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Abstract

Output per worker can be expressed as a function of technological efficiency and of the

capital-output ratio. Because technology is exogenous in the Solow model, all of the

endogenous convergence dynamics take place through the adjustment of the capital-

output ratio. This paper uses the empirical behavior of the capital-output ratio to

estimate the speed of conditional convergence of economies towards their steady-state

paths. We find that the conditional convergence speed is about seven percent per year.

This is somewhat faster than predicted by the Solow model and is significantly higher

than reported in most previous studies based on output per worker regressions. We

show that, once there are stochastic shocks to technology, standard panel economet-

ric techniques produce downward-biased estimates of convergence speeds, while our

approach does not.



1 Introduction

The Solow (1956) model has provided the theoretical framework through which most cross-

country studies of empirical growth have interpreted their findings. The model predicts that

economies tend to converge towards a steady-state path, and that the growth rate of this

path is determined by technological progress while its level can be shifted up and down by

variables such as the savings rate and population growth rate. Mankiw, Romer, and Weil

(1992) and Barro and Sala-i-Martin (1992) reported that this “conditional convergence”

speed appeared to be significantly lower than Solow’s model predicts, based on simple

cross-sectional regressions. This finding has had a considerable effect on thinking about

growth and development. In particular, many have followed Mankiw, Romer, and Weil’s

suggestion that the Solow model needs to be augmented with accumulable human capital,

a modification that implies slower conditional convergence, and also much larger effects on

output levels for policies that boost physical and human capital accumulation.

Since these early papers, there has been a large empirical literature on conditional con-

vergence. Much of this research has focused on the fact that the cross-sectional regressions

in the original convergence papers can produce downward-biased estimates of convergence

speeds due to a failure to account for country-specific variables that do not change over

time (i.e. fixed effects).1 However, there is still little agreement on how best to deal with

country-specific fixed effects in the context of dynamic panel regressions, and many of the

commonly-used panel estimators have been shown to produce upward-biased estimates of

convergence speeds.2

This paper presents a new approach to implementing the Solow model and estimating

the speed of conditional convergence. Our approach has important methodological and

substantive implications. In terms of methodology, we show that it is possible to consistently

estimate the conditional convergence speed predicted by the Solow model without having

to rely on techniques to deal with country-specific fixed effects. Thus, our approach gets

around the principal econometric problems that have been associated with the cross-country

growth literature, and as such, we believe it produces more reliable and credible estimates

of convergence speeds than previously reported.

In terms of substance, our approach leads to a very different assessment of the speed of

1See, for instance, Islam (1995) and Caselli, Esquival, and Lefort (1996).
2Bond, Hoeffler, and Temple (2001) discuss the upward biases associated with panel data techniques

such as the standard “within groups” or fixed effects estimator.
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conditional convergence, and of the adequacy of the basic Solow model, than that suggested

by most previous research. Our results point to a conditional convergence speed of about

seven percent per year, well above the two-percent figure often cited as a stylized fact. We

argue that, if anything, the basic Solow model errs in somewhat underpredicting rather

than overpredicting the speed of convergence.

The basis for our approach is a property of the Solow model that is relatively well

known but that has not been exploited previously in the empirical literature on conditional

convergence. Output per worker can be expressed as a function of the level of technological

efficiency and of the capital-output ratio: This decomposition has been used, for instance,

by Hall and Jones (1997). Because technology is strictly exogenous in the Solow model, all

of the endogenous convergence dynamics take place through the adjustment of the capital-

output ratio towards its target or steady-state level.3 In our empirical analysis, we use a

cross-country data set to estimate the rate at which capital-output ratios tend to converge

towards their steady-state values, which also tells us about the conditional convergence

speed for output per worker.

We believe our approach gives different results from previous studies because it takes the

Solow model seriously in ways that previous work has not.4 We focus on the endogenous

convergence dynamics predicted by the model, while other studies have only examined

these dynamics indirectly. Previous research has focused on regressions for output per

worker. We argue that these regressions should not be interpreted as estimating the Solow

model per se, but rather a joint model that combines Solow with a specification of the

process generating technological efficiency across countries. Indeed, because of the need to

make assumptions about technology, it can be argued that this approach has run somewhat

counter to the spirit of the Solow model, which treats technology as exogenous and, thus,

makes no predictions about it.

In addition, to the extent that their underlying specification for technology may be

incorrect, output per worker regressions can produce misleading results. We show that the

standard specification of the technology process in previous studies is a highly inaccurate

one. This approach—employed by essentially all of the panel data studies—assumes that

3See, for instance, Chapter 4 of Brad DeLong’s recent Macroeconomics textbook for a discussion of this

property.
4We are aware, of course, of Mankiw, Romer, and Weil’s well-known opening statement that “This paper

takes Robert Solow seriously.” We argue, however, that our approach remains truer to the spirit of Solow’s

model that does the approach in the that paper.
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technological efficiency grows at the same rate across all countries, implicitly assigning all

differences in the level of technology to a country-specific fixed effect. This assumption,

however, is clearly rejected by even a cursory examination of the evidence on total factor

productivity: TFP growth tends to vary widely across countries at any point in time.

We use Monte Carlo simulations to illustrate the consequences for output per worker

regressions of failure to model the technology process accurately. We document a new and

important source of bias in these regressions: The failure to account for country-specific

stochastic shocks to TFP growth is a significant source of downward bias for estimates of

the speed of conditional convergence. Thus, estimates based on the standard within-groups

regression technique are subject to both this downward bias, as well as the finite-sample

upward bias documented by Nickell (1981). We show that for samples of the size used in our

empirical work, the downward bias due to stochastic technology shocks dominates. Indeed,

the empirical results obtained from within-group regressions for output per worker turn

out to be roughly consistent with the faster convergence speeds suggested by our method.

These results are of importance because it has previously been thought that within-groups

estimates represent upper bounds on the likely convergence speed.

In contrast to the output per worker regressions, our approach does not require a spec-

ification of the technology process for each country. For this reason, there is no theoretical

case for the inclusion of fixed-effects in our regression specification. Indeed, while we do re-

port such estimates, hypothesis tests reject the presence of fixed effects, allowing the model

to be estimated using pooled OLS. In light of the ongoing debates about the efficiency

of various panel estimation techniques for dealing with country-specific effects, we believe

our results provide a simple and intuitive alternative characterization of the conditional

convergence process.

The plan for the paper is as follows. We start by reviewing the theoretical results

concerning convergence dynamics in the Solow model and presenting our empirical estimates

of conditional convergence. We then discuss the relationship between our econometric

approach and the traditional approach based on output per worker regressions. We outline

how the traditional regressions are subject to a number of important biases that do not

affect our approach and how the results from these regressions are generally consistent with

our conclusions. Finally, we discuss some of the implications of our results for growth and

development economics.
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2 Convergence Dynamics in the Solow Model

2.1 Theory

Our analysis is based on the standard Solow model assumptions, starting with a Cobb-

Douglas production function

Yt = Kα
t (AtLt)

1−α (1)

where 0 < α < 1 which implies diminishing marginal productivity of capital. Assuming

continuous time, the capital stock accumulates according to

K̇t = sYt − δKt (2)

where s is the investment share of output.

