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Abstract

An important theme in modern research on productivity has been that technological

progress may be embodied in capital in the sense that traditional measures of TFP

growth reflect unmeasured improvements in the quality of capital inputs as well as

pure disembodied technological progress. It is commonly believed that an implication

of this embodiment hypothesis is that there should be a negative relationship between

measured TFP and the age of the measured capital stock. This paper presents empirical

evidence which suggests that an increase in the age of the capital stock is actually

associated with higher TFP. This surprising result may be due to the presence of a mis-

measurement normally overlooked in this literature: With mis-measured improvements

in capital quality, the usual depreciation rates used to construct empirical capital stocks

are incorrect for growth accounting. This effect dominates the usual average age effect.



1 Introduction

An important theme in modern research on productivity has been that technological progress

may be “embodied” in capital in the sense that traditional growth accounting measures of

total factor productivity (TFP) likely reflect unmeasured improvements in the quality of

capital inputs as well as pure disembodied technological progress. For example, while the

U.S. National Income and Product Accounts (NIPAs) incorporate some attempts to adjust

investment data to reflect the higher quality of recent expenditures, it is widely believed

that these adjustments do not fully capture improvements in the quality of new capital.

This consensus is based in part on Robert Gordon’s (1989) extensive study, which suggested

substantial biases in NIPA prices for durable equipment; Gordon’s alternative price indexes

have formed the basis for a number of recent papers aimed at calculating the contribution

of embodied technological progress to economic growth.1 However, Gordon’s bias estimates

are likely subject to significant sampling and specification uncertainty, and his price series

finish in 1983, making them difficult to compare with current U.S. price indices which have

incorporated a number of statistical improvements since then. Thus, the likely size of the

mis-measurement of capital quality, and its implications for the sources of productivity

growth, remains a subject of active debate and research.

One well-known approach to assessing the embodiment hypothesis is based on examin-

ing the link between measured TFP and the age distribution of capital. This method relies

on the idea that, if the embodiment hypothesis is true, then standard growth accounting

exercises will underestimate the effect that recent investment has on current productivity

relative to older investment. This idea has often been tested empirically using an approxi-

mate relationship derived by Richard Nelson (1964), who showed that embodiment implied

that measured TFP growth should be negatively correlated with changes in the average

age of the measured capital stock. For example, Edward Wolff (1991, 1996) has presented

estimates of the relationship between TFP and the average age of capital for the U.S. econ-

omy, and argued that these estimates imply that embodiment effects played an important

role in the post-1973 productivity slowdown.2

This paper uses both aggregate and industry-level U.S. data to re-examine the relation-

1See for example, Greenwood, Hercowitz, and Krusell (1997). More recently, Cummins and Violante

(2002) calculate updated measures of capital input based on applying a more detailed set of bias estimates

from Gordon’s study to an updated sample.
2Other studies that have estimated the average age effect on TFP include McHugh and Lane (1983,

1987) and Sakellaris (2001)
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ship between TFP and the age distribution of the capital stock. I show that the correlation

between aggregate TFP growth and changes in the age of the stock is weak, and argue that

the causality in this relationship is difficult to interpret. The estimated negative correlation

comes from the decline in TFP growth after the mid-1970s coinciding with a slowdown in

investment which ended a long period of decline in the average age of the capital stock: The

causality in this relationship could run solely from TFP growth to investment to the average

age, rather than in the other direction. However, using industry-level data a strong and

surprising pattern emerges, which appears to be robust to concerns about causality. Con-

trary to the usual intuition, an increase in the average age of capital appears be associated

with higher measured TFP, with the estimated effect being consistent with unmeasured

technological regress in investment of about 4 percent per year. More generally, measured

TFP growth appears to be negatively correlated with recent investment growth.

These empirical results represent something of a puzzle because they appear to question

the validity of the embodiment hypothesis of un-measured improvements in capital quality.

