the test instances it is

better than or equal to Li’s lower bound. The Wilcoxon test significance values also

indicate that the differences between these lower bounds are statistically significant.

The relative improvement decreases as the instance size increases, and is higher for

the instances with a larger processing time and penalty variability. The results in
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n = 25 n = 50
var. LB > = < % imp. sig. > = < % imp. sig.
low Lw 348 124 8 12,31 0,000 377 82 21 4,31 0,000

Lw DR 355 123 2 12,30 0,000 391 72 17 4,30 0,000
Lw EDD 480 0 0 21,09 0,000 480 0 0 11,09 0,000

Lw EDD DR 395 85 0 20,56 0,000 437 43 0 8,08 0,000
Lw AC 352 128 0 11,65 0,000 394 84 2 4,66 0,000

Lw AC DR 355 124 1 16,52 0,000 392 87 1 4,64 0,000
high Lw 372 108 0 22,18 0,000 409 69 2 7,02 0,000

Lw DR 377 103 0 22,02 0,000 415 65 0 6,95 0,000
Lw EDD 480 0 0 56,06 0,000 480 0 0 32,88 0,000

Lw EDD DR 411 69 0 41,63 0,000 445 34 1 23,02 0,000
Lw AC 380 100 0 21,52 0,000 416 64 0 7,08 0,000

Lw AC DR 379 101 0 21,49 0,000 416 64 0 7,02 0,000

Table 6: Comparison of Li and Liaw’s lower bounds and statistical test

RDD
LF 0.2 0.4 0.6 0.8
0.0 0,00 0,01 0,01 0,01
0.2 0,42 0,48 0,62 0,42
0.4 13,73 16,78 18,14 16,61
0.6 8,70 7,21 7,52 11,26
0.8 0,37 0,30 0,38 0,46
1.0 0,00 0,01 -0,02 0,08

Table 7: Relative improvement of Liaw’s lower bound for instances with 50 jobs and
low variability
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Table 7 indicate that the LF parameter has an important effect. Liaw’s lower bound

values are much higher than Li’s for lateness factors of 0.6 and (particularly) 0.4.

For the remaining LF values, however, the two lower bound procedures are quite

close.

In Table 8 we present the number of times each lower bound achieves the best

result and the average of the relative deviations from the optimum (% dev. opt.),

calculated as O−LB
O
∗100, where O and LB represent the optimum objective function

value and the lower bound value, respectively. In table 9 we present the LF and

RDD effect on the relative deviation from the optimum for Liaw’s original lower

bound on instances with 30 jobs and low variability. The results on Table 8 once

again show that the use of the dominance rules leads to improved lower bounds, and

that Liaw’s lower bounds provide better results than Li’s counterparts. We can also

see that the lower bounds are not very tight on average, as even the best are still

more than 20% below the optimum. We can see from Table 9 that the LF parameter

once again has an important effect. When the lateness factor is either 0.0 or 1.0, the

lower bound value is quite close to the optimum. As the LF moves towards more

intermediate values, the lower bound performance degrades considerably, and it’s

quite poor for LF values of 0.6 and (especially) 0.4. This result is to be expected,

since the early/tardy problem is more difficult for intermediate LF values. If all the

jobs were early (tardy), an optimum schedule could be easily determined, and for

a LF of 0.0 (1.0) most jobs will indeed be early (tardy). For the intermediate LF

values, however, there is a greater balance between the number of early and tardy

jobs, and the problem becomes harder.

In Table 10 we present the lower bounds average runtimes, in seconds, for in-

stances with 500 and 1000 jobs. These results show that Liaw’s lower bounds not

only provide better results, but also require less computation time than Li’s lower

bounds. We have already seen that the results of Liaw’s original lower bound can be

improved by the use of the dominance rules or the AEC/ATC heuristics. However,

these new lower bounds, particularly the ones that use the AEC/ATC heuristics,

require a noticeably higher computation time. Therefore, it cannot be guaranteed

that their use will reduce the computation time of a branch-and-bound algorithm.

