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General equilibrium with private state verification

João Correia-da-Silva1 and Carlos Hervés-Beloso2

Abstract. We study general equilibrium with private and incomplete state

verification. Trade is agreed ex ante, that is, before private information is received.

It is useful to define a list of bundles as a derivative good that gives an agent the

right to receive one of the bundles in the list. Enforceable trade agreements can be

described by Pi-measurable plans of lists of bundles, instead of Pi-measurable plans

of bundles as in Radner (1968). In equilibrium, the price of a list coincides with the

price of the cheapest bundle in the list, and it is always the cheapest bundle of the

list that is delivered. This property leads to a system of linear inequalities which are

deliverability constraints on the choice set. We investigate existence of equilibrium

in the case in which preferences are Pi-measurable. If there is a perfectly informed

trader in the economy, existence of equilibrium is guaranteed.

Keywords: General equilibrium, Differential information, Verifiability, Uncertain

delivery, Lists of bundles, Rational expectations.
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1 Introduction

In chapter 7 of his “Theory of Value”, Debreu (1959) shows how to extend the

general equilibrium model to the case of trade under uncertainty with public state

verification. All that is needed is to consider a generalized notion of commodity that

also includes in its description the state of nature on which its delivery is contingent

(Arrow, 1953). The model becomes equivalent to the model without uncertainty

(Arrow and Debreu, 1954; McKenzie, 1959): prices for the contingent commodities

are announced, and agents choose the consumption plan that they prefer (specifying

a consumption bundle for each of the possible states of nature), among those that

satisfy their budget restriction; after trade agreements are made, the state of nature

is publicly announced and agents receive the consumption bundle that corresponds

to the announced state.

We are interested in studying the implications of differential information, in the

form of private and incomplete state verification. While keeping the basic structure

of the model, we assume that each agent is only able to verify (in a court of law,

for contracts to be enforced) that the state of nature belongs to a certain set. The

ability to verify the occurrence of events (information) is exogenous and differs across

agents.

The consequence of incomplete verification is that if an agent has bought different

bundles for delivery in two states and is not able to verify whether the true state is

one or the other, then he has to accept delivery of any of the two bundles. This is a

natural generalization of the classical model, in which state verification is complete.3

To study this economic setting, we consider that objects of choice are lists of bundles

such that the agents have the right to receive one of the bundles in the list (they

3A related line of research initiated by Radner (1968) is based on the idea that the consequence
of incomplete information is that an agent must consume the same in states of nature that he
cannot distinguish. The corresponding notion of the core was introduced by Yannelis (1991).
Several developments can be found in the volume edited by Glycopantis and Yannelis (2005).
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have to accept any of the alternatives).4 Contracts in which lists are traded are

pervasive. A plane ticket is a list, and there are many other examples.

A plane ticket gives you the right to travel if the plane is available at the date of

departure, and, if the plane is not available, the right to stay in a hotel and travel

on the next plane. But you cannot verify whether the plane is available or not. If,

at the date of traveling, the airline announces that the plane is not available, you

may have no alternative other than to accept staying in a hotel and traveling on the

next day.

Some car insurance contracts give you the right to use another car temporarily,

in case of accident or malfunction. But the substitute car is left undefined in the

contract. It is only stipulated that the car should belong to a certain class. It may

be red or yellow, have radio or not, etc.

When you order a pizza, it is actually a list of bundles. The pizza may have more

or less mozzarella, more or less tomato, be made with olive oil or vegetable oil, have

a thin or thick crust, etc. Goods that you order are usually defined imprecisely.

More formally, consider an agent that cannot verify in a court of law whether the

state of nature is 1 or 2, but nevertheless has bought A1 (delivery of A in state 1)

and B2 (delivery of B in state 2). Then: if state 1 occurs, the agent can receive A

or B. When receiving B in state 1, the agent cannot prove in a court of law that the

contract has been violated (state 2 could be the actual state and B the contracted

delivery). For the same reason: if state 2 occurs, the agent can also receive the same

bundles, A or B.

Observe that the set of alternatives that may be delivered, {A,B}, is the same

in the set of states that the agent cannot distinguish, {1, 2}. Something that is

constant across states of nature that the agent cannot distinguish is said to be

“measurable with respect to private information”. Technically, with Pi denoting an

4This concept builds on Arrow’s (1953) notion of contingent goods. A contingent bundle is
obviously a contingent list of bundles with a single element.

3



agent’s information partition, a function that is constant in elements of the σ-algebra

generated by Pi is designated as “Pi-measurable”.

We could restrict our attention to plans of lists that are measurable with respect to

each agent’s private information, since, as exemplified above, any non-measurable

choice can be converted into a measurable one that is equivalent. Essentially, there

may be a difference between what an agent buys and what an agent gets (whenever

the agent is unable to prove that what he got is different from what he was entitled

to receive). Buying a non-measurable consumption plan (A in state 1 and B in state

2), the agent obtains a Pi-measurable plan of lists (A ∨ B in state 1 and A ∨ B in

state 2). It is important to understand that this Pi-measurability property of lists

is not a restriction on trade, but the consequence of incomplete state verification on

the enforceability of trade agreements.

We have introduced this model of general equilibrium with private and incomplete

state verification in two previous papers (2007a, 2007b). All trade is agreed ex ante,

that is, before private information is received. Prices of the contingent lists are

announced, and agents choose the plan of contingent lists that they prefer among

those that belong to their budget set. After receiving their private information,

agents are able to verify in which set of their information partition lies the true

state of nature, and receive one of the alternatives in the list that they bought for

delivery in these states. Notice that agents cannot choose which of the alternatives

is delivered. On the contrary, they have to accept any of the alternatives.

The selection of the bundle to be delivered to each agent must satisfy some

restrictions. First, each agent must receive an alternative that is present in the

list that corresponds to the actual state of nature, or to a state of nature that is

undistinguishable (in the sense that the agent cannot prove in a court of law that

it is not the actual state of nature). This means that, in equilibrium, no agent can

prove that his contract has been violated. Second, these deliveries must constitute

a feasible allocation. These restrictions leave some degrees of freedom, giving rise

to a natural question: which of the alternatives should an agent expect to receive?

4



If agents expect to receive the worst possible bundle in a list, there exists an

equilibrium in which these expectations are fulfilled. This is a prudent expectations

equilibrium (2007a). Agents act very defensively, selecting alternatives with the same

utility for delivery in states that they cannot distinguish. They insure themselves

completely against being deceived. Even if they are deceived, it implies no utility

loss.

A more general notion is that of a subjective expectations equilibrium (2007b). If

agents have subjective expectations, their beliefs about the probabilities of delivery of

the different alternatives in a list depend on the prices that they observe (perfectly

or imperfectly), and on the alternatives specified in the list.

In this paper, we study the case in which agents know the model of the economy,

and form their expectations accordingly (Muth, 1961).

We find that, in equilibrium: (1) the price of a plan of state-contingent lists (specify-

ing a list for each state of nature) is equal to the price of the cheapest consumption

plan (specifying an alternative to be delivered in each state of nature) that satisfies

the requirements of the plan of state-contingent lists; and (2) the alternative that is

selected for delivery is the cheapest alternative.

Rational agents expect, then, to receive the cheapest alternative in each state of

nature.5 Observing the prices of all the contingent commodities and of all the lists,

agents can predict which bundle is going to be selected for delivery (the cheapest)

in each state of nature. In case of a tie, agents expect to receive the alternative that

they prefer (a similar assumption is made in the mechanism design literature: in

case of indifference, agents tell the truth).

Knowing the consumption bundle that results from buying each of the lists,

agents can, instead of choosing among lists, choose directly among these result-

ing consumption bundles. These bundles are those that satisfy a system of linear

5Prices differ across states, thus, the cheapest bundle should also differ (and this implies that
the consumption plan is not Pi-measurable).
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inequalities, which are endogenous deliverability restrictions. Consider an agent

who does not distinguish between states s and t. For a state-contingent consumption

plan, (xs, xt), to be deliverable, it must be such that ps ·xs ≤ ps ·xt and pt ·xt ≤ pt ·xs.

If these deliverability conditions are not satisfied, then the agent will not receive xs

in state s and xt in state t (because these would not be the cheapest alternatives in

the corresponding states). An agent with rational expectations chooses among plans

which are deliverable in this sense (denoted x ∈ Ci(p)).

This deliverable choice set depends, therefore, on prices and on each agent’s private

information. The choice set of each agent is the intersection of the budget set and

the deliverable set, Bi(p)∩Ci(p). If the correspondence from prices to the choice set

were continuous, equilibrium existence would be guaranteed. It has closed graph,

therefore, in a bounded economy, Bi(p)∩Ci(p) is upper hemicontinuous. But Ci(p)

is not lower hemicontinuous.6 This property fails when prices in some state are null

or when prices in states s and t, with t ∈ Pi(s), are collinear.7

We give a simple example of non-existence of equilibrium caused by null prices. In

the presence of differential information, prices may be null, even if state-contingent

preferences are strictly monotonic. There may be some state in which resources are

abundant, but such that no agent can verify that it has occurred. As a result, no

agent is willing to buy commodities contingent on the occurrence of this state.

Introducing a perfectly informed agent removes this problem, because this agent

can verify the occurrence of any state. This agent may have an arbitrarily small

endowment, resembling the ε-agent in the model of Dubey, Geanakoplos and Shubik

(2005). We do this in a way that imposes a lower bound in prices, simply by assuming

this agent’s preferences to be linear. The main result in this paper establishes

6The intersection of continuous correspondences may not be continuous, anyway (Aliprantis
and Border, 2007).

7With agents having preferences that are Pi-measurable, collinearity does not prevent existence
of equilibrium. In this case, it can be shown that (having convex preferences) agents choose the
same bundle for delivery in both states, implying that the deliverability restrictions are satisfied
in equality.
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existence of equilibrium in an economy with this additional trader. A drawback of

this result is that we require preferences to be constant across states that the agent

does not distinguish.

This paper is a contribution to the theory of general equilibrium with differential

information. The central paper in this literature is the pioneer work of Prescott and

Townsend (1984a, 1984b), who extended the general equilibrium model to economies

in which agents have private information about their preferences. In their work, an

allocation is a lottery over consumption plans, and prices are linear in probabilities

(not linear in consumption8). The same criticism applies to the core equivalence

results of Forges, Heifetz and Minelli (2001). Here prices are linear in consumption,

which seems to be more in the spirit of general equilibrium theory.

Recently, Zame (2007) developed a very comprehensive model with a continuum of

agents, in which the set of firms and the contracts that appear are also determined

endogenously at equilibrium. Other recent contributions in which agents also face

incentives to make more or less effort were made by Prescott and Townsend (2006)

and by Rustichini and Siconolfi (2007). Our scope is more limited: we study the

case of pure exchange with a finite number of agents. In this setting, Forges, Minelli

and Vohra (2002) offered a survey on the core. We provide a price-equilibrium

counterpart.

