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Abstract

Unknown-breakpoint tests for possible structural change have become standard in re-

cent years, with the most popular being the so-called Sup-F tests, whose asymptotic

distribution was derived by Andrews (1993). We highlight two problems that lead to

poor performance when testing for structural breaks in dynamic time series models

using the Andrews critical values: High persistence of explanatory variables and het-

eroskedasticity. We propose a so-called “wild bootstrap” approach to generating critical

values for the Sup-F statistic and report that this approach performs well across a wide

variety of possible data generating processes, including those with large coefficients on

lagged dependent variables and heteroskedasticity.



1 Introduction

The past decade has seen a substantial shift in the methodologies used to test the hypothesis

of parameter stability in time series models. Where previously it was generally assumed

that the researcher knew the date of the potential structural change, the modern approach

accepts that in practice such knowledge is usually not available. Thus, the standard Chow

(1960) test has now largely been replaced by tests such as Quandt’s (1960) Sup-F test—

based on the maximum of a sequence of Chow statistics—with the critical values coming

from the asymptotic theory provided by Donald Andrews (1993a). However, despite the

widespread use of procedures such as the Sup-F test, the asymptotic distributions derived

by Andrews can, in some cases, provide poor approximations to the relevant finite-sample

distributions.

In this paper, we focus on two problems that lead to poor performance when applying

asymptotics-based Sup-F tests to dynamic time series models: High persistence of ex-

planatory variables and heteroskedasticity. Specifically, we show that these problems lead

to over-sized tests, so that Type I errors falsely indicating structural breaks occur too often.

To address these problems, we propose a new bootstrap approach for generating critical

values, and show that this approach leads to test procedures with approximately the correct

size.

Our paper initially focuses on pure autoregressive models. These models account for

a significant fraction of the applications of the unknown-breakpoint tests for structural

change, and the problem due to high persistence has been noted before in this context by

Frank Diebold and Celia Chen (1996).1 Their paper reported that increases in the persis-

tence of dependent variable resulted in tests based on asymptotic distributions becoming

increasingly oversized when applied to standard sample sizes. In this paper, we confirm

these results, but concentrate on the (more realistic) case in which the regression contains

an intercept term. We show that in this case, the size distortions at high levels of persistence

are extremely large, particularly for tests of a break in the intercept coefficient.

The second problem, due to heteroskedasticity, relates to results reported by Bruce

Hansen (2000). Specifically, Hansen shows that structural change in the marginal distri-

bution of a regressor causes a breakdown in the conditions underlying the derivation of

1For instance, in illustrating the unknown-breakpoint test procedures to a general economics audience,

Hansen (2001) uses an AR(1) model of productivity growth. See also Stock and Watson (1999) for a paper

that tests for structural change in AR models for a wide range of macro variables.
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the standard asymptotic distributions for unknown-breakpoint tests. In the context of the

autoregressive models discussed first in this paper, this problem can occur if there is het-

eroskedasticity, so that the distribution of the lagged dependent variable changes at some

point in the sample.

Both of these previous papers suggested potential solutions to the separate problems

with the asymptotics-based tests that they highlighted. Diebold and Chen suggest a “sieve

bootstrap” method that simulates the estimated full-sample process for the dependent

variable. Hansen suggests a “fixed regressor bootstrap” to adjust for the effect of having

a regressor that exhibits structural change in its distribution. In this paper, we document

that these methods are relatively successful in dealing with the separate problems they

were designed to address. However, we find that the fixed regressor procedure performs

poorly when one moves away from the case analyzed by Hansen with a relatively small

(ρ = 0.5) lagged dependent variable effect. Even with moderate levels of persistence, the

fixed regressor bootstrap produces significantly oversized tests, particularly for intercept

breaks. We also find that the performance of the Diebold-Chen sieve bootstrap deteriorates

when heteroskedasticity is present, with tests again becoming oversized.

In light of these results, and given that both heteroskedasticity and high lagged de-

pendent variable coefficients are common features in empirical applications, we propose a

new bootstrap approach to testing parameter stability which attempts to deal with both of

these problems. Specifically, we propose a “wild bootstrap” approach, which uses the sieve

bootstrap approach to simulating the estimated no-break process while also modelling the

heteroskedasticity present in the data.2 We find that this approach performs well across a

wide variety of possible data generating processes, including those with either or both large

coefficients on lagged dependent variables and heteroskedasticity.

We also show that problems stemming from persistent regressors also occur in models

that incoporate additional explanatory variables: The more persistent such regressors are,

the more likely one is to have over-sized tests when using asympototic or fixed-regessor

bootstrap techniques. A simple modification to our wild bootstrap procedure, however,

gives tests that are also well-sized in this case.

The contents of the paper are as follows. Section 2 sets out the modelling framework,

the tests examined, and the design of the Monte Carlo experiments used to assess the ap-

2The wild bootstrap has been used recently in other applications unrelated to structural change tests.

See, for example, Davidson and Flachaire (2001) and Godfrey and Tremayne (2003).
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plication of these tests to univariate time series models. Section 3 reports our main results,

while Section 4 discusses the case in which there are additional explanatory variables in

addition to lagged dependent variables. Finally, Section 5 reports results from an appli-

cation of the methodology. We show that the use of the wild bootstrap approach results

in different conclusions to that of the asymptotic approach when assessing whether or not

there have been changes over time in the aggregate inflation process.