In order to determine if the improvement due to these lower bounds is indeed worth-

while in the context of an exact algorithm, the instances with up to 30 jobs were

solved to optimality with a branch-and-bound algorithm using Liaw’s original lower

bound, as well as the Lw DR, Lw AC and Lw AC DR lower bounds.
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var. low var. high
n = 20 n = 30 n = 20 n = 30

LB % dev. opt. best % dev. opt. best % dev. opt. best % dev. opt. best
Li 25,55 38 23,49 13 26,08 19 26,20 10

Li DR 24,59 114 22,25 68 24,70 94 24,82 72
Li EDD 60,85 0 65,43 0 69,04 0 76,39 0

Li EDD DR 33,26 91 35,21 60 35,85 79 42,07 57
Li AC 24,44 81 22,05 44 24,52 40 24,60 24

Li AC DR 24,38 129 22,00 96 24,40 112 24,51 87
Lw 22,87 178 21,46 118 23,52 191 23,81 173

Lw DR 21,95 297 20,24 216 22,17 338 22,44 288
Lw EDD 56,00 26 61,58 2 64,03 20 72,18 7

Lw EDD DR 29,52 199 32,22 145 32,25 214 38,72 167
Lw AC 21,75 245 20,00 189 21,95 240 22,21 201

Lw AC DR 21,69 366 19,95 353 21,83 432 22,13 401

Table 8: Relative deviation from the optimum and number of times lower bound is
the best

RDD
LF 0.2 0.4 0.6 0.8
0.0 0,23 0,91 2,53 3,37
0.2 16,99 5,54 7,82 10,55
0.4 75,50 69,29 57,44 44,94
0.6 59,57 56,09 41,57 33,42
0.8 7,42 3,11 4,84 8,85
1.0 0,15 0,63 1,60 2,63

Table 9: Relative deviation from the optimum for lower bound Lw on instances with
30 jobs and low variability
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var. low var. high
LB n = 500 n = 1000 n = 500 n = 1000
Li 0,001 0,003 0,002 0,003

Li DR 0,005 0,016 0,006 0,019
Li EDD 0,000 0,001 0,000 0,001

Li EDD DR 0,014 0,057 0,016 0,055
Li AC 0,037 0,152 0,039 0,150

Li AC DR 0,038 0,153 0,041 0,153
Lw 0,001 0,002 0,001 0,002

Lw DR 0,003 0,009 0,003 0,010
Lw EDD 0,000 0,001 0,000 0,001

Lw EDD DR 0,012 0,051 0,014 0,049
Lw AC 0,015 0,060 0,016 0,060

Lw AC DR 0,015 0,061 0,017 0,062

Table 10: Lower bound runtimes (in seconds)

In Table 11 we give the branch-and-bound average computation times (in sec-

onds), for each lower bound. In Table 12 we present the effect of the LF and RDD

parameters on the branch-and-bound runtimes for the 30-job instances and both Lw

and Lw DR lower bounds. We can see from Table 11 that the lower bounds that

use the AEC/ATC heuristics lead to higher computation times than the original

procedure. The Lw DR lower bound, however, leads in some cases to lower com-

putation times, particularly for the larger instances and when the processing time

and penalty variability is high. From Table 12 it is clear that the lateness factor has

an important effect on the computation times. The branch-and-bound algorithm is

much slower for the intermediate LF values, as a consequence of the much lower

accuracy of the lower bound. The new versions of Liaw’s lower bound provide better

results than the original method when the RDD value is high.

In Table 13 we present the average number of nodes generated by the branch-

and-bound algorithm (nodes), as well as some data on the relative importance of

the three fathoming tests, namely the average percentage of nodes eliminated by

the adjacent rule (% AR.), the non-adjacent rule (% NAR) and the lower bound

(% LB). In Table 14 we present the LF and RDD effect on the average number of

nodes generated and the average percentage of nodes eliminated by the lower bound

test for the 30-job instances when lower bound Lw DR is used.

Only a very small percentage of nodes is eliminated by the non-adjacent dom-

inance rule. The proportion of nodes fathomed by this rule increases with the

19



Lower bound
var. n Lw Lw DR Lw AC Lw AC DR
low 15 0,011 0,012 0,012 0,014

20 0,102 0,107 0,118 0,132
25 1,015 1,019 1,181 1,328
30 15,590 12,537 15,858 17,814

high 15 0,010 0,011 0,011 0,013
20 0,088 0,084 0,094 0,104
25 1,079 0,983 1,146 1,283
30 9,816 9,357 11,016 12,392

Table 11: Branch-and-Bound runtimes (in seconds)

Lw Lw DR
RDD

var. LF 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
low 0.0 0,019 0,069 0,591 2,272 0,016 0,052 0,221 0,209