By thinking of assets as pools, Dubey, Geanakoplos and Shubik (2005), Bisin and

Gottardi (1999) and Minelli and Polemarchakis (2000) explore the relationship be-

tween individual actions and the payoffs of assets. In our paper, lists may also be

seen as assets with many possible payoffs, with delivery rates being equilibrating

variables.

The paper is organized as follows: in section 2 we motivate the paper; in section

3, the consequences of private information are analyzed; sections 4 and 5 deal with

preferences over lists and prices of lists, respectively; in section 6 we present and char-

8This was analyzed by Jerez (2005).
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acterize equilibrium; in section 7 we establish existence, in the presence of a small

but perfectly informed trader; and section 8 concludes with some remarks. In ap-

pendix, we: (1) collect all the proofs, (2) give an example of non-existence (without

the informed trader), and (3) study continuity of the deliverability correspondence.
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2 The questions

Our point of departure is the classical general equilibrium model of trade under

uncertainty with public state verification (Debreu, 1959, chapter 7). Uncertainty

consists of a choice of nature among a finite number of possible states, Ω = {1, ..., S}.

To each state of nature corresponds a complete description of the environment (Sav-

age, 1972), that is, the endowments and the preferences of each and every agent.

Before the choice of nature, knowing their state-dependent preferences and their

state-dependent endowments, agents make state-contingent trade agreements (trade

is ex ante). After the choice of nature, the state of nature is publicly announced

and the corresponding state-contingent trades are made.

This context is dealt with by considering a generalized notion of commodity (Arrow,

1953). Besides being defined by their physical properties and by their location in

space and time, commodities are also distinguished by the state of nature in which

they are made available. For example, instead of talking about consumption of good

A in state 1 and consumption of good B in state 2, we talk about consuming good

A1 and good B2.

Let’s now introduce the basic formal structure and notation.

In the 1st period, each agent i:

- attributes subjective prior probabilities, µi = (µ1
i , ..., µ

S
i ) ∈ ∆S, to the possible

states of nature;

- has preferences over consumption plans that are represented by an expected

9



utility function, Ui(xi) =
S∑
s=1

µsiu
s
i (x

s
i );

- knows his state-contingent endowments, ei = (e1
i , ..., e

S
i ) ∈ IRS++;

- observes prices for delivery in each state of nature, p = (p1, ..., pS) ∈ ∆SL;

- chooses a consumption plan, xi = (x1
i , ..., x

S
i ) ∈ IRSL+ , that maximizes

expected utility among the possibilities that belong to the budget set,

Bi(p) =

{
xi ∈ IRSL+ :

S∑
s=1

ps · xsi ≤
S∑
s=1

ps · esi

}
.

In the 2nd period:

- the state of nature, s, is publicly announced;

- each agent i receives the corresponding consumption bundle, xsi ∈ IRL+.

An equilibrium of this Arrow-Debreu-McKenzie economy with uncertainty is

composed by a price system and an allocation, (p∗, x∗), such that: taking prices, p∗,

as given, each agent i maximizes utility in his budget set, x∗i ∈ arg max
xi∈Bi(p∗)

Ui(xi);

and the allocation, x∗ = (x∗1, ..., x
∗
n), is feasible,

∑
i

x∗i ≤
∑
i

ei.

The economic gain of trading ex ante is insurance. The agents are assumed to be

risk-averse, a notion that is traduced in the concavity of the state-contingent utility

functions, usi (·). In this context of public state-verification, it is known that the

equilibrium allocation, x∗, is Pareto-optimal.

What happens if, in the 2nd period, agents receive different information? What

happens if, instead of becoming public information, the state of nature is only in-

completely and differentially revealed to each of the agents? This is the question

that we address in this paper.

Let the information that agent i receives be described by a partition of the set of

states of nature, Pi. If the state that occurs is s, the agent is informed that the

state of nature belongs to the corresponding set of the partition, Pi(s). If state t

belongs to the same set of the partition, t ∈ Pi(s), then agent i cannot distinguish

10



state t from state s. Agents are endowed with what Laffont (1986) described as fixed

information structures without noise.

To deal with this kind of differential information, Radner (1968) postulated that

agents should only be interested in contracts that are contingent upon events that

they can observe. In states of nature that an agent does not distinguish, the same

bundle would be delivered (and consumed). With this restriction, the model of

Arrow-Debreu-McKenzie could be reinterpreted to cover the case of private infor-

mation.

The consumption set was restricted to IRSL+ ∩ Pi, meaning that if t ∈ Pi(s), then

xti = xsi . An agent had to consume the same bundle in states of nature that he

cannot distinguish. It seemed that this single modification was enough to capture

the consequences of differential information.

An equilibrium of the Radner economy is composed by a price system and an

allocation, (p∗, x∗), such that: taking prices, p∗, as given, each agent i max-

imizes utility in his choice set, x∗i ∈ arg max
xi∈Bi(p∗)∩Pi

Ui(xi); and the allocation,

x∗ = (x∗1, ..., x
∗
n), is feasible,

∑
i

x∗i ≤
∑
i

ei. The similarity with the Arrow-Debreu-

McKenzie equilibrium is striking.

Before presenting a critique of this solution, and an alternative concept, we want to

make more precise the notion of information that we consider in this paper.

Consider a tree that falls in a distant forest. An agent may not even be aware of the

existence of this tree. This is unawareness. Beyond this state of pure ignorance, we

11



can define three hierarchic levels of information. First, an agent can be aware that

the tree may have fallen or not, and attribute subjective probabilities to this event.

A second level of information could be to know whether the tree fell or not. Finally,

a third level would be the ability to prove that the tree fell or that it did not.

Having made a contract for the contingent delivery of goods, an agent may need

to prove that an event has occurred to enforce delivery. This is what we assume,

putting the onus of the proof on the side of the buyer. Then, the meaning of the

partition, Pi, is that, if state s occurs, agent i can prove that the state of nature

belongs to Pi(s), and is able to use this and only this information to enforce delivery.

A related line of research focused on the revelation of information by prices (Radner,

1979; Allen, 1981). But with trade taking place ex ante, an agent cannot infer the

information of the other agents because, at the moment of trade, the other agents

still haven’t received their information.9 After the opening of markets in the second

period, agents may be able to infer the information of others. But we assume that

the information obtained through these inferences cannot be used (in a court of law,

for example) to enforce contracts.

Our main objection to the model of Radner (1968) is that agents should not be

restricted to consume the same bundle in undistinguished states of nature. The

example that follows shows that this restriction is too strong.

Consider an economy with two agents. Agent A is endowed with two units of ‘sugar’,

in all states of nature, Ω = {s1, s2}, while agent B has uncertain endowments: two

units of ‘tea’ in state s1 and two units of ‘coffee’ in state s2.

es1A = es2A = (2, 0, 0), es1B = (0, 2, 0) and es2B = (0, 0, 2).

The preferences of the agents are the same, and do not depend on the state of nature.

The goods ‘tea’ and ‘coffee’ are perfect substitutes, which agents like to drink with

‘sugar’.

9The only thing that agent i could possibly infer is the priors, µj , of the other agents (it may
be more acceptable to assume, then, a common prior).
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us1A = us2A = us1B = us2B =
√

(xtea + xcof )xsug

Agent A cannot distinguish the two states, which are equiprobable:

PA = {s1, s2} and PB = {{s1}, {s2}}.

With the restriction of consuming the same in undistinguished states of nature, there

is no trade. To see this, observe that agent A would like to consume some ‘tea’ in

state s1. But this would imply equal consumption in state s2, and there is no ‘tea’

in state s2 (only ‘coffee’...).

In a real-life situation, the two agents could make the following agreement (valid for

both states of nature): agent A would deliver one unit of ‘sugar’ in exchange for one

unit of ‘tea’ or one unit of ‘coffee’. That is, agent A would get the right to receive

a ‘tea or coffee’, or, to put it another way, would get the right to consume (1, 1, 0)

or (1, 0, 1).

Both agents would end up consuming (1, 1, 0) in state s1 and (1, 0, 1) in state s2. This

contract for uncertain delivery allows the agents to attain an optimal outcome.10

Agents would buy what we call a list of bundles: a derivative good that gives the

right to receive one of the bundles in the list. To guarantee delivery of a precise

bundle, an agent must buy a list with a single alternative (notice that this concept

builds on Arrow’s (1953) notion of contingent goods, which are lists with a single

alternative).

To model an economy with uncertain delivery, in which agents trade lists of bundles

(instead of bundles), we must face some questions:

(1) What are the consequences of private state verification?

(2) What is the utility of a list of bundles?

(3) What is the price of a list of bundles?

10For other examples and a more detailed explanation, see our previous work (2007a, 2007b).
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3 The consequences of private state verification

As we mentioned above, in the model of Radner (1968), the consequence of not

distinguishing between two states is a restriction of having to consume the same in

both states:

t ∈ Pi(s)⇒ xti = xsi .

We do not restrict trades in this way. Agents may buy different rights for delivery

in states that they do not distinguish. But, if an agent buys different rights for

delivery in two states and is not able to verify whether the true state is one or the

other, then the agent has to accept delivery of any of the two.

Consider an agent that cannot prove in a court of law whether the true state is s or

t, but that, nevertheless, has contracted for the delivery of bundle x in state s and

bundle y in state t. When receiving bundle y in state s (or bundle x in state t), the

agent cannot prove that the contract is being violated. Then: if state s occurs, the

agent can receive x or y; and if state t occurs, the agent can also receive the same

bundles, x or y. Notice that the set of alternatives that may be delivered, {x, y}, is

the same in states that the agent cannot distinguish, {s, t}.11

The same reasoning applies to lists. Suppose that the agent has contracted for the

delivery of some alternative in the list x̃ in state s and some alternative in the list ỹ

in state t. Then: if state s occurs, the agent can receive a bundle z ∈ x̃ or a bundle

z ∈ ỹ; and if state t occurs, the agent can also receive a bundle z ∈ x̃ or a bundle

z ∈ ỹ. Observe that the set of alternatives that may be delivered, x̃∪ ỹ, is the same

in the states that the agent cannot distinguish, {s, t}.

The condition that describes enforceability is not xsi ∈ x̃si (which means that the

bundle that is delivered in state s, xsi , belongs to the list that was contracted for

11Something that is constant across states of nature that the agent cannot distinguish is said
to be “measurable with respect to private information”. More technically, with Pi denoting an
agent’s information partition, a function that is constant in elements of the σ-algebra generated
by Pi can be designated as “Pi-measurable”.
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delivery in state s, x̃si ). This would be equivalent to assuming that contracts are

always kept. They are not, because, in state s, agent i can only enforce delivery of a

bundle that belongs to
⋃

t∈Pi(s)

x̃ti. The adequate condition to describe enforceability

is: xsi ∈
⋃

t∈Pi(s)

x̃ti.

Notice that if an agent buys the same lists for delivery in the states that he cannot

distinguish, then
⋃

t∈Pi(s)

x̃ti = x̃si , and the enforceability condition becomes xsi ∈ x̃si .

Buying the same bundle for delivery in states that are not distinguished is a sufficient

condition for the contract to be enforced (but not a necessary condition).