In our analysis, we will work with a reformulated version of the production function,

derived as follows. Defining the capital-output ratio as

Xt =
Kt

Yt
(3)

output per worker can be expressed as

Yt

Lt
= AtX

α
1−α

t (4)

This decomposition has been used in a number of previous studies, most notably by Hall

and Jones (1997). Relative to the more familiar decomposition of output per worker into

technology and capital-per-worker terms, this decomposition has an important advantage.

The long-run capital-output ratio can be shown to be independent of the level of At, some-

thing which is not true of capital-per-worker. Hence, this formulation completely captures

the effects of At on long-run output, while the more traditional decomposition features a

capital deepening term that depends indirectly on the level of technology.

Capital-Output Ratio Dynamics: The dynamics of the capital-output ratio are derived

as follows. The growth rate of this ratio is

Ẋt

Xt
=

K̇t

Kt
−

Ẏt

Yt
= (1 − α)

(

K̇t

Kt
−

Ȧt

At
−

L̇t

Lt

)

(5)

4



Denoting the growth rates of technology and workers as

Ȧt

At
= g (6)

L̇t

Lt
= n (7)

and using equation (2), the dynamics of the capital-output ratio become

Ẋt

Xt
= (1 − α)(

s

Xt
− g − n − δ). (8)

These dynamics imply that the ratio converges to a steady-state level defined by

X∗ =
s

g + n + δ
. (9)

With this definition in hand, the ratio’s dynamics can be re-written in “error-correction”

form as

Ẋt = λ (X∗
− Xt) , (10)

where

λ = (1 − α)(g + n + δ). (11)

As noted by Jones (2000), this first-order differential equation has a solution given by

Xt = e−λtX0 +
(

1 − eλt
)

X∗. (12)

For our analysis, it is useful to note that this result also holds approximately for the log of

the capital-output ratio. In other words, letting xt be the log of this ratio, then

ẋt =
Ẋt

Xt
= λ

(

X∗
− Xt

Xt

)

≈ λ (x∗
− xt) (13)

which implies a solution of the form

xt = e−λtx0 +
(

1 − eλt
)

x∗. (14)

Output-Per-Worker Ratio Dynamics: These results also allow for a simple character-

ization of the dynamics of output per worker. Again letting lower-case letters represent

logged variables, we have

yt = at +
α

1 − α
xt. (15)
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So the dynamics of output per worker are given by

ẏt = g +
α

1 − α
ẋt. (16)

The steady-state path for output per worker is the level of output per worker consistent

with the capital-output ratio being equal to its steady-state level:

y∗t = at +
α

1 − α
x∗. (17)

Using equation (13), output per worker dynamics can then be expressed as

ẏt = g + λ (y∗t − yt) . (18)

Thus, the convergence speed, λ, of the capital-output ratio is also the so-called conditional

convergence speed of output-per-worker, i.e. it is the speed at which output per worker

adjusts towards its steady-state level. Note, however, that the output growth equation has

two components to it: Growth is determined by technological progress as well as the gap

between yt and y∗t . In contrast, movements in the capital-output ratio are determined only

by the gap between output and its steady-state level.

These results provide the basis for the empirical strategy followed in this paper, which

is to use the convergence properties of the capital-output ratio to directly estimate the

speed of conditional convergence. As we will discuss at greater length later, the fact that

capital-output dynamics depend only on the gap between output and its steady-state level

considerably simplifies the empirical estimation of convergence speeds relative to the estima-

tion of output per worker regressions, where some specification of the nature of technological

progress is necessary.

2.2 Generality of Results

Our derivations have been based upon a Cobb-Douglas production function, so a few points

about the generality of these results are worth noting. The first relates to the generality

of the representation of output per worker as a function of technology and of the capital-

output ratio. For the economy to exhibit steady-state growth, the production function

must be of the form F (K,AL), implying labor-augmenting technological change.5 If, in

addition, there are constant returns to scale, then one can write

F

(

K

Y
,A

L

Y

)

= 1 (19)

5See Jones and Scrimgeour (2005) for a discussion of this result.
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This restriction implies the existence of an implicit function Y
L

= G(A, K
Y

), relating output

per worker to technology and to the capital-output ratio.

Second, the formula for the steady-state capital-output ratio, equation (9), also holds

for any model with a production function F (K,AL) and featuring diminishing marginal

productivity of capital and labor. This latter assumption implies that the growth rates of K

and AL must be the same along the steady-state growth path. Because these growth rates

are given by s Y
K

− δ and g + n respectively, the formula for the steady-state capital-output

ratio automatically follows.

Finally, in relation to the convergence dynamics derived here, it should be kept in mind

that there is no general analytical solution for convergence dynamics in the Solow model.

For this reason, most discussions of its convergence dynamics have proceeded via first-order

log-linearizations of the production function.6 In this sense, the formulas derived here based

on the Cobb-Douglas production function can be viewed as a first-order approximation to

the dynamics implied by more general production functions.

3 Empirical Results

In our empirical implementation, we estimate conditional convergence speeds by examining

the rate at which capital-output ratios in a large panel of countries tend to converge to

the steady-state levels predicted by the Solow model. Here, we describe the estimating

equations used, the details behind the construction of the data, and our empirical results.

3.1 Estimating Equation

Equation (14), which has been derived from a continuous time model, has strong predictions

for the behavior of the capital-output ratio that one should observe when data are sampled

at discrete intervals. If the data are sampled every r periods, then the r-period change in

the capital-output ratio should be given by

xt − xt−r =
(

1 − eλr
)

(x∗
− xt−r) (20)

If the determinants of the steady-state capital-output ratio were constant over time

then this equation could be directly estimated using any time series for the capital-output

6For instance, the formula for the convergence speed λ (equation 11) is derived in this manner in the

textbook treatments of Barro and Sala-i-Martin (1995) and Romer (2001).
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ratio. In reality, however, investment rates and population growth rates do change over

time. Thus, our empirical approach allows the “target” capital-output ratio to vary over

time, implying an estimating equation of the form

xit − xi,t−r =
(

1 − e−λr
)

(x∗

it − xi,t−r) , (21)

where x∗

it is defined as

x∗

it = log (sit) − log (gi + nit + δ) . (22)

We report results from applying this regression to data based on both one-year and

five-year intervals, and with changes in the investment rate and population growth rate

allowed to affect the target capital-output ratio.7

3.2 Data Construction

Our data come from version 6.1 of the Penn World Tables, as documented by Heston,

Summers, and Aten (2002). We use data for the ninety-six countries listed in Appendix

A over the period 1950-2000. Implementation of our approach required construction of

time series for both the actual and target capital stocks. Of course, capital stocks are not

“primary” data, but rather must be constructed from assumptions regarding depreciation

rates and initial conditions. Here, we describe our approach to constructing these series.

