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Abstract

Selten (1980) showed that an evolutionary stable strategy must be a strict
Nash equilibrium in a truly asymmetric game. Examples show that a neutrally
stable strategy (NSS) may however be mixed.This paper shows that such examples
are non-generic: in almost all truly asymmetric games, a mixed strategy
cannot be a NSS, and a NSS is generically strict. Hence evolutionary stability

and neutral stability are equivalent for almost all asymmetric games.

-

1 started work on this paper while visiting the Wissenschaftszentrum Berlin,
and completed this version at CentER, Tilburg. I am grateful to both
institutions for their hospitality.
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1. INTRODUCTION

The concept of an evolutionary stable strategy (ESS) was developed by
Maynard Smith and Price (1973) in the context of two-player symmetric games.
An ESS is a symmetric Nash equilibrium, which satisfies a stability condition,
of being invulnerable to invasion by any other strategy which is also a best
resonse to it. Many games are however asymmetric, and a player can be in a
number of possible roles, or information situations. The ESS concept was
extended to asymmetric games by Selten (1980, 1983), by considering the
situation prior to a player being assigned a role, thereby symmetrizing the
game. Selten showed that the ESS concept is very restrictive in truly
asymmetric games,where two players are never in the same information situation
(i.e. they always have different roles): an evolutionary stable strategy must
be a strict Nash equilibrium of the agent normal form or normal form of the
game. Since many games do not have strict Nash equilibria (eg. games with only
mixed strategy Nash equilibria), this implies that ESS may not exist in a
large class of truly asymmetric games.

The logic underlying Selten’s result can be illustrated by considering
the simplest case of a truly asymmetric game, where each player can be one of
two roles, 1 and 2. A behavior strategy in the symmetrized game is simply a
pair of strategies, one for each role. Let b = (bl'bz) be such a strategy, and
let b'1 be an alternative best response to bz.
(b'l,bz), which differs from s only with regard to the choice in role 1. It is

Consider the strategy b’ =

clear that b’ is a best response to b. Further, since the mutant strategy
only differs in one Informatlon situation, il effectively never meets itself.
Consequently, the payoffs of both strategies against b’ are equal, so that b
cannot be an ESS.

The above argument shows that b’ and b have equal payoffs in the mixed
population. Indeed, a mutant which differs only at one information situation
cannot have a strictly greater payoff. It has therefore been suggested that

weaker notions of evolutionary stability could be less restrictive in truly
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asymmetric games. Selten proposed the notion of "limit ESS", but this was

found to almost as restrictive - Samuelson (1991) showed that games with
two possible roles, a limit ESS must be in pure strategies. Maynard Smith's
(1982) neutrally stable strategy (NSS) is an even weaker concept. Van Damme
(1987) provides an example of the "battle of the sexes" over the care of
of fspring, where a mixed strategy is neutrally stable, and is also dynamically
stable. A similar example is presented in the game G1. This game has a unique
Nash equilibrium in mixed strategies, where the row player plays T with
probability b/(a+b), and the column player plays L with probability b/(a+b).
It can be verified that this mixed strategy is neutrally stable. It is also
possible to construct examples in 3x3 games. These examples suggest that
weakening the ESS concept in the direction of neutral stability might
alleviate the existence problem in asymmetric games.

Quite apart from its possible role in allowing existence of equilibrium
in a larger class of games, neutral stability possesses an appeal in its own
right. The literature on evolution and learning is in part a response to a
dis-satisfaction with the requirements made on rationality and on knowledge by
traditional game theory. Evolutionary theory discards these assumptions, but
replaces them by appealing to asymptotic behaviour in the presence of the twin
forces of natural selection/imitation and mutation/experimentation. How
relevant are asymptotic results to a study of human societies? How seriously
should one take results, such as the claim that evolutionary forces ensure
efficiency in a large class of repeated games? In this context, neutral
stability is a more appealing concept since it places less reliance upon
random mutations, and more on the dynamics induced by payoff differences. Both
Fudenberg and Maskin (1990) and Binmore and Samuelson (1992) employ the weaker
concept of neutral stability in deriving their results on efficiency in
undiscounted repeated games. In the context of cheap talk games, Warneryd
(1991) and Bhaskar (1992) similarly use this weaker notion to derive their

efficiency results. In these contexts, of games with a non-trivial extensive
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form, neutral stability is qualitatively weaker than ESS, and in fact weaker

in some respects than concepts such as the cyclically stable set (Gilboa and
Matsui, 1991).

