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We propose a latent variables approach within a present-value model to estimate the

time series of expected returns and expected dividend growth rates of the aggregate stock

market. Specifically, we treat conditional expected returns and expected dividend growth

rates as latent variables that follow an exogenously specified time-series model, and we

combine this model with a Campbell and Shiller (1988) present-value model to derive the

implied dynamics of the price-dividend ratio. Then, using a Kalman filter to construct the

likelihood of our model, we estimate the parameters of the model by means of maximum

likelihood. We find that both expected returns and expected dividend growth rates are

time-varying and persistent, but expected returns are more persistent than expected

dividend growth rates. The filtered series for expected returns and expected dividend

growth rates are good predictors of realized returns and realized dividend growth rates,

with R2 values ranging from 8.2% to 8.9% for returns and 13.9% to 31.6% for dividend

growth rates.

We consider an annual model to ensure that the dividend growth predictability we

find is not simply driven by the seasonality in dividend payments.1 However, using an

annual dividend growth series implies that we need to take a stance on how dividends

received within a particular year are reinvested. Analogous to the way in which different

investment strategies lead to different risk-return properties of portfolio returns, different

reinvestment strategies for dividends within a year result in different dynamics of dividend

growth rates.2 We study two reinvestment strategies in detail. First, we reinvest

dividends in a 30-day T-bill, which we call cash-reinvested dividends. Second, we reinvest

dividends in the aggregate stock market, which we refer to as market-reinvested dividends.

Market-reinvested dividends have been studied widely in the dividend-growth and return-

forecasting literature.3 We find the reinvestment strategy to matter for the time-series

properties of dividend growth. For instance, the volatility of market-reinvested dividend

growth is twice as high as the volatility of cash-reinvested dividend growth. Within

our model, we derive the link between the time-series models of dividend growth rates



for different reinvestment strategies. This analysis demonstrates that if expected cash-

reinvested dividend growth follows a first-order autoregressive process, then expected

market-reinvested dividend growth has both a first-order autoregressive and a moving-

average component. This result is true even if market returns are white noise. Basically,

if last year’s market-reinvested dividend was inflated by a high market return, this does

not carry through to next year’s market-reinvested dividend because market returns are

white noise, unlike the underlying cash-reinvested dividend. Reinvesting dividends in the

market adds noise to the level of dividends, and an AR(1) plus noise is an ARMA(1,1).

The main assumptions we make in this paper concern the time-series properties for

expected returns and expected dividend growth rates, which are the primitives of our

model. We first consider first-order autoregressive processes for expected cash-reinvested

dividend growth and returns; we then derive the implied dynamics for expected market-

reinvested dividend growth rates. Using this specification, we find that both returns

and dividend growth rates are predictable, regardless of the reinvestment strategy. We

can reject the null hypothesis that either expected returns or expected growth rates are

constant at conventional significance levels. Further, for both reinvestment strategies,

we find that expected returns are more persistent than expected growth rates using a

likelihood ratio test. Also, innovations to both processes are positively correlated. Finally,

while we find that future growth rates are predictable, most of the unconditional variance

in the price-dividend ratio stems from variation in discount rates, consistent with, for

instance, Campbell (1991). If we decompose the conditional variance of stock returns, we

find that cash flow news can account for 34.6% to 49.4% of this variance, discount rate

news accounts for 118.4% to 215.3%, and the remainder is attributable to the covariance

between cash flow and discount rate news.

Our model, in which we consider low-order autoregressive processes for expected

returns and expected dividend growth rates, admits an infinite-order VAR representation

in terms of dividend growth rates and price-dividend ratios.4 Cochrane (2008) rigorously
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derives the link between our model in Section I and the VAR representation. This

insightful analysis also demonstrates why our approach can improve upon predictive

regressions that include only the current price-dividend ratio to predict future returns

and dividend growth rates. Our latent variables approach aggregates the whole history of

price-dividend ratios and dividend growth rates to estimate expected returns and expected

growth rates. This implies that we expand the information set that we use to predict

returns and dividend growth rates. However, instead of adding lags to a VAR model,

which would increase the number of parameters to be estimated, the latent variables

approach incorporates the information contained in the history of price-dividend ratios

and dividend growth rates while keeping the number of parameters low. As Cochrane

(2008) shows, our model introduces moving average terms of price-dividend ratios and

dividend growth rates, in addition to the current price-dividend ratios, and we find these

moving average terms to be relevant in predicting future returns and in particular dividend

growth rates.

The insight that return predictability and dividend growth rate predictability are best

studied jointly has been pointed out previously by Cochrane (2007), Fama and French

(1988), and Campbell and Shiller (1988). The main contribution of our paper is to model

expected returns and expected dividend growth rates as latent processes and use filtering

techniques to uncover them. Fama and French (1988) note that the price-dividend ratio

is a noisy proxy for expected returns when the price-dividend ratio also moves due to

expected dividend growth rate variation. This point is also made by Menzly, Santos, and

Veronesi (2004) and Goetzmann and Jorion (1995). However, the reverse argument also

holds: the price-dividend ratio is a noisy proxy for expected dividend growth when the

price-dividend ratio also moves due to expected return variation. Our framework explicitly

takes into account the fact that the price-dividend ratio can move due to expected return

variation or expected dividend growth rate variation, with the filtering procedure assigning

price-dividend ratio shocks to expected return shocks and/or expected dividend growth
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rate shocks.

One may wonder why we choose an AR(1) process to model expected cash-reinvested

dividend growth as opposed to expected market-reinvested dividend growth. Each

reinvestment strategy for dividends corresponds to a different time-series model for

expected returns and expected dividend growth rates. It could be the case that, in

fact, expected market-reinvested dividend growth is well described by an AR(1) process.

Given that most of the literature on return and dividend growth rate predictability focuses

on market-reinvested dividend growth rates, this might seem like a more sensible first

pass. In the Internet Appendix, we explore this alternative specification and find that

the persistence coefficient of expected market-reinvested dividend growth is negative.5

By fixing the parameter controlling the persistence of expected dividend growth in the

estimation of this specification, and maximizing over all other parameters, we show that

the model’s likelihood is bimodal. This suggests that a simple first-order autoregressive

process for expected market-reinvested dividend growth is too restrictive. We next

perform a formal specification test and find that the model in Section I, in which expected

cash-reinvested dividend growth is an AR(1) process and expected market-reinvested

dividend growth is an ARMA(1,1) process, is preferred over a model in which expected

market-reinvested dividend growth is an AR(1) process.

Our paper is closely related to the recent literature on present-value models. In

particular, our paper is related to Cochrane (2007), Lettau and Van Nieuwerburgh (2008),

Pástor and Veronesi (2003, 2006), Pástor, Sinha, and Swaminathan (2008), Bekaert,

Engstrom, and Grenadier (2001, 2005), Burnside (1998), Ang and Liu (2004), and

Brennan and Xia (2005). All of these papers provide expressions for the price-dividend or

market-to-book ratio. However, in the case of Bekaert, Engstrom, and Grenadier (2001),

P/’astor and Veronesi (2003, 2006), Ang and Liu (2004), and Brennan and Xia (2005),

the price-dividend ratio is an infinite sum or indefinite integral of exponentially quadratic

terms, which makes likelihood-based estimation and filtering computationally much more
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involved. Bekaert, Engstrom, and Grenadier (2001) and Ang and Liu (2004) estimate the

model by means of GMM and model expected returns and expected growth rates as an

affine function of a set of additional variables. Brennan and Xia (2005) use a two-step

procedure to estimate their model and use long-term forecasts for expected returns to

recover an estimate of the time series of (instantaneous) expected returns. Alternatively,

Lettau and Van Nieuwerburgh (2008) set up a linearized present-value model and recover

structural parameters from reduced-form estimators. They then test whether the present-

value constraints are violated. The impose the condition, however, that the persistence

of expected returns and the persistence of expected growth rates are equal.6

Our paper also relates to Brandt and Kang (2004), Pástor and Stambaugh (2006),

and Rytchkov (2007), who focus on return predictability using filtering techniques. We

contribute to this literature by focusing on the interaction between return and dividend

growth predictability, and by showing that the reinvestment strategy of dividends has an

impact on the specification of the present-value model.

Further, our paper extends Chen (2009), who also discusses reinvestment strategies.

Chen (2009) points out that because a higher price-dividend ratio predicts either higher

future returns or lower future growth rates, the combined signal is blurred once stock

returns enter the calculation of dividends. We show two additional implications of

reinvesting dividends in the aggregate stock market. First, this reinvestment strategy

adds an MA component to dividend growth if cash-reinvested dividend growth is an

AR(1) process. Second, the market return at time t forecasts market-reinvested dividend

growth from time t to t+1. Thus, using our framework, we can explicitly account for the

reinvestment strategy of dividends in estimating the time series of expected returns and

expected dividend growth rates.

The paper proceeds as follows. In Section I, we present the linearized present-value

model. In Section II we discuss the data, our estimation procedure, and the link between

the two reinvestment strategies. In Section III we present our estimation results and
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compare our empirical results to predictive regressions. Section IV discusses hypothesis

testing, including the tests for (the lack of) return and dividend growth rate predictability.

Section V discusses several additional implications and some robustness checks, and

Section VI concludes.

I. Present-value Model

In this section we present a log-linearized present-value model in the spirit of Campbell

and Shiller (1988).7 We assume that both expected returns and expected dividend growth

rates are latent variables. We first consider a specification in which both latent variables

are an AR(1) process.8 However, we can allow for higher-order VARMA representations

for these variables, some of which we explore below when we study different reinvestment

strategies.

Let rt+1 denote the total log return on the aggregate stock market,

rt+1 ≡ log

(
Pt+1 + Dt+1

Pt

)
, (1)

let PDt denote the price-dividend ratio of the aggregate stock market,

PDt ≡
Pt

Dt

,

and let ∆dt+1 denote the aggregate log dividend growth rate,

∆dt+1 ≡ log

(
Dt+1

Dt

)
.