Depreciation Assumptions: A number of the early papers on conditional convergence,

such as Mankiw, Romer, and Weil (1992), assumed a depreciation rate of three percent per

year. Mankiw (1995) explains that this is approximately the figure obtained from the US

national accounts when the value of depreciation was divided by the value of the capital

stock. However, the Department of Commerce has significantly revised its capital stock

estimates since the mid-1990s, with its new estimates on updated empirical evidence on

depreciation for various types of assets. With these revisions, this same calculation now

produces a figure of about four and a half percent.8

In fact, we believe that the most appropriate depreciation rate for the application of the

Solow model is actually somewhat higher again. Various types of capital depreciate at very

7One way to think of this approach is that it implies that equation (14) holds each period, with changes

in x∗ implying jumps in the “initial conditions” element of the solution.
8See Fraumeni (1997) for a discussion of the Commerce Department’s methodology for construct-

ing capital stocks. The data for these calculations were downloaded from the BEA’s website at

www.bea.doc.gov/bea/dn/home/fixedassets.htm
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different rates: Structures tend to depreciate at rates below two percent per year, while

equipment tends to depreciate at rates above ten percent. Mankiw’s calculation implictly

weights these depreciation rates according to the weight of each type of capital in the

current value of the stock. Consider, however, a re-formulated version of the Solow model

with multiple types of capital, so that the production function is

Yt = Sγ
t Eα−γ

t (AtLt)
1−α (23)

where St is structures and Et is equipment. In Appendix B we show that our estimating

equations can only be obtained in this case if the weights used to calculate the “aggregate

depreciation rate” reflect the contribution of each asset to production. In other words,

the correct weights in this example would be γ
α

and α−γ
α

. Empirical calculations of this

form usually point to approximately equal weights for equipment and structures in the

production function, whereas value weights point to structures being far more important.9

An equally-weighted average of a two percent structures depreciation rate and a ten percent

equipment depreciation rate points to an overall depreciation rate of six percent.

For this reason, six percent is our preferred depreciation rate. However, our principal

conclusion—that the estimated convergence speed is at least as fast as predicted by the

Solow model—is not affected by this choice of parameter. Thus, we also report results for

depreciation rates of four and five percent.

Initial Conditions Assumption: Given an assumed depreciation rate, we can construct

time series for capital stocks once we have an initial value for each stock. While initial capital

stocks cannot be observed, one can make an informed guess based on the observation that

the ratio of investment to capital is given by

It

Kt−1

=
∆Kt

Kt−1

+ δ (24)

and thus,

Kt−1 =
It

∆Kt

Kt−1
+ δ

(25)

Our approach has been to construct an initial capital stock for 1960 for each country in

our sample according to this formula, using the average growth rate of investment over

9For instance, Greenwood, Hercowitz, and Krusell (1997) report Cobb-Douglas exponents of 0.17 for

equipment and 0.13 for structures. Similar calculations reported by Whelan (2003) show 0.145 for equipment

and 0.165 for structures.
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the previous decade as our proxy for the growth rate of the capital stock. This initial

assumption appears to be quite accurate. For instance, when we apply this method to

construct a proxy for the year 2000 stock, the resulting estimates have a correlation of 0.99

with the figures based on the 1960 initial conditions assumption, even though this latter

series is almost completely based on data rather than initial assumptions.10

Construction of x∗

it: As noted above, we allow the the estimated target capital-output

ratio to vary over time with changes in each country’s investment rate and population

growth rate. In this sense, we are following the approach in previous panel studies such

as Islam (1995) and Caselli, Esquivel, and Lefort (1996), which included these variables

due to their effects in changing the steady-state level of output per worker. Unlike those

studies, however, which assumed that g + δ was constant across all countries, we also allow

gi to correspond to our estimate of each country’s average growth rate of technology. These

estimates were based on the average growth rate of time series for Ait obtained from a levels

accounting exercise based on the assumption of a Cobb-Douglas production function, using

our series on capital, measuring labor input as the number of workers, and the standard

capital share value of α = 1

3
.11

3.3 Results

Table 1 reports results from estimation of equation (21) over the period 1960-2000, with

the interval r set to one year, and for data based on depreciation rates of four, five, and

six percent.12 The first column reports the estimated convergence speed parameter λ from

pooled OLS estimation of the equation without any intercept term or country-specific effects

(since these terms are not predicted by the theory). The second column reports results from

the within-groups (i.e. least-squares dummy variable) estimator which allows for country-

specific fixed effects. The final column reports the average convergence rate consistent with

the Solow model for each depreciation rate. In other words, it reports

λSolow = (1 − α)(gi + ni + δ) (26)

10For instance, for our preferred depreciation rate of six percent, the starting 1960 value of the capital

stock receives a weight of (1 − 0.06)40 = 0.084 in the 2000 stock.
11Our results reported here are barely changed by the replacement of the one-third assumption with the

capital share values reported by Bernanke and Gurkaynak (2002), where such values were available.
12As noted in Section 2, these regressions could also be run for the level of the capital-output ratio, as

opposed to the logged value. This approach produces essentially the same results as those reported here.
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where gi and ni are the average values across countries for the growth rates of technology

and population.

The principal result from Table 1 (indeed, the principal result of the paper) is that

for each of the depreciation rates reported, the estimated convergence speeds are somewhat

faster than those predicted by the Solow model. For instance, for our preferred depreciation

rate of six percent, both estimation techniques point to a convergence speed of about seven

percent, compared with a prediction of λ = 0.063 from the model. As expected, the

estimated convergence speed rises with the assumed depreciation rate. However, even

for the low depreciation rate of four percent, the estimated convergence speeds, at about

six percent, are significantly higher than those reported in most conditional convergence

studies.

Table 2 repeats these regressions using a five-year interval. Starting with Islam (1995),

this has been the most common interval used in panel studies of conditional convergence.

The use of five-year intervals is seen as reducing the impact of cyclical fluctuations on

the estimated long-run convergence coefficients, as well as smoothing away much of the

measurement error that may be associated with the annual data. For these regressions, the

target capital-output ratio x∗

it is based on the investment and population growth rates for

the five-year interval including period t. These regressions produce very similar results to

those based on the one-year regressions, with conditional convergence speeds still somewhat

faster than predicted by the Solow model.

For each of our regression specifications, the within-groups panel estimator suggests a

slightly higher convergence speed than the pooled OLS specification. However, our preferred

estimates are those based on the pooled OLS estimation, because hypothesis tests reject

the presence of country-specific fixed effects. This result is perhaps a little surprising

because it implies that we have not omitted any important country-specific determinants

of the long-run capital-output ratio. Indeed, it turns out that failure to deal with country-

specific factors can easily overturn this rejection of fixed effects. For instance, when defining

xit, if we replace our country-specific estimates of the growth rate of technology, gi, with

the world average growth rate of 1.4 percent, then the hypothesis of no fixed effects is

overwhelmingly rejected. That said, these regressions also implied convergence speeds close

to those reported in Tables 1 and 2.
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3.4 Robustness

Our key finding, that conditional convergence speeds are somewhat higher than predicted

by the Solow model, turns out to be quite robust to changes in specification and samples.

Tables 3 and 4 report results for the case δ = 0.06 from specifications that are more

general than our basic regression. Table 3 reports results from a specification that allows

for a more complicated pattern of dynamic adjustment by including lagged changes in the

capital-output ratio; this additional term is significant in the one-year specification but

not in the five-year specification. Again, the assumption of fixed effects is rejected, and

the estimated convergence speeds of about seven percent are little changed relative to the

original estimates.