In the final section of this paper, I provide an explanation that could potentially reconcile

these results with the existence of embodiment. This explanation starts from the observa-

tion that the traditional result of a negative relationship between measured TFP and the

age of capital is derived under the assumption of only one type of mis-measurement, namely

mis-measurement of the productive effect of various units of investment. However, as an

empirical matter, embodiment turns out to also imply another type of mis-measurement,

which is that the traditional depreciation schedules used to construct published capital

stocks are not the correct schedules required for the construction of the correct produc-

tive capital stock. Specifically, the schedules used to construct published stocks place too

little weight on old units of investment. I show that, in general, this latter type of mis-

measurement outweighs the traditional average age effect, implying a positive relationship

between measured TFP and the age of capital.

The contents of the paper are as follows. Section 2 derives a general relationship between

observed TFP growth and the age distribution of capital using the traditional assumption

that published depreciation rates are the correct rates for the construction of the productive

capital stock. Section 3 presents the evidence on this relationship, and Section 4 outlines our

potential explanation for the counter-intuitive empirical results obtained, re-deriving the

relationship between TFP and the age distribution taking into account how the published

depreciation rates have been constructed.
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2 Growth Accounting with Measurement Error

This section derives the relationship between measures of TFP growth and the age dis-

tribution of capital under the usual assumption that the only mis-measurement due to

embodiment relates to the measurement of the true productive effect of new units of in-

vestment relative to older units.

Preliminaries: Empirical growth accounting calculates the growth rate of TFP using an

approximation to the true production function of the form:

zY = zTFP + αzK + (1 − α) zL (1)

where zY is the growth rate of output, zTFP is the growth rate of TFP, 1 − α is the labor

share of income, and zK and zL are the growth rates of capital and labor input. For a

particular measure of the growth rate of capital input, zm

K
, TFP growth is constructed as

zm

TFP = zY − αzm

K − (1 − α) zL

= zTFP + α (zK − zm

K ) (2)

Thus, measured TFP growth depends on both actual TFP growth (true disembodied tech-

nological change) as well as a term reflecting the effect of mis-measured growth in capital

input.

The true capital stock series is defined as

K (t) = I (t) + (1 − δ) I (t − 1) + (1 − δ)2 I (t − 2) + .... (3)

where the parameter δ measures the decline in the productive capacity of a unit of capital

as it ages. The growth rate of this stock can be written as

zK (t) = w0 (t) zI (t) + w1 (t) zI (t − 1) + w2 (t) zI (t − 2) + ..... (4)

where zI(t) is the growth rate of investment and

wn (t) =
(1 − δ)n I (t − n − 1)

K (t − 1)
(5)

In other words, capital stock growth is a weighted average of current and past growth rates

of investment, where the weights are defined by the share of capital of various ages in last

period’s stock.
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Now consider the effect of mis-measurement of quality improvements in new capital

goods on the measurement of the growth rate of capital input. Again, we define the mea-

sured capital stock as

Km (t) = Im (t) + (1 − δ) Im (t − 1) + (1 − δ)2 Im (t − 2) + .... (6)

This differs from the true capital stock in being derived from a mis-measured investment

series, Im(t). (Note, however, that for the moment we are assuming that the measured

stock uses the same productive decay rate, δ.) As before, the growth rate of the measured

capital stock is

zm

K (t) = wm

0 (t) zm

I (t) + wm

1 (t) zm

I (t − 1) + wm

2 (t) zm

I (t − 2) + ..... (7)

where

wm

n (t) =
(1 − δ)n Im (t − n − 1)

Km (t − 1)
(8)

Given these derivations, we can write the difference between the true growth rate of the

capital stock and the measured growth rate as

zK (t) − zm

K (t) =
∞
∑

n=0

[wn (t) zI (t − n) − wm

n (t) zm

I (t − n)] (9)

Mis-Measurement and The Age Distribution: Now suppose that true productive

investment grows γ percent per period faster than measured investment

zI (t − n) = zm

I (t − n) + γ (10)

Then the gap between true and measured capital stock growth rates is

zK (t) − zm

K (t) =
∞
∑

n=0

[wn (t) (zm

I (t − n) + γ) − wm

n (t) zm

I (t − n)] (11)