We model both expected returns (µt) and expected dividend growth rates (gt) as an AR(1)
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process,

µt+1 = δ0 + δ1 (µt − δ0) + εµ
t+1, (2)

gt+1 = γ0 + γ1 (gt − γ0) + εg
t+1, (3)

where

µt ≡ Et [rt+1] ,

gt ≡ Et [∆dt+1] .

The distribution of the shocks εµ
t+1 and εg

t+1 will be specified shortly. The realized dividend

growth rate is equal to the expected dividend growth rate plus an orthogonal shock:

∆dt+1 = gt + εd
t+1.

Defining pdt ≡ log(PDt), we can write the log-linearized return as

rt+1 ' κ + ρpdt+1 + ∆dt+1 − pdt,

where pd = E [pdt], κ = log
(
1 + exp

(
pd

))
− ρpd, and ρ =

exp(pd)
1+exp(pd)

, as in Campbell and

Shiller (1988). If we iterate this equation and use the AR(1) assumptions (2) and (3), it

follows that

pdt = A − B1 (µt − δ0) + B2 (gt − γ0) ,

where A = κ
1−ρ

+ γ0−δ0
1−ρ

, B1 = 1
1−ρδ1

, and B2 = 1
1−ργ1

(see Section IA.A in the Internet

Appendix). The log price-dividend ratio is linear in the expected return µt and the

expected dividend growth rate gt. The loading of the price-dividend ratio on expected

returns and expected dividend growth rates depends on the relative persistence of these
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variables (δ1 versus γ1). The three shocks in the model, namely, shocks to expected

dividend growth rates (εg
t+1), shocks to expected returns (εµ

t+1), and realized dividend

growth shocks (εd
t+1), have mean zero and covariance matrix

Σ ≡ var







εg
t+1

εµ
t+1

εd
t+1







=




σ2
g σgµ σgd

σgµ σ2
µ σµd

σgd σµd σ2
d




,

and are independent and identically distributed (i.i.d.) over time. Further, in the

maximum likelihood estimation procedure, we assume that the shocks are jointly normally

distributed.

II. Data and Estimation

A. Data

We obtain with-dividend and without-dividend monthly returns on the value-weighted

portfolio of all NYSE, Amex, and NASDAQ stocks for the period 1946 to 2007 from the

Center for Research in Security Prices (CRSP). We obtain data for the S&P500 index over

the same sample period from S&P Index Services. We use these data to construct our

annual data for aggregate dividends and prices. We consider two reinvestment strategies.

First, we consider dividends reinvested in 30-day T-bills and compute the corresponding

series for dividend growth, the price-dividend ratio, and returns. Data on the 30-day T-

bill rate also come from CRSP. Second, we consider dividends reinvested in the aggregate

stock market (or the S&P500 index) and compute the corresponding series for dividend

growth, the price-dividend ratio, and returns. The latter reinvestment strategy, which

is commonly used in the return predictability literature, causes annual dividend growth

to be highly volatile with an annual unconditional volatility of 12.3% versus a volatility

of 6.2% for cash-reinvested dividend growth, as summarized in Table I and plotted in
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Figure 1. In the next three subsections we present our estimation procedure. In Section

II.B we discuss our estimation procedure for the case in which dividends are reinvested

cash. Section II.C discusses the link between the two models. In Section II.D we discuss

our estimation procedure for the case in which dividends are reinvested in the market.

[TABLE I AND FIGURE I ABOUT HERE]

B. State-space Representation: Cash-reinvested Dividends

Our model features two latent state variables, µt and gt. We assume that each of these

is an AR(1) process. The de-meaned state variables are

µ̂t = µt − δ0,

ĝt = gt − γ0.

The model has two transition equations,

ĝt+1 = γ1ĝt + εg
t+1,

µ̂t+1 = δ1µ̂t + εµ
t+1,

and two measurement equations,

∆dt+1 = γ0 + ĝt + εd
t+1,

pdt = A − B1µ̂t + B2ĝt.

Because the second measurement equation contains no error term, we can substitute the
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equation for pdt into the transition equation for de-meaned expected returns to arrive at

our final system that has just one transition and two measurement equations:

ĝt+1 = γ1ĝt + εg
t+1, (4)

∆dt+1 = γ0 + ĝt + εd
t+1, (5)

pdt+1 = (1 − δ1) A + B2 (γ1 − δ1) ĝt + δ1pdt − B1ε
µ
t+1 + B2ε

g
t+1. (6)

It may be surprising that there is no measurement equation for returns. However, the

measurement equation for dividend growth rates and the price-dividend ratio together

imply the measurement equation for returns. As all equations are linear, we can compute

the likelihood of the model using a Kalman filter (Hamilton (1994)). We then use

conditional maximum-likelihood estimation (MLE) to estimate the vector of parameters:

Θ ≡ (γ0, δ0, γ1, δ1, σg, σµ, σd, ρgµ, ρgd, ρµd) .

The details of this estimation procedure are described in Appendix A at the end of this

text. We use conditional maximum likelihood to facilitate the comparison with the

standard predictive regressions approach. We maximize the likelihood using simulated

annealing. This maximization algorithm is designed to search for the global maximum

(Goffe, Ferrier, and Rogers (1994)).

C. Reinvesting Dividends and Modeling Growth Rates

We assume that cash-reinvested expected growth rates are an AR(1) process. In

this section, we derive the observable implications for market-reinvested dividends. To

illustrate why the reinvestment strategy is potentially important for the time-series model

of dividend growth rates, we present the following extreme example. Consider the case in
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which year t prices are recorded on December 31st and year t + 1 dividends are all paid

out one day later, on January 1st. Denote by Dt+1 the dividends paid out on January

1st. Assuming (for ease of exposition) that the one-year interest rate is zero, the end-

of-year cash-reinvested dividends are simply given by Dt+1. However, the end-of-year

market-reinvested dividends are given by

DM
t+1 = Dt+1exp (rt+1) ,

where rt+1 denotes the aggregate stock market return defined in (1). Even though realized

dividend growth rates are strongly dependent on the reinvestment strategy, the aggregate

stock market return is not. The correlation between cum-dividend returns where dividends

are reinvested in the market, denoted by rM
t+1, and cum-dividend returns where dividends

are reinvested at the risk-free rate, denoted by rt+1, is 0.9999. As such, from an empirical

perspective, these two series can be used interchangeably. The observed market-reinvested

dividend growth rates are then given by

∆dM
t+1 = log

(
DM

t+1

DM
t

)
= log

(
Dt+1

Dt

)
+ rt+1 − rt.

This expression suggests that the lagged return on the market is a candidate predictor

of market-reinvested dividend growth rates where a high past return predicts low future

dividend growth. If the return on the market in period t is high, this increases the

dividend growth rate at time t, but it implies a lower dividend growth rate at time

t + 1 relative to cash-reinvested dividends. The expression above further suggests that

reinvesting dividends in the market can add substantial volatility to dividend growth

rates.

In reality, dividends are paid out throughout the year, for example, at the end of each

quarter. To capture the impact of reinvesting dividends in the aggregate stock market,
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we consider the following reduced-form representation:

DM
t+1 = Dt+1 exp(εM

t+1),

where Dt+1 denotes the cash-reinvested dividend. We assume that εM
t+1 is i.i.d. over time

with mean zero and standard deviation σM . Further, we allow for correlation between

εM
t+1 and aggregate market returns:

ρM = corr
(
εM

t+1, ε
r
t+1

)
,

where εr
t+1 ≡ rt+1 − µt ≈ −B1ρεµ

t+1 + B2ρεg
t+1 + εd

t+1. In our previous example, in which

all dividends are paid out at the beginning of the year, this correlation is close to one and

rt+1 ≈ εM
t+1. If dividend payments are made throughout the year, we expect a positive

value for ρM , but not necessarily close to one. Using this model, we can decompose εM
t+1

into a part that is correlated with εr
t+1 and a part that is orthogonal to εr

t+1,

εM
t+1 = βMεr

t+1 + εM⊥
t+1 ,

where βM = ρMσM/σr, σr =
√

var(εr
t+1) and εM⊥

t+1 is orthogonal to εr
t+1. To keep the model

parsimonious, we assume that all correlation between εM
t+1 and the structural shocks in

our model, that is, εg
t+1, εµ

t+1, and εd
t+1, comes via the aggregate market return. The latter

assumption implies that cov(εM⊥
t+1 , εg

t+1) = cov(εM⊥
t+1 , εd

t+1) = cov(εM⊥
t+1 , εµ

t+1) = 0.

Given that expected growth rates for cash-reinvested dividends follow an AR(1)

process, we can derive the expected growth rate of market-reinvested dividends as follows:

∆dM
t+1 = ∆dt+1 + εM

t+1 − εM
t

= gt + εd
t+1 + εM

t+1 − εM
t ,
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where gt ≡ Et[∆dt+1]. This implies that gM
t ≡ Et[∆dM

t+1] = gt − εM
t . The dynamics of

expected market-reinvested dividend growth are therefore given by

gM
t+1 = gt+1 − εM

t+1

= γ0 + γ1(gt − γ0) + εg
t+1 − εM

t+1

= γ0 + γ1(g
M
t − γ0) + γ1ε

M
t + εg

t+1 − εM
t+1.

This shows that expected market-reinvested dividend growth is not a first-order

autoregressive process, but instead an ARMA(1,1) process.

