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Abstract

The aim of this paper is to assess whether explicitly modedimuctural change increases the accuracy of
macroeconomic forecasts. We produce real time out-of-Eafiopecasts for inflation, the unemployment
rate and the interest rate using a Time-Varying Coeffici®R with Stochastic Volatility (TV-VAR) for

the US. The model generates accurate predictions for tke thariables. In particular for inflation the TV-
VAR outperforms, in terms of mean square forecast errothalcompeting models: fixed coefficients VARS,
Time-Varying ARs and the rige random walk model. These results are also shown to hald tbe most

recent period in which it has been hard to forecast inflation.

JEL classification: C32, E37, E47.

Keywords: Forecasting, Inflation, Stochastic Volatility, Time Varying Ve&uatoregression.



1. Introduction

The US economy has undergone many structural changes during thé/pdd$ period. Long run
trends in many macro variables have changed. Average unemploymeinflation were partic-
ularly high during the 70s and low in the last decades (see Staiger, Stod¢KkyVatson, 2001).
Business cycle fluctuations have moderated substantially in the last twemsyayehthe volatility
of output growth has reduced sharply. This latter phenomenon is typieddyred to as the "Great
Moderation” (Stock and Watson, 2004). Also the dynamics of inflation lciiemged drastically:
after the mid 80s inflation has become more stable and less persistent (deg &ud) Sargent,
2001)!

In addition to these series-specific changes many important changeseieti@ships between
macroeconomic variables have been documented. For instance, sonts Aatl@argued that the
Phillips curve is no longer a good characterization of the joint dynamics cftiofl and unem-
ployment. Such a claim is partly based on the result that the predictive ¢taftenemployment
for inflation has vanished since the mid 80s (Atkeson and Ohanian, 2@ifrR, 2006; Stock
and Watson, 2008&).The same period has seen significant changes in the conduct of macroec
nomic policy. For example, according to many observers, monetary policgdé@ome much more

transparent and aggressive against inflation since the early 80gléCI@ali, and Gertler, 2000).

In this paper we address the following question: can the accuracy obs@mromic forecasts be
improved by explicitly modeling structural change? The answer to this qudstfanfrom trivial.
On the one hand, clearly, if the economy has changed, a forecasting imatcean account for such
changes would be better suited and should deliver better forecasts.e@th#r hand, however, a
richer model structure implying a higher number of parameters should setiea estimation errors

and reduce the forecast accuracy.

The relevance of modeling time variation was originally stressed by Doan,rhéterand Sims
(1984), but surprisingly there are only a few studies aiming at exploriagsfue systematically

(see Stock and Watson (1996), Canova (2007), Clark and McQrg@d®7), Stock and Watson

Changes in persistence are still debated, for instance Pivetta and B&73 {idd that the changes are not significant.

2More generally, the ability to exploit macroeconomic linkages for predidtifigtion and real activity seems to have
declined remarkably since the mid-1980s, see (D’Agostino, Gianreme Surico, 2006) and Rossi and Sekhposyan
(2008).



(2007)). These studies use different models and forecasting pdnindkey all share a common
feature: they focus on the time variation in the coefficients but do not alloehfanges in volatility.
The only exception is Stock and Watson (2007) who, however, do netlagged dynamics in their

forecasting equation.

We forecast three macroeconomic variables for the US economy, the loyenemt rate, infla-
tion and a short term interest rate, using a Time-Varying Coefficients VARStochastic Volatility
(TV-VAR henceforth) as specified by Primiceri (2005). The model iy Viexible. In particular it
allows for a) changes in the predictable component (time-varying coet#}jevhich can be due to
variations in the structural dynamic interrelations among macroeconomic lesiaind b) changes
in the unpredictable component (stochastic volatility), that is, variations inizbeasd correlation
among forecast errors, which can be due to changes in the size @rexagshocks or their impact

on macroeconomic variablés.

In the forecasting exercise we aim at mimicking as close as possible the coadéi®d by a
forecaster in real-time. We use “real-time data” to compute predictions basedmothe data that
were available at the time the forecasts are made. We forecast up to 3apeais This longer
horizon has been chosen to fill the gap with the existing literature, which hagynfiacused on
the shorter horizons up to one yéat.ong run persistent components can play a crucial role in
explaining longer horizon dynamics, while their contribution in explaining tshor movements in

the variables can be negligible.

The accuracy of the predictions (the mean square forecast erfdhg) DV-VAR are compared
to the predictions based on other standard forecasting models: fixditierd$ VARSs (estimated

recursively or with rolling window), Time-Varying ARs and theimarandom walk model.

The assessment of the forecasting performance of econometric moddlsedwane standard in
macroeconomics, even if the ultimate goal is not forecasting. Forecastiigadon can be seen
as a validation procedure which is particularly important for very flexiblg general models. In

general, introducing complexity in the model to better describe the data dbesaessary enhance

SAllowing for the two sources of change is also important in the light of theoomgdebate about the relative im-
portance of changes in the predictable and unpredictable components Greht Moderation (Giannone, Lenza, and
Reichlin, 2008).

