
����������	�	�
��������
�������������	�	�
��������
�������������	�	�
��������
�������������	�	�
��������
�������������	�	�
��������
�������������	�	�
��������
�������������	�	�
��������
�������������	�	�
��������
���

�	����� �������	�� ���	����� �������	�� ���	����� �������	�� ���	����� �������	�� ���	����� �������	�� ���	����� �������	�� ���	����� �������	�� ���	����� �������	�� ��

��	��
��� � ���������� ��	���	��
��� � ���������� ��	���	��
��� � ���������� ��	���	��
��� � ���������� ��	���	��
��� � ���������� ��	���	��
��� � ���������� ��	���	��
��� � ���������� ��	���	��
��� � ���������� ��	�

��� ���������� ������ � ���� ���������� ������ � ���� ���������� ������ � ���� ���������� ������ � ���� ���������� ������ � ���� ���������� ������ � ���� ���������� ������ � ���� ���������� ������ � �

�
�������������� ����������
�������������� ����������
�������������� ����������
�������������� ����������
�������������� ����������
�������������� ����������
�������������� ����������
�������������� ���������

������� ���������� ��������� ���������� ��������� ���������� ��������� ���������� ��

�������������������� �� ��� ��� ��� � ��
���������!�������"� ��
���������!�������"� ��
���������!�������"� ��
���������!�������"�
� �$������������%����# � �$������������%����# � �$������������%����# � �$������������%����

���������	
��������
���������	
��������
���������	
��������
���������	
��������
���������	
��������
���������	
��������
���������	
��������
���������	
��������

&������	&������	&������	&������	
' ��(' ��(' ��(' ��(��������
%�������%�������%�������%����������������	
��������
���������	
��������
���������	
��������
���������	
��������
���������	
��������
���������	
��������
���������	
��������
���������	
��������

� �� �� �� �)*+"�)*+"�)*+"�)*+"�, ��, ��, ��, ����)++-��)++-��)++-��)++-

Beam search heuristics for the single machine

scheduling problem with linear earliness and

quadratic tardiness costs

Jorge M. S. Valente∗

LIAAD, Faculdade de Economia, Universidade do Porto, Portugal

October 3, 2007

Abstract

In this paper, we consider the single machine scheduling problem

with linear earliness and quadratic tardiness costs, and no machine

idle time. We present heuristic algorithms based on the beam search

technique. These algorithms include classic beam search procedures,

as well as the filtered and recovering variants. Several dispatching rules

are considered as evaluation functions, in order to analyse the effect

of different rules on the effectiveness of the beam search algorithms.

The computational results show that using better rules indeed im-

proves the performance of the beam search heuristics. The detailed,

filtered and recovering beam search procedures outperform the best

∗Address: Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias,
4200-464 Porto, Portugal. E-mail: jvalente@fep.up.pt.

1

existing heuristic. The best results are given by the recovering and de-

tailed variants, which provide objective function values that are quite

close to the optimum. For small to medium size instances, either of

these procedures can be used. For larger instances, however, the de-

tailed beam search algorithm requires excessive computation times,

and the recovering beam search procedure then becomes the heuristic

of choice.

Keywords: scheduling, single machine, linear earliness, quadratic tardiness,

beam search, heuristics

1 Introduction

In this paper, we consider a single machine scheduling problem with lin-

ear earliness and quadratic tardiness costs, and no machine idle time. For-

mally, the problem can be stated as follows. A set of n independent jobs

{J1, J2, · · · , Jn} has to be scheduled on a single machine that can handle

at most one job at a time. The machine is assumed to be continuously

available from time zero onwards, and preemptions are not allowed. Job

Jj , j = 1, 2, · · · , n, requires a processing time pj and should ideally be com-

pleted on its due date dj. For a given schedule, the earliness and tardiness

of Jj are defined as Ej = max {0, dj − Cj} and Tj = max {0, Cj − dj}, re-

spectively, where Cj is the completion time of Jj. The objective is to find a

schedule that minimizes the sum of linear earliness and quadratic tardiness

costs
∑n

j=1

(
Ej + T

2

j

)
, subject to the constraint that no machine idle time is

allowed.

2

Single machine scheduling environments actually occur in many practical

operations (for a recent example in the chemical industry, see Wagner et al.

(2002)). Moreover, the performance of many production systems is frequently

determined by the quality of the schedules for a single bottleneck machine.

Single processor models are then most useful in practice for scheduling such a

machine. Also, the analysis of single machine problems provides results and

insights that can often be applied to more complex scheduling environments.

Indeed, multiple processor environments can often be relaxed to a single

machine problem, or a sequence of such problems. Furthermore, the solution

procedures for some complex systems (e.g., job shops) often require solving

subproblems with a single processor.

Scheduling models with both earliness and tardiness costs are compatible

with the just-in-time (JIT) production philosophy. The JIT approach focuses

on producing goods only when they are needed, and therefore considers that

both earliness and tardiness should be discouraged. Earliness/tardiness mod-

els are also compatible with the recent adoption of supply chain management

by many organisations. This approach seeks to improve the efficiency of the

supply chain, and to provide a better service to the end user, by integrating

the flow of materials from suppliers to customers. The adoption of supply

chain management has caused organisations to view early deliveries, in ad-

dition to tardy deliveries, as undesirable.

Linear earliness and quadratic tardiness costs are considered in this paper.

On the one hand, early completions of jobs result in unnecessary inventory.

The costs of maintaining and managing this inventory tend to be propor-

tional to the quantity held in stock, and therefore a linear penalty is used for

3

early jobs. On the other hand, late deliveries can result in lost sales and loss

of goodwill, as well as disruptions in stages further down the supply chain. In

this paper, a quadratic penalty is considered for the tardy jobs. A quadratic

tardiness penalty is appropriate in practice. Indeed, the tardiness is an im-

portant attribute of service quality. Also, a customer’s dissatisfaction tends

to increase quadratically with the tardiness, as proposed in the loss function

of Taguchi (1986). Moreover, a quadratic tardiness penalty can in some situ-

ations be preferable to the more usual linear tardiness or maximum tardiness

functions, as discussed in Sun et al. (1999).

We assume that machine idle time is not allowed. This assumption is

appropriate for many production settings. Indeed, when the capacity of the

machine is limited when compared with the demand, the machine must be

kept running in order to meet the customers’ orders. Also, the assumption

of no idle time is justified when the machine has high operating costs, and

when starting a new production run involves large setup costs or times. Some

specific examples of production settings where the no idle time assumption

is appropriate have been given by Korman (1994) and Landis (1993).

This problem has been previously considered by Valente (to appear,

2006). Valente (to appear) proposed a lower bounding procedure based on a

relaxation of the job completion times, as well as a branch-and-bound pro-

cedure. In Valente (2006), several dispatching heuristics are presented, and

their performance is analysed on a wide range of instance types. The cor-

responding problem with inserted idle time has been considered by Schaller

(2004). He presented a timetabling procedure to optimally insert idle time in

a given sequence, as well as a branch-and-bound procedure and simple and

4

efficient heuristics.

The single machine problem with linear earliness and tardiness penalties
∑n

j=1 (Ej + Tj) has also been previously considered by Garey et al. (1988),

Kim and Yano (1994) and Schaller (2007). Garey et al. (1988) showed that

the problem is NP-hard, and proposed a timetabling procedure. Several

properties of optimal solutions were presented by Kim and Yano (1994), and

used to develop optimal and heuristic algorithms. Schaller (2007) develops

a new lower bound and a new dominance condition, and also shows how to

strengthen the lower bounds proposed by Kim and Yano (1994).