Formally:

(i) a state-contingent list (a list for delivery in state s) is a finite, non-empty,

subset of IRL+, denoted x̃si ∈ IF(IRL+);

(ii) a plan of lists is a vector of state-contingent lists x̃i ∈ (IF(IRL+))S, specifying a

list for delivery in each of the possible states of nature.12

(iii) a Pi-measurable plan of lists is a vector of state-contingent lists such that

t ∈ Pi(s)⇒ x̃ti = x̃si , denoted x̃i ∈ (IF(IRL+))S ∩ Pi.

We define a transformation, Mi, to describe the consequences of incomplete

information. If an agent buys a plan of lists x̃i, the plan of lists Mi(x̃i) =

[M1
i (x̃i), ...,M

S
i (x̃i)] represents what the agent gets, that is, the alternatives that

the agent may receive, in each state of nature. As we have explained, in state s,

the agent may receive any of the bundles in
⋃

t∈Pi(s)

x̃ti. Therefore, M s
i is defined as

follows:

M s
i : (IF(IRL+))S −→ IF(IRL+) ;

12It is equivalent to consider that objects of choice are: plans of lists of consumption bundles
(there is one list for each state, and an alternative in a list is a consumption bundle); or, alterna-
tively, lists of plans of consumption bundles (there is one list for all states, and an alternative in
the list is a consumption plan).

15



M s
i (x̃i) =

⋃
t∈Pi(s)

x̃ti .

It should be clear that the condition that describes enforceability may be written as

xi ∈Mi(x̃i). We point out that if agent i buys a list, x̃i, that is not Pi-measurable,

the agent gets a list, Mi(x̃i), that is Pi-measurable by construction.

In the model of Radner (1968), the consequence of incomplete information is a

restriction of the choice set to Pi-measurable plans of consumption bundles. Here

the consequences are less severe. An agent can enforce delivery of Pi-measurable

lists (which include all Pi-measurable consumption plans), and this does not imply

Pi-measurability of the resulting consumption plan.

The main conclusion of this section is that an agent that buys a list, x̃i = (x̃1
i , ..., x̃

S
i ),

may receive, in each state s ∈ Ω, an element of the list M s
i (x̃i) =

⋃
t∈Pi(s)

x̃ti.
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4 Preferences over lists

When buying a list, a rational agent has expectations about what will be the result-

ing consumption. These expectations, together with the preference ordering over

consumption plans, induce a preference ordering over plans of state-contingent lists.

We start by making standard assumptions about preferences over consumption

plans. Later we will derive preferences over plans of state-contingent lists from

preferences over consumption plans.

Preferences over consumption plans are represented by an expected utility function,

Ui(xi) =
∑S

s=1 µ
s
iu

s
i (x

s
i ), where µsi is the subjective probability that agent i attributes

to the occurrence of state s, and usi : IRL+ → IR is a particular representation of the

preferences of agent i over bundles when s is the state of nature.

In the classical model, agents would choose a consumption plan that maximizes

expected utility:

Ui : (IRL+)S −→ IR;

Ui(xi) =
S∑
s=1

µsiu
s
i (x

s
i ).

Assumption 4.1.

Preferences over consumption plans are represented by an expected utility function,

Ui(xi) =
S∑
s=1

µsiu
s
i (x

s
i ), where each state-dependent utility function, usi , is continuous,

weakly monotone and concave.

In economies with uncertain delivery, agents choose a plan of lists, and therefore we

need an objective function defined over plans of lists. Preferences over plans of lists

depend on prices of lists, p̃ ∈ P , because rational agents see prices as a signal of the

alternative that will be delivered.

Ũi : (IF(IRL+))S × P −→ IR.
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We allow for prices to be interpreted as a signal of the alternatives that will be deliv-

ered, but it is a signal that we will only be able to understand when we characterize

equilibrium (Section 6). The precise relationship between prices will be established

then. Right now, we give an example to convey the basic idea. Suppose that you

want to rent a car and the agency offers you a list that delivers a ‘Fiat’ or a ‘Ferrari’.

Wouldn’t you expect to receive the ‘Fiat’?

When buying a list x̃i, a rational agent is aware that the possible deliveries are

Mi(x̃i). Therefore, he attributes the same utility to the lists x̃i and Mi(x̃i).
13

The only variables that agents observe when forming expectations are the prices, p̃.

Therefore, preferences only depend on Mi(x̃i) and p̃.

Assumption 4.2.

∀(x̃i, p) ∈ (IF(IRL+))S ×∆SL : Ũi(x̃i, p̃) = Ũi(Mi(x̃i), p̃).

Knowing the utility of the Pi-measurable plans of lists, we can obtain, using only

this assumption, the utility of all the plans of lists that are not Pi-measurable.

We also make an assumption of no satiation. Agents select a list in the frontier of

the budget set.

Assumption 4.3.

Let x̃i ∈ arg max
z̃i∈B̃i(p̃)

Ũi(z̃i, p̃). Then:

p̃(x̃i) = p · ei.

These are the starting assumptions that we impose on preferences. We will find,

later, that agents always receive the cheapest bundle of the list. Therefore, it will

make sense to assume that they attribute to a list the utility of the cheapest bundle

in the list.

13Recall that if x̃i is Pi-measurable, then x̃i = Mi(x̃i).
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5 Prices of lists

In economies with uncertain delivery, it is necessary to define prices on the space of

plans of lists:

p̃ : (IF(IRL+))S −→ IR+.

We will dedicate most of this section to finding properties of price systems that

are compatible with the absence of arbitrage, and that, therefore, are necessarily

properties of an equilibrium price system.

5.1 Buying and selling lists of bundles

Suppose that an agent buys (separately) a list that delivers a ‘tea’ or a ‘coffee’ and

a list that delivers a ‘toast’ or a ‘cookie’. The agent receives one of four alternatives:

‘tea and toast’, ‘tea and cookie’, ‘coffee and toast’ or ‘coffee and cookie’. More gen-

erally, an agent that buys the lists x̃i and ỹi may receive any alternative in the list

z̃i, defined as follows:

z̃i = x̃i ⊕ ỹi = {zi ∈ IRSL+ : ∃(xi, yi) ∈ (x̃i, ỹi) s.t. zi = xi + yi}.

Buying two or more lists is equivalent to buying this single list (which has more

alternatives).

Agents are also allowed to sell lists. An agent that sells a list has to deliver (in the

future) one of the alternatives in the list. It is the seller that chooses the alternative

to deliver, thus selling a list is different from buying a list with negative quantities

(in this case, it would be the buyer that would select the alternative).

Consider an agent that buys list x̃i and sells list ỹi. The agent will receive xi ∈ x̃i
and deliver yi ∈ ỹi. We assume that, in each state s, the agent delivers a best

response to each possible received bundle (in case of a tie for the best response, we
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use a selection, S, which is irrelevant for the results). A perfectly informed agent

plans to deliver, in each state s, the alternative ysi , defined as:

ysi (ỹ
s
i , x

s
i ) = S

(
argmax

y∈ỹs
i

{U s
i (xsi − y)}

)
.

And thus obtain an equivalent list, z̃i = (z̃1
i , ..., z̃

S
i ), defined as:

z̃si = x̃si 	si ỹsi = {z ∈ IF(IRL+) : ∃xsi ∈ x̃si s.t. z = xsi − ysi (ỹsi , xsi )};

z̃i = x̃i 	i ỹi = (z̃1
i , ..., z̃

S
i ).

An agent with incomplete information (that buys x̃i and sells ỹi) faces a further

difficulty. In state s, he may receive an element of x̃ti and be forced to deliver an

element of ỹti , with t ∈ Pi(s).14 We assume, therefore, that he obtains the list Mi(z̃i),

with each z̃si defined as we did above for the perfectly informed agent: z̃si = x̃si 	 ỹsi .

We impose a restriction on short sales. Agent i can only buy x̃i and sell ỹi such

that Mi(z̃i) ∈ IF(IRSL+ ) (possible net deliveries are nonnegative). Thus, the agent can

always keep the contract for delivery of an element of the list ỹi. We rule out the

possibility of default.

Notice that if all possible net deliveries are positive for the fully informed agent they

are also positive for an agent i with incomplete information. This is true because we

assume that the vector of initial endowments is Pi-measurable (t ∈ Pi(s)⇒ eti = esi ).

Information does not affect the restriction on short selling:

z̃i ∈ (IF(IRL+))S ⇔Mi(z̃i) ∈ (IF(IRL+))S.

5.2 Arbitrage

An arbitrage is a trade that involves a gain and no possibility of a loss. In our

context, it would consist of buying a list, x̃i, and selling another, ỹi, such that: (i)

14Another option could be to consider that the agent could receive an element of x̃t
i, with

t ∈ Pi(s), and be forced to deliver an element of ỹt′

i , with t′ ∈ Pi(s). This would make trade even
more difficult for uniformed agents.
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some income is retained; (ii) all possible net deliveries are positive.

Definition 5.1.

An arbitrage opportunity consists of a pair of lists, (x̃i, ỹi), such that:

(i) p̃(x̃i) < p̃(ỹi);

(ii) ∀xi ∈ x̃i,∃yi ∈ ỹi : xi − yi ≥ 0 (that is, x̃i 	i ỹi ∈ (IF(IRL+))S).

The information of the agent is irrelevant to this definition of arbitrage. This is so

because if all possible net deliveries are positive for the fully informed agent they

are also positive for an agent i with incomplete information. Information does not

enlarge the possibilities of arbitrage.

If there is an arbitrage opportunity, then: in the first period, agent i buys list x̃i

and sells list ỹi (retaining some rent); in the second period, he receives xti ∈ x̃ti, with

t ∈ Pi(s), and delivers yti ∈ ỹti such that yti ≤ xti.

This implies that the budget restriction disappears. Instead of selecting a list w̃i, the

agent can, additionally, buy x̃i and sell ỹi. The agent retains some rent and receives

the same or more goods. Therefore, there cannot exist a list w̃i that maximizes the

objective function of the agents.

It should be clear that for a price system, p̃, to be an equilibrium price system,

there cannot exist any arbitrage opportunities. No-arbitrage is a necessary (but not

sufficient) equilibrium condition.

5.3 No-arbitrage prices

A necessary condition for absence of arbitrage is that prices must be additive, in the

sense made precise below. All proofs are collected in Appendix 1.

Proposition 5.1.
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Absence of arbitrage opportunities implies that:

∀x̃i, ỹi ∈ IF(IRSL+ ), p̃(x̃i ⊕ ỹi) = p̃(x̃i) + p̃(ỹi).

Proposition 5.1 says that equilibrium prices of lists are additive. If a list that

guarantees delivery of ‘coffee’ or ‘tea’ costs 3, and a list that guarantees delivery

of a ‘toast’ or a ‘cookie’ costs 5, then a list that guarantees delivery of ‘coffee and

toast’ or ‘coffee and cookie’ or ‘tea and toast’ or ‘tea and cookie’ must cost 8 (it is

equivalent to buy the two lists separately or to buy them bundled together).

