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Abstract

In many auctions, a good match between the bidder and seller raises the value of

the contract for both parties. However, information about the quality of the match

may be incomplete. We consider the case in which each bidder observes the quality

of his match with the seller but the seller does not observe the quality of his matches

with the bidders. Our objective is to determine whether it is in the seller’s interest

to observe the matches before selecting the winner. It is shown that the seller’s value

for the information may be negative: the seller’s knowledge of the matches generates

an asymmetry across bidders which depresses bids. The more matching matters, the

greater the penalty associated with observing the matches.
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1 Introduction

In a wide range of commercial arrangements, compatibility between the contracting parties

is a primary determinant of contract value. A good match between an author and his editor

may generate a better book. An athletic team is more likely to win games if the players

have compatible skills. An assistant professor is prone to flourish in a department with an

active research group in his field of interest, and a husband and wife are more likely to enjoy

a successful marriage if their temperaments are congruent.

Given the importance of a good match, it is not surprising that we observe sellers using

matching as a factor in their choice of buyer. During the 2002 auction for the rights to his

second novel, Charles Frazier, author of Cold Mountain, asserted that “money was not the

only consideration and that he was keen to choose the right editor to help him shape his

book from the beginning” (Gumbel, 2002). Venezuela’s state-owned oil company, Petróleos

de Venezuela (PDVSA), accounted for technological compatibility when it selected private

partners for the development of marginal fields in the early 1990s (Chalot, 1996).

In this paper, we consider a setting in which a seller auctions off a contract, taking both

price and match quality into account. Each bidder is assumed to be better informed about

the quality of his match with the seller than the seller is. We then introduce an opportunity

for the seller to observe the quality of the matches before selecting the winner and ask,

“What is the seller’s value for this information?” We find that, in many reasonable cases,

the value is negative. Moreover, in these cases, the more the seller cares about matching,

the stronger his incentive not to observe the matches.
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We develop a stylized model in which a single seller seeks to contract with one of several

bidders. Each pairing of seller and bidder is characterized by a match. It is assumed that

match quality is the sole determinant of contract value. The higher the quality of the

match, the more each party values the contract. A fitting example is that of the author and

editor: a good match between the two not only makes the working process more pleasant but

also results in a superior manuscript which raises the revenues to be shared. Note that the

relationship between match quality and contract value induces a positive correlation between

the valuations of the bidder and seller.1

This paper focuses on the case in which the bidder is better informed about his compati-

bility with the seller than the seller is.2 In particular, it is assumed that each bidder observes

his match with the seller but that the seller does not observe his matches with the bidders.

To capture the idea that the seller takes both price and match quality into account,

we assume the seller administers a first-score auction. In a first-score auction, each bidder

submits a price offer. After observing these offers, the seller updates his beliefs about the

quality of his match with each of the bidders and identifies the bidder whose combination

of price and expected match is most attractive. If contracting with that bidder exceeds the

reserve score announced by the seller at the outset, the contract is awarded to that bidder.

1In this sense, our model is reminiscent of the literatures on affiliated values (e.g., Milgrom and Weber,
1982a) and interdependent valuations (e.g., Jehiel and Moldovanu, 2001). But while these literatures are
primarily concerned with linking the bidder’s valuations, our paper focuses on linking the valuations of the
bidder and seller.

2The case in which the seller is better informed than the bidder is addressed in Lamping (2005) and is
the subject of ongoing research.
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We find this mechanism to be representative of the way contracts are generally allocated:

review the bids or proposals submitted and simply select the one you like best.3

Since match quality factors into the allocation decision and the seller is uninformed

about the quality of the matches, well matched bidders have an incentive to transmit their

information. And since contract value increases with match quality, a well matched bidder

can credibly signal his status by raising his bid beyond the point at which it is profitable

for poorly matched bidders to mimic him.4 With higher bids signaling better matches, the

contract goes to the bidder submitting the highest bid.

Equilibrium bidding behavior changes dramatically once we introduce an opportunity for

the seller to observe the matches before selecting the winner. When the seller observes the

matches, the incentive to signal no longer exists. Moreover, the seller’s knowledge introduces

a bias in favor of well matched bidders, which causes them to compete less vigorously on

price. In particular, the bias permits a well matched bidder to bid less than a poorly matched

counterpart and still win the auction. Since the best-matched bidder still wins the contract

3Che (1993), Branco (1997), Zheng (2000), and Asker and Cantillon (2006) analyze a similar auction
format in which the winning bidder is selected on the basis of price and quality. But while the bidders
in these papers bid directly on both factors, the bidders in our paper bid only on price, leaving the seller
to estimate the quality of the matches on his own. The mechanism in our paper is more closely linked to
the biased procurement problem studied by Rezende (2006), in which each bidder submits a price offer and
the seller selects the winner on the basis of both price and some pre-existing bias. But while the bias in
Rezende’s paper is determined by the seller’s private information, the bias in our paper is determined by the
bidders’ private information.

4Bikhchandani and Huang (1989), Katzman and Rhodes-Kropf (2002), Das Varma (2003), Goeree (2003),
Haile (2003), and Molnár and Virág (2006) examine signaling in auctions, but these paper are concerned
with bidders signaling their private information to other bidders so as to affect future strategic interactions.
In contrast, the signaling behavior in our paper is motivated by the structure of the auction game itself:
bidders are interested in signaling their private information to the seller in order to influence the seller’s
choice of winner. In this sense, our paper is more similar to Avery (1998), which addresses the use of jump
bids to signal a high valuation and encourage competing bidders to withdraw.
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but at a lower price, the seller is better off not observing the matches. That is, the seller’s

value for information about the matches is negative.