The minimization of the quadratic lateness
∑n

j=1 L
2

j , where the lateness

of Jj is defined as Lj = Cj − dj, has also been previously considered. Gupta

and Sen (1983) proposed both a branch-and-bound algorithm and a heuristic

rule for the problem with no idle time. Su and Chang (1998) and Schaller

(2002) considered inserted idle time, and proposed timetabling procedures

and heuristic algorithms. Sen et al. (1995) presented a branch-and-bound

procedure for the weighted problem
∑n

j=1 wjL
2

j where idle time is allowed

only prior to the start of the first job. Baker and Scudder (1990) and

Hoogeveen (2005) provide excellent surveys of scheduling problems with ear-

liness and tardiness penalties. Kanet and Sridharan (2000) give a review of

scheduling models with inserted idle time that complements our focus on a

problem with no machine idle time.

In this paper, we present several heuristic algorithms based on the beam

search technique. These algorithms include classic beam search procedures,

with both priority and total cost evaluation functions, as well as the more

recent filtered and recovering variants. Beam search procedures require eval-

5

uation functions that are usually provided by a dispatching rule. We consider

four dispatching heuristics, in order to analyse the effect of different rules on

the performance of the beam search algorithms. Extensive preliminary com-

putational experiments were performed to determine appropriate values for

the parameters required by the beam search procedures. The performance

of the four heuristic rules is also analysed in these initial tests. The best-

performing versions of the beam search algorithms are then compared with

the best existing heuristic, as well as with optimal solutions.

The remainder of this paper is organized as follows. In section 2, we

describe the beam search approach and its several variations, and present

the proposed heuristic procedures and their implementation details. The

computational results are reported in section 3. Finally, some concluding

remarks are given in section 4.

2 The beam search heuristics

2.1 History and review

Beam search is a heuristic method for solving combinatorial optimization

problems. It consists of a truncated branch-and-bound procedure with a

breadth-first strategy in which only the most promising nodes at each level

of the search tree are kept for further branching. The remaining nodes are

pruned off, and no backtracking is performed, so the running time is polyno-

mial in the problem size.

The classic or traditional beam search algorithm was first used in artificial

6

intelligence problems by Lowerre (1976) and Rubin (1978). Two variations of

the classic beam search approach have since been proposed. Ow and Morton

(1988, 1989) developed a variation of the beam search technique called filtered

beam search. Recently, Della Croce and T’kindt (2002) and Della Croce et al.

(2004) proposed an approach denoted by recovering beam search.

Beam search algorithms have been applied to several combinatorial opti-

mization problems, particularly in the scheduling field. Some recent applica-

tions of beam search heuristics to scheduling problems include Sabuncuoglu

and Bayiz (1999), Della Croce and T’kindt (2002), Della Croce et al. (2004),

Valente and Alves (2005), Ghirardi and Potts (2005) and Esteve et al. (2006).

In the following subsections, we first present the classic beam search

technique. Then, the more recent filtered and recovering approaches are

described. Finally, we present the proposed beam search algorithms, as well

as some implementation details.

2.2 Classic beam search

The classic beam search method consists of a truncated branch-and-bound

algorithm in which only the most promising β nodes at each level of the search

tree are selected as nodes to branch from; β is the so-called beam width. The

remaining nodes are ignored, and backtracking is now allowed. Therefore,

classic beam search algorithms cannot recover from wrong decisions, and are

not guaranteed to find an optimal solution. A larger beam width allows for

greater safety, but at the cost of increased computation time.

The node evaluation process is crucial for the effectiveness of a beam

7

search procedure. Two different types of evaluation functions have been

used in classic beam procedures: priority evaluation functions and total cost

evaluation functions. The priority evaluation functions simply calculate an

urgency rating for the last job added to the current partial sequence. This

is usually done by using the priority index of a dispatching heuristic. Total

cost evaluation functions, on the other hand, calculate an estimate of the

minimum total cost of the best solution that can be reached from the current

node. A dispatching rule is typically used to schedule the remaining jobs, in

order to complete the existing partial schedule. Priority evaluation functions

have a local view of the problem, because they only consider the next decision

to be made (i.e., the next job to schedule). Total cost evaluation functions,

however, have a global view, since they project from the current partial

solution to a complete schedule in order to estimate the total cost.

The priority evaluation functions are usually context-dependent, which

can pose a slight problem. Indeed, the priority index that is used to calculate

the urgency rating of the last scheduled job usually depends on the current

partial schedule, particularly on the current time. Different nodes on the

same level of the search tree may have different completion times, since they

correspond to different partial schedules. Therefore, the priority values are

context-dependent, meaning that the priorities calculated for the offspring

of one node cannot be legitimately compared with those obtained from the

branching of another node. This problem, however, can be solved by initially

selecting the best β children of the root node. Then, at lower levels of

the search tree, only the best descendant of each beam node is kept for

further branching, so the number of beam nodes is kept at β. The total

8

cost evaluation functions are not affected by this problem. Indeed, the total

cost estimates are context-independent, and can be compared for all offspring

nodes.

The main steps of priority beam search (PBS) and detailed beam search

(DBS) algorithms are now presented. The priority (detailed) beam search

procedure uses a priority (total cost) evaluation function. In the following,

B is the set of beam nodes , C is a set of offspring nodes and n0 is the root

node.

Priority Beam Search:

Step 1. Initialization:

Set B = ∅, C = ∅.

Branch n0, generating the corresponding children.

Calculate the priority of the last scheduled job for each child node.

Select the best β child nodes and add them to B.

Step 2. Node selection:

For each node in B:

(a) Branch the node, generating the corresponding children.

(b) Calculate the priority of the last scheduled job for each child node.

(c) Select the best child node and add it to C.

Set B = C and C = ∅.

Step 3. Stopping condition:

If the nodes in B are leaf (i.e., they hold a complete sequence), select

the node with the lowest total cost as the best sequence found and stop.

Otherwise, go to step 2.

9

Detailed Beam Search:

Step 1. Initialization:

Set B = {n0} and C = ∅.

Step 2. Branching:

For each node in B:

(a) Branch the node, generating the corresponding children.

(b) Calculate an upper bound on the optimal solution value for each

child node.

(c) Select the best β child nodes and add them to C.

Set B = ∅.

Step 3. Node selection:

Select the best β nodes in C and add them to B.

Set C = ∅.

Step 4. Stopping condition:

If the nodes in B are leaf, select the node with the lowest total cost as

the best sequence found and stop.

Otherwise, go to step 2.

2.3 Filtered and recovering beam search

The priority and total cost evaluation functions have opposite advantages and

weaknesses. On the one hand, the priority evaluation is quick, but it is rather

crude and potentially inaccurate, and may result in discarding good solutions.

The total cost evaluation, on the other hand, is more accurate, but muchmore

time consuming. The filtered and recovering beam search algorithms try to

10

combine crude and accurate evaluations, in order to provide a high quality

evaluation, within reasonable computation time. This is achieved by using

a two-stage approach. The filtered and recovering algorithms first apply a

computationally inexpensive filtering step. In this step, a crude evaluation is

performed, in order to select only a reduced number of the offspring of each

beam node. The selected nodes are then accurately evaluated, and the best

β nodes are kept for further branching.

Two different types of filtering step have been proposed. In the approach

developed by Ow and Morton (1988, 1989), a priority evaluation function

is used to calculate an urgency rating for each offspring. Then, the best α

children of each beam node are selected for accurate evaluation, where α

is the so-called filter width. Recently, in conjunction with the development

of the recovering beam search approach, a new type of filtering phase has

been introduced by Della Croce and T’kindt (2002) and Della Croce et al.

(2004). In this approach, probem-dependent dominance conditions (denoted

as valid dominance conditions), when available, are applied together with so-

called pseudo-dominance conditions (which hold in a heuristic context only).

Whenever a valid dominance condition or a pseudo-dominance condition ap-

plies for a given node, that node is pruned. The priority function approach

was then originally applied in filtered beam search algorithms, while the dom-

inance conditions filtering procedure was developed for the recovering beam

search heuristic. Nevertheless, either of these two filtering procedures can be

used in both filtered and recovering algorithms.