With prices being additive, agents only buy a single list. There is no point in

deviating and buying two lists instead of a single one.

In the classical theory, a basic assumption on the price systems is that it does not

matter for an agent to buy a single bundle or to buy its constituents in separate

(prices are linear).

(i) ∀x, y ∈ IRSL+ : p(x+ y) = p(x) + p(y);

(ii) ∀x ∈ IRSL+ , λ ∈ IR : p(λx) = λp(x).

The classical assumption (i) is a particular case of Proposition 5.1 (they are equiv-

alent for lists with a single element). We make the classical assumption (ii) just for

lists with a single element, that is, bundles. We do not restrict prices of lists to be

scalable.

Assumption 5.1.

Given any list with a single element, x ∈ IRSL+ , and any positive scalar, λ ≥ 0:

p̃(λx) = λp̃(x).

As a consequence of Proposition 5.1 and Assumption 5.1, the restriction of any price

system, p̃, to the space of consumption plans can be represented by a vector of prices

of the SL state-contingent commodities, p ∈ ∆SL, such that the price of a bundle is

the inner product between the vector of prices and the vector of quantities:
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∀x ∈ IRSL+ , p̃(x) = p · x, with p ∈ ∆SL =

{
p ∈ IRSL+ :

S∑
s=1

L∑
l=1

psl = 1

}
.

The budget set of agent i is, naturally:

B̃i(p̃) = {x̃i ∈ (IF(IRL+))S : p̃(x̃i) ≤ p̃(ei) = p · ei}.

It is useful to define the function p̃s as the price of a list for delivery that is contingent

on the occurrence of state s:

p̃s : IF(IRL+) −→ IR+;

p̃s(x̃s) = p̃(0, ..., x̃s, ..., 0).

Observe that a plan of state-contingent lists, x̃ = (x̃1, ..., x̃S), is also the sum of the

state-contingent lists: x̃ = x̃1 ⊕ ... ⊕ x̃S. By Proposition 5.1, no arbitrage implies

that the price of a plan of state-contingent lists is equal to the sum of the prices of

the state-contingent lists:

p̃(x̃) =
S∑
s=1

p̃s(x̃s).

If a list, x̃, is cheaper than a list that contains it, ỹ ⊃ x̃, then there is an arbitrage

opportunity. An agent can buy x̃ and sell ỹ ⊃ x̃, retaining some rent. In state s,

the agent can use the goods received, xs ∈ x̃s, to keep the contract for delivery of

ỹs (because xs ∈ ỹs).

Proposition 5.2.

Absence of arbitrage opportunities implies that:

x̃ ⊆ ỹ ⇒ p̃(ỹ) ≤ p̃(x̃).

A corollary is that if a list, x̃, is more expensive than one of its alternatives, x ∈ x̃,

then there exists an arbitrage opportunity. Agent i will buy the bundle x and sell

the list x̃, receiving x and delivering the same x ∈ x̃. The agent gets a null delivery,

x − x, but retains some rent. The agent is never maximizing, because it is always

beneficial to scale up this arbitrage trade (buy x+ x+ ... and sell x̃⊕ x̃⊕ ...).
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Corollary 5.1.

Absence of arbitrage opportunities implies that:

∀x ∈ x̃ : p̃(x̃) ≤ p · x.

Another corollary is that the list Mi(x̃), that describes what an agent gets when he

buys the list x̃, cannot be more expensive than x̃.

Corollary 5.2.

p̃(Mi(x̃)) ≤ p̃(x̃).

This implies that agents do not mind being restricted to select Pi-measurable lists.

They are never worse off by selecting Mi(x̃i) instead of x̃i (utility is the same, and

the price may be lower).

The price of a list that is chosen, x̃i, must be equal to the price of the actual list

of possible deliveries that the agent obtains, Mi(x̃i).
15 Another consequence is that

the delivered bundle, xi ∈ Mi(x̃i), cannot be cheaper than the list that the agent

buys. In the next section we show that (in equilibrium) the price of the delivered

bundle is equal to the price of the list that the agent buys.

15From Corollary 5.2, we know that x̃i could never be cheaper, and if it were more expensive,
then Mi(x̃i) would be chosen instead, because the two plans of lists have the same utility.
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6 Equilibrium

6.1 Concept

We consider a finite number of agents (i = 1, ..., n), commodities, (l = 1, ..., L), and

states of nature (Ω = {1, ..., S}, indexed by s and also by t when necessary).

The economy extends over two time periods, τ ∈ {0, 1}, with uncertainty about

which state of nature will occur in the second period. Trade agreements are made

at τ = 0 (all trade is ex ante).

Taking prices, p̃, as given, agents trade their state-contingent endowments, ei ∈

IRSL++ ∩ Pi, for a plan of state-contingent lists, x̃i = (x̃1
i , x̃

2
i , ..., x̃

S
i ), specifying the

bundles that may be delivered to them in each state of nature. Their objective is

to maximize expected utility, Ũi(x̃i, p̃) =
S∑
s=1

µsi · ũsi (x̃si , p̃).

At τ = 1, agents receive their private information, trade agreements are enforced,

and consumption takes place. If state s occurs, agent i should receive a bundle

xsi ∈ x̃si , but can only enforce delivery of a bundle xsi ∈M s
i (x̃i) =

⋃
t∈Pi(s)

x̃ti.

Below is a preliminary definition of the concept of general equilibrium of an economy

with uncertain delivery, in which agents trade lists of bundles instead of bundles.

Definition 6.1.

An equilibrium of the economy with uncertain delivery, (x̃∗, x∗, p̃∗), is composed by:

state-contingent plans of lists, x̃∗ = (x̃∗1, ..., x̃
∗
n); an allocation, x∗ = (x∗1, ..., x

∗
n); and

a price system, p̃∗. These are such that, for every agent i:

(1) The plan of lists, x̃∗i , maximizes expected utility, Ũi(x̃
∗
i , p̃
∗), in the agent’s

budget set, B̃i(p̃
∗) =

{
x̃i ∈ (IF(IRL+))S : p̃∗(x̃i) ≤ p∗ · ei

}
.

(2) In each state of nature, s ∈ Ω, the bundle that is delivered is an alternative

that the agent has to accept, xs∗i ∈
⋃

t∈Pi(s)

x̃t∗i , that is, x∗i ∈Mi(x̃
∗
i ).
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(3) The allocation, x∗, is feasible. That is,
∑
i

x∗i ≤
∑
i

ei.

(4) The utility of the list was correctly anticipated: Ũi(x̃
∗
i , p̃
∗) = Ui(x

∗
i ).

6.2 Delivery of the cheapest alternative

In equilibrium, lists cannot be more expensive than any of the alternatives (Corollary

5.1). But can a list be strictly cheaper than any of the alternatives?

We show below that the price of a list that is chosen in equilibrium must be equal

to the price of the alternative that is delivered.

Proposition 6.1.

Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Recall that

the following are true:

(i) [enforceability] x∗i ∈Mi(x̃
∗
i ), ∀i;

(ii) [pricing of lists] p̃∗(x̃∗i ) = p̃∗(Mi(x̃
∗
i )) ≤ p∗ · x∗i , ∀i;

(iii) [no satiation] p̃∗(x̃∗i ) = p∗ · ei, ∀i;

(iv) [feasibility]
∑
i

x∗i ≤
∑
i

ei;

Then, for each i = 1, ..., n:

(1) p̃∗(x̃∗i ) = min
x∈Mi(x̃∗i )

{p∗ · x};

(2) x∗i ∈ arg min
x∈Mi(x̃∗i )

{p∗ · x}.

Given a list that is chosen in equilibrium, x̃∗i , the cheapest bundle in Mi(x̃
∗
i ) plays

a crucial role. It is the bundle that is delivered, and the price of the list is the price

of this cheapest bundle.
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6.3 Rational preferences

Knowledge of Proposition 6.1 induces rational agents to expect to receive the

cheapest of the bundles in a list.

A difficulty is that there may be a tie for the cheapest bundle. We assume that,

in this case, agents expect to receive the bundle with the highest utility among

the cheapest bundles. This follows the spirit of mechanism design literature, where

incentive compatibility conditions only need to be satisfied in equality. In case of

indifference, the agent selects the action that is preferred by the principal.

This tie-breaking assumption makes existence of equilibrium more difficult, because

if agents do not actually receive this alternative with the highest utility, the economy

will not be in equilibrium (see Definition 6.1, point 4). Agents would not be antici-

pating correctly the utility of a list.

If a rational agent did not expect to receive the bundle with the highest utility

(among the cheapest bundles in the list), he would prefer to modify the list very

slightly, in order to have a single cheapest bundle. We could never have an

equilibrium in which an agent selected the list x ∨ y with p · x = p · y, U(x) > U(y)

and Ũ(x∨ y) < U(y). The agent would prefer a list x−∨ y in which x is replaced by

a similar, cheaper, x−. The list x− ∨ y would lead to delivery of x− (this alternative

would be strictly cheaper), which has almost the same utility as x, implying that

Ũ(x− ∨ y) = U(x−) > Ũ(x ∨ y).

Consider the cheapest consumption plans, at prices p, in the list Mi(x̃i), denoted

Ỹi(x̃i, p). Select an alternative among those that have the highest utility, and denote

it by Yi(x̃i, p) (the arbitrary selection operator is denoted S).

Ỹi : (IF(IRL+))S ×∆SL −→ (IF(IRL+))S;

Ỹi(x̃i, p) = {x ∈ IRSL+ : x ∈ arg min
z∈Mi(x̃i)

{p · z}};

Yi : (IF(IRL+))S ×∆SL −→ IRL+;
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Yi(x̃i, p) = S
[
x ∈ IRSL+ : max

xi∈Ỹi(x̃i,p)
Ui(xi)

]
.

The utility of a list is equated to the utility of this cheapest bundle (expected

delivery). By construction, we see that the preferences of rational agents over lists

only depends on p, not on the more general p̃.

Assumption 6.1.

Ũi(x̃i, p̃) = Ui(Yi(x̃i, p)).

The problem of agent i can be written as:

max
x̃i∈Bi(p̃)

Ũi(x̃i, p̃) = max
x̃i∈Bi(p̃)

Ui(Yi(x̃i, p)).

Recall that if a plan, x̃i, maximizes utility in the budget set of agent i, then the

plan Mi(x̃i), which is Pi-measurable, also does. The utility is the same and the price

of Mi(x̃i), by Corollary 5.2, is not higher. Agents can maximize by accessing only

Pi-measurable plans of lists.

x̃i ∈ arg max
z̃i∈Bi(p̃)

Ũi(z̃i, p̃)⇒Mi(x̃i) ∈ arg max
z̃i∈Bi(p̃)

Ũi(z̃i, p̃).

We could restrict our attention to lists that are measurable with respect to the

agent’s private information. A natural refinement of the equilibrium set is to impose

Pi-measurability of the lists chosen by the agents.

Proposition 6.2.

Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Then:

(M(x̃∗), x∗, p̃∗) is also an equilibrium of the economy with uncertain delivery.