2 Model, Tests, and Monte Carlo Design

2.1 Model and Test Statistics

Our initial focus is on tests of parameter stability in the AR(1) model

yt = α + ρyt−1 + εt, (1)

estimated over the sample t = 1, 2, ...., T . In the case where there is a known date, k, for the

potential breakpoint, a test of the null hypothesis of parameter stability can be formulated

by imposing linear restrictions on an unrestricted regression model. For instance, if one is

testing for a break in both the intercept term and the coefficient on the lagged dependent

variable at date k, then one can estimate the regression model

yt = α + ρyt−1 + µ0dk + µ1 (dkyt−1) + εt, (2)

where dk is a dummy variable equalling zero before date k and one thereafter. The null

hypothesis of parameter stability can then be formulated through the linear restrictions

H0 : µ0 = µ1 = 0. These linear restrictions can be written in matrix form as Rβ = 0, and

can be tested with the Wald test statistic

Wk =
(

Rβ̂
)

′
(

RΩ̂R′

)

−1 (

Rβ̂
)

, (3)

where

Ω = Var(β̂). (4)

This statistic has an asymptotic χ2 distribution when implemented with a consistent esti-

mator of the covariance matrix, Ω. In the case where εt is assumed to be iid, then the Wald

statistic collapses to a multiple of the familiar F statistic based on a percentage difference

in sums of squared errors between restricted and unrestricted models. When the errors are
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not iid because of heteroskedasticity, then the Wald statistic will only have a χ2 asymptotic

distribution when one uses a heteroskedasticity-consistent covariance matrix estimator.

In the case in which the potential breakpoint is unknown, a popular test statistic,

proposed by Quandt (1960), is based on the maximum of a sequence of Wald statistics:

SupW = sup
π

Wk (5)

where the supremum is taken over π = (γT, (1−γ)T ). In our calculations, we will follow the

usual convention and set the trimming parameter γ equal to 0.15, and will report results for

SupW tests based on both the standard Wald statistic (using residual sums of squares) and

a heteroskedasticy-consistent version using a White-corrected covariance matrix estimator.

2.2 Methods for Generating Critical Values

We will examine test procedures based on four different methods for generating critical

values for the SupW test statistic.

Andrews (1993) Asymptotic Distribution: In an important contribution, Donald

Andrews derived the asymptotic distribution for SupW -style statistics. These statistics

had previously been considered only as an informal diagnostic tool, but the critical values

in the Andrews paper are now in widespread usage in formal tests of parameter stability.

The critical values used depend on both the trimming parameter, γ, and the number of

linear restrictions being tested. In our applications, in which the trimming parameter is 15

per cent, the 10 percent critical value for a test for a break in one parameter is 7.17, while

the corresponding critical value for a test for a break in two parameters is 10.01.

Fixed Regressor Bootstrap: In the context of the generic regression model

y = βx + εt, (6)

Hansen (2000) has documented that the conditions underlying the derivation of the Andrews

asymptotic distributions can break down when there is structural change in the marginal

distribution of one or all of the regressors. For example, consider the case in which there

is no change in the β coefficients, but there is a mean shift in one of the variables in the

x matrix. Hansen shows that the use of asymptotic critical values in this case can lead to

oversized SupW tests, with too many Type-I errors incorrectly suggesting structural change
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in the β coefficients. In the context of the pure autoregressive model examined here, such

a mean change would have to imply a change in the parameters of the model, so this

case does not apply here. However, changes over time in the variance of a regressor leads

to similar problems, and this can apply in the AR(1) model if the residual term displays

heteroskedasticity.

In the case where heteroskedastic errors are suspected, Hansen recommended a “fixed re-

gressor bootstrap”, based on the following procedure. A random sample (ut : t = 1, 2, ....T )

of N(0, 1) variables is simulated. This series is then scaled by a set of empirical residuals to

construct an artificial dependent variable that maintains the pattern of heteroskedasticity

seen in the data.3 A SupW test statistic is then constructed based on the regression model

relating utε̂t to x. This process is repeated N times, to generate a bootstrap distribution

for the SupW statistic, and the α-th percentile of this distribution is used as the 1 − α

percent critical value for this test procedure.

Though mainly intended as an approach to dealing with structural change in an exoge-

nous x variable, Hansen reports calculations showing that this method can also work when

there is a lagged dependent variable, which is also treated as a “fixed regressor” though

these calculations are limited to a value of ρ = 0.5. And this method has been applied by

a number of researchers in the context of AR(1) models.4

Sieve Bootstrap: Diebold and Chen (1996) document a separate problem with the An-

drews critical values. In the context of the AR(1) model, they demonstrate that despite

being asymptotically correct, tests based on asymptotic critical values become increasingly

inaccurate in finite samples as the true value of ρ increases. Again, the problem is that the

tests produce more Type I errors than their nominal size.

In place of the asymptotic critical values, Diebold and Chen recommend a so-called

“sieve bootstrap” method which works as follows. The AR(1) model is estimated via OLS,

and the residuals ε̂t are stored. Then, N different “pseudo-data” time series (y∗

t : t =

1, 2, ....T ) are generated in a manner consistent with the estimated (no-break) model:

y∗t = α̂ + ρ̂y∗t−1 + ut (7)

where α̂ and ρ̂ are OLS estimates and the ut pseudo-disturbances are drawn randomly with