The main result of this paper however belies the hope that neutral
stability will be significantly weaker than ESS in truly asymmetric games. We
find that examples such as Gl are unusual, and the set of payoffs for which a
given game has a mixed strategy NSS, is a closed set of Lebesgue measure zero.
In other words, in almost all truly asymmetric games, a mixed strategy Nash
equilibrium cannot be neutrally stable. Since pure strategy Nash equilibria
are generically strict, this implies that a NSS must be a strict Nash
equilibrium in almost all truly asymmetric games, and the concepts of NSS and
ESS coincide. We also show that our results extend when we consider the
special case of symmetric games where players can condition their choices upon
the role they play, although there is no asymmetry in payoffs. These results
contrast with the more positive results regarding repeated games and cheap
talk games referred to earlier. They suggest that games where a (non-trivial)
extensive form is induced by a move of nature are quite different from games

where the extensive form is due to the moves of the players.

2. ASYMMETRIC GAMES: DEFINITIONS AND A LOCAL CHARACTERIZATION

In this section we introduce the asymmetric game set up, following Selten
(1980) and Van Damme (1987) closely. Consider a random-matching situation
where two players are chosen to play a bi-matrix game. Each of these players
can be in one of several information situations. An information situation is a
complete description of the state of the player, and may include some
information regarding the other player’'s state. Let U be the (finite) set of
information situations, and let Cu denote the finite set of choices available
at ueU. A contest is a pair, uv, of information situations. For each contest,

there is a pair of matrices, A;v and A;u, the ij-th elements of which give



4
the payoff to the player at u and v respectively when they adopt the i-th and

Jj-th pure strategy. A local strategy at u is an element of ACu, and will be
denoted by bu. A behavior strategy is a vector of local strategies, one for
each information situation, and will be denoted by b = (bl’bz""'bu"'b#U)'
We write Bu for the set of local strategies at u, and B for the set of
behaviour strategies.

The two players are randomly allocated to information situations by a
symmetric probability distribution which is consistent (see Van Damme, 1987).
In other words, p is a symmetric probability measure over UxU, with generic
element Puv’ which denotes the probability of a uv contest with player 1 in
situation u. Let Py be the probability of player 1 being in information
situation u, and assume that P, > 0 for all u.

Let b and b’ be two behavior strategies. The expected payoff of b’

against b is given by:

A(b',b) = LI P bLAL Db, (2.1)
uv

A strategy beB is said to be an Evolutionary stable sirategy (ESS) if for

all b’#b,

bAb = b’Ab (2.2)
and

bAb = b’Ab = bAb’> b’Ab’ (2.3)

(2.2) requires that b be a symmetric Nash equilibrium in the symmetrized
game, and (2.3) is the stability condition - if b’ is an alternative best
response to b, then b does strictly better against b’ than b’ does against
itself.

A game is said to be truly asymmetric if the two players are never in the
same information situation, i.e. if Paas 0 for all u. In this paper we shall
concern ourselves only with truly asymmetric games. If #U is the number of

information situations, a truly asymmetric game can also be seen as a #U
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person game with one player for each information situation. This is called
the agent normal form of the game.

Selten (1980) defines the local game at u induced by b as the
symmetric bi-matrix game with pure strategy sets Cu and fitness matrix Au(b)
defined by:

Au(b) = Puy Auu +L puvAuvbv (2.4)

v#u

Write A(b,b’;b,u) for the payoff of b against b’ in the local game
induced by b at u. Consider the special case where Puu is zero, so that a
player in role u never meets a u-player. In this case, (2.4) shows that
A(b,b’;b,u) is independent of b’, and depends only upon b. Consequently, in a
truly asymmetric game, A(b,b’;b,u) is independent of b’ for all u, and for all
b

A strategy b is said to be a locally stable strategy (LSS) if bu is an
ESS of the local game at u for every ueU. Obviously, a strategy must be a LSS
if it is to be an ESS. Unfortunately, the reverse is not true - a LSS need not
be an ESS, as the example in Van Damme (1987) shows. Intuitively, local
stability checks for stability against mutants which vary their behavior at
single information situations. This is insufficient, since a mutant may be
able to do better by varying two or more information situations. Consequently,
global analysis 1is required in order to check whether a strategy is ESS.
Selten shows that one may obtain a local characterization of ESS in truly
asymmetric games. This is possible since the ESS is a very restrictive concept
in truly asymmetric games - any ESS must be a strict Nash equilibrium of the
agent normal form of the game, and hence a strict Nash equilibrium of every
local game. However, Selten’s formuation does not allow a local
characterization of NSS even in truly asymmetric games, since a NSS need not
be a strict equilibrium.