“Clark and McCracken (2007) have also results for the very long hoofeen years.



real-time forecasting performances. The benefit from more flexibility mighitiged if the more
flexibility captures also non prominent features of the data. If model coritpiexntroduced with
a proliferation of parameters, instabilities due to estimation uncertainty might ctatypiéfset the
gains obtained by limiting model miss-specification. Out-of-sample forecastaigations repre-
sent hence an important device to evaluate the ability of capturing promiesturés of the data
within a parsimonious models. In addition, the out-of-sample exercise will atsade indications
on some subjective choices that are required for the estimation of the R/8del, such as the

setting of the prior beliefs on the relative amount of time variations in the cefts:

In addition, the paper studies another core aspect of the TV-VAR modehwias not been
tackled by the previous literature; the effect of explosive roots on tleeést accuracy. In particular,
we compare the predictive ability of the model in two cases: in the first onexjiiestve paths
(draws which make instable the system) are excluded, while in the secorsliomeestriction is
not imposed and all draws are used to compute the forecasts. Theqaesexplosive paths could

have relevant effects especially over the longer horizon foregasts.

Our main findings show that the TV-VAR is the only model which systematicallyweldiac-
curate forecasts for the three variables. For inflation the forecas&sajed by the TV-VAR are
much more accurate than those obtained with any other model. For unemployredotetasting
accuracy of the TV-VAR model is very similar to that of the fixed coeffic®AR, while forecasts
for the interest rate are comparable to those obtained with the Time-Varying#ge results hold
for different sub-samples. In particular, they are also confirmed theGreat Moderation period,
a period in which forecasting models are often found to have difficulties tipeoforming simple
nave models in forecasting many macroeconomic variables especially inflaticsultRsuggest
that, on the one hand time varying models are “quicker” in recognizing stalatbhanges in the
permanent components of inflation and interest rate, and, on the otltgithanshort term relation-
ships among macroeconomic variables carry out important information stmmtural changes are

properly taken into account.

The rest of the paper is organized as follows, section 2 describes tMAR\Mmodel; section 3

explains the forecasting exercise; section 4 presents the results &nd Semmncludes.

5Clark and McCracken (2007) found that the time-varying VAR perfoparticularly badly over the ten year horizon.
This might be due to the presence of explosive roots.



2. The Time-Varying Vector Autoregressive Model

Let y; = (m, URy, IR;)" wherem, is the inflation rate[J R; the unemployment rate andR; a
short term interest rate. We assume thhatdmits the following time varying coefficients VAR
representation:

yr = Ao+ Arye—1 + oo+ Apryi—p + € (1)

where A, ; contains time-varying interceptd, ; are matrices of time-varying coefficientss=
1,...,p ande, is a Gaussian white noise with zero mean and time-varying covariance matrix
Let Ay = [Aos, Ait..., Ay, andé; = vec(A;), wherewvec(-) is the column stacking operator.

Conditional on such an assumption, we postulate the following law of motiofy for
Or = 011 + wy )

wherew; is a Gaussian white noise with zero mean and covarighdde let:; = F; D F/, where
F; is lower triangular, with ones on the main diagonal, d»da diagonal matrix. Let; be the
vector of the diagonal elements iifi/2 andg; s, 1 = 1,...,n — 1 the column vector formed by
the non-zero and non-one elements of the- 1)-th row of F,'. We assume that the standard
deviations g, evolve as geometric random walks. The simultaneous relatigris each equation

of the VAR are assumed to evolve as independent random walks.

logoy =logor—1 + & (3
Git = Pig—1 + iy (4)

where¢; andv; ; are Gaussian white noises with zero mean and covariance riagmnd ¥;, re-
spectively. Letp, = [¢) ..., By _14)s ¥t = [W145---5;,1,), and V¥ be the covariance matrix
of ¢;. We assume tha; ; is independent of);;, for j # 4, and that;, v, w;, €; are mutually

uncorrelated at all leads and lafys.

®In principle, one could make; andw, correlated. However, it is well known that such model can be equitigle
represented with a setup where shocks are mutually uncorrelated isuserially correlated. Since our measurement
equation is a VAR, such a flexibility is unnecessary here.



2.1. Forecasts

Equation (1) has the following companion form
Y= pt + Aryi—1 + e

wherey: = [y;...y;_, 1], & = [£0...0]" andp; = [Aj ,0...0]" arenp x 1 vectors and

A (o M)
t pr—
In(p—l) On(p—l),n

whereA; = [A1;...Ap,] is ann x np matrix, I,,,—1) is ann(p — 1) x n(p — 1) identity matrix

and0 is an(p — 1) x n matrix of zeros. Leti, and A, denote the median of the joint

n(p—1),n
posterior distribution of:; A; (see appendix for the details). The one-step ahead forecast is

Vit = fe + Ay, (5)

A technical issue arises when we generate multi-step expectations; wechaveluate the
future path of drifting parameters. We follow the literature and treat thoseypaers as if they had
remained constant at the current lefeAs a consequence, forecasts at titne h are computed

iteratively:

h
Virnit = bt + AtYipn—1 = Z Al + ALy, (6)
=1

2.2. Priors specification

The model is estimated using Bayesian methods. While the details of the estimatintarately
described in the Appendix, in this section we briefly discuss the specificatioar priors. Fol-
lowing Primiceri (2005), we make the following assumptions for the priorssities. First, the
coefficients of the covariances of the log volatilities and the hyperparasnaterassumed to be

independent of each other. The priors for the initial stéte®, andlog ¢ are assumed to be nor-