= γ +
∞
∑

n=0

[(wn (t) − wm

n (t)) zm

I (t − n)] (12)

and measured TFP growth can be written as

zm

TFP (t) = zTFP (t) + αγ + α

∞
∑

n=0

[(wn (t) − wm

n (t)) zm

I (t − n)] (13)

This equation shows how, in addition to depending on disembodied technological progress

and the investment measurement error, measured TFP growth will also depend upon the
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age distribution of capital. In particular, measured TFP growth will be positively correlated

with recent investment growth as long as wn (t) > wm
n (t) for low values of n. This inequality

should hold when there is mis-measurement of quality improvement for capital goods. The

weights on recent investment growth reflect the relative importance of recent investment

in the capital stock; since productive investment has been growing faster than measured

investment, the wn will generally be higher than wm
n for low values of n.

Steady-State Example: Although the weights wn and wm
n will generally be complicated

functions of the full history of past investments, they can be derived analytically for the

special case in which true productive investment grows at a constant rate, g. Because the

growth rate of the true productive capital stock is a weighted average of current and past

growth rates of investment, this will also grow at rate g. Using the fact that, by definition,

the growth rate of the true capital stock is

zK(t) =
I (t)

K (t − 1)
− δ (14)

we get an expression for the ratio of investment to the lagged capital stock:

I (t)

K (t − 1)
= g + δ (15)

From this, we can derive the weight for current investment growth as

w0 =
I (t − 1)

K (t − 1)
=

I (t)

K (t − 1)

I (t − 1)

I (t)
=

g + δ

1 + g
(16)

More generally, we can write these weights as

wn =
(1 − δ)n I (t − n − 1)

K (t − 1)
=

g + δ

1 + g

(

1 − δ

1 + g

)n

(17)

The weights for the measured capital stock can be derived in a similar fashion. Measured

investment grows at rate g − γ, as does the measured capital stock because it is a weighted

average of current and past investments. Following the same logic as before, we get

wm

n =
g + δ − γ

1 + g − γ

(

1 − δ

1 + g − γ

)n

(18)

Both sets of weights decline monotonically and sum to one, with the weights for the

measured capital stock declining slower. This automatically implies that, for low values of
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n we have wn (t) > wm
n (t) while the higher values of n we have wn (t) < wm

n (t). Thus, when

measured investment has been growing fast recently, the true capital stock will be growing

faster than the measured stock. These steady-state examples are obviously illustrative.

However, numerical simulations verify that even when investment growth fluctuates around

a steady-state path the weights derived here provide a good approximation to the average

weights in measured and true capital growth for the various lags of investment growth.

Average Age Approximation: Richard Nelson (1964) derived a compact approximation

to the relationship between measured TFP and the age distribution of capital. This is

derived as follows. The true productive capital stock can be expressed as

K(t) =
t
∑

v=−∞

(1 − δ)t−vI(v) (19)

which can be re-written in terms of measured investment as

K(t) =
t
∑

v=−∞

(1 − δ)t−v(1 + γ)vIm(v) (20)

This can be approximated as

K(t) ≈ (1 + γ)tKm(t)
t
∑

v=−∞

(1 − δ)t−vIm(v)

Km(t)
(1 + γv − γt)

= (1 + γ)tKm(t)

(

1 − γ

t
∑

v=−∞

(1 − δ)t−vIm(v) (t − v)

Km(t)

)

(21)

Note that the term represented by the summation is the average age of the measured

capital stock, i.e. it is a weighted sum of integers with the weights determined by the share

of capital of each age in the measured capital stock. So, this equation can be re-written as

K(t) ≈ (1 + γ)tKm(t) (1 − γa(t)) (22)

Taking log-differences and assuming that γ is relatively small, this yields the following

approximation for the growth rate of the true productive capital stock

zK (t) ≈ zm

K (t) + γ − γ∆a(t) (23)

Thus, from equation (2) we see that a regression of measured TFP growth on the change in

the average age of capital should yield a negative coefficient, and the size of the coefficient

should approximately equal αγ.
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3 Empirical Evidence

We now present some empirical work which assesses the embodiment hypothesis in line with

the analysis just presented, starting with aggregate data and then moving on to examine

industry-level data.

