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e Statistiche, Università di Trieste, Italy, Dipartimento di

Metodi Quantitativi, Università di Brescia, Italy
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Abstract
Rader’s utility representation theorem guarantees the existence of

an upper semicontinuous utility function u for any upper semicontin-
uous total preorder - on a second countable topological space (X, τ).
In this paper we present a generalization of Rader’s theorem to not
necessarily total preorders that are weakly upper semicontinuous.
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1 Introduction

Rader’s utility representation theorem (see e.g. Rader [6], Mehta [5],
Richter [7], Bosi and Mehta [3] and Isler [4]), according to which every up-
per semicontinuous total preorder on a second countable topological space has
an upper semicontinuous utility representation, is one of the most famous re-
sults in mathematical utility theory.

We recall that Rader’s theorem is particularly important in economic ap-
plications concerning the existence of maximal elements because every upper
semicontinuous real-valued function has a maximum on a compact set (see e.g.
Bosi and Herden [2] and Bosi and Mehta [3]).

In a slightly different context, the existence of an upper semicontinuous
weak utility for an acyclic binary relation on a topological space was charac-
terized by Alcantud [1].
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In this paper we introduce the concept of a weakly upper semicontinuous
preorder and then we generalize Rader’s theorem to the case of not necessarily
total preorders that are weakly upper semicontinuous on a second countable
topological space.

In order to illustrate the situations that we are going to consider in this
paper, we present the following simple example.

Example 1.1 Let X be the real interval [0, 1] and consider the nontotal
preorder - on X defined as follows:

x - y ⇔




x ≤ y and x, y ∈ Q ∩ [0, 1]
or

x ≤ y and x, y ∈ [0, 1] \Q
.

Then denote by τ the upper order topology on X associated to the natural
total preorder ≤ on X (i.e., τ = τ≤u is the topology generated by the order
intervals L<(x) = {z ∈ X : z < x}). The topology τ is second countable since
it is a subtopology of a second countable topology (the order topology on X
associated to the natural (pre)order ≤) and in addition it is totally ordered
by set inclusion. It is immediate to check that the identity function u = iX is
an upper semicontinuous utility function u : (X, -, τ) −→ (R,≤, τnat). On the
other hand, we have that the preorder - is not upper semicontinuous (actually,
L≺(x) = {z ∈ X : z ≺ x} is not open for all x ∈ X). Nevertheless, it should
be noted that L<(x) is a τ -open --decreasing subset of X excluding x and
containing L≺(x) for all x ∈ X.

2 Notation and definitions

A binary relation - on a set X is said to be a preorder if - is reflexive and
transitive. If - is a preorder on X then denote by ≺ the strict part of - (i.e.,
x ≺ y is equivalent to x - y and not y - x for all x, y ∈ X).

If (X, -) is a preordered set, then a subset D of X is said to be decreasing
if, for all x, y ∈ X, x - y and y ∈ D imply x ∈ D.

A preorder - on X is said to be total if, for all x, y ∈ X, either x - y or
y - x.

If (X, -) is a preordered set, the a function u : (X, -) −→ (R,≤) is said
to be a utility function on (X, -) if it is order preserving (i.e., x - y implies
u(x) ≤ u(y) and x ≺ y implies u(x) < u(y) for all x, y ∈ X).

We recall that a preorder - on a topological space (X, τ) is said to be
upper semicontinuous if L≺(x) = {z ∈ X : z ≺ x} is an open subset of X for
all x ∈ X.

Let us now present the definition of a weakly upper semicontinuous preorder
on a topological space.
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Definition 2.1 We say that a preorder - on a topological space (X, τ) is
weakly upper semicontinuous if it is possible to associate to every x ∈ X a
uniquely determined open decreasing subset Ox of X in such a way that the
following conditions are verified:

(i) x 6∈ Ox for every x ∈ X;

(ii) x ≺ y implies that x ∈ Oy for all x, y ∈ X;

(iii) the family {Ox}x∈X is totally ordered by set inclusion.

It is immediate to check that if - is an upper semicontinuous total pre-
order on a topological space (X, τ) then - is weakly upper semicontinuous
(just define Ox = L≺(x) for all x ∈ X and consider the fact that the family
{L≺(x)}x∈X is totally ordered by set inclusion). Conversely, a weakly upper
semicontinuous total preorder - on a topological space is upper semicontinu-
ous. Indeed in this case it must be Ox = L≺(x) for all x ∈ X (if there exists
w ∈ Ox \ L≺(x), then we must have that x - w since - is total and therefore
we arrive at the contradiction x ∈ Ox using the fact that Ox is decreasing).