"See Sbhordone and Cogley (2008) for a discussion of the implicationsdafithplifying assumption.



mally distributed. The priors for the hyperparametérs;z and ¥ are assumed to be distributed as

independent inverse-Wishart. More precisely, we have the followiioggr

e Time varying coefficientsP(6y) = N (6, Vy) andP(Q) = IW (5L, p1);
e Stochastic VolatilitiesP(log o) = N(log &, I,) andP(¥;) = TW (¥, ps;);

e Simultaneous relations?(¢) = N(¢;, Vy,) andP(Z) = IW (27, p2);

where the scale matrices are parameterized as follQpls = \1p1Vy, Wo; = A3ip3;Vy, and
Zo = Xopaol,. The hyper-parameters are calibrated using a time invariant recursReestimated
using a sub-sample consisting of the fifstobservation$. For the initial state, and the con-
temporaneous relations, we set the means, and ¢;, and the variancedj; andV,,, to be the
maximum likelihood point estimates and four times its variance. For the initial stati® dbg
volatilities, log o, the mean of the distribution is chosen to be the logarithm of the point estimates
of the standard errors of the residuals of the estimated time invariant VARdagrees of freedom
for the covariance matrix of the drifting coefficient’s innovations are sbetequal tdlj, the size of
the initial-sample. The degrees of freedom for the priors on the covariafitbe stochastic volatil-
ities’ innovations, are set to be equal to the minimum necessary for insuengritr is proper.
In particular,p; andp, are equal to the number of roVﬁjl and\Ifgi1 plus one respectively. The
parameters\; are very important since they control the degree of time variations in thesenad
states. The smaller such parameters are, the smoother and smaller arentiess chaoefficients.
The empirical literature has set the prior to be rather conservative in tdrthe amount of time

variations. The exact parameterizations used will be discussed in the eahgaation.

3. Real-time forecasting

Our objective is to predict the-period ahead unemployment rdie?; . 5, the interest raté R, 5,

and the annualized price inflatiorf,, , = 4—20109(133{’1), whereP, ,, is the GDP deflator at time

t + h and? is the normalization term.

8T, is equal to 32 quarters.



3.1. Data

Prices are measured by the GDP deflator and the interest rate is meagthedhree month trea-
sury bills. We use real time data fd, and U R;,° while the three month interest rate series is
not subject to revision¥ Since unemployment and interest rate series are available at monthly
frequency, we follow Cogley and Sargent (2001, 2005) and Coglemiceri, and Sargent (2008)
and convert them into quarterly series by taking the value at the mid-montle gldrter forlJ R,
and the value at the first month of the quarter f&;. We use quarterly vintages from 1969:Q4 to
2007:Q4. Vintages can differ since new data on the most recent peeiodleased, but also because
old data get revised. As a convention we date a vintage as the last quarteni€h all data are
available. For each vintage the sample starts in 1948'QFor the GDP deflator we compute the
annualized quarterly inflation rate; = 400 log(%). We perform an out-of-sample simulation
exerciset? The procedure consists of generating the forecasts by using the sanmaatibn that
would have been available to the econometrician who had produced tlcadtsén real time. The
simulation exercise begins in 1969:0Q4 and, for such a vintage, paramegerstanated using the
sample 1948:Q1 to 1969:Q4. The model is estimated with two lags. We computeeabedis up
to 12 quarters ahead outside the estimation window, from 1970:Q1 to 19721@4he results are
stored™® Then, we move one quarter ahead and re-estimate the model using the ditiage v
1970:Q1. Forecasts from 1970:Q2 to 1973:Q1 are again computed aad.sfdris procedure is
then repeated using all the available vintages. Predictions are compareskvpitist realized data
vintages. Since data are continuously revised at each quarter, |sguages are available. Fol-
lowing Romer and Romer (2000), predictions are compared with the figuldisiped after the next
two subsequent quarters. These figures are conceptually similar taiteelsging predicted in real

time since they do not incorporate rebenchmarking and other definitioaagiels. In addition, these

°The data are available on the Federal Reserve Bank of Philadelphia itevebat:
http://www.phil.frb.org/econ/forecast/reaindex.html.

1%The series is available on the FRED dataset of the Federal ReserveoB&ik Louis (mnemonics TB3MS), at:
http://research.stlouisfed.org/fred2/series/ TB3MS

"The vintages have a different time length, for example the sample spahefdirst vintage is 1948:Q1-1969:Q4,
while the sample span for the last available vintage is 1948:Q1-2007:Q4.

2Data for the same period can differ across vintages because of reyjidir notational simplicity we drop the
indication of the vintage.

13In the simulation exercise forecasts for horiZzoe= 1 correspond to nowcast, given that in real time data are available
only up to the previous quarter.



figures are based on a relatively complete set of data available to the stadifiiies. Qualitative

results are confirmed if we compare with final data.