3.1 Aggregate Data

Figure 1 displays the aggregate U.S. data for TFP growth and the average age of the capital

stock. The figure shows a pattern previously discussed by Wolff (1991, 1996): The period

prior to the mid-1970s saw strong TFP growth on average and a steady decline in the

average age of the capital stock, while the period since has seen weaker TFP growth on

average and a relatively flat profile for the age of the stock.3 However, the actual relationship

suggested by the embodiment hypothesis—between aggregate TFP growth and ∆a(t)—is

quite weak. The correlation between these series is only -0.16 and, as can be seen from the

first column in Table 1, when TFP growth is regressed on ∆a(t) the estimated coefficient,

although negative, is not statistically significantly different from zero.4

From the point of view of testing the embodiment hypothesis, an obvious concern about

this regression is that the correlation it describes may not even come from a causality run-

ning from changes in the age of capital to TFP growth. The productivity slowdown associ-

ated with slower TFP growth after the mid-1970s likely had important general equilibrium

effects, with the slower growth in potential output leading to a slowing pace of capital in-

vestment which, in turn, led to the flattening of the average age of the capital stock. Given

the simultaneity of all aggregate variables, it is hard to think of convincing instruments

that would allow an IV-based solution to this causality problem. However, the second col-

umn of Table 1 does show that once we add a dummy variable for the post-1973 period,

the estimated coefficient on ∆a(t) switches from negative to positive (although again not

3The series for TFP growth is for the nonhousing nonfarm business sector; this is widely agreed to be the

most appropriate series for aggregate productivity analysis. The series was downloaded from the Bureau of

Labor Statistics website at http://www.bls.gov/mfp/home.htm. The average age of the capital stock was

downloaded from the Bureau of Economic Analysis website at http://www.bea.doc.gov.
4One necessary aside about data issues: The BLS series on TFP growth are constructed on a year-average

basis. However, the BEA’s average age series refer to year-end capital stocks. To produce comparable series

for our regressions, I used averages of the current and previous year-end average ages to measure a(t);

however, for this and subsequent regressions the use of the unaveraged BEA series produces results that are

very similar to those reported here.
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statistically significant). While admittedly a crude way of assessing the potential causality

problem, this regression does at least show that there is little evidence of the hypothesized

negative relationship between TFP growth over and above the correlation related to the

post-1973 productivity slowdown.

Finally, the third column of Table 1 adds GDP growth to the regression to check whether

this sign-switching result is robust to controlling for the well-known pattern of procyclicality

of TFP growth; the results show that it is, with the coefficient on ∆a(t) again being positive,

although still not significantly so. Together, these results suggest that it is difficult to

interpret even the weak relationship between aggregate TFP and the age of the capital

stock as being consistent with the causal link suggested by the embodiment hypothesis.

3.2 Industry-Level Data

We now turn to the industry-level data. Specifically, we examine the relationship between

TFP and the age distribution of capital for a range of U.S. manufacturing industries at

the two-digit SIC code level. The use of industry-level data is likely to have a number of

advantages in this context. The first advantage is the additional number of datapoints.

Measured TFP growth is affected by actual disembodied technological progress and other

forms of mis-measurement in addition to mis-measured capital input, so we would not

necessarily expect to find a very strong statistical relationship between any single set of

time series for TFP and the age of capital. In light of this problem, the sizeable number of

observations provided by the industry-level data is helpful.

The second advantage relates to the causality problem discussed above for aggregate

data. For the aggregate economy, there is likely to be a strong causal relationship running

from TFP to investment, and thus to the average age of the stock. However, given the

important role that aggregate conditions play in determining the capital investment of

any specific industry, the causal link between industry-specific TFP and industry-specific

investment is likely to be significantly weaker. This factor likely explains why, as will be

discussed below, the relationships estimated from industry-level data do not suffer from the

same problems of interpretation of causality as the aggregate regressions, with the results

being robust to the inclusion of the dummy variable for the productivity slowdown.