Summary of the model: We can now summarize the model for market-reinvested

dividend growth as follows:

∆dM
t+1 = gM

t + εdM
t+1,

gM
t+1 = γ0 + γ1(g

M
t − γ0) + γ1ε

M
t + εgM

t+1,

µt+1 = δ0 + δ1(µt − δ0) + εµ
t+1,

pdM
t = A − B1(µt − δ0) + B2(g

M
t − γ0) + (B2 − 1) εM

t ,

where we define

εdM
t+1 ≡ εd

t+1 + εM
t+1,

εgM
t+1 ≡ εg

t+1 − εM
t+1,

and recall that gM
t = gt − εM

t . Market-reinvested dividend growth rates ∆dM
t+1 are equal

to expected market-reinvested dividend growth rates gM
t plus an orthogonal shock εdM

t+1.

This orthogonal shock consists of two parts: one part is due to the unexpected change in

the payout of firms, εd
t+1, and the second part is related to the performance of the stock

market during the current year, εM
t+1. The expected market-reinvested dividend growth
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rate gM
t also consists of two parts. The first part, gt, is driven by the expected change

in the payout of firms and the second part, εM
t , relates to the performance of the stock

market in the previous year. As gt is an AR(1) process, market-reinvested dividend growth

is an ARMA(1,1) process. Finally, the expected return continues to be an AR(1)-process

as in the case of cash-reinvested dividends.

The parameters of the covariance matrix are given by

σM2
d ≡ var(εdM

t+1) = σ2
d + σ2

M + 2σdM ,

σM2
g ≡ var(εgM

t+1) = σ2
g + σ2

M − 2σgM ,

σM2
µd ≡ cov(εµ

t+1, ε
dM
t+1) = σµd + σµM ,

σM2
µg ≡ cov(εµ

t+1, ε
gM
t+1) = σµg − σµM ,

σM2
gd ≡ cov(εgM

t+1, ε
dM
t+1) = −σ2

M ,

and σdM , σgM , and σµM are derived in Appendix A. The correlations are subsequently

defined as ρM
gd ≡ σM

gd/(σM
g σM

d ), ρM
µd ≡ σM

µd/(σµσ
M
d ), and ρM

µg ≡ σM
µg/(σµσ

M
g ).

D. State-space Representation: Market-reinvested Dividends

We define the two de-meaned state variables as

µt = δ0 + µ̂t,

gt = γ0 + ĝt.

Again, the model has two transition equations,

ĝt+1 = γ1ĝt + εg
t+1,

µ̂t+1 = δ1µ̂t + εµ
t+1,
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and two measurement equations,

∆dM
t+1 = γ0 + ĝt + εd

t+1 + εM
t+1 − εM

t ,

pdM
t = A − B1µ̂t + B2ĝt − εM

t .

We are now using dividends reinvested in the market to compute the log dividend growth

rate and the log price-dividend ratio. As before, we can substitute the price-dividend

ratio for one latent variable to arrive at a final system consisting of two measurement

equations and one transition equation:

∆dM
t+1 = γ0 + ĝt + εd

t+1 + εM
t+1 − εM

t , (7)

pdM
t+1 = (1 − δ1) A + B2 (γ1 − δ1) ĝt + δ1pd

M
t − B1ε

µ
t+1 + B2ε

g
t+1 − εM

t+1 + δ1ε
M
t , (8)

ĝt+1 = γ1ĝt + εg
t+1. (9)

As all equations are still linear, we can compute the likelihood of the model using the

Kalman filter, and use conditional MLE to estimate the parameters.

E. Identification

In our model, all but one of the parameters in the covariance matrix are identified.9

We choose to normalize the correlation between realized dividend growth shocks (εd
t+1)

and expected dividend growth shocks (εg
t+1) to zero.

III. Results

A. Estimation Results
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Table II shows the maximum likelihood estimates of the parameters for the model

with cash-reinvested dividends (equations (4) to (6)) as well as the model with market-

reinvested dividends (equations (7) to (9)).

[TABLE II ABOUT HERE]

For cash-reinvested dividends, we estimate the unconditional expected log return to be

δ0 = 9.0% and the unconditional expected log growth rate of dividends to be γ0 = 6.2%.

Further, we find expected returns to be highly persistent, consistent with Fama and

French (1988), Campbell and Cochrane (1999), Ferson, Sarkissian, and Simin (2003),

and Pástor and Stambaugh (2006), with an annual persistence coefficient (δ1) of 0.932.

The estimated persistence of expected dividend growth rates equals 0.354, which is less

than the estimated persistence of expected returns. We test whether this difference is

significant with a likelihood ratio test in Section IV. Further, shocks to expected returns

and expected dividend growth rates are positively correlated.10 In our state-space model,

we compute the R2 values for returns and dividend growth rates as (see also Harvey

(1989))

R2
Ret = 1 −

ˆvar
(
rt+1 − µF

t

)

ˆvar (rt)
,

R2
Div = 1 −

ˆvar
(
∆dt+1 − gF

t

)

ˆvar (∆dt+1)
,

where ˆvar is the sample variance, µF
t is the filtered series for expected returns (µt), and

gF
t is the filtered series for expected dividend growth rates (gt). Alternatively, we can

compute the R2 values within our model as if gt and µt are observed and do not need to

be filtered. However, to compare our results to OLS, we use the filtered series because

gt and µt are latent processes. The R2 value for returns is equal to 8.2% and that for

dividend growth rates it equal to 13.9%.
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For market-reinvested dividends, we find δ0 = 8.6% and γ0 = 6.0%, which are slightly

lower than for the cash-reinvested case. Further, we find that the persistence coefficient

of expected returns (δ1) equals 0.957 and the persistence of expected dividend growth

rates equals 0.638, indicating, as before, that expected returns are more persistent than

expected dividend growth rates. Compared to the case of cash-reinvested dividends, we

find a higher correlation ρµg and a higher persistence coefficient γ1. When we reinvest

dividends in the market, a high expected return will lead to a high expected growth rate.

This increases the correlation between expected returns and expected dividend growth

rates. Further, the part of the expected dividend growth rate that relates to the higher

expected return will be persistent, due the high persistence of expected returns. This

increases the estimated persistence coefficient of expected dividend growth.

The R2 values in the case of market-reinvested dividends are:

R2
RetM

= 1 −
ˆvar

(
rM
t+1 − µF

t

)

ˆvar (rM
t )

,

R2
DivM

= 1 −
ˆvar

(
∆dM

t+1 − gM,F
t

)

ˆvar
(
∆dM

t+1

) ,

where ˆvar is the sample variance, µF
t is the filtered series for expected returns (µt), and

gM,F
t is the filtered series for expected dividend growth rates (gM

t ). For returns, we find an

R2 value of 8.9% and for dividend growth rates, we find an R2 value of 31.6%. Further, the

standard deviation of the shock εM
t equals 5.4% and the correlation between εM

t and the

unexpected return on the aggregate market is ρM = 0.59. If all dividends were paid out

at the beginning of the year, εM
t would closely resemble the market return and we would

expect a standard deviation σM equal to that of the aggregate market and a correlation

close to one. If all dividend payments were instead paid out at the end of the year, we

would expect a value of σM close to zero and a correlation close to zero. For intermediate

cases, that is, if dividends are paid out throughout the year, as they are in our data set, we

find that σM and ρM above take values in between these two extreme cases. This suggests
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that this reduced-form representation indeed captures, at least in part, the reinvestment

of dividends in the aggregate market.

B. Comparison with OLS Regressions

As a benchmark for our latent variables approach, we also report results from the

following predictive OLS regressions:11

rt+1 = αr + βrpdt + εr,OLS
t+1 ,

∆dt+1 = αd + βdpdt + εd,OLS
t+1 .

The results are summarized in Table III. For market-reinvested dividends, the return

regression has a predictive coefficient of βr = −0.10 with an R2 value of 7.96% and a

t-statistic of -2.19, where we use OLS standard errors to compute the t-statistic. The

dividend growth rate regression results in a predictive coefficient of βd = −0.04, with an

R2 value of 1.56% and a t-statistic of -0.91. The dividend growth rate regression has an

insignificant coefficient, which seems to have the wrong sign in the sense that a high price-

dividend ratio predicts a low expected dividend growth rate as opposed to a high expected

dividend growth rate.12 Appendix B shows why our filtering approach can improve upon

predictive regressions. In addition to the lagged price-dividend ratio, we use the entire

history of dividend growth rates and price-dividend ratios to predict future growth rates

and returns:

∆dt = ad
0 +

∞∑

i=0

ad
1ipdt−i−1 +

∞∑

i=0

ad
2i∆dt−i−1 + εd∗

t ,

rt = ar
0 +

∞∑

i=0

ar
1ipdt−i−1 +

∞∑

i=0

ar
2i∆dt−i−1 + εr∗

t ,
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where the coefficients and innovations (εd∗
t and εr∗

t ) are defined in Appendix B. Our

filtering approach thus uses more information and aggregates this information in a

parsimonious way (see also Cochrane (2008)). The present-value approach we propose,

in combination with the Kalman filter, allows us therefore to expand the information set

without increasing the number of parameters.

TABLE III ABOUT HERE

For cash-reinvested dividends, the return regression has a predictive coefficient of βr =

−0.10 with an R2 value of 8.20% and a t-statistic of -2.32. The dividend growth rate

regression results in a predictive coefficient of βd = −0.01, with an R2 value of 0.01% and

a t-statistic of -0.91.