In addition, we note that the greater the effect of matching on the seller’s utility, the

greater the seller’s bias in favor of well matched bidders and the greater the margin by which

a well matched bidder can reduce his bid and still win.5 Therefore, the more the seller cares

about matching, the stronger his incentive not to observe the matches.

The remainder of this paper is organized as follows. Section 2 lays out the model. In

Section 3, we solve for the equilibria of the first-score auction when the seller cannot observe

the matches. In Section 4, we introduce an opportunity for the seller to observe the matches

before selecting the winner and solve for the (unique) equilibrium of this modified first-score

auction game. Section 5 compares the two sets of equilibria to assess the seller’s value for

information about the matches. Concluding remarks are offered in Section 6. All proofs are

relegated to the Appendices.

2 The Model

A seller offers a contract to n risk-neutral bidders (n ≥ 2). Every potential pairing of seller

and bidder has an associated match. We denote the match between the seller and bidder i by

5There is a vast literature on the negative effect of asymmetries on price competition, the majority of
which examines asymmetries in the distributions from which valuations are drawn. See Milgrom (1981),
Myerson (1981), Milgrom and Weber (1982b), Graham and Marshall (1987), McAfee and McMillan (1987),
Bulow and Roberts (1989), McAfee and McMillan (1989), Mailath and Zemsky (1991), McAfee and McMillan
(1992), Marshall, Meurer, Richard, and Stromquist (1994), Tschantz, Crooke, and Froeb (1997), Waehrer
(1999), Dalkir, Logan, and Mason (2000), Kaplan and Zamir (2002), Waehrer and Perry (2003), Cantillon
(forthcoming), and Bulow and Levin (2006). The nature of the asymmetry in our paper is more closely
related to that in Che (1993) and Rezende (2006), where the source of asymmetry is the seller’s use of
factors other than price to determine the auction winner.
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θi ∈ [ θ, θ ] ⊂ R, where θi > θj indicates that bidder i has a better match than bidder j does.

We assume the θi’s are independently and identically distributed according to a commonly

known cumulative distribution function (cdf) F with F (θ) = 0 and F
(
θ
)

= 1.

Assumption 1 F has positive density f at every θ ∈ [ θ, θ ].

Assumption 2 (regularity condition) F satisfies

d

dθi

(
f(θi)

1− F (θi)

)
≥ 0

for all θi ∈ [ θ, θ ].

Bidder i’s utility from contracting with the seller is

θi − bi,

where θi is bidder i’s value for the contract and bi ∈ R is the bid submitted by bidder i.

Bidder i’s utility is zero if he does not win the contract.

The seller derives utility from both the bid payment and his match with the winning

bidder. We assume the seller’s utility from contracting with bidder i is

V (θi) + bi,

where V (θi) represents the seller’s value for his match with bidder i. The following assump-

tion captures the notion that a good match raises the value of the contract for both the seller

and the bidder:

Assumption 3 V : [ θ, θ ] → R is twice continuously differentiable with V ′(θi) > 0 and

V ′′(θi) ≤ 0 for all θi ∈ [ θ, θ ].
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The seller’s utility is zero if he does not contract with any bidder.6

The following assumption is imposed so as not to rule out the possibility of a mutually

beneficial trade:

Assumption 4 (participation condition) V
(
θ
)

+ θ is positive.

We assume bidder i is better informed about his match than the seller is. Bidder i

observes his match θi but not the matches of his opponents.7 The seller does not observe the

matches directly, and therefore, his beliefs about the matches are determined by the prior F

and the observed bids.

The seller and bidders play the following auction game, the structure of which is assumed

to be common knowledge:

1. Each bidder submits a price offer independently and simultaneously.

2. The seller contracts with the bidder whose combination of price and expected match

maximizes the seller’s expected utility provided that the combined value is not less

than the reserve score s∗ ∈ R. That is, bidder i wins the contract if

E [V (θi) | bi] + bi ≥ s∗

and

E [V (θi) | bi] + bi > E [V (θj) | bj] + bj ∀j 6= i,

6When V (θi) = vθi, where v is a positive constant, our model can be mapped to the interdependent
valuations framework outlined in Section 5 of Jehiel and Moldovanu (2001): simply let the agents be indexed
by i ∈ {0, 1, 2, ..., n}, where agent i is the seller if i = 0 and bidder i otherwise; let pi

k be the probability the
contract is awarded to agent i in alternative k; and let s0 = 0, si = θi, ai

k0 = vpi
k, ai

ki = pi
k, and aj

ki = 0 for
all j 6= i.

7Bidder i’s beliefs about θj , j 6= i, are determined by the prior, F .
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where bi denotes the price offer (bid) submitted by bidder i. Ties are resolved by a

random draw with equal probability.

3. If the contract is allocated to bidder i, θi is revealed. The seller’s utility is V (θi) + bi,

bidder i’s utility is θi − bi, and all other bidders get zero utility. If the contract is not

allocated, every agent gets zero utility.

We call this game a first-score auction, where the term “score” refers to the combination

of price and expected match. For instance, bidder i’s score is given by E [V (θi) | bi] + bi. As

indicated in the timeline above, the contract is allocated to the bidder with the highest score

provided that the score is not less than s∗. The winning bidder pays the price he offered bi,

thereby delivering his true score V (θi) + bi.