Finally, it is worth noting that the exercise reported here shares some similarities with

the recent work of Stiroh (2002), who relates the same set of series on industry-level TFP

growth to measures of the intensity of computer usage. As with these tests, Stiroh’s focus
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is on testing a hypothesis of the existence of a type of mis-measurement not allowed for in

the growth accounting exercises, in his case the existence of production externalities due to

computer usage.

Data: The industry-level TFP figures used here come from the Bureau of Labor Statistics

(BLS) multifactor productivity program and were downloaded from the BLS website.5

The restriction of our focus to manufacturing industries reflects the limited availability of

estimates of TFP for other sectors. Industry-level investment data were obtained from the

website of the Bureau of Economic Analysis (BEA); these same data were used to construct

the measures of capital input underlying the BLS measures of multifactor productivity.6

Matching these two data sources, there are 17 industries for which we have both TFP and

investment data. The average age of industry capital stocks, used in some of the regressions

below, also comes from the BEA website. Finally, the sample is 1950-1999, implying 850

observations.7

Average Age Regressions: Table 2 presents the results from regressions relating industry-

level TFP growth to changes in the average age of the industry’s capital. These regressions

were estimated using the Seemingly Unrelated Regressions (SUR) technique, with each

equation containing a constant fixed-effect term which allows for differences in the aver-

age rate of TFP growth across industries. The first column reports the coefficients on the

change in the average age, both for the case where each industry has a separate coefficient

on the average age and for the pooled case in which the coefficient is estimated to be the

same across industries (the bottom row). As noted above, we wouldn’t necessarily expect

to find a very strong statistical relationship in these regressions. Nonetheless, if the em-

bodiment hypothesis is correct we should expect to find a pattern of negative coefficients,

implying that increases in the average age of the capital stock reduce TFP growth.

Strikingly, however, the regressions reveal the exact opposite pattern. Fifteen of the

5At the time of writing, the URL for this site is http://www.bls.gov/mfp/
6These data were downloaded from http://www.bea.doc.gov/bea/dn/faweb/
7One potential concern here comes from the fact that the capital stocks used in the BLS calculations are

not identical to the BEA capital stocks underlying the average age series. Specifically, the BEA uses geomet-

ric depreciations while the BLS uses a slightly non-geometric pattern for its “productive decay” schedules. In

practice this makes little difference. The BLS calibrates its schedules to be roughly consistent with the BEA

depreciation rates, so the BLS and BEA stocks are very similar. See http://www.bls.gov/web/mprcaptl.htm

for a description of the BLS methodology.
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seventeen industry-specific regression coefficients are positive, with a number being highly

statistically significant and most being significant at least at the 15 percent level. The

bottom row reports the results from restricting the coefficients on the change in the average

age to be the same across all industries. Perhaps surprisingly, this restriction is not rejected:

A likelihood ratio test produces a χ2
16 statistic of 12.3, significant only at the 72 percent

level. The estimated pooled coefficient is 0.013 with a standard error of 0.002. Assuming

a capital share of 0.33, the framework of the previous section tells us that this estimate is

consistent with technological regress of 3.9 percent per year!

Columns 2 and 3 of Table 2 check whether these results are robust to the inclusion of a

dummy variable for productivity slowdown and GDP growth. They show that, unlike the

aggregate results which switched sign when DUM74 was added, the industry-level estimates

are essentially unchanged by the addition of this variable. A number of the coefficients are

estimated to be more positive than before and the pooled coefficient is now 0.016 (standard

error 0.003), consistent with technological regress of almost 5 percent per year. Column 3

adds GDP growth and produces results closer to those in column 1 with a pooled coefficient

of 0.012 (standard error 0.003). Again, the restriction of the coefficients on ∆a(t) being

equal across all industries cannot be rejected for either of these regressions.