We have argued that the reinvestment strategy matters for realized dividend growth

and that market-reinvested dividend growth is more volatile than cash-reinvested dividend

growth due to the volatility of stock returns. Further, we have argued that apart from this

added volatility as a result of the reinvestment return, realized market-reinvested dividend

growth can be well described by an ARMA(1,1) process. To further explore this argument

we present results for several OLS regressions of market-reinvested dividends. The results

are summarized in Table IV. When we include in the regression a constant term and an

AR(1) term, we find a negative coefficient that is significant at the 10% level. The R2 is

low and equal to 5.0%. When we estimate an ARMA(1,1) process while controlling for

the lagged return (rt−1), we find an AR(1) coefficient of 0.559 and an MA(1) coefficient

of -0.569, both statistically significant. Further, the lagged return enters significantly, as

expected, with a negative coefficient of -0.378. The R2 of the latter regression equals

27.8%. In fact, including the lagged return as the sole regressor already leads to an R2 of

22.3%.13 The R2 of 27.8% is still lower than the 31.6% that we achieve by filtering, even

though the OLS regressions allow for an additional degree of freedom compared to the
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specification for dividend growth in the filtering procedure. To increase the R2 further we

need to include the information contained in the price-dividend ratio, which in the OLS

regressions above we have not yet explored. However, including the lagged price-dividend

ratio in the regression does not lead to a higher R2, the coefficient is not significant, and

the coefficient has the wrong sign, consistent with the OLS regression above where the

price-dividend ratio is the only regressor. This is not surprising. When the price-dividend

ratio moves both due to expected returns and expected dividend growth rates, the price-

dividend ratio is a noisy proxy for expected dividend growth rates. Our filtering approach

explicitly takes into account the possibility that the price-dividend ratio also moves due

to expected return variation, which allows us to filter out the relevant expected dividend

growth rate information and achieve an R2 for dividend growth equal to 31.6%.

TABLE IV ABOUT HERE

IV. Hypothesis Testing

Our estimates reveal several important properties of expected returns and expected

dividend growth rates. In particular, both expected returns and expected growth rates

appear to vary over time, expected returns appear to be more persistent than expected

growth rates, and both appear to contain a persistent component. In this section, we

perform a series of hypothesis tests to establish the statistical significance of these results.

Our likelihood-based estimation approach provides a straightforward way to address

these questions using the likelihood ratio (LR) test. Denote the log-likelihood that

corresponds to the unconstrained model by L1. The log-likelihood that follows from

estimating the model under the null hypothesis is denoted by L0. The likelihood ratio
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test statistic is then given by

LR = 2(L1 − L0),

which is asymptotically chi-squared distributed with degrees of freedom equal to the

number of constrained parameters. We perform our test for both market-reinvested

dividend growth rates and cash-reinvested dividend growth rates.

First, we test for a lack of return predictability. The associated null hypothesis is

H0 : δ1 = σµ = ρµg = ρµd = 0,

where the LR statistic has a χ2
4-distribution. Under this null hypothesis, all variation in

the log price-dividend ratio comes from variation in expected growth rates. In this case,

we can uncover expected dividend growth rates through an OLS regression of dividend

growth rates on the lagged price-dividend ratio.

Second, we test for the lack of dividend growth rate predictability. The null hypothesis

that corresponds to this test for cash-reinvested dividends reads

H0 : γ1 = σg = ρµg = 0,

where the LR statistic follows a χ2
3-distribution. If dividend growth is unpredictable,

we can uncover expected returns through an OLS regression of returns on the lagged

price-dividend ratio. For market-reinvested dividends, the null hypothesis is

H0 : γ1 = σg = ρµg = σM = ρM = 0,

where the LR statistic has a χ2
5-distribution. The absence of dividend growth

predictability also requires that σM and ρM be zero. If not, εM
t+1 correlates with returns
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and forecasts subsequent dividend growth rates. Under this null hypothesis, all variation

in the log price-dividend ratio comes from variation in expected returns.

Third, we test whether the persistence coefficient of expected dividend growth rates

equals zero. The null hypothesis that corresponds to this test is

H0 : γ1 = 0,

where the LR statistic has a χ2
1-distribution. The question of whether expected dividend

growth rates are time-varying, and what their persistence is, plays an important role in

general equilibrium models with long-run risk (Bansal and Yaron (2004) and Hansen,

Heaton, and Li (2008)).

Fourth, we test whether the persistence coefficients of expected dividend growth rates

and expected returns are equal, which has been assumed by Cochrane (2007) and Lettau

and Van Nieuwerburgh (2008) for analytical convenience. The null hypothesis for this

test is

H0 : γ1 = δ1,

where the LR statistic has a χ2
1-distribution. Under the null hypothesis of equal persistence

coefficients, the price-dividend ratio is an AR(1) process, which has been used as a

reduced-form model by many authors.14 Under the alternative hypothesis, the price-

dividend ratio is not an AR(1) process, as the sum of two AR(1) processes is an

ARMA(2,1) process.

Finally, we test whether the inclusion of εM
t adds significantly to the fit of the model.

The null hypotheses we test are

H0 : σM = 0,
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and

H0 : ρM = 0.

In both cases, the LR statistic has a χ2
1-distribution.

We summarize the LR statistics of all these tests in a table in the Internet Appendix.

The table also contains the critical values at the 5% and 1% significance levels for the χ2

with N degrees of freedom. The table shows that all the null hypotheses stated above can

be rejected at the 5% level. This suggests, in the context of our model, that both returns

and dividend growth rates are predictable. Furthermore, it seems that expected returns

are more persistent than expected dividend growth rates, given that (i) we find a lower

value of γ1 than for δ1 in our unconstrained estimates and (ii) the hypothesis that these

two coefficients are equal can be rejected at the 1% level. Finally, the inclusion of the term

εM
t in our specification for market-reinvested dividend growth seems to add significantly

to the fit of the model. The correlation between returns and εM
t is significantly different

from 0 and positive, lending further support to our interpretation of εM as a reduced-form

representation for reinvesting dividends in the market throughout the year.

V. Additional Results

A. Comparing the Filtered Series

In this section, we compare the filtered series for both expected returns and expected

dividend growth rates for both reinvestment strategies. In Figure 2, we plot the filtered

series for µt as well as the realized log return when dividends are reinvested in the risk-free

rate. We compare these series to the fitted return series from an OLS regression of realized

log returns on the lagged price-dividend ratio. The figure shows that the two expected
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return series are almost identical, consistent with the comparable R2 values that we find

for both approaches. In Figure 3, we plot the same series when dividends are reinvested in

the market. In this case, the expected return series of our filtering procedure is different

from the OLS series. The filtered series is lower in the 1980s and higher by the end of the

1990s. Consequently, the OLS regression predicts a negative return in the 1990s, whereas

the filtered series remains positive.15

FIGURE II AND III ABOUT HERE

In Figure 4 we plot the filtered series for gt when dividends are reinvested in the

risk-free rate as well as the fitted value from an OLS regression of realized log dividend

growth rates (again reinvested in the risk-free rate) on the lagged price-dividend ratio.

The difference between the two series is large. The filtered series picks up much more of

the variation in realized dividend growth than the fitted values from the OLS regression

do. Further, it appears that expected dividend growth has a positive autocorrelation, but

its persistence is not as high as that of the price-dividend ratio. The price-dividend ratio

is mainly driven by expected returns, which are more persistent than expected dividend

growth rates, as we formally tested in Section IV. In Figure 5 we plot the same series, but

now for the reinvestment strategy that reinvests dividends in the market. The filtered

series picks up a large fraction of the variation in market-reinvested dividend growth

rates. This implies that a substantial fraction of market-reinvested dividend growth is

predictable.

FIGURE IV AND V HERE
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B. Variance Decompositions

We now derive variance decompositions of both the price-dividend ratio and

unexpected returns in both models. The variance decomposition of the price-dividend

ratio for cash-reinvested dividends is given by

var(pdt) = B2
1var(µt) + B2

2var(gt) − 2B1B2cov(µt, gt)

=
(B1σµ)2

1 − δ2
1

+
(B2σg)

2

1 − γ2
1

−
2B1B2σgµ

1 − δ1γ1

. (10)

The first term, B2
1var(µt), represents the variation in the price-dividend ratio due to

discount rate variation. The second term, B2
2var(gt), measures the variation in the price-

dividend ratio due to expected dividend growth rate variation. The last term measures the

covariation between these two components. For market-reinvested dividends, the variance

decomposition is given by

var
(
pdM

t

)
= B2

1var (µt) + var
(
B2g

M
t + (B2 − 1)εM

t

)
+ 2cov

(
B1µt, B2g

M
t + (B2 − 1) εM

t

)
.(11)

We include the variance due to εM
t as part of expected dividend growth variation.

This enhances the comparison with cash-reinvested dividends because we can

now also summarize the decomposition using three terms: variation due to

discount rates, B2
1var(µt), variation due to expected dividend growth variation,

var
(
B2g

M
t + (B2 − 1)εM

t

)
, and the covariance between these two components. Table V

summarizes the results, where we use sample covariances and we standardize all terms

on the right-hand side of (10) and (11) by the left-hand side, so that the sum of the

terms is 100%. We find that for both reinvestment strategies, most of the variation in the
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price-dividend ratio is related to expected return variation.

TABLE V ABOUT HERE

We decompose the variance of unexpected stock returns as in Campbell (1991). In the

case of cash-reinvested dividend growth rates, the unexpected return can be written as

rt+1 − µt = −ρB1ε
µ
t+1 + ρB2ε

g
t+1 + εd

t+1. (12)

We group the last two terms together to decompose the unexpected return into the

influence of discount rates, dividend growth variation, and the covariance between the

two. In the case of market-reinvested dividend growth rates, the unexpected return can

be written as16

rt+1 − µt = −ρB1ε
µ
t+1 + ρB2ε

g
t+1 + εd

t+1 + (1 − ρ)εM
t+1

= −ρB1ε
µ
t+1 + ρB2ε

gM
t+1 + εdM

t+1 + (B2 − 1) εM
t . (13)

As before, we group all the terms after −ρB1ε
µ
t+1 together and compute the influence of

discount rates, dividend growth rates, and the covariance between these two components.

In the results we report below, we use sample covariances and standardize all terms on

the right-hand side of equations (12) and (13) by the left-hand side, so that the sum of

the terms is 100%.