Further, a not necessarily total preorder - on a topological space (X, τ) is
weakly upper semicontinuous as soon as there exists an upper semicontinuous
utility function u : (X, -, τ) −→ (R,≤, τnat) (just define Ox = u−1(]−∞, u(x)[)
for all x ∈ X in order to immediately verify that properties (i), (ii) and (iii)
in Definition 2.1 hold).

3 The main result

The following theorem provides the aforementioned generalization of Rader’s
theorem to the case of a weakly upper semicontinuous and not necessarily total
preorder on a topological space.

Theorem 3.1 Let - be a weakly upper semicontinuous preorder on a second
countable topological space (X, τ). Then there exists an upper semicontinuous
utility function u : (X, -, τ) −→ (R,≤, τnat).

Proof. Let - be a weakly upper semicontinuous preorder on a second countable
topological space (X, τ). Then denote by τO the topology generated by the
family O = {Ox}x∈X . Since τO is a linearly ordered subtopology of τ and
τ is second countable, we have that also τO is second countable (see Bosi
and Herden [2]). Let {On}n∈N be a countable base for the topology τO on X
consisting of (open) decreasing subsets of X. Since the preorder - on (X, τ)



4 Gianni BOSI and Magal̀ı E. ZUANON

is weakly upper semicontinuous, we have that for all x, y ∈ X such that x ≺ y
there exists n ∈ N such that x ∈ On ⊂ Oy, y 6∈ Oy.
Now consider, for every n ∈ N, the upper semicontinuous increasing function
with values in [0, 1] defined as follows:

un(x) =

{
0 if x ∈ On

1 if x 6∈ On
.

It is now almost immediate to check that the function

u =
∑

n∈N
2−nun

is an upper semicontinuous utility function for - on (X, τ). Indeed, it is clear
that u is upper semicontinuous since un is upper semicontinuous for all n ∈ N.
Further, u is a utility function for the preorder - on X since u is increasing
and for all x, y ∈ X such that x ≺ y there exists some n ∈ N with un(x) = 0
and un(y) = 1. So the proof is complete. 2

From the above considerations we immediately recover Rader’s theorem as
a corollary of the previous result.

Corollary 3.2 (Rader’s theorem) Let - be an upper semicontinuous to-
tal preorder on a second countable topological space (X, τ). Then there exists
an upper semicontinuous utility function u : (X, -, τ) −→ (R,≤, τnat).

Finally, Theorem 3.1 can be used in order to provide a new characterization
of the existence of an upper semicontinuous utility function for a not necessarily
total preorder on a topological space. We recall that a characterization of this
kind was presented, for example, by Bosi and Mehta [3, Corollary 3].

Corollary 3.3 Let - be a preorder on a topological space (X, τ). There
exists an upper semicontinuous utility function u : (X, -, τ) −→ (R,≤, τnat) if
and only if there exists a second countable subtopology τ ′ of τ such that - is
weakly upper semicontinuous on (X, -, τ ′).

Proof. The “if” part is a direct consequence of Theorem 3.1 since it is clear
that an upper semicontinuous utility function u : (X, -, τ ′) −→ (R,≤, τnat) is
also an upper semicontinuous utility function on (X, -, τ) due to the fact that
τ ′ is a subtopology of τ .
In order to prove the “only if” part, assume that there exists an upper semicon-
tinuous utility function u : (X, -, τ) −→ (R,≤, τnat) and consider the second
countable subtopology τ ′ of τ that is generated by the family

O = {Oq = u−1(]−∞, q[)}q∈Q.
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Then define, for all x ∈ X,

Ox = u−1(]−∞, u(x)[).

It is simple to check that the preorder - is weakly upper semicontinuous on
(X, -, τ ′). Indeed, it is clear that Ox is a decreasing subset of X and that
Ox excludes x and contains L≺(x) for all x ∈ X. Further, we have already
observed that the family {Ox}x∈X is totally ordered by set inclusion. We just
need to show that Ox is τ ′-open for all x ∈ X. If z ∈ X is such that u(z) < u(x)
then z ∈ Oq ⊂ Ox for all q ∈ Q such that u(z) < q < u(x). This consideration
completes the proof. 2
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