3We have followed Hansen’s suggested approach here and used residuals based on a regression of y on x

and the structual break dummies corresponding to the maximum SupW breakdate.
4See, for instance, Levin and Piger (2003) and Gadzinsky and Orlandi (2004).
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replacement from the estimated residuals ε̂t. For each of these N simulated series, a SupW

test statistic is calculated, and the α-th percentile of the resulting distribution is used as

the 1 − α percent critical value for this test procedure.5

Wild Bootstrap: Bootstrap methods can only be expected to work well when they provide

a good approximation to the underlying data generating process. In light of this, one

potential weakness of the sieve bootstrap approach is that its approach to constructing the

pseudo-disturbances ut (drawing randomly from the estimated residuals) may provide a

poor description of DGPs that exhibit heteroskedasticity. There are a number of possible

ways to modify the bootstrap approach to deal with this problem. Here, we consider a

version of the so-called “wild bootstrap” approach as discussed by Davidson and Flachaire

(2001). Specifically, our version of the wild bootstrap follows the same steps as the sieve

bootstrap, but differs in generating the pseudo-disturbances ut according to the rule

ut =







ε̂t with probability 0.5

−ε̂t with probability 0.5
(8)

For each of these N simulated series, a SupW test statistic is calculated, and the α-th

percentile of the resulting distribution is used as the 1 − α percent critical value.

2.3 Monte Carlo Design

To assess the performance of our various tests procedures, we performed a set of Monte

Carlo simulations featuring different values of ρ both with and without heteroskedasticity.

Specifically, we considered two different types of data generating process. In the first case,

the true model is an AR(1) with spherical errors:

yt = α + ρyt−1 + εt, εt ∼ N(0, 1). (9)

In the second, there is a break in the variance half way through the sample. To design an

example in which there is the potential for significant problems, we consider a three-fold

increase in the standard deviation of the error distribution:

yt = α + ρyt−1 + εt, εt ∼







N(0, 1) t ≤ T
2

3N(0, 1) t > T
2

(10)

5This bootstrap methodology for generating critical values for SupW -style statistics was first suggested

by Christiano (1992), but that paper did not present evidence on the size of tests based on this method.
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For both models, we considered six different values of ρ, starting with ρ = 0.5 and moving

up to ρ = 0.99.

We report results for T = 100. This is approximately an average sample size used in the

quarterly regressions reported in empirical macroeconomic studies. For each experiment,

the number of Monte Carlo replications is 5000, while for each of the bootstrap methods

considered, the number of bootstrap replications is N = 399.6

3 Results

This section presents the results from the Monte Carlo experiments just described. In each

case, we report the actual size obtained for test procedures intended to generate Type-I

errors 10 percent of the time. In other words, the tables report the fraction of Monte

Carlo replications in which the simulated test statistic based on the null hypothesis of no

structural change exceeded the 10 percent critical value implied by the test procedure.7

3.1 Asymptotic Critical Values

We start with the results in Table 1, which describe the performance of tests for breaks

in the intercept parameter, the ρ parameter, and in both coefficients, when one uses the

asymptotic critical values derived by Andrews. The results for the baseline case with

white noise errors expand on results previously reported by Diebold and Chen (1996). The

detailed results presented in that study related to the case in which there was no intercept

in the DGP or regressions, and the paper reported a set of relatively modest size distortions

for a variety of cases. For the more realistic case in which an intercept is included, Diebold

and Chen noted briefly that size distortions for asymptotic tests “can be extremely large”

and this is confirmed in Table 1. Also, while Diebold and Chen reported some results only

for the joint test for a simultaneous break in the intercept and ρ coefficients, we report

results for all three cases.

The most striking result from the baseline case is the poor performance of tests for

a break in the intercept coefficient. Size distortions increase rapidly as the true value of

6McKinnon (2002) has pointed out that the sampling errors associated with a low value of N tend to

cancel out in Monte Carlo experiments such as this.
7The tables do not report standard errors for the estimated sizes of these tests, but using the formula

√

p(1−p)
N

, one can calculate that these standard errors are small, ranging from 0.004 for tests that have size

close to ten percent, to 0.007 for some of the more inaccurate tests.
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ρ increases beyond 0.5, and for high values of ρ the tests falsely indicates breaks in the

intercept more than half the time. These results show that the well-known difficulty of

distinguishing between a series that has a mean break and a series that is persistent and

thus goes through long swings away from the sample mean, applies to this method. This

problem for empirical break testing is well known and dates back at least as far as the

debate surrounding the results in Perron (1989). Perron argued that evidence for a unit

root in GNP was undermined by including dummies for the Great Crash and the oil price

shock of the 1970s. Christiano (1992) and others critiqued Perron’s results as being based

on “pre-test” selection of breakdates, and advocated test procedures based on the maximum

of a sequence of break tests. In theory, the Andrews distribution is also supposed to allow

for appropriate inference in this case, but our calculations show that, in practice, this is not

the case. Indeed, even if one uses the SupW test and the Andrews distribution, it turns

out that it is still easy to confuse a persistent time series with no breaks for one that is less

persistent but has a break in the intercept.

The test for a break in both coefficients performs nearly as poorly as the intercept

break test. However, the test for a break in the ρ coefficient, does not do quite so badly.

Unsurprisingly, given that this DGP has spherical errors, the version of the tests using a

heteroskedasticity-consistent covariance matrix performs even more poorly than the basic

test statistic, sometimes spectacularly so: For ρ = 0.99, this test for a break in both

coefficients suggests a break over 80 percent of the time.