The first result of this paper is to obtain a local characterization of

NSS in truly asymmetric games. This requires that we check for stability only
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against mutants which vary their behavior at two information situations.
Define the local game at uv induced by b as follows: the game consists of
two information situations, u and v, with pure strategy sets Cu and Cv

respectively, and payoff matrices Au(b), Av (b). Au (b) is defined by:

Au (b, u, v) = puuAuu‘ puvAuv ¥R puwAuw buh (2.5)
w#u, v
where h is the vector of ones, (1,1,....,1).

(2.5) shows that the payoff matrix at u in the local game at uv defined
by b, Au(b.u,v) is the probability weighted sum of payoff matrices of of the
bimatrix games at uu and uv, and a third matrix. This third matrix gives the
expected payoff to the i-th pure strategy (row) in Cu in contests uw given the
local strategies bw' This has constant rows since the payoff in contests uw
does not depend upon the choices made by the u-player or the v-player. The
payoff of a strategy b"=(b&,b;) against another strategy b’'= (b;,b;) in the
local game defined by b at uv, is given by :

A(b",b’;b, u,v) = p b"A’ b’ + p Db"A’ b’ + p_ b'A’ b’ + p_ b'A’ b’

uu u uu u uv u uv v VvV V. VW Vv vu v vuu

# ¥ puwbuAuwbw 2 pvwvavwbw (2.6)

w#u, v w#u, Vv

A strategy b will be called pairwise neutrally stable strategy (PNSS)

if (bu,bv) is a NSS of the local game defined by b at (u,v) for every pair
(u,v) in UxU. Notice that the local game defined by b at (u,u) coincides
with Selten’s definition of the local game defined by b at u, so that pairwise
neutral stability implies local neutral stability

Theorem 1. Let I' be a truly asymmetric game. b is a NSS of I' if and only if b
is a PNSS of T.

Proof: Let b be a Nash equilibrium of the agent normal form. We can restrict
attention to mutants which are best responses to b, so let b’ be an

alternative best response to b, so that A(b,b) = A(b’,b). Consequently, b'u is
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a best response to bu in the local game at u for every ueU. If b is a PNSS, we

have A(b,b’;b,u) = A(b’,b';b,u) for every u. Consider the sum:

S= § Y {A(b,b’;b,u,v) - A(b’,b’;b,u,v)}

u#v v

=2f I py,lb, - BA b

u uv yv
a: W
+2(#0-2 § T p_, (b - bIA b
u v
+2(#U-2) T p (bu-bu)AuubL (2.7)
u

Since the first term on the right hand side of (2.7) |is
[A(b,b’)-A(b’b’], and since the second and third terms sum up to the
difference in payoffs in all local games at u, we have:

Alb,b’)-A(b’b’') = S/2 - (#U-2)F {A(b’,b’;b,u) - Alb,b’;b,u)} b

u

If the game is truly a%ynnetric. A(b’,b’;b,u) = A(v,b’;b,u) for every u, and
hence:
A(b,b’) -A(b’,b’) = S/2 (2. 9)

If b is a PNSS, each term in the summation (S) is non-negative and b is
an NSS. o

The intuition behind theorem 1 suggests that it should be possible to
generall;e the result to games with more than two players. If m players are
randomly allocated to #U information situations, one needs to consider only
possible m-tuples of deviations. However, since evolutionary game theory has
focused on two-player games, we shall not pursue this generalization.

Theorem 1 will play an important role in our analysis: it allows to
analyze neutral stability in the overall game at the level of pairwise neutral

stability in local games.
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3. GENERIC RESULTS FOR ASYMMETRIC GAMES

In this section of the paper we rely upon theorem 1 in order to analyze
any #U type asymmetric game at the level of 2 types. In other words, we shall
analyze local games at pairs of information situations. Our aim is to prove
the following theorem, which is the main result of the paper.

Theorem 2. Let ' be a truly asymmetric game. For almost all payoff

matrices, ' does not have a NSS in mixed strategies, and any NSS must

A,
uv
be a strict Nash equilibrium.