Investment Regressions: We next consider a slightly less restrictive approach to as-

sessing the embodiment hypothesis by following equation (13) in regressing measured TFP

growth on current and lagged values of investment growth. Table 3 reports results from

a regression containing contemporaneous investment growth as well as four lagged values.

As before, the second and third columns augment the base specification with the post-1973

dummy (the second column) and with this dummy and GDP growth (the third column).

Given the difficulty in estimating and reporting each of the investment growth coefficients

for all industries, only the pooled estimates are reported here.

The results of the previous section showed that, according to the usual derivations, we

should expect the coefficients in this regression to be positive for recent values of investment

growth and then to turn negative at longer lags. However, in line with the results from the

average age regressions, almost all of the estimated coefficients are negative and many are

statistically significant. Extending the regression to allow for longer lags produces a similar

pattern for the near-term coefficients but turns up no noticeable pattern for the coefficients

on the more distant lags.
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Of course, if a pattern of unmeasured technological regress did exist, equations (17)

and (18) imply that the coefficients in these regressions should turn positive at longer lags.

However, in practice, it would be unlikely that such effects would be detected. Numerical

calculations show that in the presence of low rates of unmeasured technological regress,

the weights on the measured stock would be greater than the weights on the true stock

for investments made over the previous decade, with this being made up for by a series of

small differences between measured and actual weights at longer lags. Such longer-lagged

effects would most likely be drowned out by the substantial amount of other statistical

noise affecting measured TFP growth.

4 An Explanation for Our Findings?

Taken literally, the results of the previous section represent a puzzling pattern that appears

incompatible with the embodiment hypothesis of under-measured quality improvements in

capital goods. In this section, I present a possible explanation for these results that may

still be compatible with embodiment.

Depreciation and Decay: In deriving the relationship between measured TFP growth

and the age distribution of capital in Section 2, we noted that we were assuming the same

“depreciation rate” δ when defining both the true productive capital stock in equation

(3) and the measured capital stock in equation (6). The only source of mis-measurement

related to the investment series.

As discussed above, it is clear that the δ which defines the productive capital stock is

a measure of the rate at which the productivity of an asset decays as it ages. In contrast,

however, the empirical depreciation rates used to construct the BEA average age series

and the BLS series on capital input are based on schedules for economic depreciation—

meaning the rate at which assets lose value as they age—from a range of empirical studies,

most notably the work of Charles Hulten and Frank Wykoff (1981). (Technically, the BLS

uses a different schedule from the geometric pattern used by BEA, but the BLS bases its

estimates on the BEA depreciation rates, and the two sets of stock estimates are very close

in practice.) And it is well known that the economic depreciation rate, δe, obtained from

asset-price studies is not conceptually the same as the productive decay rate δ that we used
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to define our productive capital stock in equation (3).8

In particular, when there are unmeasured quality improvements in capital, then mea-

sured units of capital will decline in value as they age both because of their decline in

productive capacity and because they are declining in quality relative to the newest units.

Algebraically, then, we can write the economic depreciation rate used to construct measured

capital stocks as

δe = δ + γ (24)

i.e. the economic depreciation rate is the sum of the true productive decay rate and the

rate of unmeasured improvement in the quality of capital goods.

These considerations imply that, in constrast to equation (6) above, the measured cap-

ital stock should actually be written as

Km (t) = I (t) + (1 − δ − γ) I (t − 1) + (1 − δ − γ)2 I (t − 2) + .... (25)

And its growth rate should be represented as

zK (t) = wm

0 (t) zI (t) + wm

1 (t) zI (t − 1) + wm

2 (t) zI (t − 2) + ..... (26)

where

wm

n (t) =
(1 − δ − γ)n I (t − n)

K (t − 1)
(27)

Revised Steady-State Calculations: We can now use the same method as before to

derive the steady-state values of these weights. Again assuming that the true productive

investment and capital stock are growing at rate g, and that the measured investment and

capital stock are growing at rate g − γ, we have that

Im (t)

Km (t − 1)
= g − γ − δe = g + δ (28)

which implies that

wm

0 =
Im (t − 1)

Km (t − 1)
=

g + δ

1 + g − γ
(29)

Thus, the measured set of weights can now be written as

wm

n =
g + δ

1 + g − γ

(

1 − δ − γ

1 + g − γ

)n

(30)

8See, for example, Jorgenson (1973) and Hulten and Wykoff (1996) for detailed discussions of this issue.