6.4 Essential equilibria

Lists that are not chosen in equilibrium may be strictly cheaper than the cheapest

bundle in the list. In this case, we can raise the price of this list to equal the price
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of the cheapest bundle, remaining in equilibrium. If these lists were not bought by

the agents before the price raise, then they would remain not being bought after

their price goes up.

We designate by essential price systems those that are such that the prices of lists

coincide with the price of the cheapest alternative contained in the list.

Definition 6.2.

The price system p̃ is an essential price system if and only if:

∀z̃ ∈ (IF(IRL+))S : p̃(z̃) = min
z∈z̃
{p · z}.

It should be clear that, if p̃ is an essential price system:

p̃s(x̃si ) = min
zs
i∈x̃s

i

{ps · zsi };

p̃(x̃i) =
S∑
s=1

p̃s(x̃si ) =
S∑
s=1

min
zs
i∈x̃s

i

{ps · zsi }.

The budget restriction faced by agent i becomes:

B̃i(p) =

{
x̃i ∈ (IF(IRL+))S :

S∑
s=1

min
zs
i∈x̃s

i

{ps · zsi } ≤
S∑
s=1

ps · esi = p · ei

}
.

A further refinement of the equilibrium set is to impose that the price system is

essential and to remove the irrelevant alternatives in the lists (those that do not

affect the price of the list and that are never delivered), making x̃∗ = M(x∗). We

designate such equilibria as essential equilibria.

Definition 6.3.

Let (x̃∗, x∗, p̃∗) be an equilibrium such that:

• x̃∗ = M(x∗), that is, x̃∗i = Mi(x
∗
i ), for i = 1, ..., n;

• p̃∗ is an essential price system, defined by p̃(z̃) = min
z∈z̃
{p · z}, ∀z̃ ∈ (IF(IRL+))S.

Then, we say that the pair (x∗, p∗) is an essential equilibrium of the economy

with uncertain delivery.
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For every equilibrium of the economy with uncertain delivery, (x̃∗, x∗, p̃∗), there

exists an essential equilibrium, (x∗, p∗), that is equivalent in the sense that:

• the allocation is the same, x∗;

• prices of consumption plans coincide (p∗ · z = p̃∗(z), ∀z ∈ IRSL+ );

• selected lists do not contain irrelevant alternatives (Mi(x
∗
i ) ⊆ x̃∗i ).

Proposition 6.3.

Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Recall that

prices of singleton lists are denoted by p∗. Let q̃(z̃) = min
z∈z̃
{p∗ · z}. Then:

• ∀ỹ s.t. x∗ ⊆ ỹ ⊆M(x̃∗) : (ỹ, x∗, q̃) is also an equilibrium.

• (x∗, q) is an essential equilibrium.

6.5 Deliverability

Suppose that an agent bought a plan of singleton lists for delivery in two possible

states of nature, x̃ = (xs, xt). If the agent can distinguish states s and t, M(x̃) =

(xs, xt), thus delivery of xs in state s and xt in state t is guaranteed. If the agent

cannot distinguish the two states, then we have M(x̃) = (xs ∨ xt, xs ∨ xt). As a

result, in state s, the agent receives the cheapest of the two alternatives according

to ps (and, in state t, the cheapest according to pt).

An agent that buys x̃ always receives one of the cheapest bundles in Mi(x̃), therefore,

the bundle that is delivered in state s cannot be more expensive (according to prices

for delivery in state s) than any of the bundles that are delivered in states t ∈ Pi(s):

∀t ∈ Pi(s) : ps · xs ≤ ps · xt.

The plans that are deliverable depend on prices, and this dependence is described

by the deliverability correspondence defined below.

Definition 6.4.
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Ci : ∆SL −→ IRSL+ ;

Ci(p) =

{
xi ∈ IRSL+ : ∀s ∈ Ω, ps · xsi = min

t∈Pi(s)
{ps · xti}

}
.

To say that xi is the cheapest alternative in Mi(xi) is equivalent to saying that

xi ∈ Ci(p).

We can reformulate the problem of the agent, and write it as a choice over

consumption plans.

Proposition 6.4.

Let p̃ be an essential price system, x̃i ∈ arg max
x̃i∈Bi(p̃)

Ũi(x̃i, p̃), and xi = Yi(x̃i, p).

Then:

xi ∈ arg max
xi∈Bi(p)∩Ci(p)

Ui(xi).

Proposition 6.5.

Let p̃ be an essential price system, and xi ∈ arg max
xi∈Bi(p)∩Ci(p)

Ui(xi). Then:

Mi(xi) ∈ arg max
x̃i∈Bi(p̃)

Ũi(x̃i, p̃).

This equivalence leads us to a convenient reformulation of the notion of essential

equilibrium.

Definition 6.5.

The pair (x∗, p∗) is an essential equilibrium of the economy with uncertain delivery

if and only if:

(1) Each agent’s choice is optimal, x∗i ∈ arg max
xi∈Bi(p∗)∩Ci(p∗)

Ui(xi).

(2) The allocation, x∗, is feasible. That is,
∑
i

x∗i ≤
∑
i

ei.

Notice that this definition does not use preferences over lists, Ũi, nor prices over

lists, p̃. This means that we are ready to compare an equilibrium of the economy
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with uncertain delivery with the equilibrium with public state verification (Arrow-

Debreu-McKenzie under uncertainty) and the equilibrium with differential infor-

mation proposed by Radner (1968). Everything boils down to the choice sets. In

Arrow-Debreu-McKenzie: XAD
i = IRSL+ ; in Radner (1968): XR

i = IRSL+ ∩ Pi; here:

XIC
i (p) = IRSL+ ∩ Ci(p). It should be clear that, for all prices p:

XAD
i ⊆ XIC

i (p) ⊆ XR
i .
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7 Existence of equilibrium

If the correspondence from prices to the deliverable budget set were continuous,

existence of equilibrium would be guaranteed (we could apply Berge’s Maximum

Theorem, and then Kakutani’s Fixed Point Theorem). But, as we illustrate in

Appendix 3, Ci(p) is not lower hemicontinuous (this property fails when prices in

some state are null, or when prices in two undistinguished states are collinear).

7.1 A sequence of economies

In order to establish existence of equilibrium, we construct a sequence of economies.

In these economies, the choice set is not constrained to satisfy the endogenous deliv-

erability restrictions. But violating these restrictions implies an utility penalty. The

penalty is a function of the greatest of the differences between the cheapest bundles

and the bundles that are delivered.

These economies have no relation with reality. They are an artifice to establish

existence of equilibrium.

In the economy E j, if state s occurs, the utility penalty imposed on agent i is:

Zjs
i (xi, p) = j max

t∈Pi(s)
{ps · xsi − ps · xti}.

Since s ∈ Pi(s), the maximum is at least zero, thus penalties are never negative.

Penalties increase along the sequence of economies, and this is actually the only

difference between the economies in the sequence.

In the economy E j, the utility functions of the agents are:

U j
i (xi, p) = Ui(xi)− j

S∑
s=1

µsi max
t∈Pi(s)

{ps · xsi − ps · xti}.

For any j ∈ IN, the utility functions are continuous in prices and bundles, (xi, p) ∈

IRSL+ ×∆SL. The maximum of linear functions is a convex function, and multiplying
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a convex function by a negative constant, −j, yields a concave function. Hence, the

objective function U j
i (xi, p) is concave in the first variable. Observe also that the

utility penalty preserves the property of no satiation. The plan xi + ε1̄ is always

preferred to xi (observe that the utility penalty remains constant). The fact that the

utility functions depend (continuously) on prices does not interfere with existence

of equilibrium.16

Lemma 7.1.

Let E j be an Arrow-Debreu-McKenzie economy such that:

- initial endowments are strictly positive, ei � 0;

- the utility functions are: U j
i (xi, p) = Ui(xi)− j

S∑
s=1

µsi max
t∈Pi(s)

{ps · xsi − ps · xti},

with Ui(xi) satisfying monotonicity, quasi-concavity and no satiation.

Then, there exists an Arrow-Debreu-McKenzie equilibrium.

The sequence of economies has a sequence of equilibria, {(xj, pj)}j∈IN, in the compact

set that contains the total endowments of the economy, [0, eT ]n ×∆SL, where eT =∑
i ei. There exists a subsequence that converges. For the limit, (x∗, p∗), to generate

an essential equilibrium, the following conditions must be satisfied:

(1) Feasibility:
∑
i

x∗i ≤
∑
i

ei = eT ;

(2) Budget restriction: ∀i : p∗ · x∗i ≤ p∗ · ei;

(3) Deliverability: ∀i : x∗i ∈ Ci(p∗);

(4) Optimality: ∀i : xi ∈ Bi(p
∗) ∩ Ci(p∗)⇒ Ui(x

∗
i ) ≥ Ui(xi).

16With price dependent preferences, it is known that equilibrium exists (Arrow and Hahn, 1971).
In the context of economies with uncertain delivery, see our previous paper (2007b).
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7.2 The first three conditions

It is straightforward to show that the first three conditions are satisfied.

Lemma 7.2.

Consider a sequence of economies {E j}j∈IN defined as in Lemma 7.1, and a corre-

sponding sequence of equilibria, {(xj, pj)}j∈IN.

Then, the sequence of equilibria has an accumulation point, (x∗, p∗), that satisfies:

(1) Feasibility:
∑
i

x∗i ≤
∑
i

ei = eT ;

(2) Budget restriction: ∀i : p∗ · x∗i ≤ p∗ · ei;

(3) Deliverability: ∀i : x∗i ∈ Ci(p∗);

The difficult part of the proof is to verify (4) that the limit, (x∗, p∗), maximizes the

utility of the agents in the deliverable budget set, Bi(p
∗) ∩ Ci(p∗). The fact that

Ci is not lower hemicontinuous could prevent (x∗, p∗) from being optimal. There

could be a deliverable consumption plan yi ∈ Bi(p
∗)∩Ci(p∗) that is not even nearly

deliverable in the economies in the sequence. In spite of having a low utility level

for high j (because of the penalty), this bundle could be optimal in the original

economy, and, in this case, (x∗, p∗) would not be an equilibrium.

For this fourth condition to hold, we need extra assumptions. One is the existence

of an agent that prevents prices from being null. We now introduce this agent.

7.3 The ε-agent

The ε-agent has a very small endowment, but is perfectly informed and has a linear

utility function. This agent induces a lower bound in prices. Below a certain price

level, the ε-agent selects a consumption plan that violates feasibility for the whole

economy.
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The ε-agent is perfectly informed about the state of nature:

Pε = {{1}, {2}, ..., {S}}.

Utility is assumed to be a linear function of consumption:

usε(x
s
ε) = vsε · xsε .

Then, the objective function of the ε-agent is:

Uε(xε) =
S∑
s=1

µsεv
s
ε · xsε =

S∑
s=1

µsε

L∑
l=1

vslε x
sl
ε .