3 Equilibria with an Uninformed Seller

Our objective in this section is to characterize the equilibria of the first-score auction game.

In order to define the equilibrium concept, we introduce some additional notation.

Let Bi : R × [ θ, θ ] → [0, 1] represent bidder i’s equilibrium bidding strategy (possibly a

mixed strategy), where Bi(b | θi) is the cdf from which bidder i draws a bid of b when his type

is θi. Let B represent the profile of bidding strategies (B1, B2, . . . , Bn), and let B−i represent

the vector of competing strategies (B1, . . . , Bi−1, Bi+1, . . . , Bn). Finally, let βi(· | θi) be the

density function associated with Bi(· | θi).

Recall that the seller does not observe the matches directly and as such, his beliefs about

the matches are determined by the prior F and the observed bids. We define the seller’s

8



posterior beliefs by Mi : [ θ, θ ] × R → [0, 1], where Mi(θ | bi) is the probability the seller

assigns to bidder i’s type being in [θ, θ] when bidder i offers a price of bi. Let M represent

the profile of posterior beliefs (M1, M2, . . . , Mn).

Given the seller’s posterior beliefs M, bidder i’s score is given by

si(bi) ≡
∫ θ

θ

V (x) dMi(x | bi) + bi

when he submits a bid of bi. Bidder i wins the contract if his score is the highest among

the n bidders (si(bi) = max{s1(b1), . . . , sn(bn)}) and is at least as great as the reserve score

(si(bi) ≥ s∗). Ties are resolved by a random draw with equal probability.

Let Pi(bi | B−i, M) represent bidder i’s probability of winning the contract when bidder

i bids bi, every other bidder follows the bidding strategy prescribed by B−i, and the seller’s

posterior beliefs are given by M. Bidder i’s expected utility can then be written as

Ui(bi | θi, B−i, M) ≡ (θi − bi) Pi(bi | B−i, M) .

We are now ready to define the equilibrium concept.

Definition 1 A perfect Bayesian equilibrium of the first-score auction game with an un-

informed seller is a pair of the bidders’ bidding strategies and the seller’s posterior beliefs

(B∗, M∗) such that the following two conditions hold:

(1) For any b∗i in the support of β∗i ,

Ui(b
∗
i | θi, B

∗
−i, M

∗) ≥ Ui(bi | θi, B
∗
−i, M

∗)

for all bi ∈ R, θi ∈ [ θ, θ ], and i ∈ {1, . . . , n}.
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(2) For any i ∈ {1, . . . , n} and bi ∈ R,

M∗
i (θ | bi) =

∫ θ

θ
β∗i (x | bi)f(x) dx

∫ θ

θ
β∗i (x | bi)f(x) dx

if β∗i (x | bi) > 0 for some x ∈ [ θ, θ ] and M∗
i (θ | bi) is any cdf on [ θ, θ ] if β∗i (x | bi) = 0

for all x ∈ [ θ, θ ].

Condition (1) stipulates that bidder i can do no better than to follow his equilibrium

strategy B∗i whenever his competitors follow their equilibrium strategies B∗−i and the seller

updates his beliefs according to M∗. Condition (2) requires that M∗ satisfy Bayes’ rule on

the equilibrium path.

Given the lack of restrictions on off-equilibrium-path beliefs, it is not surprising that

there exist multiple equilibria. For the remainder of the section, we restrict our attention

to equilibria that are symmetric and separating. We do so for two reasons: these equilibria

hold up under standard equilibrium refinements, and we find them to be the most intuitive.

Lemma 1 In any symmetric separating equilibrium of the first-score auction game, there

exists a θ∗ ∈ [ θ, θ ] such that

(1) any bidder with type θ ∈ (θ∗, θ ] bids according to the function

b(θ) = θ −
∫ θ

θ∗
F n−1(x) dx

F n−1(θ)

and wins with positive probability.

(2) any bidder with type θ ∈ [ θ, θ∗) wins with zero probability.
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Proof See Appendix A.

Lemma 1 establishes that in any symmetric separating equilibria, there exists a threshold

θ∗ such that any bidder whose type exceeds θ∗ has a positive probability of winning and any

bidder whose type is below θ∗ has zero probability of winning. The lemma also establishes

that any bidder whose type exceeds θ∗ plays the pure strategy b(θ).

Note that b(θ) is increasing on (θ∗, θ ]. Since the seller does not directly observe the

matches, each bidder would like to project that the quality of his match is as high as pos-

sible, thereby raising his probability of winning the contract. However, since contract value

increases with the quality of the match, a truly well matched bidder can afford to bid more

than a poorly matched bidder. As such, a higher bid signals a better match, and the contract

goes to the bidder submitting the highest bid.

The following proposition completes our characterization of the symmetric separating

equilibria of the first-score auction game.

Proposition 1 A symmetric separating equilibrium exists for every θ∗ ∈ [ θL
∗ , θH

∗ ], where

θL
∗ =





θ if s∗ < V (θ) + θ
{
x ∈ [ θ, θ ] : V (x) + x = s∗

}
if s∗ ∈

[
V (θ) + θ, V (θ) + θ

]

θ if s∗ > V (θ) + θ

and

θH
∗ = min

{
θL
∗ +

[
V (θL

∗ )− V (θ)
]
, θ

}
.