0.2 0,980 0,348 3,592 10,845 1,166 0,280 1,467 1,285
0.4 104,359 33,695 51,360 66,972 131,862 39,801 36,762 12,782
0.6 21,472 12,811 26,050 31,559 27,466 15,096 12,135 18,320
0.8 0,358 0,147 1,696 2,977 0,383 0,128 0,473 0,537
1.0 0,009 0,056 0,300 1,634 0,008 0,029 0,121 0,294

high 0.0 0,029 0,080 0,187 1,091 0,023 0,047 0,071 0,166
0.2 0,736 0,645 1,002 9,004 0,859 0,554 0,403 2,414
0.4 24,956 20,977 30,029 85,734 31,834 24,202 18,973 69,966
0.6 15,797 8,036 12,678 8,445 50,730 7,725 10,024 3,660
0.8 0,365 0,597 3,327 10,575 0,410 0,436 0,609 1,211
1.0 0,013 0,057 0,218 1,001 0,013 0,027 0,066 0,151

Table 12: Branch-and-Bound runtimes (in seconds) for instances with 30 jobs

n = 20 n = 30
var. LB nodes % AR % NAR % LB nodes % AR % NAR % LB
low Lw 9952 27,62 0,45 71,93 1454847 33,41 0,59 66,00

Lw DR 8640 25,05 0,40 74,55 1040926 28,26 0,48 71,26
Lw AC 8574 24,89 0,41 74,70 1109366 27,75 0,48 71,77

Lw AC DR 8513 24,68 0,40 74,92 1109173 27,50 0,47 72,03
high Lw 8706 30,77 0,05 69,18 785837 35,50 0,08 64,42

Lw DR 6987 27,39 0,05 72,56 659586 30,03 0,07 69,90
Lw AC 7061 27,36 0,05 72,59 654292 29,75 0,07 70,18

Lw AC DR 6939 27,14 0,05 72,81 648324 29,48 0,06 70,45

Table 13: Average number of nodes and relative importance of the fathoming tests
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RDD
0.2 0.4 0.6 0.8

var. LF nodes % LB nodes % LB nodes % LB nodes % LB
low 0.0 443 98,29 1375 96,79 6461 92,11 5697 94,53

0.2 83853 34,33 9704 77,51 48404 81,73 43280 84,92
0.4 14736255 16,10 2548859 31,28 1834030 55,53 538800 68,40
0.6 2631359 22,57 1000330 35,63 638521 60,01 776971 69,98
0.8 27185 49,53 4422 85,13 15337 82,88 16710 86,41
1.0 261 99,28 927 97,97 3899 94,82 9139 94,44

high 0.0 616 97,86 1391 95,71 1836 93,63 5044 90,95
0.2 60742 38,24 19385 75,54 13107 79,72 91145 80,52
0.4 3735300 15,07 1669014 33,28 786980 56,36 3254559 63,59
0.6 5021649 17,37 419549 40,97 495766 59,83 138991 70,79
0.8 24856 49,88 17046 75,36 22784 79,93 42382 83,84
1.0 430 97,92 911 95,45 1977 93,34 4594 92,36

Table 14: Nodes generated and percentage of nodes eliminated by lower bound test
for Lw DR and instances with 30 jobs

instance size and decreases with the variability of the processing times. This result

is to be expected, since it’s more likely to find two jobs with the same processing

time when the number of jobs is high and the variability of the processing times is

low. As the instance size and the processing time and penalty variability increase,

the percentage of nodes fathomed by the adjacent rule tends to increase, and the

effectiveness of the lower bound test correspondingly decreases. We can also see that

the percentage of nodes eliminated by the lower bound test is higher for the tighter

lower bound versions. The LF parameter has a significant effect on the number of

nodes generated and the relative effectiveness of the node-fathoming tests. As the

LF value becomes closer to the middle of its range, the number of nodes generated

increases, and the percentage of nodes eliminated by the lower bound test decreases.

The importance of the adjacent rule becomes correspondingly higher, since the non-

adjacent rule has only a marginal effect. These results can once more be explained

by the much lower accuracy of the lower bounds for the intermediate LF values.

7 Conclusion

In this paper we considered the lower bound procedures developed by Li and Liaw

for the early/tardy problem with no idle time. These procedures use the multiplier

adjustment method and require an initial sequence. We investigated the sensitiv-
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ity of these lower bounds to the initial sequence, and experimented with different

scheduling rules and dominance conditions. The computational results show that

tighter lower bounds can be obtained through the use of better heuristics and dom-

inance conditions. Liaw’s lower bounds also outperform Li’s, particularly when the

lateness factor is 0.4 or 0.6. The most promising of the new lower bounds were

incorporated in a branch-and-bound algorithm and compared with the best of the

existing methods. The new lower bound that simply incorporates the dominance

conditions allows for a reduction in computation time, particularly for the larger

instances and when the processing time and penalty variability is high. The new

versions also perform better than the existing one when the range of due dates is

high.
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