The recovering beam search (RBS) approach differs from the filtered beam

search (FBS) algorithm in two major ways. First, the accurate evaluation

11

in the filtered beam search procedure relies on an upper bound on the total

cost of the best solution that can be reached from the current node. In the

RBS approach, on the other hand, each node is evaluated by both lower

and upper bounds. More specifically, each node is evaluated by the function

V = (1− γ)LB + γUB, where 0 ≤ γ ≤ 1 is a user-defined parameter and

LB and UB are the lower and upper bound values, respectively. Therefore,

the evaluation function V is a weighted sum of the lower and upper bounds,

with the weight of the upper bound being given by the parameter γ.

Second, the RBS algorithm includes a so-called recovering phase. This

phase is performed after the accurate evaluation of the nodes that passed the

filtering step, and it selects the β nodes that will be kept for further branch-

ing. In this phase, the candidate nodes are considered in non-decreasing

order of their evaluation function. For each node, the recovering step checks

whether the current partial solution σ is dominated by another partial so-

lution σ having the same level of the search tree; this is typically done by

applying neighbourhood operators. If a better partial solution σ does exist,

then σ is replaced by σ. If the possibly modified node is not already in the

set of beam nodes, then the node is added to B. This process is repeated

until either β nodes have been selected, or no additional candidate nodes

remain.

The recovering step often allows the RBS procedure to recover from previ-

ous incorrect decisions, a feature which is not present in the classic or filtered

beam search algorithms. Indeed, in PBS, DBS and FBS procedures, if a node

leading to the optimal solution is pruned, there is no way to reach that so-

lution afterwards. The recovering phase tries to overcome this problem by

12

using neighbourhood operators to search for improved solutions. Note also

that, in the recovering step, a partial solution can only be replaced by an-

other partial solution with the same tree level. Therefore, the total number

of explored nodes is still polynomial in the problem size. We now present the

main steps of both filtered and recovering beam search algorithms. In the

RBS algorithm, let nbest and UBbest denote the current best node and the

current best upper bound, respectively.

Filtered Beam Search:

Step 1. Initialization:

Set B = {n0} and C = ∅.

Step 2. Filtering step:

For each node in B:

(a) Branch the node, generating the corresponding children.

(b) Add to C all the child nodes that are not eliminated by the filtering

procedure.

Set B = ∅.

Step 3. Node selection:

Calculate an upper bound on the optimal solution value for all nodes

in C.

Select the best β nodes in C and add them to B.

Set C = ∅.

Step 4. Stopping condition:

If the nodes in B are leaf, select the node with the lowest total cost as

the best sequence found and stop.

Otherwise, go to step 2.

13

Recovering Beam Search:

Step 1. Initialization:

Set B = {n0}, C = ∅, nbest = ∅ and UBbest =∞.

Step 2. Filtering step:

For each node in B:

(a) Branch the node, generating the corresponding children.

(b) Add to C all the child nodes that are not eliminated by the filtering

procedure.

Set B = ∅.

Step 3. Accurate evaluation:

For all nodes nk, k = 1, . . . , |C| in C:

(a) Calculate a lower bound LBk and an upper bound UBk on the

optimal solution value of node nk.

(b) Compute the evaluation function V = (1− γ)LBk + γUBk.

(c) If UBk < UBbest, set nbest = nk and UBbest = UBk.

Step 4. Recovering step:

Sort all nodes in C in non-decreasing order of the evaluation function

value.

Set k = 1.

While |B| < β and k ≤ |C|:

(a) Let σ represent the partial solution associated with the current

node nk.

(b) Search for a partial solution σ that dominates σ by means of neigh-

bourhood operators.

(c) If σ is found, set σ = σ.

14

(d) If nk /∈ B

i. Set B = B ∪ {nk}.

ii. If UBk < UBbest, set nbest = nk and UBbest = UBk.

(e) Set k = k + 1.

Step 5. Stopping condition:

If the nodes in B are leaf, stop with nbest and UBbest as the best node

and lowest total cost found, respectively.

Otherwise, go to step 2.

2.4 Implementation details

The implementations details of the beam search procedures will now be pre-

sented. We considered both priority and detailed classic beam search algo-

rithms, as well as filtered and recovering beam search procedures. In order to

apply these algorithms to the single machine linear earliness and quadratic

tardiness problem, it is necessary to specify their main components, such

as branching scheme, evaluation functions, filtering procedure and recover-

ing step. In the following, we first describe the branching scheme, which

is common to all the algorithms. Then, we describe the several dispatch-

ing rules that were used as evaluation functions. Finally, some additional

implementation details are provided for each type of algorithm.

Branching scheme

The branching procedure is identical for all algorithms. A forward branching

scheme is used: the sequence is constructed by adding one job at a time

15

starting from the first position. Therefore, a branch at level l of the search

tree indicates the job scheduled in position l.

Dispatching rules

A dispatching rule is required by the several beam search variants, in order

to provide a priority evaluation function and/or to calculate an upper bound.

Four dispatching heuristics were considered, with the purpose of analysing

the effect of different rules on the performance of the beam search procedures.

More specifically, we used the EDD, SPT_sj, CS_AS and EQTP_EXP dis-

patching rules presented in Valente (2006). The EDD (SPT_sj) heuristic

performed well for instances where most jobs are early (tardy). The CS_AS

procedure combines the EDD and SPT_sj rules, and the EQTP_EXP dis-

patching rule was the best-peforming of the heuristics considered in Valente

(2006). Therefore, four versions (corresponding to the four dispatching rules)

were then considered for each type of beam search procedure. In the follow-

ing, the CS_AS and EQTP_EXP rules will be denoted simply as CS and

EQTP.

Priority beam search

Priority beam search algorithms require a priority evaluation function. For

each of the four versions of the PBS procedure, the priority function is

provided by the priority index of the appropriate dispatching rule (EDD,

SPT_sj, CS or EQTP). Therefore, the evaluation value of a node is ob-

tained by calculating the appropriate priority index of the last scheduled

job.

16

Detailed beam search

Detailed beam search algorithms require a total cost evaluation function, i.e.,

an upper bounding procedure. For each DBS version, this upper bounding

procedure is provided by the appropriate dispatching heuristic. Therefore,

and for a given node, the appropriate rule is used to sequence the remaining

unscheduled jobs, thereby completing the existing partial schedule. The eval-

uation value of the node is then equal to the cost of the complete schedule.

Filtered beam search

Filtered beam search algorithms require a filtering procedure and an upper

bounding procedure. The upper bounding procedure is provided by the rel-

evant dispatching rule, just as previously described for the DBS algorithms.

The filtering step uses a priority evaluation function filter. Therefore, a

priority evaluation function is used to calculate an urgency rating for each

offspring of a given node, and the best α children are then chosen for the

detailed evaluation step. The priority evaluation function is given by the

priority index of the appropriate dispatching heuristic, just as previously

described for the PBS algorithms.

Recovering beam search

Recovering beam search algorithms require a filtering procedure, upper and

lower bounding procedures for the accurate evaluation step, and an improve-

ment procedure for the recovering step. The filtering and upper bounding

procedures are identical to those used in the FBS algorithms. The lower

17

bounding procedure is provided by the method proposed in Valente (to ap-

pear). For a given node, this procedure is used to calculate a lower bound for

the remaining unscheduled jobs. The lower bound of the node is then equal

to the sum of the cost of the existing partial schedule and the lower bound

calculated for the unscheduled jobs.

We considered three simple improvement procedures for the recovering

step: adjacent pairwise interchange (API), 3-swaps (3SW) and largest cost

insertion (LCI). The API procedure, at each iteration, considers in succession

all adjacent job positions. A pair of adjacent jobs is then swapped if such an

interchange improves the objective function value. This process is repeated

until no improvement is found in a complete iteration. The 3SW procedure is

similar, but it considers three consecutive job positions instead of an adjacent

pair of jobs. All possible permutations of these three jobs are then analysed,

and the best configuration is selected. Once more, the procedure is applied

repeatedly until no improvement is possible. The LCI method selects at each

iteration the job with the largest objective function value. The selected job

is then removed from its position i in the schedule, and inserted at position j,

for all j �= i. The best insertion is then performed if it improves the objective

function value. This process is repeated until no improving move is found.