Table 4 loosens the implicit theoretical restriction imposing coefficients of equal mag-

nitude on the lagged capital-output ratio, xi,t−1, as well as on the two components of the

target ratio, log sit and log (gi + nit + δ). Most of the previous studies of conditional conver-

gence, based on output per worker regressions, have not imposed this latter restriction that

the investment and population variables have coefficients of equal magnitude. The presence

of fixed effects is again rejected in these regressions, leaving the pooled OLS regression as

the appropriate technique. The magnitude of the coefficients from these regressions turn

out to be very close to each other, exactly as predicted by the model, and the estimated

convergence speeds implied by the coefficients on the lagged capital-output ratios are again

very close to seven percent.

Table 5 reports results from estimating our base regression specifications for smaller

samples of countries. Following Mankiw, Romer, and Weil (1992) we considered two alter-

native samples. The first is an “intermediate” sample of 80 countries based on the exclusion

of countries that received a grade D for data quality, as well as countries with populations

of below one million in 1960. The second is a sample of 23 OECD countries. Again, the

assumption of fixed effects can be rejected in each case. The intermediate sample results

point to a seven percent convergence speed for both one-year and five-year intervals. The

one-year regression for the OECD sample gives a convergence speed of five percent, the

only deviation from the pattern of results reported elsewhere, but the five-year regressions,

which are probably more reliable, again report a convergence speed of about seven percent.

For our final robustness check, we note that we have followed in the tradition of previous

papers on conditional convergence in reporting a single convergence speed based on infor-

mation across a large sample of countries. However, it is likely that convergence speeds may
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vary across countries. Given that we have forty years of data for each of these countries,

it is also feasible to estimate our one-year equation separately for each country. Summary

statistics from these exercises are reported in Table 6. Though the average convergence

speeds are a touch lower than those reported for the equivalent pooled regressions in Table

1, the overall pattern is in line with our previous conclusions. In each case, the average con-

vergence speed either equals or is just above that predicted by the model. More generally,

even those countries with estimated convergence speeds at the lower end of the distribu-

tion have convergence speeds faster than the commonly-cited “stylized fact”’ figure of two

percent.

4 Relationship to Output Per Worker Regressions

In reporting convergence speeds that are consistently equal to or above those predicted

by the Solow model, our approach has produced a very different picture of the process of

conditional convergence than is suggested by conventional wisdom. For this reason, we

think it is important to reconcile our estimates with those produced from previous studies.

To do so, it is necessary to understand the relationship between our approach (based on

capital-output regressions) and those from previous studies (based on output per worker

regressions).

In the next few sections, we outline the relationship between the two approaches and

explain why our approach is more likely to provide accurate estimates of the speed of

conditional convergence. First, we discuss how the standard panel approach to output

per worker regressions relies on a very specific formulation of the cross-country process

for technology. We outline how, even if this assumption is correct, our method will have

considerable advantages. In the next section, we show that the standard assumption about

technology is highly inaccurate and that this leads to a new (previously undocumented)

source of bias in panel data growth regressions.

4.1 Relationship Between the Two Approaches

We have documented how the convergence properties of the capital-output ratio provide the

basis for the conditional convergence predictions of the Solow model. However, our approach

of directly estimating this convergence speed has not been used in previous empirical studies.

Instead, these studies have focused on the behavior of output per worker. Here we consider
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the model’s predictions for regressions based on output per worker. To understand this

relationship, the first step is to re-write the dynamic capital-output equation (21) in levels

form as

xit =
(

1 − e−λr
)

x∗

it + e−λrxi,t−r. (27)

This can be turned into an equation for output per worker dynamics by using the fact that

xit =
1 − α

α
(yit − ait) , (28)

so that the capital-output equation becomes

1 − α

α
(yit − ait) =

(

1 − e−λr
)

x∗

it + e−λr

(

1 − α

α

)

(yi,t−r − ai,t−r) (29)

This can then by re-arranged in more compact form to give

yit = ait − e−λrai,t−r +
α
(

1 − e−λr
)

1 − α
x∗

it + e−λryi,t−r (30)

Re-expressing the steady-state capital-output ratio in terms of its determinants then gives

yit = ait − e−λrai,t−r +
α
(

1 − e−λr
)

1 − α
[log (sit) − log (gi + nit + δ)] + e−λryi,t−r (31)

This equation describes the conditional convergence predictions of the Solow model as it

relates to output per worker. Controlling for the determinants of the steady-state capital-

output ratio and also for the evolution of technological efficiency, there is a negative rela-

tionship between the initial level of output per worker and the subsequent growth, with the

conditional convergence speed being dictated by the dynamics of the capital-output ratio.

To better explain the relationship between our empirical work and those in previous

studies, it is worth noting that previous papers have not examined convergence dynamics

in terms of equation (31) because they do not include measures of current and lagged

technological efficiency. Instead, they have made simplifying assumptions about the form of

the technology process and these simplifications have implied a specific estimable regression

format. For the vast majority of research in this area, the assumption has taken the form

ait = ai0 +

t
∑

m=1

gm. (32)

In other words, it is assumed that all differences across countries in technological efficiency

are accounted for by a once-off fixed effect due to “initial conditions”. After this initial
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period, all countries experience the same rate of technological progress.13 Mankiw, Romer,

and Weil (1992) intially justified this assumption on the grounds that technological progress

“reflects primarily the advancement of knowledge, which is not country-specific.”

With this assumption in hand, the technology term in the output per worker relationship

can be written as

ait − e−λrai,t−r =
(

1 − e−λr
)

ai0 +

t
∑

m=1

gm − e−λr
t−r
∑

m=1

gm (33)

and the expression for the growth in output per worker can be written in a panel-data

regression format as

yit = γi + ωt +
α
(

1 − e−λr
)

1 − α
[log (si,t−r) − log (g + ni,t−r + δ)] + e−λryi,t−r + vit (34)

where

γi =
(

1 − e−λr
)

ai0 (35)

ωt =

t
∑

m=1

gm − e−λr
t−r
∑

m=1

gm (36)

and vit is an error term.

4.2 Panel Data Estimation Biases: A Review

One of the potential problems with estimating the speed of conditional convergence using

equation (34) is that the identifying assumption regarding technology—equation (32)—may

be incorrect, and we will discuss this problem in the next few sections. However, even if

the technology assumption is correct, there are a number of serious econometric difficulties

associated with this type of regression.

The first and best-known difficulty stems from the presence of country-specific fixed

effects (the γi terms).14 These effects imply serious complications for each of the three

most common estimators that have been applied to estimate cross-country growth models:

13Some studies describe their assumption about technology as being ait = ai0 + gt, which assumes a

constant rate of world technological progress, i.e. gt = g at all times. Since these same studies usually use

time-effects rather than time trends to capture technological progress, the actual assumption is significantly

more general.
14Bond (2002) provides a useful detailed discussion of these econometric problems.
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• Pure cross-section regressions that ignore the panel element of the data (such as

Mankiw, Romer, and Weil’s) tend to substantially understate the speed of conver-

gence. They relegate the fixed effect to the error term, and this effect is necessarily

positively correlated with the lagged output term, yi,t−r. The upward bias in this co-

efficient implies a downward bias in the implied convergence speed. If fixed effects are

present, then the same argument also applies to pooled-OLS estimators that include

the panel element of the data but ignore the fixed effect.