The variance decomposition of unexpected returns is quite different across

reinvestment strategies. This difference is caused by the difference in the correlation

between εµ and εg, which is higher in the case of market-reinvested dividends, and the

difference in the persistence of expected dividend growth rates, γ1, which is higher in the

case of market-reinvested dividends. Finally, the decomposition of unexpected returns

suggests that dividend growth variation plays a significant role in explaining unexpected
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returns.

C. S&P500 Index

In this section, we repeat our estimation for cash-reinvested dividends using data for

the S&P500 index.17 As before, we use monthly returns with and without dividends to

construct an annual dividend and price series. We reinvest dividends paid out throughout

the year in the risk-free rate. The estimation results are summarized in Table VI. While

the results are generally similar to the results in Table II, a first difference is that the

persistence of expected dividend growth rates is slightly higher using the S&P500 data,

with a value of 0.485. Second, the correlation between innovations to expected returns

and expected growth rates, ρµg, is a estimated to be higher with a value of 0.494, and

the correlation between innovations to expected returns and unexpected dividend shocks

is also estimated to be higher with a value of 0.853. Third, the R2 values for returns as

well as for dividend growth rates are higher using S&P500 data than the corresponding

numbers reported in Table II. The R2 for returns now equals 9.8% and the R2 for dividend

growth is 24.2%.

TABLE VI ABOUT HERE

D. Out-of-Sample Predictability

The R2 values we have reported so far are in-sample measures of fit. To assess the

out-of-sample predictability of our model, we follow Campbell and Thompson (2008) and
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Goyal and Welch (2006) and compute the mean squared error,

R2
OS−Ret = 1 −

∑T−1
t=0 (rt+1 − µ̃t)

2

∑T−1
t=0 (rt+1 − rt)

2
,

where µ̃t is the filtered value of the expected return using only data up until time t to

filter and to estimate the parameters of the model. The denominator rt is the historical

mean of returns up until time t.

Similarly, we compute the out-of-sample mean squared error for dividend growth,

R2
OS−Div = 1 −

∑T−1
t=0 (∆dt+1 − g̃t)

2

∑T−1
t=0

(
∆dt+1 − ∆dt

)2 ,

where g̃t is the filtered value of the expected dividend growth rate using data up until

time t to filter and to estimate the parameters of the model. The denominator ∆dt is the

historical mean of dividend growth rates up until time t.

We start our out-of-sample computations in 1972. Using the data between 1946 and

1972 to compute the parameters of the model, we compute the expected return (expected

dividend growth rate) for 1973. We compare this prediction with the realized return

(dividend growth rate). We then use the data between 1946 and 1973 to compute the

parameters of the model and compute predictions for 1974. We proceed in this way up

until 2007.

The results are summarized in Table VII. The table shows that our model

performs somewhat better than standard predictive regressions in terms of out-of-sample

predictability. Over this sample period, our model generates an out-of-sample mean

squared error of 1.1% for returns and 5.7% for dividend growth rates. For standard

predictive regressions, these numbers are -1.8% for returns and -5.6% for dividend growth
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rates.

TABLE VII ABOUT HERE

E. Robustness to Log-linearizations

In deriving the expression for the log price-dividend ratio in Section I, we use the

approximation to the log total stock return in equation (4). In Binsbergen and Koijen

(2010) we study a nonlinear present-value model within the class of linearity-inducing

models developed by Menzly, Santos, and Veronesi (2004) and generalized by Gabaix

(2009). Because the transition equation is nonlinear in this model, we use nonlinear

filtering techniques to estimate the time series of expected returns. More specifically,

we use an unscented Kalman filter (Julier and Uhlmann (1997)) and a particle filter.

We find that the main results that we report in this paper are not sensitive to the

linearization of log total stock returns. Both expected returns and expected growth

rates are persistent processes, but expected returns are more persistent than expected

growth rates. Innovations to expected returns and expected growth rates are positively

correlated, and we find that the filtered series are good predictors of future returns and

dividend growth rates.

VI. Conclusion

We propose a new approach to predictive regressions by assuming that conditional

expected returns and conditional expected dividend growth rates are latent, following an

exogenously specified ARMA model. We combine this model with a Campbell and Shiller

(1988) present-value model to derive the implied dynamics of the price-dividend ratio,

and use filtering techniques to uncover estimated series of expected returns and expected
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dividend growth rates. The filtered series turn out to be good predictors for future returns

and for future dividend growth rates.

We find that the reinvestment strategy of dividends received within a particular year

can have a nonnegligible effect on dividend growth rates. For instance, if dividends are

reinvested in the aggregate stock market instead of the T-bill rate, the annual volatility

of dividend growth is twice as high. We provide a parsimonious model to relate the

two reinvestment strategies. The model shows, for instance, that if cash-reinvested

expected growth rates are an AR(1) process, market-invested expected growth rates are

an ARMA(1,1) process.

Our likelihood setup allows for straightforward hypothesis testing using the likelihood

ratio test. We can statistically reject the hypotheses that returns and dividend

growth rates are unpredictable or that they are not persistent. Further, we can reject

the hypothesis that expected returns and expected dividend growth rates are equally

persistent. Rather, we find that expected dividend growth rates are less persistent than

expected returns.
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Appendix A. Kalman Filter

In this section we provide details on the Kalman filtering procedure of our model. The
discussion pertains to the general case in which dividends are reinvested in the market;
the other models considered in the paper are special cases of this general setup.

We first reformulate the model in standard state-space form. Define an expanded state
vector

Xt =




ĝt−1

εd
t

εg
t

εµ
t

εM
t

εM
t−1,




that satisfies
Xt+1 = FXt + ΓεX

t+1,

where

F =




γ1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0




, Γ =




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




, and εX
t+1




εd
t+1

εg
t+1

εµ
t+1

εM
t+1


 ,

which we assume to be jointly normally distributed.

The measurement equation, which has the observables Yt = (∆dM
t , pdM

t ), is given by:

Yt = M0 + M1Yt−1 + M2Xt,

where

M0 =

[
γ0

(1 − δ1) A

]
,

M1 =

[
0 0
0 δ1

]
,

M2 =

[
1 1 0 0 1 −1

B2(γ1 − δ1) 0 B2 −B1 −1 δ1

]
.
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The Kalman procedure is then given by

X0|0 = E [X0] = 06×1,

P0|0 = E [XtX
′
t] ,

Xt|t−1 = FXt−1|t−1,

Pt|t−1 = FPt−1|t−1F
′ + ΓΣΓ′,

ηt = Yt − M0 − M1Yt−1 − M2Xt|t−1,

St = M2Pt|t−1M
′
2,

Kt = Pt|t−1M
′
2S

−1
t ,

Xt|t = Xt|t−1 + Ktηt,

Pt|t = (I − KtM2) Pt|t−1.

The likelihood is based on prediction errors (ηt) and their covariance matrix, which is
subject to change in every iteration:

L = −

T∑

t=1

log(det(St)) −

T∑

t=1

η′
tS

−1
t ηt.

Finally, the covariance matrix of the shocks is

Σ ≡ var







εg
t+1

εµ
t+1

εd
t+1

εM
t+1





 =




σ2
g σgµ σgd σgM

σgµ σ2
µ σµd σµM

σgd σµd σ2
d σdM

σgM σµM σdM σ2
M


 .

Recall that we have assumed that

εM
t+1 = βMεr

t+1 + εM⊥
t+1 ,

where βM = ρMσM/σr and σr =
√

var(εr
t+1), and

εr
t+1 ≡ rt+1 − µt ≈ −B1ρεµ

t+1 + B2ρεg
t+1 + εd

t+1.

It follows that

σ2
r = σ2

d + ρ2B2
1σ

2
µ + ρ2B2

2σ
2
g − 2ρB1σµd − 2ρ2B1B2σµg,

σgM = −βMρB1σgµ + βMρB2σ
2
g ,

σµM = βMσµd − βMρB1σ
2
µ + βMB2ρσµg ,

σdM = βMσ2
d − βMρB1σµd.

We subsequently maximize the likelihood over the parameters:

Θ ≡ (γ0, δ0, γ1, δ1, σg, σµ, σd, ρgµ, ρgd, ρµd, σM , ρM) .
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Appendix B. Wold Decomposition

Using the Kalman filter in Appendix A in stationary state (Kt = K), we can express
the filtered state in terms of historical growth rates and price-dividend ratios:

Xt|t = Xt|t−1 + K
(
Yt − M0 − M1Yt−1 − M2Xt|t−1

)

= (I − KM2)Xt|t−1 + K (Yt − M0 − M1Yt−1)

= (I − KM2)FXt−1|t−1 + K (Yt − M0 − M1Yt−1)

= . . .

=

∞∑

i=0

[(I − KM2) F ]i K (Yt−i − M0 − M1Yt−1−i) .

Using the return definition, we have:

rt+1 = κ + ρpdt+1 + ∆dt+1 − pdt,

which implies a representation in terms of price-dividend ratios and returns. The first
element of Xt is ĝt−1 = gt−1 − γ0. Hence, it is more natural to think about Xt|t−1 :

Xt|t−1 = FXt−1|t−1

= F

∞∑

i=0

[(I − KM2)F ]i K (Yt−1−i − M0 − M1Yt−2−i) ,

implying that the first element of Xt|t−1 equals ĝt−1|t−1, the filtered value of expected
growth rates up to time t − 1. Using the expression for the log price-dividend ratio, we
obtain a similar representation for the filtered value of expected returns, µ̂t−1|t−1:

µ̂t−1|t−1 = B−1
1

(
pdt−1 − A − B2ĝt−1|t−1

)
.