Two important aspects of the TV-VAR specification are worth noting. Tisédine concerns the
setting of)\;, the parameter which fixes the tightness of the variance of the coefficiengeneral,
the literature has been quite conservative; very little time variation has bedrirupractice to set
this parameter. The second aspect concerns the inclusion (or exglasiexplosive draws from
the analysis. That is, whether to keep or discard draws whose (VAR@uIial) roots lie inside the
unit circle. We report results for the most conservative priors of Prim{2805) (\; = (0.01)?,
A2 = (0.1)2 and A3 = (0.01)?) and discard the explosive draws. However, we also run some
robustness checks to understand the sensitivity of the model to alterspéigdications. In a first

simulation, we set more stringent priors, while in a second simulation we keegplesive draws.

3.2. How much time variation?

In order to understand if time variation is an important characteristic of theelatae estimate the
TV-VAR model over the all sample and plot the estimated parameters and tllastaieviation of

the residuals (with the confidence bands) over time.

Figure 1 in Appendix shows the evolution of the coefficients over the sanpéey of them
display constant patterns, while about four parameters are charadtbsizemarkable fluctuations
over time. Figure 2 shows evolution of the standard deviation of the residéklhe volatilities
exhibit accentuate time variation over the sample. The figure also showsdhegrgitant with the

great moderation period (middle 1980s), there is a sharp drop in the volatitte cesiduals.

All in all these results show that time variation is an important features of the Naideling
such feature in both coefficients and variance is crucial for an aecesiimation and a correct

interpretation of the results.

3.3. Other forecasting models

We compare the forecast obtained with the TV-VAR with those obtained udffegetht standard

forecasting models. First, we consider Time Varying AutoregressionsAH)/for each for the



three series. We will keep the same specification and prior beliefs uséuefdiV-VAR. Second,
we also consider univariate (AR) and multivariate (VAR) forecastsyred using fixed coefficient
models. For sake of comparability, all the models are estimated with two lags. Tdelsrare
estimated either recursively (REC), i.e. using all the data available at the tirferéloast are made
or using a rolling (ROL) window, i.e using the most recent ten years of datitgable at the time
the forecast are made. The estimation over a rolling window is a very simpieedevtake time
variation into account. The forecasts computed recursively and with rollindows (on the VAR
and AR models) will be denoted by VAR-REC, VAR-ROL, AR-REC, and RRL respectively.
Notice that the models predict quarterly inflation, therefore the forecarstisd/,— quarter inflation
7Tth+h are computed by cumulating the fifsforecasts of the first entries (which correspondrtp
of the forecasted vectar, ,;, that isfrgﬁrh't = %Z?:l Tti44¢- We will also compute no-change
forecasts which are used as a benchmark. According to this neodel, unemployment and interest
rate nexth— quarter ahead are predicted to be equal to the value observed in thatauarter.
In the case of inflation we use a different benchmark. Atkeson andi@h&2001) showed that,
since 1984, structural models of US inflation have been outperformedéyeaforecasts based on

the average rate of inflation over the current and previous three cgiafthis is essentially a "no

change” forecast for annual inflation:

~h 1
Ft_;_aholt = ﬂ'? = Z(ﬂ-t + Tt—1 + Tt—2 + 7'('t_3) (7)

3.4. Forecast evaluation

Forecast accuracy is evaluated by means of the Mean Square F&eoa$MSFE). The MSFE is a
measure of the average forecast accuracy over the out-of-samplewin the empirical exercise
we use two samples to evaluate forecasting accuracy. The full sataple; Q1 — 2007 : Q4 and

the sampld 985 : Q1 — 2007 : Q4. This latter period corresponds to the great moderation period.
To facilitate the comparison between various models, the results are repoterds of relative
MSFE statistics, that is the ratio between the MSFE of a particular model to th& Mf3Re néve
model, used as the benchmark. When the relative MSFE is less than @moadisrproduced with a

given non-benchmark model are, on average, more accurate thapttookiced with the benchmark
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model. For example, a value of 0.8 indicates that the model under considénagicoves upon the

benchmark by 20%.

4. Results

This section discusses the main findings of the forecasting exercise.2labiemarizes the results
of the real time forecast evaluation, over the whole sample, for the thresbles (inflation rate
m;, unemployment rat& R, and the interest rateR;), and for the forecast horizons of one quatrter,
one year, two years and three years ahead. For the benchniegknmadels we report the MSFE,
while for the remaining models we report the MSFE relative to that of tieemaodel (RMSFE).
The overall performance of each model is summarized, at each hobigaweraging over the three

variables.

Overall the TV-VAR produces very accurate forecasts for all théalées and, on average,
performs better than any other model considered. In particular it ootpesfthe ndve benchmark

for all the variables at all horizons with gains ranging from 5 to 28 pedrcen

The best relative performances of the TV-VAR model is obtained fortioflaFor this variable,
the TV-VAR model produces the best forecast with an average (ogdrdtizons) improvements of
about 30% relative to the benchmark. A relative good performance iobkrved for the TV-AR
with improvements of about 10% at horizons of 1 and 2 years. The other twaddnt specifi-
cations, univariate and multivariate, fail to improve upon the benchmark mnstef forecasting

accuracy.

For interest rates, the varying parameter univariate and multivariate mpelétsm similarly
and they both improve upon constant parameter models. The advantagetiofi¢hvarying over
constant parameter models is less clear cut for unemployment and inteestHor unemploy-
ment, especially at long horizons, all models display good forecastingrphces relative to the

"naive”’benchmark. Notice, however, that the TV-VAR performs well fothaltizons.