The endowments can be arbitrarily small. The ε-agent will use all the endowments

to buy a single contingent good, the one with the highest ratio between marginal

utility and price:
µsεv

sl
ε

psl
(except if there is a tie). The quantity that the ε-agent will

buy is:

xslε =
p · eε
psl

.

A sufficiently small psl will induce xslε > eslT , violating feasibility. The demand of the

ε-agent exceeds the total endowment of this commodity.

In practice, the effect of introducing this agent is to impose a strictly positive lower

bound on equilibrium prices. This implies that limit prices are strictly positive,

p∗ � 0. Otherwise, for sufficiently high j, the demand of the ε-agent for some

contingent good would rise above the total endowments.

7.4 The fourth condition

To prove the fourth condition, and establish existence of equilibrium, we make two

strong assumptions: that there is an ε-agent in the economy; and that agents have

equal preferences in states that they do not distinguish.
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Theorem 1.

Consider an economy with uncertain delivery, E ≡ (ei, ui, µi, Pi)
n
i=1, such that:

- Initial endowments are constant across undistinguished states, ei ∈ IR+ ∩ Pi.

- Preferences over consumption plans are represented by an expected utility

function, Ui(xi) =
∑S

s=1 µ
s
iu

s
i (x

s
i ), with state-contingent utility functions,

usi : IRL+ → IR, assumed to be continuous, weakly monotone and concave.

- Preferences are the same in undistinguished states: t ∈ Pi(s)⇒ uti(·) = usi (·).

- One of the agents is an ε-agent, defined in the previous subsection.

Then, there exists an equilibrium of the economy with uncertain delivery.

The strategy of the proof is to assume (by way of contradiction) that there exists a

x′i in Bi(p
∗)∩Ci(p∗) that is preferred to x∗i , and then find that there exists a similar

xi which belongs to Bi(p
j) ∩ Ci(pj), for large j. This contradicts that (xj, pj) is an

equilibrium of E j, because xi would also be preferred to xji in the economy E j.
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8 Concluding remarks

A model in which all trade is ex ante does not cover the cases in which agents arrive

at the market with different information (Akerlof, 1970), a setting in which trade is

at the interim stage. The contributions of Radner (1979) and Allen (1981) suggest

that, in this setting, prices could reveal all the private information of the agents. In

a model of trade ex ante, prices cannot reveal the information of the agents, because

agents haven’t received their information yet.

When trading ex ante, agents find it useful to trade lists, which are incomplete

contracts (an agent that buys a list has to accept any possible outcome compatible

with the list). We have seen what determines the enforceability of these contracts,

characterized their equilibrium prices, and explained which outcomes should be

expected. Seeing lists as derivative goods, we found a fundamental value prop-

erty of prices: the price of a list is equal to the price of the cheapest consumption

plan in the list. Furthermore, we found that an agent that buys a list should expect

to receive the cheapest consumption plan among those that he cannot reject (that

is, cannot prove in a court of law that the contract was violated).

A restriction of this study is that endowments and preferences were assumed to be

constant across states that the agent does not distinguish (Pi-measurable). While

the assumption of Pi-measurable endowments is used to analyze arbitrage and short

selling, preferences are only assumed to be Pi-measurable for the existence result.
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Appendix 1: The proofs

Proposition 5.1:

Absence of arbitrage opportunities implies that:

∀x̃i, ỹi ∈ IF(IRSL+ ), p̃(x̃i ⊕ ỹi) = p̃(x̃i) + p̃(ỹi).

Proof of Proposition 5.1:

Denote z̃i = x̃i ⊕ ỹi = {zi ∈ IRSL+ : ∃(xi, yi) ∈ (x̃i, ỹi), zi = xi + yi}.

If p̃(z̃i) < p̃(x̃i) + p̃(ỹi), then an agent can buy z̃i and sell both lists x̃i and ỹi.

By construction of z̃i, for each zsi ∈ z̃si , there exist xsi ∈ x̃si and ysi ∈ ỹsi such that

xsi + ysi = zsi . When receiving zsi , the agent has enough resources to deliver xsi and

ysi , in order to keep the contracts for delivery of x̃i and ỹi. In the process, the agent

retained some rent.

If p̃(z̃i) > p̃(x̃i) + p̃(ỹi), then an agent can sell z̃i and buy both lists x̃i and ỹi.

Receiving xsi ∈ x̃si and ysi ∈ ỹsi , the agent delivers zsi = xsi + ysi , keeping the contract

for delivery of z̃i. Again, the agent retains some rent. QED

Proposition 5.2:

Absence of arbitrage opportunities implies that:

x̃ ⊆ ỹ ⇒ p̃(ỹ) ≤ p̃(x̃).

Proof of Proposition 5.2:

If p̃(x̃) < p̃(ỹ), an agent that buys x̃ and sells ỹ retains some rent.

In each state of nature, s, that agent can use what he receives, xs ∈ x̃s, to keep the

contract for delivery of ỹs, because xs ∈ ỹs. QED

Proposition 6.1:

Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Recall

that the following are true:
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(i) [enforceability] x∗i ∈Mi(x̃
∗
i ), ∀i;

(ii) [pricing of lists] p̃∗(x̃∗i ) = p̃∗(Mi(x̃
∗
i )) ≤ p∗ · x∗i , ∀i;

(iii) [no satiation] p̃∗(x̃∗i ) = p∗ · ei, ∀i;

(iv) [feasibility]
∑
i

x∗i ≤
∑
i

ei;

Then, for each i = 1, ..., n:

(1) p̃∗(x̃∗i ) = min
x∈Mi(x̃∗i )

{p∗ · x};

(2) x∗i ∈ arg min
x∈Mi(x̃∗i )

{p∗ · x}.

Proof of Proposition 6.1:

Suppose that one of the lists, x̃∗i , is strictly cheaper than the alternative that is

delivered, x∗i :

∃i : p̃∗(x̃∗i ) < p∗ · x∗i .

Summing across agents, using (ii):
∑
i

p̃∗(x̃∗i ) <
∑
i

p∗ · x∗i .

By no satiation (iii):
∑
i

p̃∗(x̃∗i ) =
∑
i

p∗ · ei.

This implies that the equilibrium allocation is not feasible.∑
i

p∗ · ei <
∑
i

p∗ · x∗i ⇒ ∃(s, l) :
∑
i

esli <
∑
i

xsl∗i .

Contradiction that, together with (ii), proves that: p̃∗(x̃∗i ) = p̃∗(Mi(x̃
∗
i )) = p∗ · x∗i .

Using Corollary 5.1, we finish the proof.
p̃∗(x̃∗i ) ≤ min

z∈Mi(x̃∗i )
{p∗ · z}

p̃∗(x̃∗i ) = p∗ · x∗i ≥ min
z∈Mi(x̃∗i )

{p∗ · z}
⇒ p̃∗(x̃∗i ) = p∗ · x∗i = min

z∈Mi(x̃∗i )
{p∗ · z}.

QED

Proposition 6.2:

Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Then:

(M(x̃∗), x∗, p̃∗) is also an equilibrium of the economy with uncertain delivery.
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Proof of Proposition 6.2:

The proof is trivial.

The price of M(x̃∗) is not higher and the utility is the same. If x̃i solves the problem

of the agent, then Mi(x̃i) also does. QED

Proposition 8.1.

Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Recall that

prices of singleton lists are denoted by p∗. Let q̃(z̃) = min
z∈z̃
{p∗ · z}. Then:

• ∀ỹ s.t. x∗ ⊆ ỹ ⊆M(x̃∗) : (ỹ, x∗, q̃) is also an equilibrium.

• (x∗, q) is an essential equilibrium.

Proof of Proposition 6.3:

By Proposition 6.2, (M(x̃∗), x∗, p̃∗) is an equilibrium of the economy with uncertain

delivery.

If Mi(x̃
∗) solves the problem of agent i under prices p̃∗, then it also solves the problem

of the agent under prices q̃.

This is so because: (i) the price of Mi(x̃
∗) remains the same, q̃(Mi(x̃

∗)) = p̃∗(Mi(x̃
∗));

(ii) prices of other lists do not decrease, ∀z ∈ (IF(IRL+))S : q̃(z̃) ≥ p̃∗(z̃); and (iii)

preferences remain the same, q = p⇒ Ũi(·, q̃) = Ũi(·, p̃∗).

The price and the utility of Mi(x
∗
i ) and Mi(x̃

∗
i ) are the same, thus (M(x∗), x∗, q̃) is

also an equilibrium of the economy with uncertain delivery. QED

Proposition 6.4:

Let p̃ be an essential price system, x̃i ∈ arg max
x̃i∈Bi(p̃)

Ũi(x̃i, p̃), and xi = Yi(x̃i, p).

Then:

xi ∈ arg max
xi∈Bi(p)∩Ci(p)

Ui(xi).

Proof of Proposition 6.4:
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Suppose that there exists yi ∈ Bi(p) ∩ Ci(p) that is preferred to xi:

Ui(yi) > Ui(xi).

Since yi ∈ Ci(p):

Ũi(Mi(yi), p̃) ≥ Ui(yi) > Ui(xi) = Ũi(x̃i, p̃).

Since p̃ is an essential price system:

p̃(x̃i) = p · xi and p̃(Mi(yi)) = p · yi.

If yi ∈ Bi(p), then Mi(yi) ∈ Bi(p̃). Contradiction. QED

Proposition 6.5:

Let p̃ be an essential price system, and xi ∈ arg max
xi∈Bi(p)∩Ci(p)

Ui(xi). Then:

Mi(xi) ∈ arg max
x̃i∈Bi(p̃)

Ũi(x̃i, p̃).

Proof of Proposition 6.5:

We know that Ũi(Mi(xi), p̃) = Ui(xi)

Suppose that there exists ỹi ∈ Bi(p̃) that is preferred to Mi(xi):

Ũi(ỹi, p̃) > Ũi(Mi(xi), p̃)

Let yi = Yi(ỹi, p). Then:

Ui(yi) = Ũi(ỹi, p̃) > Ũi(Mi(xi), p̃) = Ui(xi).

Since p̃ is an essential price system:

ỹi ∈ Bi(p̃)⇒ yi ∈ Bi(p). Contradiction. QED

Lemma 7.1:

Let E j be an Arrow-Debreu-McKenzie economy such that:

- initial endowments are strictly positive, ei � 0;

- the utility functions are: U j
i (xi, p) = Ui(xi)− j

S∑
s=1

µsi max
t∈Pi(s)

{ps · xsi − ps · xti},
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with Ui(xi) satisfying monotonicity, quasi-concavity and no satiation.

Then, there exists an Arrow-Debreu-McKenzie equilibrium.

Proof of Lemma 7.1:

Restrict the choice set to the compact [0, T ]nSL, with T very large.

Consider correspondences, ψi, which assign to given prices, p, bundles, x′i, that

maximize U j
i (xi, p) in the budget set, Bi(p).

ψi : [0, T ]nSL ×∆SL −→ [0, T ]SL;

x′i ∈ ψi(x, p)⇔ x′i = arg max
xi∈Bi(ei,p)

U j
i (xi, p) , ∀i.