This system represents expected returns and expected growth rates as a function of lagged
growth rates and price-dividend ratios. Define εd∗

t ≡ ∆dt − γ0 − gt−1|t−1. We obtain:

∆dt = γ0 + e′1Xt|t−1 + εd∗
t

= γ0 + e′1F

∞∑

i=0

[(I − KM2) F ]i K (Yt−1−i − M0 − M1Yt−2−i) + εd∗
t

= ad
0 +

∞∑

i=0

ad
1ipdt−i−1 +

∞∑

i=0

ad
2i∆dt−i−1 + εd∗

t ,
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where

ad
0 = γ0 − e′1F

∞∑

i=0

[(I − KM2) F ]i KM0,

ad
1i = e′1FKe1, if i = 0

= e′1F [(I − KM2)F ]i−1 ((I − KM2)FK − KM1) e1, if i 6= 0,

ad
2i = e′1FKe2, if i = 0

= e′1F [(I − KM2)F ]i−1 ((I − KM2)FK − KM1) e2, if i 6= 0.

For returns, we have

rt = ar
0 +

∞∑

i=0

ar
1ipdt−i−1 +

∞∑

i=0

ar
2i∆dt−i−1 + εr∗

t ,

where

ar
0 = ad

0 − B−1
1 A,

ar
1i = −

B2

B1

ad
1i +

1

B1

, if i = 0,

= −
B2

B1

ad
1i, if i 6= 0,

ar
2i = −

B2

B1

ad
2i.
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Table I

Summary Statistics of Dividend Growth Rates

The table shows summary statistics for both market-reinvested and cash-reinvested dividend growth rates
using data between 1946 and 2007.

∆dM
t ∆dt

Mean 0.0586 0.0611
Median 0.0558 0.0540
Standard Deviation 0.1232 0.0622
Maximum 0.3699 0.2616
Minimum -0.2912 -0.0579
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Table II

Estimation Results

In the second and third columns, we present the estimation results of the present-value model in equations
(4) to (6) with cash-reinvested dividends. In the fourth and fifth columns, we present the estimation
results of the present-value model in equations (7) to (9) with market-reinvested dividends. The models
are estimated by conditional maximum likelihood using data between 1946 and 2007 on dividend growth
rates and the corresponding price-dividend ratio. Panel A presents the estimates of the coefficients
of the underlying processes (bootstrapped standard errors between parentheses). Panel B reports the
resulting coefficients of the present-value model (pdt = A − B1 (µt − δ0) + B2 (gt − γ0)). The constants
A, B1 and B2 are nonlinear transformations of the underlying present-value parameters. Therefore, when
interpreting the standard errors, it should be taken into account that the distribution of these constants
is not symmetric. In Panel C we report the R2 values for returns and dividend growth rates.

Panel A: Maximum likelihood estimates
Cash-reinvested dividends Market-reinvested dividends
Estimate S.e. Estimate S.e.

δ0 0.090 (0.020) 0.086 (0.039)
γ0 0.062 (0.011) 0.060 (0.014)
δ1 0.932 (0.128) 0.957 (0.055)
γ1 0.354 (0.271) 0.638 (0.170)
σµ 0.016 (0.013) 0.016 (0.012)
σg 0.058 (0.017) - -
σM

g - - 0.077 (0.015)
σd 0.002 (0.022) - -
σM

d - - 0.089 (0.011)
ρdµ -0.147 (0.579) - -
ρM

dµ - - -0.344 (0.171)

ρµg 0.417 (0.375) - -
ρM

µg - - 0.805 (0.078)
σM - - 0.054 (0.016)
ρM - - 0.586 (0.191)

Panel B: Implied present-value model parameters
Cash-reinvested dividends Market-reinvested dividends

A 3.571 (0.421) 3.612 (0.953)
B1 10.334 (4.088) 13.484 (5.626)
B2 1.523 (2.001) 2.616 (2.723)
ρ 0.969 - 0.968 -

Panel C: R2 values
Cash-reinvested dividends Market-reinvested dividends

R2
Ret 8.2% - 8.9% -

R2
Div 13.9% - 31.6% -
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Table III

OLS Predictive Regressions

The table reports the OLS regression results of log returns and log dividend growth rates on the lagged
log price-dividend ratio using data between 1946 and 2007. The second and fourth columns report the
results using dividends that are reinvested in the aggregate stock market, whereas the third and fifth
columns report the results using cash-reinvested dividends. Two asterisks (**) indicates significance at
the 5% level, and three asterisks indicates significance at the 1% level.

Dependent Variable rM
t rt ∆dM

t ∆dt

constant 0.4539 *** 0.4555 *** 0.1814 0.1085
(0.1537) (0.1524) (0.1266) (0.0645)

pdM
t−1 -0.1023 ** - -0.0361 -

(0.0449) - (0.0370) -

pdt−1 - -0.1020 ** - -0.0138
- (0.0441) - (0.0186)

R2 7.96% 8.20% 1.56% 0.90%
Adj. R2 6.43% 6.67% -0.07% -0.75%

39



Table IV

Predictive Regressions of Market Reinvested Dividend Growth

The table reports the results for several reduced-form specifications of realized log dividend growth
estimated using data between 1946 and 2007. Dividends are reinvested in the aggregate stock market.
One asterisk (*) denotes significance at the 10% level, two asterisks indicates significance at the 5% level,
and three asterisks indicates significance at the 1% level. In the last specification, the reported constant
term is the estimated unconditional mean of dividend growth (γ0).

Dependent Variable: ∆dM
t

constant 0.0605 *** 0.1007 *** 0.0594 ***
(0.0127) (0.0170) (0.0146)

AR(1) -0.2214 * - 0.5594 ***
(0.1255) - (0.1517)

MA(1) - - -0.5688 **
- - (0.2080)

rt−1 - -0.3717 *** -0.3784 ***
- (0.0904) (0.1250)

R2 5.01% 22.27% 27.79%
Adj. R2 3.40% 20.95% 24.06%

Table V

Variance Decompositions of the Price-dividend Ratio and Unexpected Returns

Panel A: Decomposition of the price-dividend ratio
Reinvestment strategy Discount rates Div. Growth Covariance

Cash 104.6% 4.6% -9.2%
Market 117.9% 4.9% -22.8%

Panel B: Decomposition of unexpected returns
Reinvestment strategy Discount rates Div. Growth Covariance

Cash 118.4% 34.6% -53.0%
Market 215.3% 49.4% -164.7%
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Table VI

S&P500 Estimation Results for Cash-Reinvested Dividends

We present the estimation results of the present-value model in equations (4) to (6) using cash-reinvested

dividend and price data from the S&P 500 index. The model is estimated by conditional maximum

likelihood using data between 1946 and 2007 on the dividend growth rate and the price-dividend

ratio. Panel A presents the estimates of the coefficients of the underlying processes (bootstrapped

standard errors in parentheses). Panel B reports the resulting coefficients of the present-value model

(pdt = A − B1 (µt − δ0) + B2 (gt − γ0)). These parameters are nonlinear transformations of the original

present-value parameters. When interpreting the standard errors, it should be taken into account that

the distribution of the coefficients is not symmetric. In Panel C we report the R2 values for returns and

dividend growth rates.

Panel A: Maximum likelihood estimates
Estimate S.e. Estimate S.e.

δ0 0.090 (0.018) γ0 0.062 (0.012)
δ1 0.927 (0.084) γ1 0.485 (0.148)

σµ 0.013 (0.013) σg 0.046 (0.009)
ρdµ 0.858 (0.511) σd 0.004 (0.011)
ρµg 0.494 (0.195)

Panel B: Implied present-value model parameters

A 3.541 (0.392) ρ 0.968
B1 9.716 (3.752) B2 1.887 (1.408)

Panel C: R2 values

R2
Returns 9.8% R2

Div 24.2%
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Table VII

Out-of-Sample Predictability

We compute the mean squared error of our present-value model and of standard predictive regressions

and divide them by the mean squared error generated by the historical mean of returns and dividend

growth rates. We present results for cash-reinvested dividends and use the model in equations (4) to (6).

Out-of-sample predictability

Predictive regression Present-value model

Returns -0.0178 0.0106
Dividend growth rates -0.0559 0.0576
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Dividend Growth Rate, Reinvested in the Aggregate Market

Figure 1. Dividend-growth rates: Reinvesting in either the risk-free rate or in the
market. The graph plots the log dividend growth rate for two dividend reinvestment strategies:
reinvesting in the risk-free rate and reinvesting in the market.
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Figure 2. Filtered series for expected returns for reinvesting in the risk-free rate. The
graph plots the filtered series of expected returns (µt) when dividends are reinvested in the risk-free
rate. The graph also plots the realized return rt+1 as well as the expected return obtained from an
OLS regression of rt+1 on the lagged price-dividend ratio.
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Figure 3. Filtered series for expected returns for reinvesting in the market. The graph
plots the filtered series of expected returns (µt) when dividends are reinvested in the market. The
graph also plots the realized return rM

t+1 (again when dividends are reinvested in the market) as well
as the expected return obtained from an OLS regression of rM

t+1 on the lagged price-dividend ratio.
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Figure 4. Filtered series for expected dividend growth for reinvesting in the risk-free
rate. The graph plots the filtered series of expected dividend growth (gt) when dividends are
reinvested in the risk-free rate. The graph also plots the realized dividend growth ∆dt+1 (again
when dividends are reinvested in the risk-free rate) as well as the expected dividend growth rate
obtained from an OLS regression of realized dividend growth ∆dt+1 on the lagged price-dividend
ratio.
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Figure 5. Filtered series for expected dividend growth for reinvestment in the market.
The graph plots the filtered series of expected dividend growth (gM

t ) for market-reinvested dividends,
the fitted OLS value, where log dividend growth rates are regressed on the lagged price-dividend ratio,
and the realized dividend growth rate ∆dM

t+1.
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Notes

1See also Cochrane (1994) and Lettau and Ludvigson (2005).
2For instance, the risk-return properties of the end-of-period capital will be different if an investor

allocates its capital to stocks instead of Treasury bonds. By the same token, the properties of dividend

growth rates depend on the reinvestment strategy chosen for dividends that are received within a

particular year.
3See for instance Lettau and Ludvigson (2005), Cochrane (2007), and Lettau and Van Nieuwerburgh

(2008).
4Pástor and Stambaugh (2006) show a similar result for return predictability. They abstract, however,

from dividend growth predictability and do not impose the present-value relationship.
5The Internet Appendix is available on the Journal of Finance website at

http://www.afajof.org/supplements.asp.
6Under these assumptions, no filtering is required to uncover expected returns and expected dividend

growth rates. We test, using a likelihood ratio test, whether the persistence of expected returns and

expected dividend growth rates is equal, and we reject this hypothesis.
7Cochrane (1991, 2007), and Lettau and Van Nieuwerburgh (2008) present a version of this model

in which it is assumed that expected growth rates are constant, or that expected returns are equally

persistent as expected growth rates.
8Many authors have argued that expected returns are likely to be persistent, including Fama and

French (1988), Campbell and Cochrane (1999), Ferson, Sarkissian, and Simin (2003), and Pástor and

Stambaugh (2006). Further, it has been argued that expected dividend growth rates have a persistent

component; see, for example, Bansal and Yaron (2004), Menzly, Santos, and Veronesi (2004), and Lettau

and Ludvigson (2005).
9See also Cochrane (2008) and Rytchkov (2007).