Whelan (2002) discusses this issue in relation to measures of computer capital stocks.
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Note now that

wm

0 =
g + δ

1 + g − γ
>

g + δ

1 + g
= w0 (31)

In other words, the measured capital stock actually places a higher weight on current invest-

ment growth than the true capital stock; with each set of weights declining gradually, this

inequality will also hold for other recent lags of investment growth. Thus, the coefficients

on recent values of investment growth in the TFP regressions should in fact be negative, as

we found, and increases in the average age of the capital stock should be associated with

higher, not lower, TFP growth.

The intuition for these results is fairly simple. Relative to the true productive capital

stock, the measured capital stock underestimates the impact of a unit of new investment

relative to that of a unit of old investment; ceteris paribus, this effect causes empirical growth

accounting to underestimate the effect on productivity growth of recent investment growth.

However, all else is not equal in this case, because the mis-measurement of technological

improvements in capital goods leads empirical researchers to weight past units of investment

by (1 − δe)n instead of (1 − δ)n and this causes to an underestimation of the effect of past

investment growth on current productivity. Our calculations show that this latter effect

actually dominates the first, more traditional effect.

In theory, one could combine our newly derived weights with the regression of Table 2 to

estimate exactly which positive rate of embodiment is most consistent with the estimated

relationship between TFP and investment growth. However, the pattern of the coefficients

in Table 2 is not consistent with the predictions of equations (17) and (30) that the coef-

ficients on investment should become less negative in a monotonic fashion as the lags get

longer, so empirical estimates based on this pattern would not be of much use.

Figure 2 may provide part of the explanation for the failure of equations (17) and (30)

to exactly explain the estimated relationship between TFP and investment. It shows the

weights wn of capital of various ages in the capital stock for a specific set of parameter values

(δ = 0.07, γ = 0.10, g = 0.13). It also shows the weights for the measured stock under the

traditional approach of equation (18) and the alternative approach of equation (30). While

the traditional analysis suggests that the gap between the weights for the actual stock

and those for the measured stock are often large, our alternative formula for the measured

weights produces a series that is much closer to the weights for the actual stock. (This

pattern turns out to be robust to the choice of a wide range of realistic parameter values.)

Once one takes into account the relatively small gaps between the actual and measured

13



weights suggested by our alternative calculations, and the likely level of statistical noise

affecting this regression, one would be surprised if the tight restrictions imposed by equa-

tions (13), (17) and (30) were actually satisfied in the data. However, allowing for error

in the measurement of the productive decay rate can reconcile the hypothesis of unmea-

sured technological improvements in capital goods with the otherwise puzzling pattern of a

negative relationship between measured TFP growth and changes in the age of the capital

stock.

5 Conclusions

This paper has presented evidence that, in contrast to the usual intuition underlying tests of

the embodiment hypothesis, increases in the age of the capital stock appear to be associated

with higher levels of measured TFP. In relation to the embodiment hypothesis of under-

measured quality improvements in capital, there appear to be two possible explanations for

this result.

The first explanation is that the traditional embodiment hypothesis is simply wrong,

and that statistical agencies are not underestimating the rate of quality improvement in

new capital. In light of the significant body of evidence suggesting the official price indexes

understate quality improvements, this explanation may not find many takers. Thus, this

paper advances an alternative explanation, which is that the embodiment hypothesis may

be correct but that the motivating assumption underlying the “direct method” to testing

the hypothesis—that embodiment implies growth accounting underestimates the effect on

current productivity of new investments relative to old—is incorrect. The traditional analy-

sis is correct that embodiment implies that empirical growth accounting undermeasures the

productive effect of a unit of new investment relative to a unit of old investment. However,

embodiment also implies that the empirical analysis based on capital stocks constructed

from economic depreciation rates will place too low a weight on these old units of capital,

and this latter effect will tend to dominate.