Moreover, there are no symmetric separating equilibria such that θ∗ /∈ [ θL
∗ , θH

∗ ].

Proof See Appendix B.
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In a standard first-price auction, the choice of reserve price uniquely identifies the thresh-

old type θ∗ (Riley and Samuelson, 1981; Maskin and Riley, 1986), but in a first-score auction,

multiple θ∗’s can be sustained due to the lack of restrictions on off-equilibrium-path beliefs.

θ∗ < θL
∗ cannot be supported because bidders with types in (θ∗, θL

∗ ) are not willing to bid

high enough to meet the reserve score s∗. θ∗ > θH
∗ cannot be supported because bidders with

types in (θH
∗ , θ∗) are willing to bid enough to meet s∗ – even if the seller believes them to be

the lowest possible type θ.

In the next section, we consider the value of information about the matches and ask

whether the seller can do better if he observes the matches in advance.

4 Equilibria with an Informed Seller

Suppose the seller could observe the vector of matches (θ1, . . . , θn) after selecting the mech-

anism (a first-price auction with reserve score s∗) but before selecting the winner and that

it would be commonly known if he chose to do so. For instance, the novelist Frazier could

meet with the editors at the various publishing houses before receiving bids or the Ph.D. job

candidate could ask his prospective colleagues about their research programs before receiving

offers. Our objective in this section is to solve for the (unique) equilibrium of the first-score

auction given that the seller elects to observe the matches.

Let Bi, B, B−i, and βi be defined as in Section 3. Since the seller observes (θ1, . . . , θn)

before selecting the winner, there is no need to specify his posterior beliefs. Bidder i’s score

is simply given by

si(bi | θi) ≡ V (θi) + bi .
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As before, bidder i wins the contract if his score is the highest among the n bidders and

is at least as great as the reserve score s∗ with ties resolved by a random draw with equal

probability. Let Pi(bi | θi, B−i) represent bidder i’s probability of winning when he has type

θi, bids bi, and faces competing bidders who follow the bidding strategies prescribed by B−i.

Bidder i’s expected utility can then be written as

Ui(bi | θi, B−i) ≡ (θi − bi) Pi(bi | θi, B−i) .

Definition 2 A Nash equilibrium of the first-score auction game with an informed seller is

a strategy profile B∗ such that for any b∗i in the support of β∗i ,

Ui(b
∗
i | θi, B

∗
−i) ≥ Ui(bi | θi, B

∗
−i)

for all bi ∈ R, θi ∈ [ θ, θ ], and i ∈ {1, . . . , n}.

We proceed by reformulating the problem in terms of bidder i’s score rather than bidder

i’s bid. This reformulation permits us to directly apply the standard independent private

values results.

Let si ≡ V (θi) + bi denote the score offered by bidder i. Since both bidder and seller

observe θi, the choice of bid unambiguously determines the score. Let Σi : R × [ θ, θ ] →

[0, 1] represent bidder i’s equilibrium score strategy (possibly a mixed strategy), where

Σi(s | θi) is the cdf from which bidder i draws a score of s when his type is θi. Let Σ

be the profile of score strategies (Σ1, . . . , Σn), Σ−i be the vector of competing strategies

(Σ1, . . . , Σi−1, Σi+1, . . . , Σn), and σi(· | θi) be the density function associated with Σi(· | θi).

Finally, let Qi(si | Σ−i) represent bidder i’s probability of winning when he offers a score of si
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and his competitors follow the strategies prescribed by Σ−i. Note that Qi(s | Σ−i) is simply

the probability that s is the highest score offered if s ≥ s∗ and zero otherwise.

Using this notation, bidder i’s expected utility can be written as follows:

Ûi(si | θi, Σ−i) ≡ [V (θi) + θi − si] Qi(si | Σ−i) .

A Nash equilibrium is then a strategy profile Σ∗ such that for any s∗i in the support of σ∗i ,

Ûi(s
∗
i | θi, Σ

∗
−i) ≥ Ûi(si | θi, Σ

∗
−i) for all si ∈ R, θi ∈ [ θ, θ ], and i ∈ {1, . . . , n}. By interpreting

V (θi) + θi as the bidder’s type, si as the bidder’s bid, and s∗ as the seller’s reserve price,

we can map this formulation into the standard independent private values framework.8 We

can then invoke Maskin and Riley (1986) and Riley and Samuelson (1981) to obtain the

following result:

Lemma 2 Let θL
∗ be defined as in Proposition 1. There exists a unique equilibrium in which

(1) any bidder with type θ ∈ (θL
∗ , θ ] offers a score of

s(θ) = V (θ) + θ −
∫ θ

θL∗
F n−1(x) dx

F n−1(θ)
−

∫ θ

θL∗
V ′(x)F n−1(x) dx

F n−1(θ)
.

(2) any bidder with type θ = θL
∗ offers a score of V (θ) + θ if s∗ ≤ V (θ) + θ and a score

less than s∗ otherwise.

(3) any bidder with type θ ∈ [ θ, θL
∗ ) offers a score less than s∗.

Lemma 2 indicates that equilibrium scores increase with the quality of the match over

the range [θL
∗ , θ ]. Since a better match raises the value of the contract for both the bidder

8This technique is similar to that used in Asker and Cantillon (2006). In their terminology, V (θi) + θi is
bidder i’s “pseudotype.”
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and the seller, well matched bidders can raise their price offers by enough to outscore their

poorly matched counterparts. Although higher types offer higher scores, it need not be the

case that higher types offer higher prices. Using Lemma 2 and the fact that in equilibrium

s(θ) = V (θ)+b(θ), we back out the equilibrium bidding function in the following proposition.