We prove the theorem by a series of lemmata. The first lemma shows that
if a NSS involves playing a mixed strategy in one information situation, u,
then it must (generically) involve mixing in at least one other information
situation, v. The lemma states this result somewhat more generally, in terms
of the Nash equilibrium of the agent normal form of the game.

Lemma 1. Let b = (bl'b 'bu"'b#U) be a Nash equilibrium of the agent

50
normal form of the game. If bu is a non-degenerate mixed strategy, then for
almost all games, there exists a v different from u such that bv is also a
non-degenerate mixed strategy.

Proof: Let cu,ca € C(bu). If bw is a pure strategy for all w, so that

b = ¢ other than u, then :
wowW

Au(cl,cz,...cu,...cn) = Au(cl.cz...cu,..cn) (3.1)

In other words, the payoff to player u from two pure strategies is identical,
fixing the pure strategies all other players. The set of games where any two
payoff entries of player at u are equal is a closed set one dimension less
than the dimension of the space of payoffs. The set of games where payoffs to
any player are equal is finite union of #U closed sets of lower dimension, and
is hence a closed set of Lebesgue measure zero, in the space of payoffs. o
Lemma 1 establishes that in almost all asymmetric games, if an
equilibrium strategy involved mixing at one information situation, it must
involve mixing in at least two information situations. A truly asymmetric

games defines a n player agent-normal form game, and a neutrally stable
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strategy is necessarily a Nash equilibrium of the agent normal form game
Consequently, a mixed strategy NSS in truly asymmetric game generically
involves playing a mixed strategy in at least two information situations, u
and v.

Consider the local game defined by b at the contest uv. A strategy in the
local game, buv' is given by a pair (bu,bv) where bueACuand bveACv, where

AC,is the set of probability measures on C From (2.5), we write down the

i i
payoff matrices in the local game. Since the game is truly asymmetric, Puu 0.
Au (b,u,v) = puvAuv + ¥ puuAuw bwh (3.2)
W#U, V
Av (b,u,v) = puvAvu & ¥ pvavw bwh (3.3)
w#u, vV

We shall show that if buv is a (non-trivial) mixed strategy combination,
then buv cannot be a NSS of the local game at uv for almost all payoff
matrices. The strategy of our proof will be to assume that buv is an NSS,
thereby deriving conditions on the payoff matrices which cannot be generically
satisfied. However, some notational simplification is worthwhile at this
stage. Note that if (bu.bv) is a NSS of the local game at uv, then (bu,bv) is
a NSS of the local game where the player at u is restricted to mixed
strategies which are used with positive probability by bu, and the same holds
for wv. In other words, we consider the restricted game where players are
restricted to probability measures over the set of pure strategies which are
in the support of bu and bv' Write A for the restricted version of the payoff
matrix Au and B for the restricted version of the payoff matrix Av. Write
(p,q) for (bu.bv): since we are only considering the restricted game, both p

and q are in the interior of the simplex. A strategy, buv = (p,q) is a

neutrally stable strategy (NSS) in the local game if for any other bﬁv
(p*aq” ):

pAq + pBq 2 p'Aq + pBq’ (3.4)
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and
PAq + pBq = p'Aq + pBq'» pAq'+ p'Bq > p'Aq’ + p’'Bq’  (3.5)

Let (p,q) be a completely mixed strategy NSS in the restricted local
game. (p,q) Is hence a mixed strategy Nash equillibrium, and let #y and ¢, be
the equilibrium payoffs for the two roles. Since p and q are completely mixed

strategy in the restricted game, they satisfy:

Aq = ¢ h (3.6)
pB = wzh (3.7)
where h is a vector of ones, (1,1,...,1).

Lemma 2. For any mutant (p’,q’) in the restricted game, the expected
payoff of the mutant and the expected payoff of the incumbent are equal in any
mixed population, i.e.:

PAq + pBq = p’Aq + pBq’ (3.8)

pPAqQ’ + p’Bq’ = p'Aq’ + p’Bq’ (3.9)

Proof: Since (p,q) is a completely mixed strategy in the restricted game, p’
is a best response to q and q° is a best response to p, so that (3.8) follows.
Hence, if (p,q) is an NSS (3.10) must hold for all p’,q’ in the restricted
game:

(p-p’' )AqQ’ + p’Bl(g-q’) > 0 (3.10)

(3.10) must hold with equality for all p’,q’. Otherwise, if there exists
p’.q’ such that the inequality is strict, there exists p",q" such that the
inequality is reversed. Since p,q are both in the interior of the simplex,

there exist scalars A,>0 and A

1 2 < 0 such that p" = (1—Al)p + Alp y @ =

(I—Az)q + Azq' are both permissible.