3 Computational results

In this section, we first present the set of test problems used in the com-

putational tests. The preliminary computational experiments are then de-

scribed. These experiments were performed, on the one hand, in order to

18

select appropriate values for the parameters required by the several beam

search heuristics. On the other hand, these preliminary tests were also used

to analyse the performance of the beam search procedures under the alter-

native rules that were considered (EDD, SPT_sj, CS and EQTP), in order

to select the best-performing rule. Finally, we present the computational re-

sults. The beam search procedures are first compared with the best existing

dispatching heuristic, and the heuristic results are then evaluated against the

optimum objective function values for the smaller instance sizes. Throughout

this section, and in order to avoid excessively large tables, we will sometimes

present results only for some representative cases.

3.1 Experimental design

The computational tests were performed on a set of problems with 10, 15,

20, 25, 30, 40, 50, 75, 100, 250, 500 and 750 jobs. These problems were

randomly generated as follows. For each job Jj, an integer processing time pj

was generated from one of the two uniform distributions [45, 55] and [1, 100],

in order to obtain low (L) and high (H) variability, respectively, for the

processing time values. For each job Jj, an integer due date dj was generated

from the uniform distribution [P (1− T −R/2) , P (1− T +R/2)], where P

is the sum of the processing times of all jobs, T is the tardiness factor, set

at 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, and R is the range of due dates, set at 0.2,

0.4, 0.6 and 0.8.

For each combination of problem size n, processing time variability (var),

T and R, 50 instances were randomly generated. Therefore, a total of 1200

19

instances were generated for each combination of problem size and process-

ing time variability. All the algorithms were coded in Visual C++ 6.0, and

executed on a Pentium IV - 2.8 GHz personal computer. Due to the large

computational times that would be required, the detailed beam search algo-

rithm was only used on instances with up to 100 jobs, while the filtered and

recovering procedures were not applied to the 750 job instances.

3.2 Preliminary tests

In this section, we describe the preliminary computational experiments. These

initial experiments were used to determine adequate values for the various

parameters required by the beam search algorithms. Moreover, these prelim-

inary tests were also used to analyse the performance of the four heuristic

rules that were considered for each beam search procedure, in order to select

the best-performing rule. A separate problem set was used to conduct these

preliminary experiments. This test set included instances with 25, 50, 75

and 100 jobs, and contained 5 instances for each combination of instance

size, processing time variability, T and R. The instances in this smaller test

set were generated randomly just as previously described for the full problem

set.

Extensive tests were first conducted to determine appropriate values for

the beam width, filter width and upper bound weight parameters. We recall

there is a trade-off between solution quality and computation time, since

increasing the value of the beam or filter width parameters usually improves

the objective function value, at the cost of increased computational effort.

20

The following values were considered for these parameters:

α = {1, 2, . . . , 10},

β = {1, 2, . . . , 8},

γ = {0.1, 0.2, . . . , 0.9}.

The preliminary tests were also used to select an adequate improvement

procedure for the recovering step in the RBS algorithm. As mentioned before,

the API, 3SW and LCI procedures were considered.

The several versions of the beam search algorithms were applied to the

test instances for all combinations of the relevant parameter values. For the

RBS procedures, the three improvement procedures were also tested. We

then calculated and plotted the mean objective function values and runtimes.

A thorough analysis of these data showed the usual behaviour: the compu-

tation time increased linearly with the beam and filter width parameters,

while the solution quality improved, but with diminishing returns. We then

selected the parameter values and the improvement procedure that seemed

to provide the best trade-off between solution quality and computation time.

For all beam search versions, a value of 3 was chosen for both the beam

and the filter width parameters. In the four RBS versions, the upper bound

weight was set at 0.8, and the API procedure was chosen for the recovering

step.

The performance of the alternative rules that were considered for each

beam search procedure (EDD, SPT_sj, CS and EQTP) was also analysed in

the preliminary computational tests, in order to determine the best-performing

rule. Table 1 presents, for each beam search algorithm, the average of the

relative improvements in objective function value over the EDD rule (%imp),

21

as well as the percentage number of times a rule achieves the best objective

function value found when compared with the other rules (%best). More pre-

cisely, the relative improvement over the EDD rule is calculated as (edd_ofv

- rule_ofv) / edd_ofv × 100, where edd_ofv and rule_ofv are the objective

function values obtained by the EDD rule and the appropriate rule (SPT_sj,

CS or EQTP), respectively. These values are omitted for the EDD rule, since

they would all be necessarily equal to 0.

The SPT_sj rule provides the best objective function value for a larger

percentage of instances than the EDD rule. However, the relative improve-

ment values are quite negative, and therefore the SPT_sj rule gives, on av-

erage, an objective function value that is much larger than the one achieved

by the EDD heuristic. The quite negative relative improvement values are

essentially due to the inferior performance of the SPT_sj heuristic for in-

stances with a low tardiness factor (i.e., instances where most jobs will be

completed early). Indeed, the SPT_sj heuristic actually provides better re-

sults than the EDD rule for instances with a high tardiness factor, but this

is more than offset by a quite poor performance for the low tardiness factor

instances. This is to be expected, since as we mentioned earlier, the EDD

rule performs better for instances with a larger number of early jobs, while

the SPT_sj heuristic is instead suited to instances where most jobs will be

tardy.

For instances with low processing time variability, the objective function

values provided by the EDD, CS and EQTP rules are quite close. Neverthe-

less, the CS and EQTP rules provide the best results for a larger number

of instances. This is particularly clear for the EQTP rule, which provides

22

the best results for over 90% of the test instances. The CS and (especially)

the EQTP rules clearly outperform the EDD rule for the high variability

instances. In fact, these rules not only provide a quite significant relative

improvement, but also give the best results for a much larger number of

instances.

For the high variability instances, the improvement provided by the CS

and EQTP rules over the EDD heuristic is higher for the PBS procedure,

which relies only on a priority evaluation. Therefore, it certainly seems that a

high quality priority function should be used in beam search algorithms. Even

though the relative improvement is smaller for the FBS procedure (which

uses both priority and detailed evaluations), and also for the DBS algorithm

(which uses only a detailed evaluation), the more sophisticated CS and EQTP

rules nevertheless still provide a significant improvement. Hence, a good

rule should also be used to obtain an upper bound estimate in beam search

procedures. The objective function values provided by the several rules are

closer for the RBS procedure. This is to be expected, since the RBS algorithm

uses a recovering step that corrects previous wrong decisions. Therefore,

incorrect choices made previously by an inferior rule can later be corrected

in the recovering step, and the several rules then provide results that are

much closer.

The EQTP rule is then selected, since it provides the best performance.

In fact, this rule not only achieves the best results for a quite large percentage

of the test instances, but it also provides a large relative improvement over

the EDD heuristic for the instances with a high processing time variability.

In the following sections, we will therefore present results only for the beam

23

search versions that use the EQTP rule.

3.3 Heuristic results

In this section, we present the computational results for the heuristic proce-

dures. In addition to the beam search algorithms, we also include, for com-

parison purposes, the best-performing of the existing procedures, namely the

EQTP dispatching rule. Table 2 gives the average of the relative improve-

ments in objective function value over the EQTP procedure (%imp), as well

as the percentage number of times a heuristic achieves the best result when

compared with the other heuristics (%best). The relative improvement over

the EQTP heuristic is calculated as (eqtp_ofv - heur_ofv) / eqtp_ofv ×

100, where heur_ofv and eqtp_ofv are the objective function values of the

appropriate heuristic and the EQTP dispatching rule, respectively. The rel-

ative improvement values are omitted for the EQTP heuristic, since they are

necessarily equal to 0.