Proposition 2 Let θL
∗ be defined as in Proposition 1. There exists a unique equilibrium in

which

(1) any bidder with type θ ∈ (θL
∗ , θ ] bids according to the function

b(θ) = θ −
∫ θ

θL∗
F n−1(x) dx

F n−1(θ)
−

∫ θ

θL∗
V ′(x)F n−1(x) dx

F n−1(θ)
.

(2) any bidder with type θ = θL
∗ bids θ if s∗ ≤ V (θ) + θ and bids less than s∗ − V (θ)

otherwise.

(3) any bidder with type θ ∈ [ θ, θL
∗ ) bids less than s∗ − V (θ).9

The first two terms of the bidding function are identical to the corresponding function in

Lemma 1 (with the exception of the lower limit of integration). The third term, however, is a

novel addition. The seller’s value for matching enters the bidding function and depresses bids.

The greater the importance of matching V ′, the lower the bids. Consequently, the bidding

function need not be well behaved. In fact, for θ sufficiently close to θL
∗ , bids decrease in

type.

Two conflicting effects are at play:

9Despite the multiplicity of bids less than s∗−V (θ), we assert the equilibrium is unique in the sense that
these bids can be classified as “non-participating.”
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The value effect: A well matched bidder has a higher value for the contract, and therefore,

the opportunity cost of not increasing his bid is higher;

The asymmetry effect: A well matched bidder is preferred by the seller, and therefore,

he need not bid as aggressively to win.10

The value effect causes bids to increase with the quality of the match. It is the reason we

observe bids increasing monotonically in the first-score auction with an uninformed seller.

This effect is represented by the first two terms of the bidding function outlined in Proposition

2. The asymmetry effect is represented by the third term. Since the seller’s utility increases

with the quality of the match and the matches are known to the seller, a bidder with a good

match can bid less than a bidder with a bad match and still win the contract. In other words,

the asymmetry across bidders dampens price competition. The greater the importance of

matching V ′, the greater the asymmetry and the lower the bids.

5 The Value of Information

In this section, we investigate whether it is in the seller’s interest to observe the matches in

advance. We show that, in many reasonable cases, the seller is better off not observing the

matches.

10The asymmetry effect is similar to “the competition effect” in Rezende (2006).
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We begin by deriving the seller’s expected utility for each of the two information struc-

tures. Following Riley and Samuelson (1981), we obtain

UU
0 ≡ n

∫ θ

θ∗

[
V (θ) + θ − 1− F (θ)

f(θ)

]
F n−1(θ) f(θ) dθ

U I
0 ≡ n

∫ θ

θL∗

[
V (θ) + θ − (

V ′(θ) + 1
)1− F (θ)

f(θ)

]
F n−1(θ) f(θ) dθ

where the superscript U refers to the case in which the seller is uninformed and the super-

script I refers to the case in which the seller is informed. Let tU∗ be the θ∗ that maximizes

UU
0 and tI∗ be the θL

∗ that maximizes U I
0 . A straightforward application of Assumptions 1

through 4 delivers the following result:

tU∗ ≡





θ if V (θ) + θ ≥ 1
f(θ){

x ∈ (θ, θ ) : V (x) + x =
1− F (x)

f(x)

}
otherwise

tI∗ ≡





θ if V (θ) + θ ≥ V ′(θ) + 1
f(θ){

x ∈ (θ, θ ) : V (x) + x =
(
V ′(x) + 1

)1− F (x)
f(x)

}
otherwise

Note that tI∗ ≥ tU∗ ; that is, the seller’s incentive to restrict the set of participating bidders is

stronger when he expects to observe the matches.

We will now identify the cases in which the seller benefits from not observing the matches.

First, suppose the reserve score s∗ is fixed across information structures. If θ∗ = θL
∗ , the set of

participating bidders is the same, but these bidders bid less when the matches are observed.

Hence, the seller prefers to remain uninformed. But what if θ∗ > θL
∗ ? In this case, the seller

also prefers to remain uninformed as long as θ∗ ≤ tU∗ . Since UU
0 is increasing in θ∗ over the

range [ θ, tU∗ ], choosing θ∗ ∈ (θL
∗ , tU∗ ] is strictly better than choosing θ∗ = θL

∗ . The following

proposition summarizes these observations.
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Proposition 3 UU
0 > U I

0 if either θ∗ = θL
∗ < θ or θ∗ ∈ (θL

∗ , tU∗ ] .

We elect to disregard the case in which θ∗ > tU∗ because there is no agent (bidder or seller)

who prefers θ∗ > tU∗ to θ∗ = tU∗ .

Now suppose s∗ varies across information structures. In particular, suppose the seller

knows whether or not he will subsequently observe the matches and therefore chooses s∗

such that θ∗ = tI∗ if the matches will be observed and θL
∗ = tU∗ if they will not. Proposition

4 establishes that even when the set of participating bidders is chosen optimally for each

information structure, the seller still prefers to remain uninformed.

Proposition 4 If θ∗ = tU∗ and θL
∗ = tL∗ , UU

0 > U I
0 .

The proof is trivial and therefore omitted.