10This is consistent with Menzly, Santos, and Veronesi (2004) and Lettau and Ludvigson (2005).
11These regressions have been studied widely in the literature. An incomplete list of references includes

Cochrane (2007), Lettau and Van Nieuwerburgh (2008), and Stambaugh (1999).
12Given that for values of γ1 smaller than 1/ρ, the coefficient B2 is greater than zero, we might expect

a positive sign in this regression. However, the price-dividend ratio is a noisy proxy for expected dividend

growth rates when the price-dividend ratio also moves due to expected return variation, which can lead

to the wrong sign in the regression. Binsbergen and Koijen (2010) show that the price-dividend ratio

relates negatively to expected growth rates if
σ2

g

1−γ2

1

< B1

B2

σµg

1−γ1δ1

.
13Fama and French (1988) add up dividends throughout the year, which is close to our cash-reinvested

dividend reinvestment strategy. They find that dividend growth rates are positively correlated with past

returns. When dividends are reinvested in the market, this induces a negative correlation that more than

offsets the positive correlation found by Fama and French (1988).
14See for example Stambaugh (1999), Lewellen (2004), and Lettau and Van Nieuwerburgh (2008).
15Campbell and Thompson (2008) suggest to impose that the equity risk premium be restricted to

always be positive in predictive regressions, which, as they show, enhances the out-of-sample predictability

of stock returns.
16The first of these two equations illustrates why the quantitative influence of εM

t+1 on unexpected

returns is negligible: it is premultiplied by 1− ρ, which equals 0.032. In the variance decomposition, the

contribution of the term is less than 1%.
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17Ang and Bekaert (2007) also use S&P500 data in their analysis of return predictability.
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Internet Appendix for

“Predictive Regressions: A Present-Value Approach”∗

IA.A Derivation of the Present-value Model

We consider the model

∆dt+1 = gt + εd
t+1,

gt+1 = γ0 + γ1 (gt − γ0) + εg
t+1,

µt+1 = δ0 + δ1 (µt − δ0) + εµ
t+1,

where

∆dt+1 ≡ log

(
Dt+1

Dt

)
,

µt ≡ Et[rt+1],

rt+1 ≡ log

(
Pt+1 + Dt+1

Pt

)
.

We also define pdt = log(PDt). Now consider the log-linearized return, with pd = E [pdt]:

rt+1 = log (1 + exp (pdt+1)) + ∆dt+1 − pdt

' log
(
1 + exp

(
pd

))
+

exp
(
pd

)

1 + exp
(
pd

)
(
pdt+1 − pd

)
+ ∆dt+1 − pdt

= κ + ρpdt+1 + ∆dt+1 − pdt.

Equivalently, we have

pdt = κ + ρpdt+1 + ∆dt+1 − rt+1,

where

κ = log
(
1 + exp

(
pd

))
− ρpd,

ρ =
exp

(
pd

)

1 + exp
(
pd

) .

∗Citation format: Jules H. van Binsbergen and Ralph S.J. Koijen, 2009, Internet Appendix
for “Predictive Regressions: A Present-Value Approach,” Journal of Finance [vol #], [pages],
http://www.afajof.org/IA/[year].asp. Please note: Wiley-Blackwell is not responsible for the content
or functionality of any supporting information supplied by the authors. Any queries (other than missing
material) should be directed to the authors of the article.
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By iterating this equation we find

pdt = κ + ρpdt+1 + ∆dt+1 − rt+1

= κ + ρ (κ + ρpdt+2 + ∆dt+2 − rt+2) + ∆dt+1 − rt+1

= κ + ρκ + ρ2pdt+2 + ∆dt+1 − rt+1 + ρ (∆dt+2 − rt+2)

=
∞∑

j=0

ρjκ + ρ∞pd∞ +
∞∑

j=1

ρj−1 (∆dt+j − rt+j)

=
κ

1 − ρ
+

∞∑

j=1

ρj−1 (∆dt+j − rt+j) ,

assuming that ρ∞pd∞ = limj→∞ ρjpdt+j = 0 (in expectation would suffice for our

purpose). Next, we take expectations conditional upon time t:

pdt =
κ

1 − ρ
+

∞∑

j=1

ρj−1Et [∆dt+j − rt+j]

=
κ

1 − ρ
+

∞∑

j=1

ρj−1Et [gt+j−1 − µt+j−1]

=
κ

1 − ρ
+

∞∑

j=0

ρjEt [gt+j − µt+j ] ,

=
κ

1 − ρ
+

∞∑

j=0

ρj
(
γ0 + γj

1 (gt − γ0) − δ0 − δj
1 (µt − δ0)

)

=
κ

1 − ρ
+

γ0 − δ0

1 − ρ
+

∞∑

j=0

ρj
(
γj

1 (gt − γ0) − δj
1 (µt − δ0)

)

=
κ

1 − ρ
+

γ0 − δ0

1 − ρ
+

gt − γ0

1 − ργ1

−
µt − δ0

1 − ρδ1

,

which uses

Et [xt+j ] = α0 + αj
1 (xt − α0) ,

provided that

xt+1 = α0 + α1 (xt − α0) + εt+1.

IA.B Finite-sample Properties

For this section, we analyze the finite-sample properties of our maximum likelihood

estimators. We focus on the model for cash-reinvested dividends in Section I. We
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simulate 1,000 samples with the same number of observations as in the data, starting

with a draw from the unconditional distribution of the state variables. We use the point

estimates of Table II in the simulation. We subsequently estimate the model for each of

the simulated samples. Table IA.I reports the true parameters along with the average,

standard deviation, and quantiles of the distribution of 1,000 parameter estimates in Panel

A. Panel B reports the correlation between the parameter estimates.

Panel A shows that δ1 is somewhat downward biased, while γ1 is upward biased. This

corresponds to an upward bias in σµ and a downward bias in σg. Further, it appears

that the correlation between expected returns and unexpected growth rates, ρµd, is not

estimated precisely. Panel B shows that the estimates for the persistence of expected

returns (δ1) and the persistence of expected growth rates (γ1) are negatively correlated.

Also, we find the persistence parameters and the conditional volatility parameters to be

negatively correlated (e.g., δ1 and σµ).

[Table IA.VIII about here]

IA.C Reinvestment Strategy and Model Specification

In the main article, we assume that the conditional expected dividend growth rate

is an AR(1) process if dividends are reinvested in the risk-free rate. We subsequently

derive the implied dynamics for market-reinvested dividends. We stress again that there

is a present-value model for each reinvestment strategy of dividends, reflected in the time-

series properties of expected returns and expected dividend growth rates. We now consider

the present-value model in equations (4) to (6) for market-reinvested dividends instead

of cash-reinvested dividends. That is, we estimate an alternative specification in which

expected growth rates of market-reinvested dividends are modeled as an AR(1) process.

The parameter estimates of this model are presented in Table IA.II. The table shows that

the estimated value of γ1 is not only lower than in the model in which cash-reinvested

expected dividend growth is an AR(1) process, but it is in fact estimated to be negative.

Despite this negative value for γ1, we still find relatively high R2 values for both returns

and dividend growth rates.

[Table IA.IX about here]

To further explore this evidence of a negative estimated value for γ1 in this model, we

construct a grid of possible levels of γ1. For each point in the grid, we optimize over the

other parameters and record the associated likelihoods and parameter estimates, as shown

in Table IA.III. The main results are summarized in Panel A of Figure IA. 1, where we
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plot the likelihood as a function of γ1. The picture shows that the likelihood has two

peaks, of which one is positive; the other is negative. Panels B and C show plots of the

R-squared values for returns and dividend growth rates as a function of γ1. The R2 value

for dividend growth rates also exhibits a bimodel shape, and perhaps surprisingly, the R2

value is higher for the positive root than for the negative root of γ1. Furthermore, the R2

value for returns is also higher for the positive root of γ1. The figures therefore illustrate

that maximizing R2 values is not necessarily equivalent to maximizing the likelihood.18

[Table IA.X about here]

[Figure IA. 1 about here]
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Table IA.I. Finite-sample properties of the maximum-likelihood estimators.