The PBS algorithm fails to improve on the EQTP dispatching rule. In-

deed, both the objective function values and the percentage of best results are

quite close for these two heuristics. The negative average relative improve-

ment values for some instance sizes may seem surprising, since it appears that

the PBS algorithm should generate the EQTP sequence, and therefore could

not provide results inferior to those of the EQTP dispatching rule. How-

ever, the PBS algorithm is only guaranteed to generate the EQTP sequence

if there are no ties in the selection of jobs during the various iterations, or

if those ties are resolved in the same way. Due to the nature of both the

24

instance data and the EQTP priority index, ties may indeed occur when a

job is to be selected for the next position. Also, for computational efficiency

concerns, these ties are not guaranteed to be solved identically in the EQTP

and PBS heuristics. Therefore, it is possible for the PBS heuristic not to

generate the EQTP sequence, and consequently to provide an inferior result.

The DBS, FBS and RBS procedures provide an improvement over the

EQTP dispatching heuristic, particularly for the instances with high pro-

cessing time variability. The best results are given by the RBS and DBS

algorithms. The RBS procedure usually provides a higher relative improve-

ment, while the DBS heuristic generally achieves the best results for a larger

number of instances.

The FBS algorithm is also superior to the EQTP dispatching rule, but

is outperformed by the DBS and RBS procedures. The DBS algorithm per-

forms a thorough evaluation for all nodes, which can explain its superior

performance, since the FBS procedure only calculates an upper bound esti-

mate for the nodes that are not eliminated by the filtering step. The RBS

heuristic, on the other hand, not only uses a weighted average of both upper

and lower bounds in the detailed evaluation step, but also benefits from the

recovering step, which uses local search to correct previous wrong decisions.

The relative improvement given by the RBS, DBS and FBS algorithms

is much larger for the high variability instances. Indeed, the improvement

provided by the RBS and DBS procedures is about 3-4% for instances with

high variability. For the low variability instances, however, the relative im-

provement is usually below 1%.

In table 3, we present the effect of the T and R parameters on the relative

25

improvement over the EQTP dispatching rule, for instances with 50 jobs. The

improvement given by the beam search algorithms is minor when a larger

number of jobs are completed after their dates (T ≥ 0.6). In fact, when most

jobs are tardy (T = 1.0), the objective function values are quite close for

all the heuristic procedures. The improvement provided by the RBS, DBS

and FBS algorithms, however, is quite significant for instances with a low

tardiness factor (T ≤ 0.4), where a larger proportion of jobs are completed

before their due dates. Indeed, the relative improvement given by the RBS

and DBS algorithms is about 10-20% for some of the parameter combinations

with T = 0.2 or T = 0.4.

The heuristic runtimes (in seconds) are presented in table 4. The DBS

procedure is computationally demanding, and therefore can only be used for

small to medium size instances. The FBS and RBS algorithms are faster,

and can be applied to larger instances. The PBS procedure is the fastest of

the beam search procedures. However, the EQTP dispatching rule is more

computationally efficient, and provides results of similar quality.

The RBS or DBS procedures are then recommended for small to medium

size instances. For somewhat larger instances, the RBS heuristic is the proce-

dure of choice, since it provides much better results than the FBS algorithm,

and is only slightly more computationally intensive. For quite large instance

sizes, the EQTP dispatching rule is the only procedure that can provide

results in a reasonable computation time.

26

3.4 Comparison with optimum results

In this section, the heuristic results are compared with the optimum objective

function values, for instances with up to 20 jobs. In table 5, we present

the average of the relative deviations from the optimum (%dev), calculated

as (H −O) /O × 100, where H and O are the heuristic and the optimum

objective function values, respectively. The percentage number of times each

heuristic generates an optimum schedule (%opt) is also given.

From table 5, it can be seen that the heuristics are quite close to the

optimum when the processing time variability is low. The RBS procedure, in

particular, performs extremely well. In fact, this heuristic not only provides

objective function values that are less than about 1% above the optimum,

but also generates an optimum solution for a quite large number of instances.

The DBS and FBS procedures also perform quite well. These heuristics also

provide an optimum solution for a large number of the test instances, and

their average deviation from the optimum is usually less than 1%. Even the

simpler PBS and EQTP procedures perform well, providing results that are

about 1-2% above the optimum.

The performance of the heuristics, however, deteriorates when the vari-

ability of the processing times increases, particularly for the simpler EQTP

and PBS procedures. The RBS procedure still performs quite well for in-

stances with high variability, since its average deviation from the optimum

is less than 1%, and it provides an optimum solution for over half of the test

instances. The performance of the DBS and FBS procedures is also quite

good. Indeed, these procedures give results that are about 3% above the

27

optimum. The EQTP and PBS heuristics, however, perform poorly for the

high variability instances, since they are 10-20% above the optimum.

These results are in line with those presented in the previous section

for the relative improvement provided by the beam search heuristics. As

mentioned in the previous section, the relative improvement over the EQTP

dispatching heuristic was lower (higher) for the instances with a low (high)

processing time variability. We can now see that there was indeed little room

for improvement in the low variability instances. In fact, the EQTP heuristic

is already close to the optimum for instances with a low variability. When

the variability is high, however, the EQTP heuristic performs poorly, and

therefore it is possible to obtain a larger relative improvement.

The effect of the T and R parameters on the relative deviation from the

optimum is presented in table 6, for instances with 20 jobs. The heuristics are

much closer to the optimum when a larger number of jobs is tardy (T ≥ 0.6).

Actually, when most of the jobs complete after their due dates (T = 1.0),

the heuristic procedures are usually optimal or nearly optimal. The relative

deviation from the optimum is higher for instances with a larger proportion

of early jobs (particularly instances with T = 0.2 or T = 0.4).

4 Conclusion

In this paper, we considered the single machine scheduling problem with lin-

ear earliness and quadratic tardiness costs, and no machine idle time. Several

heuristics based on the beam search approach were presented. These algo-

rithms included classic beam search procedures, as well as the filtered and

28

recovering variants. Beam search algorithms require evaluation functions,

which are typically provided by dispatching rules. Four dispatching heuris-

tics were considered, so as to analyse the effect of different rules on the

performance of the beam search algorithms.

We performed extensive preliminary computational experiments, in order

to determine adequate values for the parameters required by the several beam

search procedures. The performance of the alternative dispatching rules was

also analysed in these initial experiments. The results show that using better

rules for priority and/or detailed evaluations improves the performance of the

beam search heuristics. Indeed, the more sophisticated CS and EQTP rules

provided an improvement over the simpler EDD rule, particularly for the

high variability instances.

The best-performing versions of the beam search algorithms were then

compared with the best existing heuristic (the EQTP dispatching rule), as

well as with optimal solutions. The best results are given by the RBS and

DBS algorithms, and the FBS procedure also provides an improvement over

the best existing heuristic. The relative improvement given by the RBS,

DBS and FBS algorithms is much larger for the high variability instances.

The several heuristic procedures, particularly the RBS procedure, were quite

close to the optimum for instances with low processing time variability. The

RBS and DBS algorithms still performed quite well for the high variability

instances, giving results that are about 1% and 3% above the optimum,

respectively. The EQTP and PBS heuristics, however, perform poorly for

these instances, since they are 10-20% above the optimum.

The RBS or DBS procedures are recommended for small to medium size

29

instances. For somewhat larger instance sizes, the DBS heuristic requires an

excessive computation time, and the RBS procedure is then the heuristic of

choice. For extremely large instance sizes, however, dispatching heuristics are

the only procedure that can provide results within reasonable computation

times.

References

Baker, K. R. and G. D. Scudder (1990), Sequencing with earliness and tar-

diness penalties: A review, Operations Research, 38, 22—36.

Della Croce, F., M. Ghirardi and R. Tadei (2004), Recovering beam search:

Enhancing the beam search approach for combinatorial problems, Journal

of Heuristics, 10, 89—104.

Della Croce, F. and V. T’kindt (2002), A recovering beam search algorithm

for the one-machine dynamic total completion time scheduling problem,

Journal of the Operational Research Society, 53, 1275—1280.

Esteve, B., C. Aubijoux, A. Chartier and V. T’kindt (2006), A recovering

beam search algorithm for the single machine just-in-time scheduling prob-

lem, European Journal of Operational Research, 172, 798—813.