Consider also a correspondence, ψp, that assigns to the total demand,
∑

i xi, the

prices, p′, which maximize the value of excess demand:

ψp : [0, T ]nSL ×∆SL −→ ∆SL;

p′ ∈ ψp(x, p)⇔ p′ = argmaxp∈∆SL{p ·
∑

i(xi − ei)}.

The objective functions, U j
i and Vp(x, p) = p ·

∑
i(xi−ei), are continuous, and Bi(p)

is a continuous correspondence. We can, therefore, use Berge’s Maximum Theorem

to show that each of the correspondences ψi and ψp is upper hemicontinuous with

non-empty and compact values. They also have convex values because the objective

functions are quasi-concave. The product correspondence retains these properties

and maps a compact set into itself:

ψ ≡
n∏
i=1

ψi × ψp;

ψ : [0, T ]nSL ×∆SL −→ [0, T ]nSL ×∆SL;

(x′, p′) ∈ ψ(x, p)⇔ x′i ∈ ψi(x, p), ∀i and p′ ∈ ψp(x, p).

Existence of a fixed-point, (x∗, p∗), follows from Kakutani’s Theorem.

It is clear that x∗i solves the problem of agent i.

The fact that p∗ maximizes the value of excess demand implies that:

p′ ·
∑

i(x
∗
i − ei) ≤ p∗ ·

∑
i(x
∗
i − ei) ≤ 0, for all p′ ∈ ∆SL.
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Making p′ = ej = (0, ..., 1, ..., 0), for each j, shows that x∗ is a feasible allocation:∑
i(x
∗
i − ei) ≤ 0.

The usual extension from the compact, [0, T ]nSL, to the full nonnegative orthant,

IRnSL+ , applies. QED

Lemma 7.2:

Consider a sequence of economies {E j}+∞
j=1 defined as in Lemma 7.1, and a corre-

sponding sequence of equilibria, {xj, pj}+∞
j=1.

Then, the sequence of equilibria has an accumulation point, (x∗, p∗), that satisfies:

(1) Feasibility:
∑
i

x∗i ≤
∑
i

ei = eT ;

(2) Budget restriction: ∀i : p∗ · x∗i ≤ p∗ · ei;

(3) Deliverability: ∀i : x∗i ∈ Ci(p∗);

Proof of Lemma 7.2:

Conditions (1) and (2) follow from the fact that (x∗, p∗) is the limit of a sequence of

equilibria.

(1) The set of feasible allocations is closed, and the limit allocation, x∗i , is the limit

of a sequence of feasible allocations, therefore it is feasible.

(2) The limit allocation, x∗i , is the limit of a sequence of allocations in the sequence

of budget sets. Therefore, it also belongs to the limit budget set.

Suppose that x∗i does not satisfy agent i’s budget restriction. Let α = 3‖eT‖ + 1,

and select ε > 0 such that p∗ · x∗i − p∗ · ei = αε. Choosing a sufficiently high j, we

can guarantee that d(x∗, xj) < ε and d(p∗, pj) < ε. With pj = p∗+dp, xj = x∗i +dxi,

and manipulating:

(p∗+dp)·(x∗i +dxi)−(p∗+dp)·ei = p∗ ·x∗i−p∗ ·ei+p∗ ·dxi+dp·x∗i +dp·dxi−dp·ei =

= αε+ (p∗ + dp) · dxi + dp · (x∗i − ei) > αε− ε− ε · 3‖eT‖ = 0.
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This means that xj would not satisfy the budget restriction of E j. Contradiction.

(3) The limit allocation, x∗, satisfies the deliverability restrictions in the limit

economy. To see this, suppose that x∗ violated one of the restrictions by more

than δ > 0, then, for a sufficiently high j, xj would also violate the same restriction

by more than δ. That is, for t ∈ P s
i , ∃j0 ∈ IN:

ps∗ · xs∗ > ps∗ · xt∗ + δ ⇒ psj · xsj > psj · xtj + δ, for all j > j0.

Utility among feasible allocations is bounded by Ui(eT ), so we can consider a j

that is sufficiently high for jδ > Ui(eT ) − Ui(ei). It would follow that U j
i (xj) <

Ui(x
j) − jδ < Ui(x

j) − Ui(eT ) + Ui(ei) < Ui(ei) = U j
i (ei), which is a contradiction.

QED

Theorem 1:

Consider an economy with uncertain delivery, E ≡ (ei, ui, µi, Pi)
n
i=1, such that:

- Initial endowments are constant across undistinguished states, ei ∈ IR+ ∩ Pi.

- Preferences are represented by a vector of Von Neumann-Morgenstern (1944)

utility functions usi : IRL+ → IR, which are assumed to be continuous, weakly

monotone and concave.

- Preferences are the same in undistinguished states: t ∈ Pi(s)⇒ uti(·) = usi (·).

- One of the agents is an ε-agent, defined in the previous subsection.

Then, there exists an equilibrium of the economy with uncertain delivery.

Proof of Theorem 1:

It is not necessary to consider that endowments are strictly positive because the

ε-agent guarantees irreducibility.
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After Lemma 7.1 and Lemma 7.2, all that is left to prove is (4), which states that

the limit of the sequence of equilibria (x∗, p∗) is composed by optimal choices in the

original economy with uncertain delivery, that is:

∀i : xi ∈ Bi(p
∗) ∩ Ci(p∗)⇒ Ui(x

∗
i ) ≥ Ui(xi).

A preliminary remark

Suppose that prices for delivery in s and in t ∈ Pi(s) are parallel: p∗s = ap∗t. The

two deliverability conditions that involve prices p∗s and p∗t yield equalities. p∗s · ysi ≤ p∗s · yti
p∗t · yti ≤ p∗t · ysi

⇒

 ap∗t · ysi ≤ ap∗t · yti
p∗t · yti ≤ p∗t · ysi

⇒

 p∗s · ysi = p∗s · yti
p∗t · yti = p∗t · ysi

The two consumption bundles, ysi and yti , must cost the same in both states. The

utility functions usi and uti are also equal, because s and t belong to the same

element of the agent’s partition of information. If usi (y
s
i ) > usi (y

t
i), then the agent

would be better off selecting ysi for consumption in both states. Thus, we must

have usi (y
s
i ) = usi (y

t
i). Since the utility functions are concave, the agent is not worse

off consuming the average bundle in both states. Notice that if the original vector

satisfies the deliverability conditions, then this average vector also does. Define the

consumption vector x′i by modifying yi, considering this average bundle whenever

there are two parallel prices. Therefore, we will have x′si = x′ti whenever p∗s = ap∗t.

Main argument of the proof

We assume, by way of contradiction, that there exists a x′′i ∈ B(p∗, ei)∩Ci(p∗) such

that Ui(x
′′
i ) > Ui(x

∗
i ), with x′′si = x′′ti whenever p∗s = ap∗t.

The neighbor x′i = (1− δ)x′′i is still preferred to x∗i (for small δ > 0), also belongs to

Ci(p
∗), and belongs to the interior of the budget sets in E and E j (for high j).

Ui(x
′
i) > Ui(x

∗
i ); p∗ · x′i < p∗ · ei; pj · x′i < pj · ei.

Since the utility functions are continuous, there exists a radius ε > 0 such that the

neighbors of x′i are still preferred to x∗i and, therefore, to xji , for high j (according
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to Ui, which does not include the possible utility penalty):

xi ∈ B(x′i, ε)⇒ Ui(xi) > Ui(x
j
i ), for sufficiently high j.

We are assuming that the bundle x′i satisfies the deliverability conditions for the

equilibrium prices p∗. Consider, without loss of generality, the following element of

the agent’s information partition: Pi(s) = {1, ..., s}. It should be clear that this

reasoning extends to all the elements of Pi. The conditions for delivery in these

states are written below, with all kij ≥ 0.

p∗1 · x′1i ≤ p∗1 · x′2i ;

...

p∗1 · x′1i ≤ p∗1 · x′si ;

p∗2 · x′2i ≤ p∗2 · x′1i ;

...

p∗2 · x′2i ≤ p∗2 · x′si ;

...

...

p∗s · x′si ≤ p∗s · x′1i ;

...

p∗s · x′si ≤ p∗s · x′s−1
i .

⇔



p∗1 · x′2i − p∗1 · x′1i = k12 ≥ 0;

...

p∗1 · x′si − p∗1 · x′1i = k1s ≥ 0;

p∗2 · x′1i − p∗2 · x′2i = k21 ≥ 0;

...

p∗2 · x′si − p∗2 · x′2i = k2s ≥ 0;

...

...

p∗s · x′1i − p∗s · x′si = ks1 ≥ 0;

...

p∗s · x′s−1
i − p∗s · x′si = ks,s−1 ≥ 0.

Keep in mind that we seek xi, a neighbor of x′i that belongs to Ci(p
j) (which con-

tradicts the fact that the allocation xj is an equilibrium of E j). This would prove

(4) by contradiction.

Let d(xi, x
′
i) < ε. We already know that U(xi) > U(x∗i ). Consider a sufficiently high

j for Ui(xi) > Ui(x
j
i ) and also for d(pj, p∗) < ε.

Case 1: All inequalities are such that kst > 0.

Denote dxi = xi − x′i and dpj = pj − p∗. Pick the lowest kst among those that are

strictly positive and denote it by kmin. Manipulating the condition which guarantees

that in state s, the bundle x′si is not more expensive than x′ti :
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p∗s · x′ti − p∗s · x′si = (pjs − dpjs) · (xti − dxti)− (pjs − dpjs) · (xsi − dxsi ) = kst ⇔

⇔ pjs ·xti− pjs ·xsi = kst + pjs · dxti + dps · (xti− dxti)− pjs · dxsi − dps · (xsi − dxsi )⇔

⇔ pjs · xti − pjs · xsi > kst − ε− ε(‖eT‖+ ε)− ε− ε(‖eT‖+ ε)⇔

⇔ pjs · xti − pjs · xsi > kst − 2ε− 2ε(‖eT‖+ ε) = kst − 2ε(‖eT‖+ 1 + ε).

Let ε2 = 2ε(‖eT‖+ 1 + ε) > 0. We have:

pjs · xti − pjs · xsi > kst − ε2.

Choosing an ε > 0 small enough to make ε2 < kmin guarantees that the strict

inequalities for x′i and p∗ remain strict for any xi ∈ B(x′i, ε) and pj (with j large

enough).

Then, U j
i (xi) > U j

i (xji ). We have a contradiction. The consumption bundle in the

equilibrium sequence, xji , is not a maximizer of U j
i .

Case 2: For every t ∈ Pi(s), prices p∗s and p∗t are not parallel.

The difference relative to Case 1 lies in checking that the inequalities which are not

strict at (x′i, p
∗) are still satisfied at (xi, p

j) (with j large enough). The inequalities

that are not strict are those for which kst = 0.

Let γst =

(
1− p∗s · p∗t

‖p∗s‖‖p∗t‖

)
‖p∗s‖. Let γmin be the lowest of all strictly positive γst,

with t ∈ Pi(s). Since we have a lower bound on equilibrium prices, γst is only zero

when prices p∗s and p∗t are parallel (we are excluding this case, for now).