We have established that, in many reasonable cases, the seller’s value for information

about the quality of the matches is negative. This result is driven primarily by the fact that

for any given set of participating bidders, bids are lower when the seller observes the matches

than when he does not. In addition, Proposition 2 indicates that the greater the magnitude

of V ′(·), the greater the reduction in bids. Hence, the counterintuitive result that the more

the seller cares about matching, the stronger his incentive not to observe the matches.

6 Concluding Remarks

In many commercial arrangements, a good match between the buyer and seller raises the

value of the contract for both parties. However, at the time the terms of the contract are

set, the parties may not be fully informed about the degree to which they match. This paper
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has addressed the case in which the quality of the match is the private information of the

bidder and provided answers to the natural questions regarding the effects of information

asymmetry, namely (1) What is the seller’s value for the bidders’ information? and (2) How

would the equilibrium bids change if the seller were to observe the matches in advance?

If the seller is uninformed about the quality of the matches, bidders signal favorable

information via higher bids. If, instead, the seller observes the matches, bidders exploit their

favored status by reducing their bids. The more the seller cares about matching, the greater

the advantage enjoyed by well matched bidders, and the larger the margin by which they can

reduce their bids and still win. Provided that certain reasonable restrictions on the reserve

score are met, we have shown that the seller’s value for the information is not only negative

but decreasing in the importance of matching.

A desirable extension would be to allow both the bidder and seller to observe a signal

about the quality of their match. This would capture a situation in which neither party

knows the quality of the match but each party has an impression about how well he matches

with the other party. This problem is substantially more difficult than the one presented

here because it features private information on both sides of the market.

However, this paper provides a good starting point in that it clarifies some of the issues

at play. It suggests that well matched bidders experience a tension when selecting their

bids. On the one hand, well matched bidders have an incentive to raise their bids in order

to transmit their private information, cause the seller to update his beliefs in their favor,

and raise their probability of winning. On the other hand, these bidders have an incentive
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to reduce their bids in order to capitalize on what they expect to be a bias in their favor:

since the signal observed by these bidders is favorable, they expect the signal observed by

the seller to be favorable as well. Note that this paper has nothing to say about how the

seller’s choice of winner transmits his private information and affects equilibrium bidding

behavior. Developing these ideas further would be an interesting area for future research.

Appendix A. Proof of Lemma 1

The proof proceeds via a series of five claims.

Claim 1 Suppose there exist θi ∈ [θ, θ ) and some b in the support of β∗i (· | θi) such that

Pi(b | B∗−i, M
∗) > 0. Then for all θ̂i > θi and all b̂ in the support of β∗i (· | θ̂i), it is the case

that Pi(b̂ | B∗−i, M
∗) > 0.

Proof Suppose b̂ is in the support of β∗i (· | θ̂i) and b is in the support of β∗i (· | θi). If θ̂i > θi

and Pi(b | B∗−i, M
∗) > 0, then by Definition 1,

(θ̂i − b̂) Pi(b̂ | B∗−i, M
∗) ≥ (θ̂i − b) Pi(b | B∗−i, M

∗)

> (θi − b) Pi(b | B∗−i, M
∗)

≥ 0

Since (θ̂i − b̂) Pi(b̂ | B∗−i, M
∗) > 0, it must be the case that Pi(b̂ | B∗−i, M

∗) > 0. ¥

Claim 2 Let B∗i be a separating equilibrium bidding strategy. Suppose there exist θi ∈ [θ, θ )

and some b in the support of β∗i (· | θi) such that Pi(b | B∗−i, M
∗) > 0. If θ̂i > θi and b̂ is in the

support of β∗i (· | θ̂i), then b̂ > b.
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Proof Since we are constraining ourselves to separating equilibria, θi 6= θ̂i implies b 6= b̂.

Hence, it is sufficient to show that θ̂i > θi implies b̂ ≥ b. By Definition 1, we obtain

(θi − b) Pi(b | B∗−i, M
∗) ≥ (θi − b̂) Pi(b̂ | B∗−i, M

∗) (.1)

(θ̂i − b̂) Pi(b̂ | B∗−i, M
∗) ≥ (θ̂i − b) Pi(b | B∗−i, M

∗) . (.2)

Combining the two inequalities yields

θi

[
Pi(b | B∗−i, M

∗)− Pi(b̂ | B∗−i, M
∗)

]
≥ b Pi(b | B∗−i, M

∗)− b̂ Pi(b̂ | B∗−i, M
∗)

≥ θ̂i

[
Pi(b | B∗−i, M

∗)− Pi(b̂ | B∗−i, M
∗)

]
.

Since θ̂i > θi, Pi(b̂ | B∗−i, M
∗) ≥ Pi(b | B∗−i, M

∗) > 0. Inequality (.1) can then be written as

b̂− b ≥ (θi − b)
Pi(b̂ | B∗−i, M

∗)− Pi(b | B∗−i, M
∗)

Pi(b | B∗−i, M
∗)

.

The right-hand side is nonnegative since by Definition 1, (θi − b) Pi(b | B∗−i, M
∗) ≥ 0. ¥

Claim 3 Let B∗i be a symmetric separating equilibrium bidding strategy. If θi ∈ [θ, θ ] and

there exists some b in the support of β∗i (· | θi) such that Pi(b | B∗−i, M
∗) > 0, then b is the only

bid in the support of β∗i (· | θi).