Beyond the embodiment hypothesis, the empirical results presented here also show that

the observed pro-cyclicality of measured TFP does not appear to be related to pro-cyclical

mis-measurement of capital input. If anything, because TFP growth is positively correlated

with changes in the age of the stock it appears that the opposite is the case: Empirical

growth accounting is more likely to understate the growth rate of capital input in a recession

than in a boom.
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Table 1: TFP Growth and the Age of the Capital Stock, Aggregate Analysis

Constant 0.010 (.003) 0.024 (.006) 0.004 (.004)

∆ Average Age -0.019 (.016) 0.022 (.021) 0.015 (.011)

DUM74 -0.019 (.007) -0.013 (.004)

GDP Growth 0.462 (.044)

R2 0.026 0.153 0.744

Standard errors in parentheses. Sample is annual data from 1950-1999. DUM74 equals one

before 1974 and zero afterwards. GDP growth refers to the nonfarm business sector.
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Table 2: Coefficients on the Change in the Average Age, Industry-Level Analysis

With DUM74

Base Equation No GDP Growth With GDP Growth

Food Products 0.029 (.019) 0.029 (.020) 0.030 (.019)

Textiles 0.007 (.008) 0.007 (.008) 0.007 (.008)

Apparel 0.003 (.006) 0.000 (.007) 0.002 (.007)

Paper 0.051 (.014) 0.062 (.014) 0.054 (.014)

Printing -0.007 (.012) 0.011 (.012) 0.010 (.012)

Chemicals 0.038 (.015) 0.053 (.015) 0.048 (.015)

Petroleum Products 0.010 (.004) 0.013 (.004) 0.008 (.004)

Rubber and Plastics 0.031 (.015) 0.039 (.017) 0.038 (.017)

Lumber 0.015 (.014) 0.028 (.016) 0.022 (.016)

Furniture 0.013 (.008) 0.018 (.009) 0.016 (.009)

Stone Products 0.015 (.006) 0.017 (.007) 0.012 (.007)

Primary Metals 0.016 (.010) 0.029 (.012) 0.017 (.010)

Fabricated Metals 0.002 (.008) 0.003 (.010) 0.001 (.009)

Industrial Machinery 0.027 (.016) 0.011 (.015) -0.005 (.015)

Electrical Machinery 0.016 (.016) 0.005 (.015) -0.001 (.015)

Instruments -0.012 (.013) -0.005 (.016) -0.013 (.018)

Miscellaneous 0.011 (.014) 0.019 (.016) 0.018 (.016)

POOLED 0.013 (.002) 0.016 (.003) 0.012 (.003)

Dependent variable is TFP growth. Estimated using SUR. Standard errors in parentheses.

Sample is annual data from 1950-1999. DUM74 is a dummy variable equalling one after

1974 and zero before.
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Table 3: Regression of TFP Growth on Current and Lagged Investment Growth

With DUM74

Base Equation No GDP Growth With GDP Growth

zI(t) -0.001 (.003) -0.000 (.003) -0.005 (.003)

zI(t − 1) -0.014 (.003) -0.015 (.003) -0.009 (.003)

zI(t − 2) -0.011 (.003) -0.011 (.003) -0.011 (.003)

zI(t − 3) 0.000 (.003) 0.001 (.003) 0.000 (.003)

zI(t − 4) -0.005 (.003) -0.006 (.003) -0.008 (.003)

Estimated using SUR. Coefficients restricted to be equal across all industries. Standard

errors in parentheses. Sample is annual data from 1950-1999. DUM74 is a dummy variable

equalling one after 1974 and zero before.
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Figure 1

U.S. Nonfarm Business TFP Growth (3-Year Moving Average)
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Figure 2
Weights in the Capital Stock for Current and Past Investment

Based on gamma=0.1, g=0.13, delta=0.07
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