The results for the variance break DGP confirm Bruce Hansen’s (2000) theoretical re-

sults that the Andrews asymptotic distribution does not apply when there is a change in

the marginal distribution of a dependent variable. Even for the case ρ = 0.5 when the

asymptotic tests do well if there are spherical errors, the introduction of heteroskedasticity

substantially increases the size of the tests. Indeed, heteroskedasticity worsens the perfor-

mance of the basic version of the test for all values of ρ, with sizes for DGPs exhibiting both

high persistence and heteroskedasticity moving into the 70 to 80 percent range. Perhaps

surprisingly, the version of the test that uses a robust covariance matrix does not perform

better when there is a variance break, and in most cases performs worse, than the tests

based on the basic statistic.
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3.2 Fixed Regressor Bootstrap

One approach to dealing with the problems caused by heteroskedasticity is to adopt Bruce

Hansen’s (2000) fixed regressor bootstrap, which has been designed to deal with the prob-

lems caused by changes in the marginal distribution of a regressor. Table 2 reports the

results for this method. Comparing the right-hand entries of the first line of the table with

the corresponding entries on Table 1, we see that the fixed regressor bootstrap, as expected

produces better-sized tests for the case with ρ = 0.5 and a break in the variance. For

instance, the size of the intercept break tests falls from 0.22 to 0.15 and the size of the ρ

break test falls from 0.18 to 0.14.

However, once one moves beyond the ρ = 0.5 case to higher values of ρ, the performance

of this method worsens significantly. This is true for each of the cases examined here, with

the worsening performance of this method roughly tracking that of the tests based on

asymptotic critical values. While the test sizes reported here are not quite as high as those

for the asymptotic method, they are still often very high: For instance, the test for an

intercept break with spherical errors and ρ = 0.99 has a size of 0.575. The performance

of the heteroskedasticity-consistent version of the test mirrors that of corresponding tests

using asymptotic critical values. This test again performs worse than the test statistic

based on residual sums of squares, even for the case in which there is a variance break.

3.3 Sieve Bootstrap

The results just reported for the fixed regressor bootstrap support and generalize findings

from a recent paper by Todd Clark (2003). Clark finds that the fixed regressor bootstrap

produces oversized tests for DGPs based on empirical estimates of inflation processes for

various sub-categories of the US CPI. He then recommends use of a sieve bootstrap tech-

nique as previously discussed by Diebold and Chen. Table 3 reports the results from our

Monte Carlo examination of this method.

The results for the baseline DGP featuring spherical errors essentially confirm the pre-

vious conclusions of Diebold and Chen that this methodology works reasonably well across

a wide set of values of ρ. Test sizes remain in the 10-13 percent region for values of ρ

up to 0.95. The size bias jumps somewhat at very high levels of persistence, but is still

well below what was reported in the previous cases. Also unlike the previous cases, the

heteroskedasticity-consistent version of the test performs about as well as the basic tests

statistic despite the fact that the underlying errors are spherical.
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The results for the variance break DGP are less positive. The test based on residual sums

of squares exhibits substantial positive size biases for all values of ρ. The heteroskedasticity-

consistent version of the test does somewhat better, but still displays quite large biases at

high levels of persistence. For instance with ρ = 0.95, the sieve bootstrap test for an

intercept break has a size of 19 percent.

3.4 Wild Bootstrap

The results in Table 3 show that the sieve bootstrap may not be the most appropriate

method for generating critical values when the underlying data generating process exhibits

heteroskedasticity. The most likely reason for this is that sieve bootstrap’s method for

constructing the “pseudo-data” samples, and thus the critical values, relies on drawing ran-

domly from the sample of empirical residuals, ε̂t. As noted in Section 2.2, the wild bootstrap

is an alternative methodology that can generate “pseudo-data” samples consistent with the

null hypothesis of no structural change, while preserving the pattern of heteroskedasticity

seen in the estimated residuals. Thus, this method might be expected to perform somewhat

better than the sieve bootstrap in the presence of heteroskedasticity.

Table 4 confirms this conjecture: For the variance break DGP, the wild bootstrap

method produces smaller size biases for all of the cases that we considered. These bias reduc-

tions are substantial for the basic test statistic, and somewhat smaller for the heteroskedasticity-

consistent version of the test. The results for the baseline DGP with white noise errors show

that, in this case, there is no reduction in the efficiency when using the wild bootstrap rather

than the sieve. Thus, the improved performance of the wild bootstrap in the presence of

heteroskedasticity does not come at the cost of a poor performance when errors are white

noise.

3.5 A Bias-Adjusted Wild Bootstrap

Although the wild bootstrap produced the best results of the four method compared thus

far, with size distortions being very low in most cases, its performance does deteriorate for

processes with very high values of ρ. While size biases are negligible for values of ρ less

than 0.9, they increase noticeably above this point.

One potential reason for this deterioration in the performance is our use of OLS pa-

rameter estimates to generate the simulated “pseudo-data” upon which the critical values

are based. It is well-known that OLS estimates of ρ are downward biased in finite samples,
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and that this bias becomes larger as ρ approaches one. For this reason, our simulated

processes may not mimic the underlying DGP as we would wish. This suggests using a

bias-adjusted form of the wild bootstrap. This can be done as follows. First, calculate the

OLS estimates ρ̂. Second, calculate a median-unbiased estimate of ρ consistent with ρ̂ and

with the sample size used. Call this ρ̂u. Finally, simulate N different pseudo-data time

series (y∗t : t = 1, 2, ....T ) consistent with the model:

y∗t = α̂ + ρ̂uy∗t−1 + ut (11)

choosing the ut in the same manner as in the wild bootstrap method (using equation 8).

Table 5 reports the results obtained from Monte Carlo examination of this method

with our two DGPs. We note that the bias-adjustment calculated in these Monte Carlo

replications was of a simple variety, based on the tables for finite sample biases reported

by Andrews (1993b). However, in practical applications, we recommend using a more

sophisticated methodology such as Bruce Hansen’s (1999) grid bootstrap method.