Keep xi sufficiently close to x′i in order to preserve the strict inequalities (pick ε > 0

such that ε2 < kmin), and select displacements parallel to prices: dxsi = − ε
2
p∗s

‖p∗s‖ .

Let ε3 = εγmin

8‖eT ‖
, and consider a j that is high enough for: d(pj, p∗) < min{ε3, ε}.

Consider an inequality that is not strict, for example: p∗a · x′bi = p∗a · x′ai , implying

that kab = 0. Let’s verify that this generic deliverability condition still holds in E j.

pja · xbi − pja · xai = (p∗a + dpja) · (x′bi + dxbi)− (p∗a + dpja) · (x′ai + dxai ) =
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= p∗a · (x′bi + dxbi) + dpja · (x′bi + dxbi)− p∗a · (x′ai + dxai )− dpja · (x′ai + dxai ) =

= p∗a · dxbi + dpja · (x′bi + dxbi)− p∗a · dxai − dpja · (x′ai + dxai ) >

> p∗a · dxbi − ε3(‖eT‖+ ε)− p∗a · dxai − ε3(‖eT‖+ ε) =

= p∗a · dxbi − p∗a · dxai − 2ε3(‖eT‖+ ε) >

> −p∗a · ε
2
p∗b

‖p∗b‖ + p∗a · ε
2
p∗a

‖p∗a‖ − 4ε3‖eT‖ =

= − ε
2

p∗a·p∗b

‖p∗a‖‖p∗b‖‖p
∗a‖+ ε

2
p∗a·p∗a

‖p∗a‖‖p∗a‖‖p
∗a‖ − 4ε3‖eT‖ =

= ε
2

p∗a·p∗a

‖p∗a‖‖p∗a‖‖p
∗a‖ − ε

2
p∗a·p∗b

‖p∗a‖‖p∗b‖‖p
∗a‖ − ε

2
γmin =

= ε
2
(1− p∗a·p∗b

‖p∗a‖‖p∗b‖)‖p
∗a‖ − ε

2
γmin ≥ 0

In sum, this displacement dxi implies that:

pja · xbi − pja · xai > 0.

The condition is still verified, then, and thus U j
i (xi) > U j

i (xji ). Contradiction.

Case 3: Prices p∗s and p∗t are parallel.

The same displacement, dxsi = − ε
2
p∗s

‖p∗s‖ , is good for the case in which prices p∗a and

p∗b are parallel. In this case: x′ai = x′bi and also dxai = dxbi . Hence, xai = xbi and the

conditions remain satisfied in equality.

All deliverability conditions are satisfied, therefore: U j
i (xi) = Ui(xi) > Ui(x

j
i ) ≥

U j
i (xji ). The consumption bundle in the equilibrium sequence, xji , does not maximize

U j
i , because xi is preferred. This contradiction proves (4). QED
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Appendix 2: Example of non-existence of equilibrium

Consider an economy in which two agents trade a single good under uncertainty.

There are three states of nature, and their future endowments depend on the state

of nature that occurs:

eA = (100, 100, 1) and eB = (1, 100, 100).

Agents only observe their endowments.

PA = {{1, 2}; {3}} and PB = {{1}; {2, 3}}.

Consumption must be positive, and a significant level of risk aversion induces agents

to trade ex ante.

Ui : IRSL+ → IR;

Ui(xi) =
S∑
s=1

µsi
√
xsi .

For simplicity, assume that the different states occur with objective and publicly

known probabilities:

µ = (µ1, µ2, µ3) = (0.45, 0.1, 0.45).

Prices in states 1 and 3 must be strictly positive, or else the demands of agent B

and A would be infinite for the corresponding contingent goods.

With strictly positive prices for all the contingent goods, if agents selected different

consumption levels in states that they did not distinguish, then, they would end up

receiving the cheapest of the alternatives, which would be the lowest consumption

level. In this case, we must have:

xA = (x12
A , x

12
A , x

3
A) and xB = (x1

B, x
23
B , x

23
B ).

Since agents are at the frontier of their budget sets: (p1 + p2)x12
A + p3x3

A = 100(p1 + p2) + p3;

p1x1
B + (p2 + p3)x23

B = p1 + 100(p2 + p3).
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Adding the two:

p1(x12
A + x1

B) + p2(x12
A + x23

B ) + p3(x3
A + x23

B ) = 101p1 + 200p2 + 101p3.

For this to be an equilibrium, the allocation must be feasible:
x12
A + x1

B ≤ 101;

x12
A + x23

B ≤ 200;

x3
A + x23

B ≤ 101.

With strictly positive prices, the conditions are verified in equality. This implies

that the allocation is of the form: xA = (x12
A , x

12
A , x

3
A) = (x3

A + 99, x3
A + 99, x3

A);

xB = (x1
B, x

23
B , x

23
B ) = (x1

B, x
1
B + 99, x1

B + 99).

The only individually rational allocation of this form corresponds to the initial

endowments. There is no trade. But are agents maximizing their utility levels? xA = (100, 100, 1);

xB = (1, 100, 100).
⇒

 U(xA) = 0.45 ∗ 10 + 0.1 ∗ 10 + 0.45 ∗ 1 = 5.95;

U(xB) = 0.45 ∗ 1 + 0.1 ∗ 10 + 0.45 ∗ 10 = 5.95.

Suppose that p1 = p3. Agent 1 can trade consumption in s1 for consumption in

s3. But consuming less in s1 implies that delivery in s2 will also be of this lower

quantity. In any case, the agent can select:

x′1 = (x′12
1 , x′12

1 , x′31 ) = (81, 81, 20).

The corresponding utility level is:

U(x′1) = 0.45 ∗ 9 + 0.1 ∗ 9 + 0.45 ∗ 4.47 = 6.96.

In the case with asymmetric prices (p1 6= p3), the same trade is even more favor-

able for one of the agents. We reached a contradiction, implying that there is no

equilibrium with strictly positive prices.

With p2 = 0, an alternative bundle can be big enough to violate feasibility and

still be deliverable. The deliverability restriction is not relevant because it is of the

form 0 · x2 ≤ 0 · xs. Agents can choose a consumption level for state 2 that is big
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enough to violate feasibility and still desire to increase it. There cannot be a rational

expectations equilibrium with p2 = 0.
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Appendix 3: The deliverability correspondence

The set of bundles that satisfy the deliverability restrictions depends on the pre-

vailing prices. Consider the correspondence from prices to the set of deliverable

bundles:

Ci : ∆SL −→ IRSL+ ;

Ci(p) =

{
x ∈ IRSL+ : ∀s ∈ Ω, ps · xs = min

t∈Pi(s)
{ps · xt}

}
.

If the correspondence Bi(p) ∩ Ci(p) were continuous, we could apply Berge’s

maximum theorem and Kakutani’s fixed point theorem to establish existence of

equilibrium in economies with uncertain delivery.

In finite dimensional Euclidean spaces, upper hemicontinuity of Ci at p0 means that,

given an arbitrary open set, V , containing Ci(p0), there exists δ > 0 such that for

all p ∈ B(p0, δ), we have Ci(p) ⊆ V .

The correspondence is closed-valued since all the restrictions are inequalities which

are not strict. With a compact range space, that is, in a bounded economy (for ex-

ample, by the total initial endowments in the economy) a correspondence is upper

hemicontinuous if and only if it has closed values. Therefore, Ci is upper hemicon-

tinuous.

In finite dimensional Euclidean spaces, lower hemicontinuity of Ci at p0 means that

given an arbitrary open set, V , intersecting Ci(p0), there exists δ > 0 such that for

all p ∈ B(p0, δ), the image Ci(p) also intersects V .

The correspondence under study, Ci, is not lower hemicontinuous. Lower hemicon-

tinuity fails when prices in are null (ps = 0) or collinear (ps = apt).

When prices are null, the deliverability restrictions disappear. It is always true that

0 · xs ≤ 0 · xt. But with a small perturbation, the restrictions appear. This is why

l.h.c. fails.

When prices are collinear, the failure of l.h.c. is more subtle.
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Consider an economy with two goods, A and B, and two states of nature, s and

t. Let p0 = (ps0, p
t
0) = (pAs0 , pBs0 ; pAt0 , p

Bt
0 ) = (1

4
, 1

4
; 1

4
, 1

4
). The bundle x0 = (1, 0; 0, 1)

belongs to the deliverable set, since:

ps0 · xs0 ≤ ps0 · xt0 ⇔ 1
4
≤ 1

4
, and

pt0 · xt0 ≤ pt0 · xs0 ⇔ 1
4
≤ 1

4
.

Delivering (1, 0) in state s and (0, 1) in state t does not violate deliverability because

both bundles have the same price in both states.

A small perturbation in prices can make (0, 1) cheaper in state s and (1, 0) cheaper

in state t. Consider an open ball around x0 with radius 0 < ε < 1
10

. After a

perturbation in prices to p = (1
4

+ δ, 1
4
− δ, 1

4
− δ, 1

4
+ δ), this ball does not intersect

the deliverable set.

Suppose that there existed a vector dx = (εAs, εBs, εAt, εBt) such that x = (1 +

εAs, εBs; εAt, 1 + εBt) is inside that open ball and belongs to the deliverable set:

(1) (1
4

+ δ, 1
4
− δ) · (1 + εAs, εBs) ≤ (1

4
+ δ, 1

4
− δ) · (εAt, 1 + εBt)⇔

⇔ (1
4

+ δ)(1 + εAs) + (1
4
− δ)εBs ≤ (1

4
+ δ)εAt + (1

4
− δ, )(1 + εBt)⇔

⇔ 1
4

+ 1
4
εAs + δ + δεAs + 1

4
εBs − δεBs ≤ 1

4
εAt + δεAt + 1

4
+ 1

4
εBt − δ − δεBt ⇔

⇔ 1
4
(εAs + εBs − εAt − εBt) + δ(εAs − εBs − εAt + εBt) ≤ −2δ;

(2) (1
4
− δ, 1

4
+ δ) · (εAt, 1 + εBt) ≤ (1

4
− δ, 1

4
+ δ) · (1 + εAs, εBs)⇔

⇔ (1
4
− δ)εAt + (1

4
+ δ)(1 + εBt) ≤ (1

4
− δ)(1 + εAs + (1

4
+ δ)εBs)⇔

⇔ 1
4
(εAt + 1 + εBt − 1− εAs − εBs) + δ(−εAt + 1 + 1 + εBt + εAs − εBs ≤ 0⇔

⇔ 1
4
(εAt + εBt − εAs − εBs) + δ(−εAt + εBt + εAs − εBs) ≤ −2δ.

Adding the two inequalities, we obtain:

(1 + 2) δ(εAs − εBs − εAt + εBt) ≤ −2δ ⇔ εAs − εBs − εAt + εBt ≤ −2.

Which is impossible, because εAs − εBs − εAt + εBt ≥ −4ε > − 4
10

.
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