(p-p")Aq" + p"B(q-q") = Alhzl(p’-p)Aq' + p’B(q-q’ )] (3:11)

Since the sign of (3.11) is the negative of the sign of (3.10), this
implies that (3.9) must hold for all p’,q'. o

Lemma 3. Let C=A+B be the sum of restricted payoff matrices of the local
game at uv defined by b. If (p,q) is a NSS of the local game, then every 2x2

sub-matrix of C is non-invertible.
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Proof:Writing (3.9) for the case when p’ is the ith pure strategy and q' is
the jth pure strategy, this requires, that for all i, j:
ijc +IB, o= agy+ biJ (3.12)
where jc subscripts the j-th column and ir the i-th row of the matrix.
Re-write (3.10) for the h-th row and j-th column, and subtract to obtain:

(B _Bhr)q =c - c (3:13)

iJ hj
g =My ¥ Byy
Notice that while the right hand side of (3.13) involves elements in the j-th

ir

where c

row, the left hand side is independent of j. Re-writing (3.13) for colunm k,
and equating, we get:

i LA Chj (3.14)

Since h,i, j and k were arbitrarily chosen, (3.14) holds for every row and
every column., and every 2x2 sub-matrix of the matrix C must have a vanishing
determinant. o
Proof of theorem 2. Given a space of nxn square matrices, the set of
non-invertible matrices is a closed set of Lebesgue measure zero in this
space (see Hoffman, 1975, for example). Lemma 3 establishes that
every 2x2 sub-matrix of the matrix C is non-invertible. From (3.2) and
(3.3), C is the weighted sum of two-matrices each of which is the sum of a
primitive payoff matrix of the agent normal form of the game, and a matrix
with constant rows. It follows that the set of matrices Au; and A;u
which satisfy pairwise local stability at the local game at uv is of measure
zero. Since theorem 1 shows that pairwise neutral stability is equivalent
to overall neutral stability, this establishes that almost all truly
asymmetric games do not have a mixed strategy NSS. Since pure strategy
NSS are generically strict, theorem 2 follows. o

Theorem 2 applies to games where the underlying game is asymmetric. A
class of asymmetric games are those where the game itself is symmetric,
but where players may condition their choice of strategy upon the role they

fill (see, for example, the discussion in Van Damme, 1987 or Samuelson, 1991).
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It may be thought that symmetric games of this class are a special case of
asymmetric games more generally. However, for questions of genericity, the
distinction could make a difference. In the case where the underlying
game is symmetric, the dimension of the set of payoffs is #Sz. where #S is the
number of pure strategies in each player’s strategy set. This is one-half the
dimensionality of the set of payoffs if we consider the underlying game to be
asymmetric.

However, it is easy to show that a mixed strategy NSS is non-generic
even in this class of games. If payoff functions are symmetric, it
follows that in the local game defined by b at uv, the payoff matrix B equals
the transpose of A. Hence, the matrix C, which is the sum of A and B, is
symmetric. However, C must still satisfy the condition of lemma 3, i.e. every
2x2 sub-matrix of C must be non-invertible. Hence, even within the class of
symmetric matrices, the set of matrices satisfying lemma 3 is of measure zero.
The implication of this result may be seen in 2x2 games. If we consider the
class of symmetric 2x2 games, a game possesses a mixed strategy NSS only if it
is zero-sum.

4. CONCLUSIONS

This paper has shown that in generic truly asymmetric games, a NSS must
be a strict Nash equilibrium. Consequently, the distinction between NSS and
ESS is not important in such games. This result assumes significance in the
context of the existing results analysing other classes of games with a
non-trivial extensive form. In repeated games or games with pre-play
communication, neutral stability is a significantly weaker notion than
evolutionary stability, and is in fact weaker in many ways than other
equilibrium concepts. This suggests that games where the extensive form is
induced by a move of nature (such as the asymmetric games considered in this
paper) differ significantly from games where the extensive form is induced

by choices of players.
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