The results for this bias-adjusted wild bootstrap are very encouraging. The size biases

are, in almost all cases, the smallest obtained for all of the methods examined here, with

sizes ranging from about 0.09 to about 0.11 for all values of ρ less than 0.99. The test

sizes for the ρ = 0.99 case are a little unsatisfactory, (equalling 0.179 for the variance break

case), but they are still an improvement on all of the other methods.

3.6 Additional Calculations

In addition to the calculations reported in the tables, we also performed some Monte Carlo

exercises for other values of the sample size T , and for other popular test statistics. These

findings provided further support for our overall assessment of the various test procedures:

• Sample Size: As would be expected, the asymptotics-based tests perform some-

what better than reported here for larger samples, and somewhat poorer for smaller

samples. However, for all realistic sample lengths, the empirical sizes for these tests

increased substantially for high values of ρ. Similar results also applied for the fixed

regressor bootstrap, while the performance of the wild bootstrap remained good across

a range of sample sizes.

• Other Test Statistics: Andrews and Ploberger (1994) developed alternative proce-

dures to the Sup-W statistic that, under certain conditions, can lead to more powerful
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tests. Monte Carlo calculations with these Ave-W and Exp-W statistics revealed fi-

nite sample distributions with very similar properties to those reported here for the

Sup-W .

4 Allowing for Additional Explanatory Variables

While univariate time series models are commonly used for various applications, it is more

common for time series models to mix dynamic lagged dependent variable terms with

terms describing the effect of additional explanatory variables. In this section, we assess

the performance of the various methods when extended to this case.

Again, we base our assessment on Monte Carlo exercises featuring DGPs with varying

levels of persistence for the dependent variable. However, in this case, we also consider the

effect of varying the level of persistence of an additional exogenous regressor. The DGP

that we consider takes the form

yt = αy + ρyyt−1 + βxt + εt (12)

xt = αx + ρxxt−1 + ηt (13)

where both error terms are iid random variables, εt ∼ N(0, σ2
ε ), ηt ∼ N(0, σ2

η). In relation

to the tests, the approach that we take to implementing the sieve and wild bootstraps is

to treat the xt variable as a fixed regressor, taking it as given in each of the bootstrap

replications.

In the case of the univariate DGPs examined earlier, the only parameter relevant for

determining the finite-sample distribution of the tests was the parameter ρ, and thus we

were able to provide a comprehensive reporting of the properties of the tests across a wide

range of relevant cases. In contrast, in this case, simulating this DGP requires the choice

of the parameters such as ρy, ρx, β, σx and σy, and experimentation with various values

for these parameters have revealed different test sizes for the approaches adopted here.

Our approach has been to calibrate these parameters to an explicit empirical example

that we will discuss in the next section. Specifically, we calibrate αx, αy, β, σy and σx

based on values obtained for an exercise that treats the Euro-area inflation process as

the yt variable and the Euro-area output gap as the xt variable. We then consider the

performance of the tests for two fixed values of ρy (0.80 in Table 6 and 0.95 in Table 7),

and for a range of values for ρx going from 0.50 to 0.95.
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Tables 6 and 7 show that our general assessment of the asymptotic and fixed-regressor

methods extends to cases involving additional regressors. The sizes for these tests are

commonly above their intended ten percent level, with tests for breaks in αy and ρy having

higher sizes in the case ρy = 0.95 than in the case ρy = 0.80. The performance of tests

for breaks in β, the coefficient on the additional explanatory variable, get worse as the

persistence of this variable increases. In contrast, the sieve and wild bootstrap methods

both produce tests that are close to their intended size.

The poor performance of the fixed regressor bootstrap in these simulations stands in

contrast to Monte Carlo results reported in Hansen (2000) which suggest that the method

tends to produce tests with close to the appropriate size. For instance, Table 1 of his paper

reports a size of exactly ten percent for an example like this one in which the errors are iid,

and the model contains both a lagged dependent variable and an independent x variable.

The reason for the difference in our assessment of this procedure stems from the differences

in the underlying DGPs used to generate the size statistics. In terms of our example,

Hansens’s calculations correspond to a DGP with ρy = 0.5 and ρx = 0.0. However, our

calculations show once one moves to cases in which the dependent and independent variables

have more persistence, the performance of this procedure deteriorates.

It is worth emphasizing that the specific numbers reported in Tables 6 and 7 would

change if we make different assumptions about the various parameters of the DGP. However,

calculations not reported here show that our general assessment of the wild and sieve

bootstrap versus asymptotic and fixed-regressor methods are robust to these choices.

5 An Application: Instability in the Inflation Process?

Tables 8 and 9 present some examples of the application of the methods developed in this

paper. Specifically, we examine the question of the stability of the inflation processes for

both the US and the Euro area. This example is not chosen at random, but rather to

provide a good illustration of the types of application that our tests are most likely to be

useful for. In particular, macroeconomic time series are likely to be a particularly useful

area for the methods developed here. This is for two reasons. First, many macroeconomic

time series are highly persistent, with the hypothesis of a unit root often very difficult to

reject.8 Second, following the initial work of McConnell and Peres Quiros (2000), there

8See, for instance, Stock (1991).
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is now a substantial literature documenting the reduced volatility of macroeconomic time

series around the world. Thus, heteroskedasticity seems to be a very common feature of

macroeconomic time series.