• Panel techniques such as the within-groups estimator (as applied by Islam, 1995,

and many others) acknowledge the existence of the fixed effect but do not eliminate

the biases associated with them. Effectively, this technique transforms the model

by subtracting off country-specific means. In this case, assuming r = 1, the trans-

formed lagged output term is yi,t−1 −

∑T
m=1

yi,m−1 and the transformed error term

is of the form vit −
∑T

m=1
vim. These terms are negatively correlated, implying an

upward-biased estimate of the speed of conditional convergence, a bias that has been

documented analytically by Stephen Nickell (1981).

• First-differencing the model eliminates the fixed effect from the specification but this

transformation induces its own problems: The transformed error term vit − vi,t−1 is

negatively correlated with the transformed lagged dependent variable yi,t−1 − yi,t−2,

so OLS estimation gives upward-biased convergence speeds. Thus, Caselli, Esquivel,

and Lefort (1996) and others have estimated the model using GMM, with lagged

regressors acting as instruments for the first-differenced variables. However, these

lagged levels are only valid instruments under restrictive assumptions regarding the

autocorrelation structure of the error term. In addition, Bond, Hoeffler, and Temple

(2001) argue that the relatively slow pace of convergence implies that lagged levels

of output per worker are typically very weak instruments for first differences. This

leads to coefficients that are biased upwards towards their OLS levels.

The second difficulty is endogeneity bias. If shocks to output per worker also affect in-

vestment or population growth rates, then the convergence regression will contain endoge-

nous regressors and estimates of the convergence speed may be biased. Caselli, Esquivel,

and Lefort have argued in favor of the first-difference GMM approach as the best way of

dealing with this endogeneity problem. However, as we have just noted, this approach

suffers from other weaknesses that are not easily remedied.
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An important advantage of our approach is that these two econometric problems, which

have plagued the literature based on output per worker regressions, appear to pose far less

difficulty for our methodology based on capital-output regressions. Our econometric tests all

reject the presence of country-specific effects, so the estimated convergence speeds from our

pooled OLS regressions are free from the downward bias associated with these regressions

in the presence of fixed effects.

In relation to the problem of endogeneity bias, our method of directly assessing condi-

tional convergence via the dynamics of the capital-output ratio is less likely to suffer from

the endogeneity biases of the traditional approach. Much of the endogeneity bias in the tra-

ditional regressions likely stems from the joint effects that shocks to technological efficiency

have on both output per worker and the regressors. For instance, a positive technology

shock can simultaneously boost both economic growth and the investment share of GDP.

Even if the causation problems run from output per worker to the regressors, so that there

is a line of causation going from the capital-output ratio to output per worker to the regres-

sors in our model, this endogeneity is likely to be quite weak. This is because variations in

capital intensity account for a small fraction of the high-frequency fluctuations in output

growth.

4.3 A Puzzle?

Table 7 reports results for three different estimation methods. As expected, pure cross-

sectional estimation of the output per worker regression, equation (34), produces very low

estimated convergence speeds, which likely reflects the downward bias due to the correlation

between country-specific fixed effects and the initial output variable. Our data report a

convergence speed of only 1.0 percent for equation (34), and 1.4 percent if this specification

is augmented with a measure of school enrollment, as suggested by Mankiw, Romer and

Weil. This latter estimate exactly matches the figure reported in their paper.

The middle panels report the results from within-group estimation of equation (34)

using both one- and five-year intervals. As expected, these estimates are higher than those

for the pure cross-sectional regressions, with the one-year estimate being 4.0 percent, and

the five-year estimate being 5.8 percent. These estimates raise an interesting question.

Within-groups estimation is normally understood to produce upward-biased estimates of

convergence speeds. Indeed, Bond (2002) argues that the convergence speeds from within-

groups estimation can generally be considered an upper bound. If our capital-ouput ratio
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method has the advantages that we have indicated, then it is puzzling that our preferred

estimates are higher than those produced by within-groups estimation.

We believe the explanation for this puzzle lies in a problem relating to output per worker

regressions that has not been documented previously. Specifically, the standard assumption

about the cross-country process for technology provides a very poor approximation to the

actual process, and this results in a downward bias for estimated convergence speeds that

generally dominates the traditional upward bias due to fixed effects.

5 Implications of Stochastic Technology

In this section, we document the inadequacy of the standard assumptions about technology

and provide a simple model that fits the evidence better. We then explain the bias that

the traditional assumption induces when estimating convergence speeds from output per

worker regressions.

5.1 The Case Against the Fixed Level Effects Model

Figure 1 shows time series for TFP for four countries, from the top (USA), middle (Brazil

and Seychelles) and bottom (Tanzania) of the world income distribution. The charts also

show the fitted values from a regression fitting a deterministic trend to these TFP series.15

The figure illustrates a number of ways in which the traditional fixed effects model of

technology appears to be inaccurate.

First, note that at each point in time, TFP growth can take on quite different values

across countries. While year-by-year values of TFP growth may not be wholly reliable prox-

ies for underlying technology growth, the observation that there are significant variations

across countries still holds if one smooths out the series by averaging across multiple years.

For instance, using five-year averages of TFP growth as an indicator for the growth rate

of technology, the standard deviation of TFP growth across our 96 countries still averages

about two and half per cent. Contrasted with a median value for TFP growth of about one

percent, these figures make clear that cross-country variation in TFP growth is a large and

empirically important phenomenon.

Second, the figure makes clear that random country-specific shocks to TFP growth

15All the calculations reported here are based upon an assumed depreciation rate for capital of six percent,

but the results are robust to the use of other values.
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are an important source of this cross-country variation. In other words, the variation is

not simply because some countries have high trend growth rates and some have low trend

growth rates. As illustrated in the figure, even if we allowed for the idea that each country

might have a separate trend growth rate for technology, these deterministic trends leave a

large fraction of the variance of TFP unexplained: Across the 96 countries, the average R2

from individual regressions of the log of TFP on a time trend is 0.60.

Indeed, the coefficients on country-specific deterministic trends in these regessions should

be interpreted carefully. If TFP growth is subjected to stochastic country-specific shocks,

then such regressions could suggest spuriously different deterministic trends across coun-

tries. Indeed, once one accounts for the role played by random country-specific shocks,

there is little evidence for differences in trend TFP growth rates across countries. To assess

this question, we estimated a regression of the form

∆ait =
N
∑

j=1

βjDj +
T
∑

t=1

βkDk + ǫi,t (37)

where Dj and Dk are country and time-dummies. Perhaps surprisingly, only 7 of the 96

country dummies proved to be significant at the five percent level. Thus, the combination of

time effects capturing world technology developments, and country-specific shocks, appears

to provide a good model of the cross-country process for technology.