Garey, M. R., R. E. Tarjan and G. T. Wilfong (1988), One-processor schedul-

ing with symmetric earliness and tardiness penalties, Mathematics of Op-

erations Research, 13, 330—348.

Ghirardi, M. and C. N. Potts (2005), Makespan minimization for scheduling

30

unrelated parallel machines: A recovering beam search approach, Euro-

pean Journal of Operational Research, 165, 457—467.

Gupta, S. K. and T. Sen (1983), Minimizing a quadratic function of job late-

ness on a single machine, Engineering Costs and Production Economics,

7, 187—194.

Hoogeveen, H. (2005), Multicriteria scheduling, European Journal of Opera-

tional Research, 167, 592—623.

Kanet, J. J. and V. Sridharan (2000), Scheduling with inserted idle time:

Problem taxonomy and literature review, Operations Research, 48, 99—

110.

Kim, Y. D. and C. A. Yano (1994), Minimizing mean tardiness and earli-

ness in single-machine scheduling problems with unequal due dates, Naval

Research Logistics, 41, 913—933.

Korman, K. (1994), A pressing matter, Video, 46—50.

Landis, K. (1993), Group technology and cellular manufacturing in the West-

vaco Los Angeles VH department, Project report in IOM 581, School of

Business, University of Southern California.

Lowerre, B. T. (1976), The HARPY Speech Recognition System, Ph.d. thesis,

Carnegie-Mellon University, USA.

Ow, P. S. and T. E. Morton (1988), Filtered beam search in scheduling,

International Journal of Production Research, 26, 35—62.

31

Ow, P. S. and T. E. Morton (1989), The single machine early/tardy problem,

Management Science, 35, 177—191.

Rubin, S. (1978), The ARGOS Image Understanding System, Ph.d. thesis,

Carnegie-Mellon University, USA.

Sabuncuoglu, I. and M. Bayiz (1999), Job shop scheduling with beam search,

European Journal of Operational Research, 118, 390—412.

Schaller, J. (2002), Minimizing the sum of squares lateness on a single ma-

chine, European Journal of Operational Research, 143, 64—79.

Schaller, J. (2004), Single machine scheduling with early and quadratic tardy

penalties, Computers & Industrial Engineering, 46, 511—532.

Schaller, J. (2007), A comparison of lower bounds for the single-machine

early/tardy problem, Computers & Operations Research, 34, 2279—2292.

Sen, T., P. Dileepan and M. R. Lind (1995), Minimizing a weighted quadratic

function of job lateness in the single machine system, International Journal

of Production Economics, 42, 237—243.

Su, L.-H. and P.-C. Chang (1998), A heuristic to minimize a quadratic func-

tion of job lateness on a single machine, International Journal of Produc-

tion Economics, 55, 169—175.

Sun, X., J. S. Noble and C. M. Klein (1999), Single-machine scheduling with

sequence dependent setup to minimize total weighted squared tardiness,

IIE Transactions, 31, 113—124.

32

Taguchi, G. (1986), Introduction to Quality Engineering, Asian Productivity

Organization, Tokyo, Japan.

Valente, J. M. S. (2006), Heuristics for the single machine scheduling problem

with early and quadratic tardy penalties, Working Paper 234, Faculdade

de Economia, Universidade do Porto, Portugal (to appear in European

Journal of Industrial Engineering).

Valente, J. M. S. (to appear), An exact approach for the single machine

scheduling problem with linear early and quadratic tardy penalties, Asia-

Pacific Journal of Operational Research, to appear.

Valente, J. M. S. and R. A. F. S. Alves (2005), Filtered and recovering beam

search algorithms for the early/tardy scheduling problem with no idle time,

Computers & Industrial Engineering, 48, 363—375.

Wagner, B. J., D. J. Davis and H. Kher (2002), The production of several

items in a single facility with linearly changing demand rates, Decision

Sciences, 33, 317—346.

33

Table 1: Preliminary results
n = 25 n = 50 n = 75 n = 100

var heur rule %imp %best %imp %best %imp %best %imp %best

L PBS EDD – 5.00 – 5.83 – 5.00 – 1.67

SPT_sj -172.54 30.00 -110.67 30.00 -451.52 31.67 -154.00 29.17

CS -0.53 40.83 0.14 41.67 0.26 36.67 0.38 37.50

EQTP -0.10 94.17 -0.03 94.17 0.25 95.83 -0.33 95.00

DBS EDD – 23.33 – 7.50 – 6.67 – 5.00

SPT_sj -2.08 35.00 -3.29 33.33 -8.77 35.00 -1.83 30.83

CS 0.10 57.50 0.30 53.33 0.34 50.00 0.42 49.17

EQTP -0.95 90.83 -0.43 92.50 -0.62 93.33 -0.48 93.33

FBS EDD – 20.83 – 5.00 – 5.00 – 4.17

SPT_sj -101.75 30.00 -90.30 30.00 -314.23 31.67 -123.62 29.17

CS 0.01 45.83 0.17 48.33 0.13 45.00 0.21 42.50

EQTP -0.38 94.17 0.16 94.17 -0.07 95.83 -0.11 95.00

RBS EDD – 60.83 – 59.17 – 60.00 – 58.33

SPT_sj -23.42 44.17 -14.05 38.33 -65.02 34.17 -17.85 34.17

CS 0.07 66.67 0.07 66.67 0.09 59.17 0.08 60.83

EQTP -0.21 90.83 -0.07 87.50 -0.65 94.17 -0.75 93.33

H PBS EDD – 3.33 – 1.67 – 3.33 – 2.50

SPT_sj -137.62 17.50 -169.23 13.33 -123.77 12.50 -125.97 18.33

CS 16.02 33.33 18.47 26.67 19.58 23.33 20.42 26.67

EQTP 19.07 79.17 23.47 82.50 23.83 87.50 26.12 90.83

DBS EDD – 14.17 – 5.83 – 4.17 – 3.33

SPT_sj -4.21 33.33 -0.28 29.17 0.37 22.50 -0.85 25.00

CS 5.08 53.33 5.96 36.67 7.28 34.17 7.67 36.67

EQTP 4.19 60.00 4.01 72.50 5.53 80.00 6.10 79.17

FBS EDD – 6.67 – 4.17 – 0.00 – 0.83

SPT_sj -121.82 21.67 -179.08 21.67 -129.20 20.00 -133.34 21.67

CS 5.64 30.00 10.15 35.83 12.73 29.17 14.62 30.83

EQTP 9.99 85.00 14.51 78.33 16.47 87.50 19.86 89.17

RBS EDD – 48.33 – 38.33 – 43.33 – 36.67

SPT_sj -58.00 25.83 -110.13 13.33 -102.29 9.17 -109.15 10.00

CS 0.70 40.83 1.01 25.00 1.25 16.67 1.41 15.00

EQTP 2.35 85.83 2.57 67.50 2.56 63.33 2.89 65.00
34

Table 2: Heuristic results
n = 25 n = 50 n = 100 n = 500

var heur %imp %best %imp %best %imp %best %imp %best
L EQTP – 24.42 – 14.83 – 16.33 – 45.25

PBS -0.39 24.58 -0.30 14.50 -0.26 16.08 -0.21 43.75
DBS 0.56 81.50 0.73 88.25 0.57 91.50 – –
FBS 0.35 55.33 0.38 48.67 0.08 42.08 -0.05 47.42
RBS 1.12 73.33 0.99 56.42 0.58 48.50 0.25 99.67

H EQTP – 7.17 – 0.75 – 0.33 – 13.67
PBS 0.04 7.25 -0.07 0.83 -0.05 0.33 -0.04 13.67
DBS 4.33 44.33 3.73 54.17 3.49 65.58 – –
FBS 3.95 35.58 2.24 32.17 1.22 32.83 0.33 42.50
RBS 5.51 77.42 4.00 42.92 3.00 24.17 2.06 72.33

35

Table 3: Relative improvement over the EQTP heuristic, for instances with
50 jobs

low var high var

heur T R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 0.2 R = 0.4 R = 0.6 R = 0.8
PBS 0.0 0.00 0.00 0.00 -0.01 -0.01 -0.02 -0.01 -0.01