Proof By Claim 1, there exists θ∗ ∈ [θ, θ ] such that bidders with types in (θ∗, θ ] win with

positive probability, while bidders with types in [θ, θ∗) win with zero probability. We begin

by addressing the case in which bidders with type θ∗ win with positive probability. Suppose

θi ∈ [θ∗, θ ]. Given our definition of θ∗, bidder i beats any bidder whose type is less than θ∗.

Since the equilibrium is separating, the seller can infer types from bids. By Assumption 3

and Claim 2, scores increase with type over the range [θ∗, θ ]. It follows that bidder i wins the
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auction with probability F n−1(θi). Now suppose the support of β∗i (· | θi) includes the bids b

and b′, where b 6= b′. Since bidder i is indifferent among bids in the support of β∗i (· | θi),

(θi − b)F n−1(θi) = (θi − b′)F n−1(θi).

Since θi ≥ θ∗, F n−1(θi) is positive, which implies that b and b′ are equal – a contradiction.

An analogous argument can be used to prove the claim for the case in which bidders with

type θ∗ win with zero probability. ¥

Claim 3 indicates that bidder i follows a pure strategy when θi > θ∗. Let b : (θ∗, θ ] → R

represent that pure strategy, where b(θi) = {b ∈ R : β∗i (b | θi) > 0}.

Claim 4 In any symmetric separating equilibrium, the strategy b : (θ∗, θ ] → R is continuous.

Proof Suppose b is not continuous at some θ ∈ (θ∗, θ ]. By Claim 2, b is increasing on (θ∗, θ ].

Hence, there exists ε > 0 such that at least one of the following conditions holds:

b(θ)− b(θ̂) ≥ ε, ∀ θ̂ ∈ (θ∗, θ) (.3)

b(θ̂)− b(θ) ≥ ε, ∀ θ̂ ∈ (
θ, θ

]
. (.4)

Definition 1 requires that [θ − b(θ)] F n−1(θ) ≥ [θ − b(θ̂)] F n−1(θ̂) for all θ̂ ∈ (θ∗, θ ]. If

condition (.3) holds,

[θ − b(θ̂)] [F n−1(θ)− F n−1(θ̂)] ≥ ε F n−1(θ) (.5)

for all θ̂ ∈ (θ∗, θ). Since θ ∈ (θ̂, θ ] and ε > 0 are fixed, ε F n−1(θ) is both positive and

fixed. However, since F is continuous, F n−1(θ) − F n−1(θ̂) can be brought arbitrarily close
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to zero by selecting a θ̂ sufficiently close to θ, and since b is increasing on (θ∗, θ ], θ − b(θ̂) is

decreasing as θ̂ approaches θ. Hence, for θ̂ sufficiently close to θ, inequality (.5) is violated,

which implies that condition (.3) cannot hold. An analogous argument can be used to show

that condition (.4) cannot hold either. ¥

Claim 5 In any symmetric separating equilibrium, b : (θ∗, θ ] → R is given by

b(θ) = θ −
∫ θ

θ∗
F n−1(x) dx

F n−1(θ)
.

Proof We will first establish that limθ→θ+∗ b(θ) = θ∗. By Claim 4, the limit exists. Suppose

limθ→θ+∗ b(θ) 6= θ∗. Then there exists ε > 0 such that one of the following conditions holds:

lim
θ→θ+∗

b(θ) = θ∗ + ε (.6)

lim
θ→θ+∗

b(θ) = θ∗ − ε . (.7)

Suppose condition (.6) holds and consider a bidder with type θ ∈ (θ∗, θ∗ + ε). Since b is

increasing on (θ∗, θ ], b(θ) > θ∗ + ε, and since θ > θ∗, F n−1(θ) > 0. It follows that the

bidder’s expected utility, [θ − b(θ)] F n−1(θ), is negative, which contradicts Definition 1. Now

suppose condition (.7) holds and consider a bidder with type θ ∈ (θ∗ − ε, θ∗). Since θ < θ∗,

the bidder earns zero utility in equilibrium. Since b is continuous and increasing, there exists

x > θ∗ such that b(x) ∈ (θ∗ − ε, θ). If the bidder deviates to b(x), his expected utility is

[θ − b(x)] F n−1(x) > 0, which contradicts Definition 1.
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We will now derive the bid function b(·). Since scores increase with type over (θ∗, θ ],

Ui [ b(x) | θ, B∗−i, M
∗] = [θ− b(x)] F n−1(x) for all x ∈ (θ∗, θ ] and θ ∈ [θ, θ ]. Since b and F are

continuous, it must be the case that for all θ ∈ (θ∗, θ )

∂Ui [ b(x) | θ, B∗−i, M
∗]

∂x
= 0

when x = θ. Taking the derivative of Ui [ b(x) | θ, B∗−i, M
∗] with respect to x, substituting θ

for x, and setting the resulting expression equal to zero yields

db(θ)

dθ
F n−1(θ) + b(θ)

dF n−1(θ)

dθ
= θ

dF n−1(θ)

dθ
.

After integrating both sides, evaluating the integrals from θ∗ to θ, and applying the boundary

condition, we obtain the bidding function

b(θ) = θ −
∫ θ

θ∗
F n−1(x) dx

F n−1(θ)
(.8)

for θ ∈ (θ∗, θ ). Since b is continuous over (θ∗, θ ], equation (.8) gives the equilibrium bid for

type θ as well. ¥

Lemma 1 follows trivially from Claims 1 and 5. ¥

Appendix B. Proof of Proposition 1

The proof proceeds via a pair of claims.