These considerations suggest a model for technology of the form

∆ait = gt + ǫi,t (38)

This approach maintains the Mankiw-Romer-Weil idea of a common world technology

trend representing advancement of knowledge, while also allowing for the country-specific

shocks required to explain the evidence on TFP growth. While this specification requires

a relatively small change from the standard assumption about technology (which implies

∆ait = gt) it turns out to have very important implications for output per worker regres-

sions.

5.2 A New Source of Bias: Stochastic Technology Shocks

Once one allows for stochastic country-specific shocks to TFP growth, the level of technology

becomes

ait = ai0 +

t
∑

m=1

gm + uit, (39)
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where

uit = ui,t−1 + ǫit = ui,t−r +

r−1
∑

m=0

ǫi,t−m. (40)

With this assumption, the technology term in the convergence relationship can be written

as

ait − e−λrai,t−r =
(

1 − e−λr
)

ai0 +
t
∑

m=1

gm − e−λr
t−r
∑

m=1

gm + uit − e−λrui,t−r. (41)

Thus, one can again obtain a growth regression of the form

yit = γi + ωt +
α
(

1 − e−λr
)

1 − α
(log (si,t−r) − log (gi + ni,t−r + δ)) + e−λryi,t−r + ηit, (42)

where γi and ωt are as in (35) and (36). However, an important difference in this case is

that the error term now takes the form

ηit =
(

1 − e−λr
)

ui,t−r +

r−1
∑

m=0

ǫi,t−m. (43)

These calculations show that once one allows for stochastic country-specific shocks to

TFP growth (as suggested by the evidence) then the error term in the standard growth

regression will contain the term ui,t−r, which describes the effect of these shocks on the

level of technology. This term is positively correlated with yi,t−r and this will be a source

of upward bias in the coefficient on this variable, and thus downward bias in the estimated

convergence speed.16 Whether this effect dominates, so that the within-groups estimator

will be downward biased, will depend on a number of factors such as the length of time

element of the panel. This is because the upward bias in estimated convergence speeds due

to the “Nickell effect” related to fixed effects tends to zero as T → ∞. In contrast, the

downward bias due to stochastic technology will not disappear in panels with a long time

series.

16Also worth noting is that the presence of ui,t−r means that the identifying assumptions underlying the

GMM estimators of Caselli, Esquivel, and Lefort (1996) and Bond, Hoeffler, and Temple (2001) will not

hold. These models are based on the assumption that all autocorrelations for the error term are zero beyond

two or three periods.
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6 Monte Carlo Evidence

To illustrate the performance under realistic conditions of both output per worker regres-

sions and our capital-output methodology, we undertook a number of Monte Carlo simula-

tions. In each case, we simulated ninety-six separate Solow model economies, each with a

technology process of the form

∆ait = g + ǫit (44)

where g = 0.014 and ǫit ∼ N(0, σ2) with σ = 0.01. This calibrates g using the median

growth rate of our estimated Ait series, and sets the volatility at a relatively high level,

in light of the apparent importance of these shocks. In addition, the initial values for the

country-specific technology series ai0 were drawn from a normal distribution with a standard

deviation set to match the ratio of standard deviation to mean in our own estimates of the

1960 distribution of this series. The results from the simulations were not very sensitive to

variations in the parameters of the technology process.

Concerning the other parameters of the model, the depreciation rate was set to δ = 0.06

in line with our preferred estimate, and the standard labor share value of two-thirds was

used. We then assumed that all countries had population growth rates of n = 0.031 percent.

This is somewhat larger than implied by a realistic calibration, but it ensures that we have

an average convergence speed of λ = (1 − α)(g + n + δ) = 0.07 in line with our preferred

empirical estimates. Finally, we assumed that each of these economies has an investment

share of s = 0.105, which implies an equilbrium capital-output ratio of one, and also

assumed that initial capital stocks are centered around this equilbrium with a standard

deviation equal to ten percent of the equilibrium level. Again, the results reported here did

not depend on these specific modelling choices; in particular, similar results were obtained

from simulations in which the investment and population growth rates varied across the

countries.

Table 8 reports results from a Monte Carlo exercise in which this model was simulated

1000 times with N = 96 and T = 40 chosen to match our dataset. The table gives the

average convergence coefficients obtained from applying to the simulated data both our

preferred method (pooled OLS estimation of the capital-output equations) and within-

groups estimation of the standard output per worker equation. The simulations provide

an important endorsement of our methodology. Both capital-output methodologies—based

on one-year and five-year intervals—produce an average estimated convergence speed that

almost exactly equals the underlying DGP’s “true” value of seven percent: The average
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speed from the one-year method is λ = 0.071, while the average from the five-year method

is λ = 0.072.

The table also shows how our preferred convergence speed of seven percent can be

reconciled with the lower estimates obtained from the within-groups estimation. The aver-

age convergence speed obtained from the within-group estimation of the simulated data is

λ = 0.053 for one-year intervals and λ = 0.064 for five-year intervals. Note that our simula-

tion matches the pattern of the estimates from the one-year and five-year intervals produced

by the within-groups method, with the five-year estimate being about one-percent higher.17

In addition, they show that for panels with time series of the length used in our study the

downward bias effect due to stochastic technology dominates the well-known upward bias

from the “Nickell effect.”

Indeed, the Monte Carlo evidence suggests that our within-groups output per worker re-

gressions come as close as they do to the “correct” convergence speed thanks to a somewhat

fortuitous combination of offsetting biases. Table 9 illustrates this by reporting simulation

results for alternative values of T . For smaller samples, the Nickell bias is very large.

For example, when T = 20, the average convergence speed from within-groups output per

worker regressions is sixteen percent for five-year intervals and eleven percent for one-year

intervals. The reduction in the effective sample, and the consquent strengthening of the

Nickell bias, explains why the estimated convergence speeds for five-year regressions are

higher than those for one-year regressions. When T = 40, as in our application, the two

biases are almost offsetting. However, for values of T that are higher than we used, we see

the Nickell bias declining and the downward bias due to stochastic technology being more

dominant. For instance, for time series with T = 150, the average convergence speeds from

simulated output per worker regressions fall to just over one percent.

In contrast, for each of the sample sizes used, our capital-output methodology gives

average convergence speeds that are always extremely close to the true value of seven

percent. Thus, while the estimated convergence speed from the five-year output per worker

regression, at almost six percent, is very close to the seven percent value given by our

method, this should not be taken as evidence that these two methods need generally give

similar answers. More importantly, our calculations show that it would be incorrect to

17Technically, the explanation for this pattern can be seen from equation (43) which shows that the term

ui,t−r is multiplied by
`

1 − e−λr
´

, which gets smaller as r increases. Because the downward bias due to

stochastic technology depends on the correlation between yi,t−r and the part of the error term that depends

on ui,t−r, this bias gets smaller as r increases.
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consider the convergence speeds from within-groups estimation of traditional output per

worker regressions as being “upper bound” estimates.

7 Implications for Growth and Development

We have found that the process of conditional convergence appears to be well approximated

by the predictions of the traditional (non-augmented) Solow model. These results clearly

have important implications for the interpretation of cross-country growth patterns. Two

issues, in particular, are worth highlighting.