In conclusion, the TV-VAR model is the only one which does well systematiealipss vari-

ables and horizons.

These findings show that time varying models are quicker than fixed paramspeifications
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to recognize structural changes in the permanent components of inflatidntarest rate. They also
suggest that interrelationships among macroeconomic variables caingpgmrtant information for
forecasting, especially for unemployment and inflation, given that theracg of the multivariate

time varying specification is always better than that of the univariate cquarter

Table 3 shows the results for the “Great Moderation” period. Such iag& of particular
interest because it has been shown that it is extremely difficult to prddteeasts which are more
accurate than those obtained with simpléveaandom walk models; however, also in this period,
most of the earlier findings are confirmed. First, the TV-VAR model geasréne most accurate
forecasts for all the variables. Second, the TV-VAR is again the modelyging the best forecast
for inflation with an average improvement (over the horizons) of abo¥t 80 the random walk.
In particular, the model performs very well for long run inflation forésashe improvement at
the 3 years horizon is almost double that of the full sample, it is now abddt H2erefore the
predictability of inflation can be reestablished once we account for stalathanges. This is
in line with Cogley, Primiceri, and Sargent (2008) and Stock and Watsad8{0~ho point out
that the death of the Phillips curve is an artifact due to the neglected inflatiodsti@nd non-
linearities. Third, forecasts of the interest rate obtained with the time varyirdgls@re more
accurate than those in the previous sample. This might reflect the increagedance of the
systematic predictable component of monetary policy in the last two decada#lyRime varying
methods also display more accurate forecasts, relative to the previoue stoniihve unemployment

rate series, over the longer horizons.

Finally, Tables 4-7 report the results of two different forecast simulatawer the two samples.
In the first one we use a more stringent priors specification to generaferdeasts. By more
stringent we mean that we assumeaapriori smaller degree of variation in all the coefficients.
Results are comparable, in terms of accuracy, with those obtained with theysrspecification.
The general message is that forecasts are particularly accurate vehattrisute low probabilities
of structural change. In the second simulation, we keep the explosivesdyenerated in the Gibb
sampler algorithm. In this case the accuracy of the forecasts deteriovai@sthe variables and
in particular for the unemployment rate and interest rate. Similar result heere found by Clark

and McCracken (2007) for longer term forecasts. This result, weveglis especially interesting



12

since there is no clear consensus about whether explosive draulsl ffeodiscarded or not. Our
results indicate that adjusting estimates to discard explosive roots is needegrave out-of-

sample forecast accuracy.

Figure 3 in Appendix shows the forecasts, obtained with and without tHessxe roots, for the
three variables at three years horizon. The main differences betwedorétasts are on the first
part of the sample until mid 1980s. Forecasts which include explosivescaemvmore volatile (this
is true for inflation and interest rate). This is due to higher persistenceecdties during those
years, as consequence there is a higher probability to draw expla@git® and as consequence
long-term forecasts tend to deviate from the unconditional mean. After th&98itis the forecasts

generated with and without explosive roots display similar patterns.

5. Conclusions

The US economy has changed substantially during the post-WWII periosl p@per tries to assess
whether explicitly modeling these changes can improve the forecastingaagaifrkey macroeco-

nomic time series.

We produce real time out-of sample forecasts for inflation, the unemployratenand a short
term interest rate using time-varying coefficients VAR with stochastic volatilityva@ compare its
forecasting performance to that of other standard models. Our findiogsthat the TV-VAR is the
only model which systematically delivers accurate forecasts for the tlaméables. For inflation,
the forecasts generated by the TV-VAR are much more accurate tharoifiaseed with any other
model. These results hold for the Great Moderation period (after mid §p8Dhis is particularly
interesting since previous studies found that over this sample forecastigsi@mve considerable
difficulty in outperforming simple rige models in predicting many macroeconomic variables, in

particular inflation.

We draw two main conclusions. First, taking into account structural econdmaitge is impor-
tant for forecasting. Second, the TV-VAR model is a very powerful fobreal-time forecasting
since it incorporate in a flexible but parsimonious manner the prominentésatfia time-varying

economy.
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This is a first step in the investigation of how structural change can be lypiiwodeled for
improving macroeconomic forecasting. We have assessed the acctimmptdorecasts. The as-
sessment of real-time accuracy of density forecasts is an interestinfpordature research since,
as pointed out by Cogley, Morozov, and Sargent (2005), the TV-Wdrlel is well suited to char-
acterizing also forecasting uncertainty, in particular for inflation in a situatiomhich monetary

policy and the economy are subject to ongoing changes.
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Appendix

Estimation is done using Bayesian methods. To draw from the joint posteriabdion of model
parameters we use a Gibbs sampling algorithm along the lines described in Rr{@06&). The
basic idea of the algorithm is to draw sets of coefficients from known conditjposterior distribu-
tions. The algorithm is initialized at some values and, under some regularidjtioms, the draws
converge to a draw from the joint posterior after a burn in period zl® (¢ x 1) vector, we denote

2T the sequencg, ..., 2%.)'. Each repetition is composed of the following steps:

=

Cp(eT]2T, 07 ¢, Q, 2,0, sT)
2. p(sT|2T,07 6T, ¢T,Q, 2, )4
3. p(¢T |27, 07,07, Q, 2, ¥, sT)
4. p(0T 2T o7, ¢, Q, 2,0, sT)
5. p(QzT, 07,67, 7 2, W, sT)
6. p(ZlzT, 07,07, ¢, Q, W, sT)

7' p(ql|xT7 9T7 UT? ¢T7 Q? E’? ST)

Gibbs sampling algorithm

e Step 1: sample from(a T |y7, 67, ¢, Q, 2, ¥, sT)

To drawos’ we use the algorithm of Kim, Shephard and Chibb (KSC) (1998). Consiger
system of equationg; = F, ' (y: — X[0;) = Dtl/zut, whereu; ~ N(0,1), X; = (I,, ® z}), and
7y = [Ly, Yi—1.--y1—p). Conditional ony”, 67, and¢?, y; is observable. Squaring and taking the

logarithm, we obtain

Y= 2r + vy (8)

re =111+ & %)

1see below the definition of” .
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wherey;; = log((y;;)* + 0.001) - the constant (0.001) is added to make estimation more robust
- vy = log(ui,) andr; = logoy,. Since, the innovation ingf is distributed adog x*(1), we
use, following KSC, a mixture of 7 normal densities with component probabiljfiemieansn; —
1.2704, and variances? (j=1,...,7) to transform the system in a Gaussian one, wigten;, fujz}

are chosen to match the moments oflityex? (1) distribution. The values are:

Table 1:Parameters Specification

7 qj m; UJQ-

1.0000|| 0.0073 -10.1300 5.7960
2.0000| 0.1056 -3.9728 2.6137
3.0000| 0.0000 -8.5669 5.1795
4.0000| 0.0440 2.7779 0.1674
5.0000| 0.3400 0.6194 0.6401
6.0000| 0.2457 1.7952 0.3402

7.0000| 0.2575 -1.0882 1.2626

Let s” = [s1,...,s7]" be a matrix of indicators selecting the member of the mixture to be
used for each element of at each point in time. Conditional o, (viglsiy = j) ~ N(m; —
1.2704, vjz-). Therefore we can use the algorithm of Carter and R.Kohn (1994) vodré&=1,...,T)

from N(Tt|t+1’ Rt‘t—i—l)! Wherert‘t—‘rl = E(Tt|rt+17 yta QT’ ¢Ta Qa Ea \I,a STa ) anth|t+1 = VCLT(Tt|Tt+1, yta QT’ ¢Ta Q
e Step 2: sample from(s” |yT, 07, o7, ¢7,Q, E, ¥)
Conditional ony;'; andr”, we independently sample eagh from the discrete density defined

by Pr(si: = jlyiiris) o< fn(yi512rie +mj — 1.2704,0%), wherefy (y|u, o) denotes a normal

density with mean: and variancer?.
e Step 3: sample from(¢” |y”, 67,07, Q, =2, ¥, sT)

Consider again the system of equatidfs' (y, — X/0,) = F, ‘4, = D,’*u,. Conditional on

6T, g, is observable. Sinth‘1 is lower triangular with ones in the main diagonal, each equation
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in the above system can be written as

U1t = O1tulg (10)

Uit = —Yni-1)Pit T oigiz 1 =2,..,n (11)

whereo; ; andu; ; are theith elements of; andu, respectivelyj, ;1 = [01,¢, -, Yi—1,¢). Under
the block diagonality ofl’, the algorithm of Carter and R.Kohn (1994) can be applied equation by
equation, obtaining draws fgs ; from aN (¢; 4i41, ®; ¢je41), Whereg, .1 = E(didldiir1,y', 07,07, Q, 2, ¥)

and@i,ﬂt—‘rl = Var(¢i7t|¢i,t+1a ytv QT’ 0T7 97 Eu \I])

o Step 4: sample from(67 |y”, o™, 7, Q, E, W, sT)

Conditional on all other parameters and the observables we have

Yy = thet + &t (12)

0 =01 +w; (13)

Draws for6; can be obtained froma (6,1, Py¢+1), wheredy, .y = E(0;|0,41, 4", 07, ¢7, 0,2, 0)
and Py = Var(0y|0i41,y", 07, ¢7,Q, 2, ¥) are obtained with the algorithm of Carter and

R.Kohn (1994).

e Step 5: sample from(Q|y”, 07,07, o7, 2, W, sT)

Conditional on the other coefficients and the d&tdjas an Inverse-Wishart posterior density
with scale matrixQ; ! = (Q0 + Y1, Ab:(A6;)")~" and degrees of freedonifo, = dfa, + T,
whereQa1 is the prior scale matrixjfq, are the prior degrees of freedom afids length of the
sample use for estimation. To draw a realizatiorfianakedfq, independent draws (i=1,...dfq,)

from N (0,9Q; ') and computeé = (Z?i”ll z2!)~1 (see Gelman et. al., 1995).

e Step 6: sample from(Z; ;|yT, 07, 0T, ¢T,Q, ¥, sT)

Conditional the other coefficients and the d&dyas an Inverse-Wishart posterior density with
scale matrix@; ' = (Zg + Zle Alogoi(Alogoy;)')~! and degrees of freedodfz, = df=, + T
whereEa1 is the prior scale matrix andgf=, the prior degrees of freedom. Draws are obtained as in

step 5.
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e Step 7: sample from(¥|y”, 67, o7, o7, Q, =, sT).