0.2 -2.98 -3.91 -0.05 -0.07 -1.99 0.09 0.00 0.01

0.4 0.00 0.00 0.00 -0.21 0.18 0.00 0.02 0.12

0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DBS 0.0 0.00 0.02 0.05 0.09 0.25 0.56 0.86 1.58

0.2 4.83 5.26 1.29 1.51 13.54 17.03 12.53 13.77

0.4 0.03 0.06 0.18 4.12 1.29 1.06 2.70 22.73

0.6 0.00 0.00 0.00 0.00 0.65 0.20 0.14 0.21

0.8 0.00 0.00 0.00 0.00 0.34 0.05 0.03 0.03

1.0 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

FBS 0.0 0.00 0.01 0.04 0.07 0.29 0.55 0.85 1.28

0.2 2.47 3.33 0.67 0.66 6.32 10.87 6.41 6.57

0.4 0.01 0.02 0.07 1.77 1.04 0.80 1.85 15.33

0.6 0.00 0.00 0.00 0.00 0.56 0.24 0.17 0.27

0.8 0.00 0.00 0.00 0.00 0.20 0.07 0.03 0.03

1.0 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

RBS 0.0 0.00 0.02 0.05 0.09 0.33 0.67 0.98 1.59

0.2 10.60 8.16 1.01 1.11 24.65 18.10 10.20 11.11

0.4 0.02 0.03 0.09 2.66 1.36 1.02 2.56 21.42

0.6 0.00 0.00 0.00 0.00 0.77 0.18 0.11 0.27

0.8 0.00 0.00 0.00 0.00 0.52 0.07 0.02 0.01

1.0 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00

36

Table 4: Heuristic runtimes (in seconds)
var heur n = 25 n = 50 n = 100 n = 250 n = 500 n = 750
L EQTP 0.000 0.000 0.001 0.004 0.015 0.034

PBS 0.002 0.007 0.036 0.509 5.408 32.398
DBS 0.021 0.295 4.553 – – –
FBS 0.004 0.029 0.206 3.369 28.250 –
RBS 0.006 0.033 0.227 3.473 28.567 –

H EQTP 0.000 0.000 0.001 0.004 0.016 0.036
PBS 0.002 0.008 0.047 0.536 5.430 32.747
DBS 0.022 0.316 4.938 – – –
FBS 0.005 0.031 0.232 3.613 29.943 –
RBS 0.006 0.035 0.250 3.711 30.282 –

Table 5: Comparison with optimum objective function values
n = 10 n = 15 n = 20

var heur %dev %opt %dev %opt %dev %opt
L EQTP 1.78 45.58 2.14 34.50 1.83 28.17

PBS 1.44 50.33 2.51 35.83 2.33 29.25
DBS 0.10 89.50 0.45 76.08 0.69 68.08
FBS 0.22 83.67 0.63 64.67 1.10 60.00
RBS 0.02 97.00 0.03 83.17 0.13 73.25

H EQTP 22.14 22.25 16.45 11.92 11.96 8.67
PBS 17.99 24.08 15.39 12.67 12.20 9.08
DBS 3.13 52.75 3.54 38.58 3.22 33.17
FBS 2.73 51.92 2.91 38.08 3.79 32.58
RBS 0.46 88.83 0.89 75.83 0.81 56.83

37

Table 6: Relative deviation from the optimum for instances with 20 jobs
low var high var

heur T R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 0.2 R = 0.4 R = 0.6 R = 0.8
EQTP 0.0 0.19 0.09 0.08 0.11 0.66 1.64 2.65 2.64

0.2 17.05 13.56 3.98 2.23 60.07 91.36 26.80 20.54

0.4 0.10 0.13 0.42 5.92 6.34 4.57 13.49 44.53

0.6 0.02 0.02 0.01 0.01 3.97 1.38 1.23 1.88

0.8 0.01 0.01 0.00 0.00 1.68 0.82 0.30 0.25

1.0 0.00 0.00 0.00 0.00 0.03 0.05 0.05 0.06

PBS 0.0 0.28 0.10 0.11 0.12 0.67 1.64 2.65 2.64

0.2 20.10 21.02 4.74 2.21 60.38 87.69 39.06 19.12

0.4 0.10 0.12 0.41 6.62 6.33 4.45 13.39 43.84

0.6 0.02 0.02 0.01 0.01 3.97 1.38 1.19 1.79

0.8 0.01 0.01 0.00 0.00 1.12 0.80 0.23 0.25

1.0 0.00 0.00 0.00 0.00 0.03 0.05 0.05 0.06

DBS 0.0 0.05 0.01 0.01 0.02 0.38 0.87 1.28 1.11

0.2 8.18 6.48 1.55 0.09 24.13 14.95 5.70 4.13

0.4 0.03 0.01 0.03 0.18 2.32 0.95 3.54 14.43

0.6 0.01 0.00 0.00 0.00 1.72 0.26 0.30 0.49

0.8 0.00 0.00 0.00 0.00 0.28 0.27 0.06 0.08

1.0 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.01

FBS 0.0 0.01 0.00 0.01 0.02 0.15 0.26 0.51 0.52

0.2 11.19 7.91 2.07 0.66 30.45 28.12 5.79 6.56

0.4 0.02 0.04 0.20 4.23 3.14 1.18 2.39 7.78

0.6 0.01 0.00 0.00 0.00 2.43 0.27 0.24 0.52

0.8 0.00 0.00 0.00 0.00 0.43 0.18 0.04 0.07

1.0 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

RBS 0.0 0.00 0.00 0.00 0.01 0.04 0.11 0.28 0.15

0.2 1.86 0.21 0.23 0.27 3.97 4.52 2.31 1.42

0.4 0.01 0.03 0.08 0.50 0.68 0.34 0.72 3.79

0.6 0.00 0.00 0.00 0.00 0.67 0.13 0.06 0.04

0.8 0.00 0.00 0.00 0.00 0.04 0.06 0.00 0.01

1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

38

Recent FEP Working Papers

�������
���	
��
��������
��
�������������������

���������
�����	��
���

�������
�
���
���������������	
��

���
��
��
���	���
��
�������
�
����������������
�
��
����������������� ����!!"�

�����#�
�$����	��%

����������&��'
�������
�������
���� ��!	���������"�����	��#
��
�
$����
�������
����%��	��������������
�������
�������&����"���	��
����
���� ����!!"�

�����"�
���$'������(���������
(����(�)
�*���

��+�(��
��,���-
�����'
�	
�(��
��
)�
�
�����	���)��	*
����������	
������	��*
	����""�
	�����&�.��) ���
�!!"�

�����/�
+
���
������������
������(0��1
)2���

�����

���	��1��1����
������+�	
�
$"��
���������#	�,
��%�	�����	��	""
��	��
���
���
�����
��%	"	���-�
������
�����3(�4��!!"�

�����5�
���

���	��1��1����
����

��+
���
������������
������$"���	
������������
�������������#	�,
��.��"�"�����"�
���������3(�4��!!"�

�������
6(��7�
��8(��	�'���

��9��
��	��
�����/���	
�/����	
�����������)��
"�	��
0��
����
��/	������1�2���3(�4��!!"�

�����:�
+
���
������������
������%
�"��	��
�	
�����
����
��%
����	�����#�������
�"	���������������/

������
�,����3(
���!!"�

�������
;�'
���	�(�
��

��<
=��+�()�
����!��������%-�
��	���!	�,�%	"��	
��
#
���	�-��

��-���	�������
������������!	��
����
������3(
���!!"�

�����>�
&

��
����&��'
��3��������&���
��
���

��	(���
�	��1�����%���
������
��

���
�	�-��
��
�
���������-��-�	�����	��������3����������
�	
�*��	��
�������
.
���	���4�	��	������	����	���������	.�����!!"�

�����!�
	
�?
������(����
���
��

��	

��
(�
�&���
���#	�,���&�"	���
��&�����	��
�	
�
�"
������	���%�
���	
�)��������	.�����!!"�

����:��
�
��0��
����%���
���.���

���@��
���)
�6�����(��������
��������
�����	���	
�
����������������
�"	���
��
��)��
"�	���
�"	���� �"�	������������&���56�	���
&���57����
��A��!!"�

����:#�
3��������&���
��
���������8	���	""�
	����
������
���	������������
���������
9�	��	�����	�
������	����	��������"��	
��������� �(
�4��!!"�

����:"�
;�'
���	�(�
��

��	

��
(�
�6� �������#
���	�-��

��-�	��������

����	
�
��""
����
��	�'	*
��#	�,���+��
������� �(
�4��!!"�

����:/�
3��������&���
��
���

��6(��	�����&��	�'�����������������
����������
���	������
������
����"�
*
��������9�	��	�����	�
������	����	��������"��	
�������
�� �(
�4��!!"�

����:5�
�

(��
��
�
�A*���

��	

��
(�
�	����

�������	��
���	
-����
������/�&�
&�"	���
��&�����	��
�	
���	�����3

(
�4��!!"�

����:��
3��������&���
��
�����������������
����������
���	������������
����"�
*
���
������	�
-�	���9�	��	�����	��-�"��	
�������+���) ����!!/�

����::�
������1��)�������
�

��	(���
�	��1�����%���
�������/��	���4�#	�	������4�
	���#	�,���������
�
�
���/��
���
�������������+���	���2������	
-����!	����

��:
���	
�%��	��
�����+���) ����!!/�

����:��
B�������)����
�&��'
�

��	(���
�	��1�����%���
��������-������������	
�
��	����������	
��
����*���
���	���	�*�*
�
�������	��
��������'�) ����!!/�

����:>�
1
�����	�'���

��1�����

��
� ������
�

���
����	��������	�������������
�
�"
�	����
����	�����
��
�2�����'�) ����!!/�

����:!�
	

��
(�
�+���
���

��<�
 ����
��
�����
A��� �'
����������

���
��
������
��(��������*���
��
���
����������������4�&�.��) ����!!/�

�������
&

��
� �
'
���� &��'
�

�� 	(���
� 	�� 1�� ���%���
�� �$�� ���� �����������
��
��

���
�	�-� ����	���� "	���� ��� ���� "	��� ����-� -�	���� 	� �
�"����������
�
�
�������	��
����4�&�.��) ����!!/�

�����#�
	���
��
�� �����
�� ���*
�������	��� ����
�� �	��������"�� ��� ����

"����
%
�����������
�"�����	�����	�*	�,��4�&�.��) ����!!/�

�����"� &

��
��
'
����&��'
�

��	(���
�	��1�����%���
�� ������

���
�	�-��
��
�
��

�����3����������
�	
�*��	��
���
�������
��
	*
��������
���4�	(�(����!!/�

�����/�
	(���
�	��1�����%���
�

���
�C���
�����(

������	���	"��	
4���	���	���

���
���� "�
��������-;� �������� ���� �����

���	
� 	*�
�"��
�� �-"
������� �
�� ����
�
�����������
�
�-4�<7=>�6>><�4�	(�(����!!/�

�����5�
1
�
��

� ��
������

�� 	(���
� 	�� 1�� ���%���
�� �'
�	
� ����	��	*
�� �
*�
��-�
�	�	������;������
���������������"	
������	�	��2�4�	(�(����!!/�

�������
����.�� 3�� &�(�
�

�� �(0�� ��� ��� 1
������ �$�� ���� ��������	����
�� *��������
��
	��
����"��4�3(�4��!!/�

�����:�
������ 1��)�� �
� 1���
� �����
�� ����
�	�� ������	��
	������ ���������� 	� ����
��
�
�����

���
��*	����
����������������
��	��

*	
��
�"���������	�,���4�
3(�4��!!/�

�������
�
(��� &

����� 	(���
� 	�� 1�� ���%���
�

�� 	

� ���'���
D����A
���� ����� ?���
������
��	
��	��
��
�� �

������ � �� 	� �-"

�-�
�� ������	��
�	
� ���������
� +@��
"�
.��������

�������
���	
�	�����
��	"����"�
8����-�4�3(�4��!!/�

�����>�
�

(����������
���
������
��	���	��
��
�A���
����"

B���	��
���C��	��
��	�
�
�	�D
�	�)��
�4�3(�4��!!/�

�����!�
	

� ���'���
D����A
���

�� ��� ������
�� �
���
��� �)8	������� ���� ��������
�������
��"�
*
����
���������
�"��	��

������	���4�3(�4��!!/�

����>��
9��
��	��
���6(��

��7�
��8(��	�'���� ��
���������
���
���
�������������
�
��
)��
"�	��/���	
�+�
������������
���%
�������2�4�3(�4��!!/�

����>#�
6(��7�
��8(��	�'���

��9��
��	��
�����������������	*�
��-�	�����
�����	����
#
���/
�8�*
�4�'�������"��2�4�3(�4��!!/�

����>"�
3� �
���E�1��F�(G�-�G��

��6(��7�
��8(�� 	�'���� �/��	���	
� ���
�
�-�
������
)��
"�	��0��
��	�����)�
	��������4�3(�4��!!/�

����>/�
3�
�� 1�����
D�
D&��'
�

�� 1
����� 7��'C�D�������� ���������)8"���	��
���
)9��
�*��������)�
�
����������0�����	�����
����-�4�3(
���!!/�

����>5�
�
��
� 6��$���� ������
�

�� 6(�� 	�'���� ��
�� �	�� ��
�� :������������ 	���
�
��������������2��������-�
������"�
������	���"����"��
��4�3(
���!!/�

����>��
�
��
��$��)
�6��A
�

��	(���
�	�1�����%���
�������
����
����-���	
�	��
��
��
���	��������	�	����	����������
	�����
�?��	
��
�
� �*��������������2�4�3(
���!!/�

����>:�
�
��
�6��$����������
�

��6(��	�'���� ��
���$��������
��	��
��&�"�
�������
:
*���
"�1
�,

	��%
���

2�4�3(
���!!/�

����>��
������1��)���
�1���
������
�

��	(���
�	��1�����%���
������	���	"��	
�	���
�
���"��
��� 	� ����
��
�
���� �
��
�
�� ���� *��*��� �	�,��� ����� ���
��	����
�
�����	*�
��-�4��
4��!!/�

����>>�
	

������
��
'
����

��	(���
�	��1�����%���
���&�����	���	"��	
�	���������	���
��������	���
���
����	
 ��/�&�	���	���������2����
4��!!/�

����>!�
�
��
�6��$����������
�

��6(��	�'������������"���
��"����
���

�
�������
�	���
����	�������
���
�,

	���
���

���"�
�����	���	��������
"��	��
������	�
.
*���
"��	.�����!!/�

����!��
�
��0��
� ���%���
� ��.���

�� �@��
� ��)
� 6�����(�������
������� �
�� /��	���	
�
&�����������������	
-����
��������������	����
������

�������������
���������
��
�,�)8��	�����	.�����!!/�

Editor: Sandra Silva (sandras@fep.up.pt)
Download available at:
http://www.fep.up.pt/investigacao/workingpapers/workingpapers.htm
also in http://ideas.repec.org/PaperSeries.html

�
�
�
��
��

��
�
��
�

�
�
�
��
��

��
�
��
�

�
�
�
��
��

��
�
��
�

�
�
�
��
��

��
�
��
�

�
�
�
��
��

��
�
��
�

�
�
�
��
��

��
�
��
�

�
�
�
��
��

��
�
��
�

�
�
�
��
��

��
�
��
�

��	
� ��
�
����

���	��
��������
�
��

�
����
���
���
���

�������������	�
�
�
�������
����
������
��
��
�������������	�
�
�
�������
����
������
��
��
�������������	�
�
�
�������
����
������
��
��
�������������	�
�
�
�������
����
������
��
��

����
���������
�
�������������

