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Abstract: The problem considered is the estimation of k coefficients of interest in a linear
regression model when the (k -F 1)st coefficient is of no interest. It is shown that this
problem is equivalent to the problem of cstimating thc unknown rnean of a univariatc
normal distribution with variance one given a singlc observation. (Zucstions of admissi-
bility, risk and regret are studied for this problem. The traditional pretest est,imator of
Lhe mcan is shown to have undesirable propertic~s. A shriukage estimator with bet.ter per-
formance than the pretest estimator is considered. Further improvements in performance
are achieved by estimators derived from the Burr family of distributions. However, these
estimators are found to be still open to several objections. Generalizations of the Burr
estimators are developed which are frer, frorn sorne or all of these objections. The final
estimator considered is a Bayes estimator chosen from this class with a Laplace distribu-
tion as its prior. Of all the estimators studicd in the paper, this has ~ hc b~t all-round
performance. The optimal Burr estimator, however, is a close competitor.
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1 Introduction

The purpose of this paper is to develop an optimal method of estimation under rrtodel

uncertainty. Our starting point is the linear regression model

y-,X~f7,ryftr, u~N(O,a2~n),

where X is an n x k matrix of explanatory variables that are reyuired to be in the model

on theoretical or other grounds, while Z is an n x! matrix of additional explanatory

variables about which there is doubt as to whether they should be in the model or not.'

We are interested in estimating Q(or specified linear combinations of its elements), whilc

the value of ry is of no interest to us. In standard parlance, ~3 is a vector of parameters of

interest and y is a vector of nuisance parameters. The only reason for including 7. in t.he

model is that by doing so we expect to obtain a`better' estimate of ~3. In this context we

assess the relative performance of estimators by the mean squared error (MSE) criterion.

The most common approach to this problem is to test the hypothesis that y- 0

and to include Z if the hypothesis is rejected and exclude it otherwise. Inference on

parameter estimates is then carried out as if the resulting model were correct. Infcrences

made in this way will, however, be invalid since the model selection procedure infiuences

the properties of the estimator. Two classical problems can be distinguished. The first

problem is that of selecting the set of regressors to be included in the regression. The

second problem, more relevant to applied workers, is that of determining the implica-

tions of data mining (or model selection) on the estimatcs of the parameters of interest.

This paper is concerned with the second problem and o(fers a practical solution to it.

Both problems were already heavily discussed following Tinbergen's (1939) monumental

study for the League of Nations. Both Keynes (1939) and Friedman (1940), in their

respective critiques of Tinbergen's work, focused on the method of model selection when

the estimation procedure repeatedly uses the same data to discriminate among plau-

sible competing theories. The same point was made in Haavelmo's (1944, Section 17)

seminal paper. Koopmans (1949) suggested that a completely new theory of inference

was required to solve the dilemmas implied by the model selection problenr. The t.heory

of pretest estimation is an attempt to address this problem, but, as we shall see, not

'In Leamer's terminology, X containa the `Gee' variables and 7, the `doubtful' variables. 'I'herc is

considerable confusion about these namea and about Leamer's extreme bounds analysis. See Leamer

(1978, 1983), McAleer, Pagan and Volker (1985), Leamer (1985), McAleer and Veall (1989), Rreusch

(1990) and Granger and Uhlig (1990).
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a succesful one.~ Leamer's (1978) book provides many important new insights, Sawa
(1978) and Amemiya (1980) discuss the problem of selection of regressors, Lovell (1983)
investigates certain consequences of data mining, Pótscher (1991) and Zhang (1992) con-
sider asymptotic properties of estimators after model selection. See Chatfield (1994) for
a recent survey and Draper (1995) for a Bayesian perspective.

For simplicity we assume that Z contains a single explanatory variable (1 - 1) and
that the disturbance variance o~ is known. The problem under consideration is therefore
to estimate k coefficients of interest (or linear combinations of these) in a regression

model containing k~ 1 regressors using a mean squared error criterion in a situation
where the value of the (k -F 1)st coefficient is of no interest. We call this the regmssion
problem. li.emarkably, it turns out that this problem is equivalent to another problem
which appears on the face of it to be quite different, namely to find the `best' estimator
for D when we have one observation x from a N(D, 1) distribution. As we shall show,

this problem is not as easy as it appears at first sight. We call this the N(D, 1) problem.

We shall show that t}re N(D, 1) problem is the nucleus of the regression problem. A full
solution to both problems is provided. This solution, we believe, should be acceptable
to both frequentists and Bayesians.

Section 2 considers the relation between the regression problem and the N(D, 1) prob-

lem. Let br be the maximum likelihood estimator ( MLE) of Q assuming that ry- 0, let
b„ be the MLE of Q assuming that y is unknown and let D be the, value of ry divided by
the standard error of its MLE. In the traditional approach to the regression problem a
choice is made between br and b„ depending on the outcome of a test of the hypothesis
D- 0. A smoother and more appealing procedure is to estimate Q as a weighted average
of 6„ and b„ that is, b- a(B)b„ f( 1 - a(B))br, where B is the MLE of D and a(.) is a
function satisfying appropriate conditions. Let w- a(D)B - D. Remarkably, Theoretn 2.2
shows that the MSE of b depends only on the MSE of c.i. Since D~ N(D, 1), it follows
that the regression problem and the N(D, 1) problem are equivalent. This explains the
title of the paper and it also explains why the next five sections are concerned solely
with the N(D,1) problem, even though our original target was the regression problem.

In section 3 we consider estimators of D of the form t-~(x)x where x~ N(D, 1).
Taking first the case a(x) - a(constant), we show that i~f MSE (ax) - DZ~(1 ~ D~).

~See ]udge and Bock (1978) and Judge and Yancey (1986) for a survey o( pretest estimation.
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Interestingly, 'I'heorem 3.7 dernonstrates thaL thc~ same infimum holds for the estirnator

l whcn a(x) is alluwed Lo vary ovrr a widc class of funrl.ions. Start.ing froni Lhis infinniin

we define the regret of the estimator for a particular value of 0 as M5E(L) - Ul~(1 ~- (I~).

Based on this definition we consider minimax regret and minimum average regret esti-

rnators.

The traditional pretest estimator has the form 6- 6, if ~ry~ C c(SE(ry)) and 6- b„

if ~ry~ 1 c(SE(y)), where "ry is the MLE of y, SE("ry) is its estimated standard crror and

c~ 0. The equivalent pretest estimator for the N(8, 1) problem is t- 0 if ~x~ C c

and t- x if ~x~ 1 c. Section 4 demonstrates a number of undesirable properties of this

estimator. First, it is inadmissible. Secondly, there is a range of values of 4 for which

the MSE of t is greater than the MSE of both the `usual' estimator t- x and the `silly'

estimator t- 0. Thirdly, in the neighbourhood of the value B- 1, which we show to

be of crucial significance at various points of the paper, the MSE is maximized when

c- 1.91. This means that when the traditional pretest is carried out at the usual 5QI'o

level, the resulting estimator is close to having worst possible performance.

In section 5 we consider an estimator, named by us the H'PF estimator, which has

the forrn t- x3~(c2 f x2). This is a generalization of estimators suggest,ed by previous

writers and it has strong intuitive appeal based on Theorem 3.7. We show that, while

still inadmissible, the HTF estimator has better properties than the pretest estimator.

Section 6 introduces a more general class of estimators of which the `usual', pretest

and HTF estimators are special or limiting cases. Fstimators in this class have the furrn

t- a(x)x with a(-x) - a(x), where, for x 1 0, a(x) is a distribution function belonging

to the Burr family defined by (6.1). 'I'his class has lower minimax regret and lower min-

imum average regreL than Lhe I1TF class. The `optimal 13urr estimator' (the mininiax

regret estimator in the Burr class) has a simple form (with a(x) defined in (6.7) with

c- 0.545) as well as a strong performance and would therefore appear to be a strong

candidate for `the bcst' estirnator for ~. There are, however, sevcral objcctions which

can bc raised against. the optimal Burr estimator: ít is inadtnissible, it is not smooth at

x - fc, it does not depend on x when ~x~ c c and it is not a Bayes estimator.