Macroeconomic series also provide good examples of the importance of structural change

tests. Since Lucas (1976), it is well known that the parameters of reduced-form economet-

ric equations for macroeconomic variables can be expected to change over time as policy

regimes evolve. Indeed, there has been considerable debate in recent years about whether

the parameters of inflation processes have changed due to the shift since the early 1980s

towards more aggressive anti-inflationary policies by central banks; this theme has been

emphasised by John Taylor (1998), Thomas Sargent (1999) and others.

Table 8 reports the results from applying each of our tests to an AR(4) process for

Euro-area and US inflation, as measured by the log-difference in the GDP deflator.9 White

tests suggest that the US regression certainly has heteroskedasticity with a very significant

p-value; for the Euro area the p-value for the White (1980) test is 0.15, pointing to a strong

likelihood of underlying heteroskedasticity.

For both the US and the Euro area, our preferred tests give substantially different an-

swers to the asyptotic and fixed regressor methods when testing for a break in the intercept

term (in other words, testing for a break in the mean of the inflation process). For the

Euro area, the asymptotic test using the standard Wald statistic reports a p-value of 0.013

for a break in the intercept term. Similarly, the fixed regressor bootstrap points to a break

that is significant at the 10 percent level. In contrast, the sieve, wild, and bias-adjusted

wild bootstrap all point against the idea of a statistically significant break. Given the

evidence of potential heteroskedasticity in this series, the version of the test based on the

robust covariance matrix may be more relevant. In this case, the asymptotic test suggests

the likelihood of a break in the ρ coefficient, and also perhaps a joint break in both the

intercept and persistence parameters. In contrast, the sieve, wild, and bias-adjusted wild

bootstrap tests all indicate that there has not been a significant break. Table 9 shows that

these results are generally robust to adding an output gap (defined by HP-filtering real

GDP) to the specification.

For the US, the results show that the evidence for a break in the intercept is also

9The US data were downloaded from the Bureau of Economic Analysis website, www.bea.gov, while the

Euro-area data come from the Area-Wide Model database, as documented in Fagan, Henry, and Mestre

(2001).
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considerably weaker when one uses our preferred procedures. Perhaps more interesting,

though, are the results for the tests for a break in the ρ parameter. One potential concern

about the bootstrap tests suggested here is that these procedures may only have obtained

correctly-sized tests at the expense of having very poor power. In other words, it may be

that even when there is a break in the inflation process, our preferred tests may not be able

to detect it. The tests for a break in the ρ coefficient in the US inflation process suggest,

however, that these procedures are capable of detecting real breaks.

Table 8 shows that the wild bootstrap tests based on the robust covariance matrix

produce a p-value of 0.009 for the null hypothesis of no break in ρ for the US. Again, the

general nature of the results are not changed by re-doing the results for a model incopo-

rating the output gap. In this case, the robust version of the wild bootstrap test gives

a p-value of 0.018. The maximum Sup-W statistic for this test occurs at 1981:Q2, and

the point estimates of the pre- and post-break values of ρ are 0.95 and 0.77. While not

insignificant, these results show that coefficient changes do not have to be extremely large

for our bootstrap procedures to be able to detect them.

6 Conclusion

This paper has made three principal contributions.

First, we provided more extensive documentation than previous papers of how persistent

regressors and heteroskedasticity affect the performance of tests for structural change in

time series models based on the asymptotic distributions documented in Andrews (1993).

In particular, we document how these features have different effects on tests for breaks in

the intercept, breaks in the lagged dependent variable parameter, and joint breaks in both

of these parameters.

Second, we described some of the limitations of the fixed regressor bootstrap methodol-

ogy introduced by Bruce Hansen (2000). Specifically, we show that this procedure results in

substantially over-sized tests when the dependent variable displays moderate or high levels

of persistence.

Finally, we introduced an alternative “wild bootstrap” procedure for generating critical

values for structural change tests for time series models. We show that this procedure gives

tests that have approximately the correct size even when there are persistent regressors and

heteroskedasticity. Because high persistence and heteroskedasticity are common features of
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time series studied in fields such as macroeconomics and finance, we hope that our proposed

method will prove useful for a large number of future applications.
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Table 1: Size of 10% Test (T = 100): Andrews (1993a) Asymptotics

Baseline Variance Break

Intercept ρ All Intercept ρ All

ρ = 0.50 0.129 0.109 0.111 0.222 0.179 0.268

ρ = 0.70 0.171 0.125 0.145 0.262 0.198 0.335

ρ = 0.80 0.204 0.143 0.189 0.297 0.224 0.402

ρ = 0.90 0.320 0.173 0.301 0.443 0.260 0.562

ρ = 0.95 0.434 0.204 0.414 0.571 0.297 0.667

ρ = 0.99 0.578 0.361 0.546 0.714 0.398 0.786

Heteroskedasticity Robust Version of Test

ρ = 0.50 0.165 0.185 0.296 0.165 0.177 0.306

ρ = 0.70 0.210 0.233 0.375 0.201 0.207 0.378

ρ = 0.80 0.249 0.256 0.456 0.237 0.228 0.457

ρ = 0.90 0.376 0.316 0.606 0.373 0.283 0.607

ρ = 0.95 0.499 0.344 0.719 0.508 0.326 0.700

ρ = 0.99 0.649 0.480 0.804 0.665 0.436 0.801

Note: Results relate to the fraction of Type I errors recorded in 5000 Monte Carlo repli-
cations of two DGPs: The baseline DGP of equation (9) and the variance break DGP of
equation (10).
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Table 2: Size of 10% Test (T = 100): Fixed Regressor Bootstrap