Claim 6 A symmetric separating equilibrium exists for every θ∗ ∈ [ θL
∗ , θH

∗ ].
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Proof Fix an arbitrary θ∗ ∈ [ θL
∗ , θH

∗ ]. Suppose that any bidder with type θ bids according

to the function

b(θ) =





min{0, s∗ − [V (θ∗) + θ∗]}+ θ if θ ∈ [ θ, θ∗)

θ −
∫ θ

θ∗
F n−1(x) dx

F n−1(θ)
if θ ∈ [ θ∗, θ ]

Suppose further that the seller’s posterior beliefs are given by

Mi(θ | bi) =

{
0 if θ < b−1(bi)

1 if θ ≥ b−1(bi)

if bi = b(θ) for some θ ∈ [ θ, θ ] and by Mi(θ | bi) = 1 for all θ ∈ [ θ, θ ] otherwise. We will

verify that this is a symmetric separating equilibrium.11

The equilibrium is clearly symmetric and separating. Since the equilibrium is separating,

Bayes’ rule requires the seller infer the bidder’s type is θ when the bid submitted is b(θ). As

this is precisely what is prescribed by M, condition (2) of Definition 1 is satisfied. It remains

to show that b(θ) satisfies condition (1) of Definition 1.

Since the seller infers θ from b(θ), the bidder’s score can be written as V (θ) + b(θ). If

θ < θ∗, the bidder’s score is less than s∗, and his utility is zero. If θ = θ∗, the bidder’s bid

equals his valuation, and his utility is zero. If θ > θ∗, the bidder’s score is at least s∗ and

increasing in θ; his expected utility is thus [θ − b(θ)]F n−1(θ) > 0.

Deviating to a bid of b(x), where x ∈ [θ, θ∗), yields a score less than s∗ and utility of zero.

Deviating to a bid of b(x), where x ∈ [θ∗, θ ], yields expected utility of [θ − b(x)]F n−1(x).

Substituting for b(x) yields

(θ − x) F n−1(x) +

∫ x

θ∗
F n−1(y) dy

11It can also be shown that this equilibrium satisfies the Intuitive Criterion of Cho and Kreps (1987).
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which is increasing in x for x < θ and decreasing in x for x > θ. Hence, for any θ > θ∗,

bidding b(θ) is more profitable than bidding b(x), and for any θ ≤ θ∗, bidding b(θ) is at least

as profitable as bidding b(x).

Now consider the deviating bid b > b(θ). If θ < b, the expected utility associated with b

is nonpositive, and b is not a profitable deviation. If θ ≥ b, the expected utility associated

with b is at best θ − b, which is less than the expected utility associated with b(θ). Since

deviating to b(θ) is not profitable, deviating to b is not profitable. Finally, consider the

deviating bid b < θ∗, where b is assumed to be off the equilibrium path. Bidding b yields

a score of V (θ) + b. If s∗ < V (θ) + θ , then θ∗ = θ and the lowest score that occurs in

equilibrium is V (θ) + θ . Since V (θ) + b < V (θ) + θ , deviating to b is not profitable. If

s∗ ≥ V (θ) + θ , then V (θ) + b < V (θ) + θH
∗ ≤ s∗ and deviating to b is not profitable. ¥

Claim 7 There are no symmetric separating equilibria such that θ∗ /∈ [ θL
∗ , θH

∗ ].

Proof Suppose there exists a symmetric separating equilibrium such that θ∗ < θL
∗ . If s∗ ≤

V (θ) + θ , then θL
∗ = θ and there is no θ∗ < θL

∗ . If s∗ > V (θ) + θ , then θL
∗ > θ . By Lemma

1, any bidder with type θ ∈ (θ∗, θL
∗ ) bids according to the function

b(θ) = θ −
∫ θ

θ∗
F n−1(x) dx

F n−1(θ)

and wins with positive probability. Since the seller infers θ from b(θ), the bidder’s score is

V (θ) + b(θ). Since V and b are both increasing, V (θ) + b(θ) < V (θL
∗ ) + θL

∗ ≤ s∗. Since his

score falls short of the reserve, the bidder’s probability of winning is zero – a contradiction.

Now suppose there exists a symmetric separating equilibrium such that θ∗ > θH
∗ . If

s∗ ≥ V (θ) + θ , then θH
∗ = θ and there is no θ∗ > θH

∗ . If s∗ < V (θ) + θ , then θH
∗ =
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min
{
θL
∗ + [V (θL

∗ )− V (θ)], θ
}
. It follows that either θH

∗ ≥ s∗ − V (θ) or θH
∗ = θ or both. As

there is no θ∗ > θ, we focus on the case in which θH
∗ ∈ [s∗−V (θ), θ ). Consider a bidder with

type θ ∈ (θH
∗ , θ∗) who bids b ∈ (θH

∗ , θ). By Lemma 1, the bidder wins with zero probability,

earning zero utility in equilibrium. However, the score associated with b is at least V (θ) + b,

and since b > s∗−V (θ), the score exceeds s∗. Moreover, Lemma 1 stipulates that any bidder

with type less than θ∗ wins with zero probability. It follows that our bidder’s probability of

winning is at least F n−1(θ∗) and his expected utility is at least (θ− b) F n−1(θ∗). Since b < θ

and θ∗ > θH
∗ ≥ θ , his expected utility is positive – a contradiction. ¥

Proposition 1 follows trivially from Claims 6 and 7. ¥
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