The first is the role played by human capital in the growth process. Thus far, we

have ignored human capital altogether, with productivity increases due to human capital

implicitly incorporated into our estimates of TFP. However, our analysis would not be

changed if we had re-expressed the production function as

Yt = Kα
t (AthtLt)

1−α (45)

where ht is a measure of the average level of human capital per worker. This formulation,

used by Hall and Jones (1997) and others, illustrates how improvements in educational

standards can increase labor productivity, but does not change our analysis of convergence

dynamics in any substantive way. The only difference is that the term Atht plays the role

that At played in our analysis.

This example shows that one can account for a role for human capital without necessarily

re-formulating the Solow model along the lines of Mankiw, Romer, and Weil (1992) with

a production function of the form Yt = Kα
t Hβ

t (AtLt)
1−α−β and exogenously given savings

rates for both types of capital. This approach implies a particular specification for the

evolution of human capital, such that increases in output due to higher savings rates for

physical capital automatically also generate higher levels of human capital per worker. In

practice, the relationship between accumulation of physical and human capital need not be

so tight. Indeed, since the MRW model implies convergence speeds considerably slower than

estimated here, we are inclined to reject it as a model of cross-country growth dynamics.

The second issue concerns the importance of the conditional convergence mechanism

for explaining cross-country patterns of growth. We have stressed that the Solow model’s

predictions about conditional convergence match the data well. In this sense, we would

argue that the model should be taken very seriously. However, this is quite different from

23



Mankiw, Romer, and Weil’s position that a Solow model with common technology growth

across countries is capable of explaining the majority of variation in cross-country growth

rates, i.e. that conditional convergence dynamics provide the principal explanation for why

some countries grow faster than others. In fact, simple calculations suggest that the condi-

tional convergence mechanism is actually of limited importance in explaining international

variations in growth rates.

For instance, growth accounting calculations using our data show that at least two-thirds

of the variation in cross-country growth rates over the period 1960-2000 are accounted

for by variations in TFP growth. This leaves only a small fraction of the cross-country

variation in growth rates to be explained by conditional convergence dynamics. Of course,

the idea that variations in TFP growth are required to explain variations in output growth

across countries is hardly inconsistent with the underlying message of the Solow model that

technological progress is the ultimate source of all growth.

8 Conclusions

Solow’s (1956) model of economic growth still represents the starting point for most analysis

of the processes underlying long-run economic growth. However, despite its popularity as

a pedagogical tool, many believe that the model does not provide an adequate picture

of the processes underlying long-run growth dynamics. In particular, the large literature

on empirical growth regressions has generally suggested that real-world economies converge

towards their steady-states at speeds considerably slower than predicted by Solow’s original

model.

Our paper has questioned this conventional wisdom, on two fronts. First, we have ques-

tioned the evidence on convergence speeds from existing cross-country growth regressions.

It is well known that there are a number of difficult econometric problems associated with

estimating convergence speeds from these regressions, including the presence of country-

specific fixed effects and endogenous regressors. We have also documented an additional

source of econometric difficulty due to stochastic technology shocks, and shown how this

bias is likely to be more important than the well-known finite-sample bias for panel esti-

mators documented by Nickell (1981). Taken together, we think these results point against

the usefulness of traditional panel regressions as tools for estimating convergence speeds.

Second, we have introduced a new methodology for estimating conditional convergence
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speeds, based on the dynamics of the capital-output ratio. In light of the substantial

econometric problems surrounding traditional growth regressions, we think the methodol-

ogy suggested in this paper provides a simple and direct way of estimating the speed of

conditional convergence. By focusing directly on the speed at which capital-output ratios

converge towards their target values, our approach focuses on the precise form of con-

vergence dynamics predicted by the Solow model. It also avoids the need to deal with

the technicalities relating to country-specific fixed effects and has good properties when

economies are characterized by stochastic technology shocks.

Our finding that convergence speeds are consistently close to or slightly higher than

predicted by the Solow model should be of interest to those wishing to understand the fac-

tors underlying cross-country growth patterns. One possible explanation for this fast speed

of convergence is that the existence of mobile international capital may allow economies to

converge somewhat faster than implied by the closed-economy Solow model, a possibility

that has previously been raised by Barro, Mankiw, and Sala-i-Martin (1995). In addition,

our results imply that one does not need to adopt models with broader concepts of cap-

ital, and thus slower convergence speeds, to understand the processes generating growth

patterns across countries.
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A Definitions of Data Sets

References

All data come from the Heston, Summers, and Aten (2002) Penn World Tables, Version

6.1. The following list defines the three data sets used in our regressions.

Argentina Ecuador Jordan Philippines

AustraliaO Egypt Kenya PortugalO

AustriaO El Salvador KoreaO Romania

Bangladesh Ethiopia LesothoNI Rwanda

BarbadosNI FinlandO LuxembourgNI Senegal

BelgiumO FranceO Madagascar SeychellesNI

Benin GabonNI Malawi South Africa

Bolivia GambiaNI Malaysia SpainO

Brazil Ghana Mali Sri Lanka

Burkina Faso GreeceO MauritiusNI SwedenO

Burundi Guatemala MexicoO SwitzerlandO

Cameroon Guinea Morocco Syria

CanadaO Guinea-BissauNI MozambiqueNI Tanzania

Cape VerdeNI Honduras Nepal Thailand

ChadNI Hong Kong NetherlandsO TogoNI

Chile IcelandNI New ZealandO Trinidad and Tobago

China India Nicaragua TurkeyO

Colombia Indonesia NigerNI UgandaNI

CComorosNI Iran Nigeria United KingdomO

Congo IrelandO NorwayO Uruguay

Costa Rica Israel Pakistan USAO

Cote D’Ivoire ItalyO Panama Venezuela

DenmarkO Jamaica Paraguay Zambia

Dominican Republic JapanO Peru Zimbabwe

Note: NI means a country is not a member of the Intermediate sub-sample, while O means a

country is a member of the OECD sub-sample.
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B A Solow Model with Two Types of Capital

Here, we consider a Solow model with a two types of capital, equipment (Et) and structures

(St).

Yt = Sγ
t Eα−γ

t (AtLt)
1−α ,

The two types of capital accumulate according to

Ṡt

St
=

ssYt

St
− δs

Ėt

Et
=

seYt

Et
− δe

The growth rate of output in this case is

Ẏt

Yt
= γ

Ṡt

St
+ (α − γ)

Ėt

Et
+ (1 − α)

(

Ȧt

At
+

L̇t

Lt

)

.