Conditional on the other coefficients and the ddtahas an Inverse-Wishart posterior density
with scale matri>¢[!;11 = (\I/i,0+ZtT:1 Agi+(A¢it))~! and degrees of freedodtfy, , = dfy, ,+7T
where\I/;O1 is the prior scale matrix andfy, , the prior degrees of freedom. Draws are obtained as

in step 5 for alli.

In the first estimation (the first out-of-sample forecast iteration), we mak®d repetitions
discarding the first 10000 and collecting one out of five draws. In ther@tstimations, we initialize
the coefficients with the medians obtained in the previous estimation, and we Bakespetitions

discarding the first 500 and collecting one out of five draws.
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Tables

Table 2: Forecasting Accuracy over the sample: 1970-2007

Horizons || Series| Naive ~ AR-REC  AR-ROL  TV-AR  VAR-REC VAR-ROL  TV-VAR
(MSFE)  (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)
T 2.15 1.13 1.08 1.03 1.15 1.01 0.86
1 quarter UR 0.15 1.00 1.08 1.00 0.99 1.18 1.02
IR 0.87 1.12 1.23 1.04 0.99 1.09 0.97
Avg. 1.08 1.13 1.02 1.04 1.09 0.95
T 2.24 1.17 1.03 0.88 1.37 1.22 0.62
1 year UR 1.07 1.03 1.24 1.01 0.67 0.91 0.78
IR 3.46 1.05 1.20 0.95 0.96 1.39 0.92
Avg. 1.08 1.16 0.95 1.00 1.17 0.77
T 3.06 1.19 1.13 0.93 1.6 1.38 0.66
2 years UR 2.39 0.95 1.14 0.95 0.45 0.63 0.62
IR 7.54 1.05 1.18 0.92 0.99 1.44 0.88
Avg. 1.06 1.15 0.93 1.01 1.15 0.72
T 3.31 1.28 1.24 1.00 1.93 1.60 0.72
3years UR 3.22 0.85 1.12 0.86 0.47 0.85 0.59
IR 10.28 1.08 1.15 0.91 1.03 1.32 0.84
Avg. 1.07 1.17 0.92 1.14 1.26 0.72

First column, horizons; second column, series; third column MSFE ohaive models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the naive model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.).
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Table 3: Forecasting Accuracy over the sample: 1985-2007

Horizons Series | Naive AR-REC AR-ROL TV-AR VAR-REC VAR-ROL  TV-VAR
(MSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)
™ 20.93 2.61 1.19 1.21 1.29 1.35 0.98
1 quarter UR 0.05 2.80 1.16 1.07 1.09 1.17 1.02
IR 0.27 3.64 1.08 0.83 0.87 1.02 0.82
Avg. 3.02 1.14 1.04 1.08 1.18 0.94
s 0.45 5.76 154 1.16 2.22 2.64 0.91
1year UR 0.37 3.00 1.15 0.82 0.97 1.23 0.88
IR 2.09 1.74 1.17 0.81 0.78 1.20 0.81
Avg. 3.50 1.29 0.93 1.32 1.69 0.87
™ 0.57 6.39 2.09 1.08 3.03 3.11 0.77
2 years UR 1.33 1.72 0.86 0.56 0.42 0.72 0.57
IR 5.16 1.53 1.05 0.74 0.67 1.20 0.74
Avg. 3.21 1.33 0.79 1.37 1.68 0.69
m 0.92 4.61 2.10 0.86 3.47 251 0.52
3 years UR 2.25 1.22 0.72 0.43 0.35 0.73 0.50
IR 7.69 1.44 0.89 0.63 0.70 1.13 0.61
Avg. 2.42 1.24 0.64 151 1.46 0.54

First column, horizons; second column, series; third column MSFE ohaive models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the naive model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.).
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Table 4: Forecasting Accuracy over the sample: 1970-2007 (Moreg8trirPriors)

Horizons Series | Naive AR-REC AR-ROL TV-AR VAR-REC VAR-ROL  TV-VAR
(MSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)
T 2.15 1.13 1.08 1.03 1.15 1.01 0.93
1 quarter UR 0.15 1.00 1.08 0.99 0.99 1.18 0.96
IR 0.87 1.12 1.23 1.04 0.99 1.09 0.94
Avg. 1.08 1.13 1.02 1.04 1.09 0.94
T 2.24 1.17 1.03 0.89 1.37 1.22 0.74
1year UR 1.07 1.03 1.24 1.01 0.67 0.91 0.70
IR 3.46 1.05 1.20 0.96 0.96 1.39 0.90
Avg. 1.08 1.16 0.95 1.00 1.17 0.78
m 3.06 1.19 1.13 0.93 1.60 1.38 0.79
2 years UR 2.39 0.95 1.14 0.95 0.45 0.63 0.50
IR 7.54 1.05 1.18 0.93 0.99 1.44 0.85
Avg. 1.06 1.15 0.94 1.01 1.15 0.71
T 3.31 1.28 1.24 1.01 1.93 1.60 0.86
3 years UR 3.22 0.85 1.12 0.86 0.47 0.85 0.48
IR 10.28 1.08 1.15 0.92 1.03 1.32 0.81
Avg. 1.07 1.17 0.93 1.15 1.26 0.72