Panel A: Mean, standard deviation, and quantiles
True Average St.dev. Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90)

δ0 0.090 0.090 0.020 0.067 0.077 0.089 0.101 0.113
δ1 0.932 0.864 0.128 0.765 0.837 0.887 0.926 0.952
γ0 0.062 0.061 0.011 0.047 0.054 0.061 0.069 0.076
γ1 0.354 0.429 0.271 0.218 0.304 0.417 0.565 0.764
σµ 0.016 0.025 0.013 0.012 0.016 0.022 0.030 0.041
σg 0.058 0.045 0.017 0.017 0.036 0.052 0.057 0.061
σd 0.002 0.022 0.019 0.003 0.006 0.014 0.040 0.051
ρgµ 0.417 0.318 0.375 -0.009 0.254 0.403 0.516 0.605
ρµd -0.147 0.176 0.579 -0.808 -0.180 0.298 0.640 0.860

A 3.612 3.546 0.421 3.135 3.345 3.551 3.771 3.979
B1 13.484 8.009 4.088 3.870 5.288 7.116 9.709 12.891
B2 2.616 2.281 2.001 1.268 1.418 1.678 2.212 3.855

Panel B: Correlation matrix
δ0 δ1 γ0 γ1 σµ σg σd ρgµ ρµd

δ0 1.000 0.008 0.783 0.063 -0.021 0.011 -0.022 -0.021 -0.015
δ1 0.008 1.000 0.007 -0.175 -0.686 0.235 -0.189 0.061 -0.149
γ0 0.783 0.007 1.000 0.067 -0.024 0.012 -0.029 -0.034 -0.034
γ1 0.063 -0.175 0.067 1.000 0.107 -0.280 0.337 0.152 0.072
σµ -0.021 -0.686 -0.024 0.107 1.000 -0.105 0.104 0.105 0.233
σg 0.011 0.235 0.012 -0.280 -0.105 1.000 -0.885 0.496 -0.167
σd -0.022 -0.189 -0.029 0.337 0.104 -0.885 1.000 -0.402 0.194
ρgµ -0.021 0.061 -0.034 0.152 0.105 0.496 -0.402 1.000 -0.072
ρµd -0.015 -0.149 -0.034 0.072 0.233 -0.167 0.194 -0.072 1.000

The table contains results about the finite-sample properties of our maximum-likelihood estimators. We
focus on the model for cash-reinvested dividends in Section I. We simulate 1,000 samples with the same
number of observations as in the data, starting with a draw from the unconditional distribution of the
state variables. We use the point estimates of Table II in the simulation. We subsequently estimate the
model for each of the simulated samples. Panel A reports the true parameters along with the average,
standard deviation, and quantiles of distribution of 1,000 parameter estimates. Panel B depicts the
correlation between the parameter estimates.
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Table IA.II. Estimation results of the model in (4)-(6) using market-invested dividends.

Panel A: Maximum likelihood estimates
Estimate S.e. Estimate S.e.

δ0 0.085 (0.019) γ0 0.059 (0.012)
δ1 0.933 (0.148) γ1 -0.324 (0.282)

σµ 0.015 (0.014) σg 0.094 (0.026)
ρdµ -0.422 (0.276) σd 0.065 (0.022)
ρµg 0.905 (0.076)

Panel B: Implied present-value model parameters

A 3.596 (0.349) ρ 0.968
B1 10.263 (3.439) B2 0.761 (2.883)

Panel C: R2 values

R2
Ret 8.6% R2

Div 18.7%

We present the estimation results of the present-value model in equations (4) to (6) using
market-reinvested dividend data. The model is estimated by conditional maximum likelihood using
data from 1946 to 2007 on the dividend growth rate and the price-dividend ratio. Panel A presents the
estimates of the coefficients of the underlying processes (bootstrapped standard errors in parentheses).
Panel B reports the resulting coefficients of the present-value model
(pdt = A − B1 (µt − δ0) + B2 (gt − γ0)). These parameters are non-linear transformations of the original
present-value parameters. When interpreting the standard errors, it should be taken into account that
the distribution of the coefficients is not symmetric. In Panel C we report the R2 values for returns and
dividend growth rates.
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Table IA.III. Estimating a model with an AR(1)-process for expected growth rates in case of market-invested dividends.

γ1

> 0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

δ0 0.084 0.083 0.083 0.085 0.083 0.085 0.085 0.085 0.086 0.087 0.086 0.087 0.085 0.086 0.085 0.083 0.084 0.083 0.077
δ1 0.933 0.957 0.954 0.952 0.949 0.9441 0.936 0.931 0.926 0.921 0.918 0.920 0.922 0.924 0.926 0.933 0.944 0.957 0.976
γ0 0.058 0.059 0.059 0.060 0.059 0.060 0.059 0.059 0.059 0.059 0.058 0.059 0.058 0.058 0.058 0.057 0.058 0.059 0.059
γ1 0.472 -0.900 -0.800 -0.700 -0.600 -0.500 -0.400 -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800
σµ 0.022 0.010 0.010 0.011 0.011 0.012 0.014 0.015 0.017 0.019 0.020 0.021 0.021 0.022 0.023 0.022 0.022 0.020 0.017
σg 0.053 0.029 0.047 0.062 0.076 0.084 0.089 0.095 0.101 0.105 0.051 0.051 0.053 0.053 0.053 0.052 0.050 0.045 0.040
σd 0.107 0.109 0.101 0.092 0.082 0.075 0.069 0.062 0.057 0.053 0.109 0.109 0.108 0.106 0.106 0.106 0.107 0.108 0.109
ρgµ 0.978 0.857 0.887 0.915 0.944 0.928 0.915 0.902 0.897 0.897 0.953 0.968 0.971 0.974 0.977 0.980 0.982 0.986 0.990
ρµd 0.208 0.093 -0.030 -0.158 -0.314 -0.369 -0.403 -0.431 -0.442 -0.442 0.255 0.249 0.237 0.225 0.213 0.200 0.187 0.169 0.142

R2

Ret 0.105 0.075 0.077 0.078 0.079 0.081 0.084 0.086 0.088 0.090 0.092 0.094 0.097 0.100 0.103 0.106 0.106 0.104 0.095
R2

Div 0.242 0.036 0.075 0.105 0.130 0.155 0.176 0.191 0.200 0.200 0.191 0.204 0.217 0.229 0.237 0.240 0.236 0.221 0.193

Log L 6.617 6.466 6.521 6.568 6.609 6.640 6.657 6.660 6.648 6.621 6.578 6.590 6.600 6.609 6.616 6.617 6.611 6.590 6.547

In the column ”> 0” we report the maximum likelihood estimates of equations (4) to (6), but using dividends that are reinvested in the market. In the first column, we impose
the condition that the persistence coefficient of expected dividend growth rates be positive. We then define a grid for γ1 between -0.9 and 0.8 with increments of 0.1, and
compute for each of these values of γ1 the likelihood while optimizing over all the other parameters.7



Figure IA. 1. Log likelihood and R2 values as a function of γ1.
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The graph plots the log likelihood and the R2 values as a function of the persistence of
expected dividend growth, γ1, using the system described in equations (4) to (6) and
data where dividends are reinvested in the aggregate market. We define a grid for γ1

between -0.9 and 0.9 with step size 0.1, and compute for each of these grid points the
likelihood and R2 values of the model while optimizing over all the other parameters.
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IA.D Likelihood Ratio Statistics

Table IA.IV. Likelihood-ratio tests.

Parameters under H0

LR Sign Log Lik. H0 Log Lik. Ha δ0 δ1 γ0 γ1 σµ σg σd ρgµ ρµd σM ρM

Test for lack of return predictability
Cash-reinv. dividends 28.67 *** 7.0593 7.5218 0.0936 0 0.0637 0.9900 0 0.0065 0.0659 0 0 - -
Market-reinv. dividends 22.37 *** 6.4773 6.8381 0.0926 0 0.0666 0.9936 0 0.0057 0.0780 0 0 0.0607 0.8521

.
Test for lack of div. growth predictability
Cash-reinv. dividends 9.23 ** 7.3730 7.5218 0.0882 0.9261 0.0607 0 0.0164 0 0.0617 0 0.3494 - -
Market-reinv. dividends 29.59 *** 6.3609 6.8381 0.0833 0.9514 0.0587 0 0.0104 0 0.1222 0 0.2973 0 0

Test for lack of persistence in expected div. growth
Cash-reinv. dividends 8.26 *** 7.3886 7.5218 0.0882 0.9288 0.0610 0 0.0156 0.0605 0.0121 0.2550 0.2636 - -
Market-reinv. dividends 5.89 ** 6.7431 6.8381 0.0852 0.9262 0.0584 0 0.0174 0.0619 0.0470 0.7449 -0.2207 0.0501 0.6792

Test whether gt and µt are equally persistent
Cash-reinv. dividends 8.60 *** 7.3831 7.5218 0.0867 0.9437 0.0595 0.9437 0.0157 0.0022 0.0617 0.9493 0.3090 - -
Market-reinv. dividends 5.10 ** 6.7558 6.8381 0.0782 0.9478 0.0548 0.9478 0.0166 0.0033 0.0764 0.9351 0.3541 0.0631 0.9254

Test for exclusion of εM

Market-reinv. dividends 11.00 *** 6.6607 6.8381 0.0854 0.9324 0.0591 -0.3253 0.0149 0.0939 0.0635 0.9064 -0.4212 0 0

Test ρM = 0
Market-reinv. dividends 6.93 *** 6.7264 6.8381 0.0853 0.9321 0.0584 0.4419 0.0209 0.0595 0.0633 0.9945 -0.1048 0.0479 0

We report the LR statistics for the tests described in Section IV; in particular, we report the results for the first four tests for the two specifications that we explore in this
paper. “Cash” refers to the system in equations (4)to(6) using the data where dividends are reinvested at the risk-free rate. “Market” refers to the system in equations
(7)to(9) using the data where dividends are reinvested in the aggregate stock market. Two asterisks (**) denotes that we reject the hypothesis at the 5% level and three
asterisks (***) indicates that we reject the hypothesis at the 1% level. The critical values for the χ2 statistic at the five percent level are given by 3.841, 5.991, 7.815, 9.488,
and 11.070 for degrees of freedom equal to 1,2...,5, respectively. These five critical values are equal to 6.635, 9.210, 11.345, 13.277, and 15.086 for the 1% level.

9