Baseline Variance Break

Intercept ρ All Intercept ρ All

ρ = 0.50 0.163 0.155 0.155 0.145 0.142 0.135

ρ = 0.70 0.191 0.172 0.177 0.196 0.173 0.177

ρ = 0.80 0.204 0.149 0.193 0.234 0.182 0.218

ρ = 0.90 0.340 0.210 0.287 0.353 0.216 0.308

ρ = 0.95 0.462 0.236 0.388 0.459 0.237 0.392

rho = 0.99 0.575 0.364 0.485 0.573 0.366 0.480

Heteroskedasticity Robust Version of Test

ρ = 0.50 0.185 0.194 0.258 0.168 0.191 0.239

ρ = 0.70 0.215 0.230 0.326 0.218 0.236 0.320

ρ = 0.80 0.253 0.266 0.459 0.262 0.256 0.392

ρ = 0.90 0.375 0.290 0.520 0.387 0.303 0.534

ρ = 0.95 0.502 0.326 0.627 0.510 0.328 0.627

rho = 0.99 0.630 0.452 0.706 0.628 0.451 0.712

Note: Results relate to the fraction of Type I errors recorded in 5000 Monte Carlo repli-
cations of two DGPs: The baseline DGP of equation (9) and the variance break DGP of
equation (10).
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Table 3: Size of 10% Test (T = 100): Sieve Bootstrap

Baseline Variance Break

Intercept ρ All Intercept ρ All

ρ = 0.50 0.104 0.102 0.104 0.194 0.223 0.267

ρ = 0.70 0.106 0.101 0.100 0.192 0.224 0.279

ρ = 0.80 0.104 0.105 0.106 0.189 0.228 0.287

ρ = 0.90 0.114 0.099 0.114 0.234 0.232 0.338

ρ = 0.95 0.128 0.104 0.128 0.265 0.221 0.357

ρ = 0.99 0.163 0.129 0.155 0.332 0.222 0.406

Heteroskedasticity Robust Version of Test

ρ = 0.50 0.106 0.105 0.103 0.117 0.117 0.146

ρ = 0.70 0.106 0.108 0.106 0.122 0.134 0.156

ρ = 0.80 0.106 0.111 0.112 0.126 0.129 0.158

ρ = 0.90 0.116 0.107 0.120 0.161 0.132 0.180

ρ = 0.95 0.127 0.113 0.129 0.190 0.133 0.176

ρ = 0.99 0.167 0.147 0.154 0.246 0.151 0.197

Note: Results relate to the fraction of Type I errors recorded in 5000 Monte Carlo repli-
cations of two DGPs: The baseline DGP of equation (9) and the variance break DGP of
equation (10).
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Table 4: Size of the 10% Test (T = 100): Wild Bootstrap

Baseline Variance Break

Intercept ρ All Intercept ρ All

ρ = 0.50 0.103 0.103 0.107 0.113 0.107 0.120

ρ = 0.70 0.107 0.101 0.101 0.109 0.112 0.117

ρ = 0.80 0.102 0.102 0.105 0.103 0.113 0.118

ρ = 0.90 0.117 0.104 0.115 0.130 0.110 0.137

ρ = 0.95 0.128 0.105 0.128 0.155 0.118 0.142

ρ = 0.99 0.166 0.126 0.155 0.213 0.137 0.173

Heteroskedasticity Robust Version of Test

ρ = 0.50 0.107 0.106 0.110 0.110 0.108 0.112

ρ = 0.70 0.107 0.108 0.114 0.104 0.110 0.118

ρ = 0.80 0.103 0.115 0.117 0.102 0.104 0.118

ρ = 0.90 0.118 0.105 0.124 0.122 0.107 0.131

ρ = 0.95 0.130 0.114 0.134 0.137 0.109 0.142

ρ = 0.99 0.170 0.149 0.160 0.197 0.126 0.161

Note: Results relate to the fraction of Type I errors recorded in 5000 Monte Carlo repli-
cations of two DGPs: The baseline DGP of equation (9) and the variance break DGP of
equation (10).
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Table 5: Size of the 10% Test (T=100): Bias-Adjusted Wild Bootstrap

Baseline Variance Break

Intercept ρ All Intercept ρ All

ρ = 0.50 0.096 0.096 0.101 0.108 0.104 0.110

ρ = 0.70 0.109 0.102 0.108 0.109 0.109 0.108

ρ = 0.80 0.098 0.095 0.101 0.105 0.102 0.106

ρ = 0.90 0.095 0.085 0.101 0.107 0.096 0.110

ρ = 0.95 0.105 0.075 0.103 0.125 0.101 0.110

ρ = 0.99 0.153 0.112 0.137 0.201 0.135 0.145

Heteroskedasticity Robust Version of Test

ρ = 0.50 0.101 0.102 0.108 0.104 0.105 0.104

ρ = 0.70 0.112 0.106 0.110 0.107 0.105 0.106

ρ = 0.80 0.099 0.108 0.111 0.101 0.098 0.101

ρ = 0.90 0.094 0.101 0.107 0.103 0.097 0.113

ρ = 0.95 0.104 0.103 0.119 0.118 0.095 0.112

ρ = 0.99 0.153 0.149 0.132 0.179 0.129 0.138

Note: Results relate to the fraction of Type I errors recorded from 5000 Monte Carlo
replications of the two DGP’s, Baseline DGP in equation (1) and the Variance break DGP
in equation (2).
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Table 6: Baseline simulation with ρy = 0.8. 1000 Monte Carlo simulations with 399 bootstraps

Fixed Regressor Sieve Wild
Asymptotics Bootstrap Bootstrap Bootstrap

αy ρy β αy ρy β αy ρy β αy ρy β

rhoπ = 0.50 0.19 0.12 0.09 0.24 0.16 0.14 0.09 0.11 0.09 0.09 0.10 0.10

rhoπ = 0.70 0.22 0.10 0.11 0.22 0.15 0.17 0.12 0.09 0.09 0.12 0.09 0.10

rhoπ = 0.80 0.21 0.13 0.12 0.24 0.18 0.15 0.10 0.10 0.09 0.11 0.10 0.09

rhoπ = 0.90 0.20 0.14 0.17 0.25 0.19 0.19 0.11 0.08 0.11 0.11 0.09 0.11

rhoπ = 0.95 0.22 0.17 0.20 0.22 0.20 0.20 0.11 0.10 0.12 0.11 0.10 0.12

Note: The underlying DGP is given by
yt = αy + ρyyt−1 + βxt + εt

xt = αx + ρxxt−1 + ηt

εt ∼ N(0, σ2

ε ) ηt ∼ N(0, σ2

η)

with parameter values calibrated based on Euro area inflation and these take the following values αx = 0.1, αy = 0.15,
β = 0.5 and variances σ2

η = 1.8, σ2
ε = 0.24.
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Table 7: Baseline simulation with ρy = 0.95. 1000 Monte Carlo simulations with 399 bootstraps

Fixed Regressor Sieve Wild
Asymptotics Bootstrap Bootstrap Bootstrap

αy ρy β αy ρy β αy ρy β αy ρy β

rhoπ = 0.50 0.40 0.27 0.14 0.43 0.28 0.15 0.13 0.13 0.14 0.13 0.12 0.14

rhoπ = 0.70 0.41 0.27 0.12 0.39 0.26 0.17 0.11 0.11 0.09 0.13 0.11 0.09

rhoπ = 0.80 0.35 0.28 0.15 0.38 0.31 0.19 0.13 0.11 0.11 0.12 0.12 0.11

rhoπ = 0.90 0.34 0.29 0.18 0.30 0.27 0.21 0.11 0.11 0.11 0.12 0.12 0.11

rhoπ = 0.95 0.31 0.27 0.22 0.28 0.27 0.23 0.11 0.11 0.11 0.11 0.11 0.11

Note: The underlying DGP is given by
yt = αy + ρyyt−1 + βxt + εt

xt = αx + ρxxt−1 + ηt

εt ∼ N(0, σ2

ε ) ηt ∼ N(0, σ2

η)

with parameter values calibrated based on Euro area inflation and these take the following values αx = 0.1, αy = 0.15,
β = 0.5 and variances σ2

η = 1.8, σ2
ε = 0.24.
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Table 8: P-values for SupW Tests for Euro Area and US inflation

Euro Area US
Intercept ρ All Intercept ρ All

Andrews Asymptotics 0.013 0.094 0.032 0.056 0.000 0.000

Fixed Regressor Bootstrap 0.070 0.195 0.113 0.030 0.014 0.022

Sieve Bootstrap 0.186 0.327 0.303 0.062 0.001 0.002

Wild Boostrap 0.325 0.426 0.434 0.261 0.014 0.030

Bias Adjusted Wild Bootstrap 0.272 0.476 0.390 0.535 0.029 0.074

Heteroskedasticity Robust Version of Test

Andrews Asymptotics 0.044 0.014 0.037 0.024 0.000 0.000

Fixed Regressor Bootstrap 0.068 0.026 0.074 0.025 0.000 0.001

Sieve Bootstrap 0.364 0.201 0.434 0.208 0.005 0.023

Wild Boostrap 0.304 0.190 0.380 0.203 0.009 0.024

Bias Adjusted Wild Bootstrap 0.266 0.138 0.326 0.338 0.009 0.043

Notes: Results refer to AR(4) regressions for GDP price inflation. Euro Area sample is
1971:2 to 2003:4, US sample period is 1960:1 to 2004:2. Bootstrap tests use N = 5000
replications.
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Table 9: P Values for SupW Tests for Euro Area and US inflation when include an output
gap

Euro Area US
α ρ β α ρ β

Asymptotics Asymptotics 0.030 0.085 0.007 0.071 0.000 0.697

Fixed Regressor Bootstrap 0.088 0.173 0.010 0.044 0.023 0.647

Sieve Bootstrap 0.175 0.216 0.006 0.320 0.007 0.703

Wild Bootstrap 0.307 0.316 0.007 0.301 0.027 0.735

Bias Adjusted Bootstrap 0.207 0.315 0.008 0.584 0.047 0.723

Heteroskedasticity Robust Version of Test

Asymptotics Asymptotics 0.045 0.030 0.007 0.035 0.000 0.658

Fixed Regressor Bootstrap 0.073 0.059 0.004 0.042 0.001 0.771

Sieve Bootstrap 0.236 0.207 0.013 0.235 0.015 0.750

Wild Bootstrap 0.184 0.181 0.041 0.225 0.016 0.820

Bias Adjusted Bootstrap 0.166 0.143 0.015 0.336 0.018 0.824

Notes: Results refer to following regression

πt = α + ρπt−1 +
3

∑

i=1

∆γiπt−i + βgapt

for GDP price inflatio. Euro Area sample is 1971:2to 2003:4, US sample period is 1960:1
to 2004:2. Bootstrap tests use N = 5000 replications.
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