First column, horizons; second column, series; third column MSFE ohaive models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the naive model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.). In this eshation we setA; = 0.00001, A2 = 0.001 and A3 = 0.00001.
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Table 5: Forecasting Accuracy over the sample: 1985-2007 (Moreg8trirPriors)

Horizons Series | Naive AR-REC AR-ROL TV-AR VAR-REC VAR-ROL  TV-VAR
(MSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)
T 0.93 1.19 1.19 121 1.29 1.35 1.02
1 quarter UR 0.05 1.07 1.16 1.07 1.09 1.17 0.99
IR 0.27 0.98 1.08 0.84 0.87 1.02 0.83
Avg. 1.08 1.14 1.04 1.08 1.18 0.95
T 0.45 1.20 1.54 1.16 2.22 2.64 0.93
1year UR 0.37 0.81 1.15 0.82 0.97 1.23 0.86
IR 2.09 0.89 1.17 0.82 0.78 1.20 0.79
Avg. 0.97 1.28 0.93 1.32 1.69 0.86
m 0.57 1.18 2.09 1.07 3.03 3.11 0.82
2 years UR 1.33 0.53 0.86 0.56 0.42 0.72 0.50
IR 5.16 0.80 1.05 0.77 0.67 1.20 0.69
Avg. 0.84 1.33 0.80 1.38 1.68 0.67
T 0.92 0.92 2.10 0.85 3.47 251 0.60
3 years UR 2.25 0.40 0.72 0.43 0.35 0.73 0.42
IR 7.69 0.74 0.89 0.67 0.70 1.13 0.55
Avg. 0.69 1.24 0.65 1.50 1.46 0.52

First column, horizons; second column, series; third column MSFE ohaive models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the naive model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.). In this eshation we setA; = 0.00001, A2 = 0.001 and A3 = 0.00001.
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Table 6: Forecasting Accuracy over the sample: 1970-2007 (with Explesaws)

Horizons Series | Naive AR-REC AR-ROL TV-AR VAR-REC VAR-ROL  TV-VAR
(MSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)
T 2.15 1.13 1.08 1.04 1.15 1.01 0.86
1 quarter UR 0.15 1.00 1.08 0.99 0.99 1.18 1.02
IR 0.87 1.12 1.23 1.05 0.99 1.09 1.01
Avg. 1.08 1.13 1.03 1.04 1.09 0.96
T 2.24 1.17 1.03 0.89 1.37 1.22 0.64
1year UR 1.07 1.03 1.24 1.00 0.67 0.91 0.80
IR 3.46 1.05 1.20 0.98 0.96 1.39 1.01
Avg. 1.08 1.16 0.96 1.00 1.17 0.82
m 3.06 1.19 1.13 0.95 1.60 1.38 0.76
2 years UR 2.39 0.95 1.14 0.95 0.45 0.63 0.68
IR 7.54 1.05 1.18 0.97 0.99 1.44 1.07
Avg. 1.06 1.15 0.96 1.01 1.15 0.84
T 3.31 1.28 1.24 1.02 1.93 1.60 0.92
3years UR 3.22 0.85 1.12 0.86 0.47 0.85 0.72
IR 10.28 1.08 1.15 0.98 1.03 1.32 121
Avg. 1.07 1.17 0.95 1.15 1.26 0.95

First column, horizons; second column, series; third column MSFE ohaive models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the naive model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.).
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Table 7: Forecasting Accuracy over the sample: 1985-2007 (with Explesaws)

Horizons Series | Naive AR-REC AR-ROL TV-AR VAR-REC VAR-ROL  TV-VAR
(MSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)
T 0.93 1.19 1.19 121 1.29 1.35 0.99
1 quarter UR 0.05 1.07 1.16 1.07 1.09 1.17 1.04
IR 0.27 0.98 1.08 0.85 0.87 1.02 0.86
Avg. 1.08 1.14 1.04 1.08 1.18 0.96
T 0.45 1.20 1.54 1.16 2.22 2.64 0.93
1year UR 0.37 0.81 1.15 0.82 0.97 1.23 0.92
IR 2.09 0.89 1.17 0.85 0.78 1.20 0.91
Avg. 0.97 1.28 0.94 1.32 1.69 0.92
m 0.57 1.18 2.09 1.08 3.03 3.11 0.80
2 years UR 1.33 0.53 0.86 0.56 0.42 0.72 0.63
IR 5.16 0.80 1.05 0.81 0.67 1.20 0.88
Avg. 0.84 1.33 0.82 1.38 1.68 0.77
T 0.92 0.92 2.10 0.86 3.47 251 0.56
3 years UR 2.25 0.40 0.72 0.43 0.35 0.73 0.65
IR 7.69 0.74 0.89 0.75 0.70 1.13 0.88
Avg. 0.69 1.24 0.68 1.50 1.46 0.70

First column, horizons; second column, series; third column MSFE ohaive models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the naive model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.).
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Figure 1: Time Varying Parameters (TV-VAR model)
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Figure 3: Three Years Ahead Forecast
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