If we define an aggregate capital stock as

K = S
γ

α E
α−γ

α
t ,

then the growth rate of this measure of capital is given by

K̇t

Kt
=

γ

α

Ṡt

St
+

α − γ

α

Ėt

Et

Thus, the output equation can be re-written in the usual form as

Ẏt

Yt
= α

K̇t

Kt
+ (1 − α)

(

Ȧt

At
+

L̇t

Lt

)

Now turning to the capital growth equation, this is given by

K̇t

Kt
=

γ

α

ssYt
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+

α − γ

α

seYt

Et
−

(

γ

α
δs +

α − γ

α
δe
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=
sYt
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−

(

γ

α
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α
δe

)

where

s =

[

γ

α

(

Et

St

)
α−γ

α

]

ss +

[

α − γ

α

(

Et

St

)

−
γ

α

]

se

These calculations show that the equations for our model can also represent a model with

multiple types of capital. However, in this case the appropriate depreciation rate in the

capital-growth equation is a weighted average of the underlying rates with the weights

determined by the exponents α and α − γ.
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Table 1: Dynamic Capital-Output Ratio Model: One-Year Intervals

Estimator OLS WG λSolow

δ = 0.06

λ 0.072 0.074 0.063
(0.003) (0.004)

P-Value of Fixed Effects 0.965

δ = 0.05

λ 0.065 0.067 0.056
(0.003) (0.004)

P-Value of Fixed Effects 0.962

δ = 0.04

λ 0.059 0.062 0.049
(0.002) (0.003)

P-Value of Fixed Effects 0.923

Note: Standard errors in parenthesis. WG denotes the within-groups (least squares dummy vari-
ables) estimator, while the p-value is from the null hypothesis of no fixed effects. λSolow refers to
the convergence rate suggested by the Solow model as given by (1 − α)(gi + ni + δ).
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Table 2: Dynamic Capital-Output Ratio Model: Five-Year Intervals

Estimator OLS WG λSolow

δ = 0.06

λ 0.069 0.075 0.063
(0.002) (0.002)

P-Value of Fixed Effects 0.517

δ = 0.05

λ 0.063 0.069 0.056
(0.002) (0.003)

P-Value of Fixed Effects 0.529

δ = 0.04

λ 0.056 0.062 0.049
(0.002) (0.003)

P-Value of Fixed Effects 0.505

Note: Standard errors in parenthesis. WG denotes the within-groups (least squares dummy vari-
ables) estimator, while the p-value is from the null hypothesis of no fixed effects. λSolow refers to
the convergence rate suggested by the Solow model as given by (1 − α)(gi + ni + δ).
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Table 3: Capital-Output Ratio Model with Additional Dynamics (δ = 0.06)

Estimator OLS WG

1 Year Interval

λ 0.067 0.071
(0.003) (0.004)

(xi,t−1 − xi,t−2) 0.085 0.072
(0.029) (0.029)

P-Value of Fixed Effects 0.993

5 Year Interval

λ 0.071 0.077
(0.002) (0.003)

(xi,t−5 − xi,t−10) -0.021 -0.075
(0.041) (0.045)

P-Value of Fixed Effects 0.499

Note: Standard errors in parenthesis. WG denotes the within-groups (least squares dummy vari-
ables) estimator, while the p-value is from the null hypothesis of no fixed effects. (1−α)(gi +ni + δ)
for the depreciation rate (6 per cent) is as in Table 2.
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Table 4: Unrestricted Dynamic Capital-Output Ratio Model (δ = 0.06)

Estimator OLS WG

1 Year Interval

xi,t−1 -0.069 -0.085
(0.003) (0.004)

log sit 0.063 0.063
(0.003) (0.004)

log[gi + nit + δ] -0.066 -0.042
(0.003) (0.017)

P-Value of Fixed Effects 0.525

5 Year Interval

xi,t−5 -0.287 -0.377
(0.012) (0.020)

log s5
it 0.263 0.265

(0.013) (0.018)
log[gi + n5

it + δ] -0.276 -0.398
(0.030) (0.122)

Implied λ 0.068 0.095
(0.002) (0.003)

P-Value of Fixed Effects 0.353

Note: Standard errors in parenthesis. WG denotes the within-groups (least squares dummy vari-
ables) estimator, while the p-value is from the null hypothesis of no fixed effects. s5

it and n5

it refer
to five-year moving average values of the investment rate and population growth rate.
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Table 5: Results for Smaller Country Samples (δ = 0.06)

Intermediate Sample OECD Sample
Estimator OLS WG OLS WG

1 Year Interval

λ 0.070 0.071 0.051 0.040
(0.003) (0.004) (0.004) (0.005)

P-Value of Fixed Effects 0.975 0.291

5 Year Interval

λ 0.070 0.077 0.067 0.064
(0.002) (0.003) (0.003) (0.004)

P-Value of Fixed Effects 0.634 0.764

Note: Standard errors in parenthesis. WG denotes the within-groups (least squares dummy vari-
ables) estimator, while the p-value is from the null hypothesis of no fixed effects.
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Table 6: Results from Running 96 Country-Specific Regressions

Std. 10th 90th

λSolow λAverage Deviation Percentile Percentile

δ = 0.06

0.063 0.063 0.030 0.033 0.103

δ = 0.05

0.056 0.057 0.028 0.028 0.094

δ = 0.04

0.049 0.051 0.026 0.021 0.086

Note: λSolow refers to the average convergence rate suggested by the Solow model as given by
(1 − α)(gi + ni + δ). λAverage is the average of the 96 country-specific λ’s estimated along with the
associated standard deviations and results for the 10th and 90th percentile.
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Table 7: Estimated Convergence Rate: K/Y and Y/L Regressions

Estimated
Dependent Variable Estimator Time Interval λ

Output per Worker Cross-Sectional 40 Years 0.010
Without School Enrollment (0.001)

Output per Worker Cross-Sectional 40 Years 0.014
With School Enrollment (0.001)

Output per Worker Within-Groups 1-Year 0.040
(0.006)

Output per Worker Within-Groups 5-Year 0.058
(0.009)

Capital Output Ratio Pooled OLS 1-Year 0.072
(0.003)

Capital Output Ratio Pooled OLS 5-Year 0.069
(0.002)

Note: Standard errors in parentheses. The within-groups Output per Worker regression replicates
the method used by Islam (1995), while the cross-sectional Output per Worker regression replicates
the approach of Mankiw, Romer, and Weil (1992).

Table 8: Monte Carlo Results For True λ = 0.07, (N=96,T=40)

Average
Dependent Variable Estimator Time Interval Simulated λ

Capital Output Ratio Pooled OLS 1-Year 0.071
Capital Output Ratio Pooled OLS 5-Year 0.072

Output per Worker Within-Groups 1-Year 0.053
Output per Worker Within-Groups 5-Year 0.064

Note: ‘N’ is the number of countries in the sample while ‘T’ is the size of the time period. See the
text for details of the simulations performed.
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Table 9: Monte Carlo Results For True λ = 0.07 and Alternative Sample Sizes

Simulated
Dependent Variable Time Interval λ

T=20

Capital Output Ratio 1-Year 0.069
Capital Output Ratio 5-Year 0.068

Output per Worker 1-Year 0.110
Output per Worker 5-Year 0.164

T=80

Capital Output Ratio 1-Year 0.071
Capital Output Ratio 5-Year 0.072

Output per Worker 1-Year 0.022
Output per Worker 5-Year 0.027

T=150

Capital Output Ratio 1-Year 0.070
Capital Output Ratio 5-Year 0.070

Output per Worker 1-Year 0.012
Output per Worker 5-Year 0.013

Note: ‘N’, the number of countries is kept constant at 96 in all exercises. See the text for details
of the simulations performed.
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Figure 1: Actual and Trended TFP for Select Countries 1960-2000
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