Section 7 considers generalizations of the Burr class of estimators. One of these leads

to an estimator which meets all four objections to the Burr family and is optimal or
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nearly optimal in other respects. We begin by asking whether there is a Bayes estimator
of form (7.2) and we then show that this is so when the prior is the Laplace (or double
exponential) density. We take as our estimator the posterior mean, which has the form
t- x- h(x)c, where h(x) is given by (7.8), and we show that this estimator is free from
the objections to the Burr class. Since the estimator depends on c we need to select an
appropriate value. We find that the minimax regret value is c- 0.66. However, the
desirability of choosing a neutral prior for B(that is, a prior density which is symmet-
ric around zero and has the property that the median of B2 is one) leads to the value
c- log 2- 0.69. Since we attach greater priority to the neutrality of the prior than
to minimax regret, and since the two values of c are very close, we choose as our final
estimator the estimator from the Laplace prior with c- log 2. We call this the `ideal'
Laplace estimator. It can be seen from Figure 7.1 that the performances of the two
Laplace estimators are very close for all B(1 - minimax regret, 2-`ideal' Laplace).
Various properties of the estimator are discussed.

Section 8 relates the N(6, 1) results to the regression problem and discusses the relative
merits of the optimal Burr estimator and the `ideal' Laplace estimator. It presents the
main conclusions of the paper and discusses possible extensions for future work.
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2 Equivalence of the regression problem and the

N(9, 1) problem

In the regression problem we are concerned with the estimation of (linear combinations

of the elements of ) Q in the linear regression model

y-XQfryz-hu, (2.1)

where y(n x 1) is the vector of observations, X(n x k) and z(n x 1), both non-random,

represent the values of the regressors, u(n x 1) is a random vector of unobservable

disturbances, and Q(k x 1) and the scalar 7 are unknown non-random parameters. We

assume that the design matrix (X : z) has full column-rank and that the disturbarices

u~, ..., u„ are i.i.d. N(0, oz), that is,

u ~ N(O,v2I„), 02 ~ 0. (2.2)

We assume also that o2 is known. This is, of course, unrealistic but it simplifies the

analysis without affecting the main results. We shall come back to this assumption in

our concluding remarks. We introduce the following notation:

M - I„ - X(X'X)-'X',

Q
q - (X'X)-'X'z,

z'Mz

0- 7
Q~ z'Mz~

('~-3)

(Notice that the rank condition implies that z'Mz ~ 0.) The idempotent matrix M and

the vector q are known non-random quantities, while 0 is unknown (since y is unknown).

The parameter B plays an important role in our analysis and we shall call it the theoret-

ical t-ratio.



s

The maxinmm likelihood ( OLS) estimators of Q and ry are

b„-6r-9q

and

-y - z'My~z'Mz,

where

b~ - (X'X)-'X'y

and

B-

The subscripts `u' and `r' stand for `unrestricted' and `restricted' (with y- 0), respec-

tively. IL is clear that

~ ~ N(0, 1)- (2.10)

We emphasize again that our interest lies in the estimation of (lincar combinations of
the elements of ) Q, thc parameters of interest, whilc ry is cssentially a nuisancc pararnetcr.

The traditional approach, used by the large majority of applied econometricians and
atatisticians, is to consider only two estimators of ~i: the restricted est.imator b, defined
in (2.8) (where ry- 0) and the unrestricted estimator b„ defined in (2.6). 1'he choice
between them is then based on the t-ratio 0 and the estimator b for Q can thus be written

b~, if ~B~ 5 c,
b - (2.1 I )b,,, if ~~~ ~ c,
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for some c~ 0. For example, c- 1.96 and c- 2.58 correspond to the 501o and the

1Qlo significance levels respectively. Hence, the estimator employed in the tradítional ap-

proach is (2.11), even though the large majority of investigators acts as if the est.irnator

is either b, or b,,.

Given that we are not interested in ry but only in the best possible estimation of ~i,

this procedure makes very little sense. We are testing Ho : 0- 0 against Hi : 4~ 0(or

equivalently, y- 0 against ry~ 0) and this gives us an answer to the question: [s it true

that 8- 0? But this is the wrong question in this context. The right question is: Is br

a better estimator for (i than b„? If we agree to judge an estimator by its mean squared

error,

MSE(b) - E(b - Q)(b - Q)' - var(b) f E(h - Eb)(b - Eb)', (2.12)

then the following theorem will help us to answer this question.

Theorem 2.1.3 We have

MSE(br) - MSE(6„) - (BZ - 1)qq'

and hence

MSE(bT) G MSE(b„) if ~~ c 1

MSE(b, )- MSE(b„) if B2 - 1

MSE(b,) ~ MSE(b„) if B2 ~ 1.

Theorem 2.1 shows, still assuming that br and 6„ are the only two estimators to c:hoose

between, that the choice should be based on the null hypothesis Ho : BZ C 1 against the

alternative Hl : B2 1 1. Toro-Vizcarrondo and Wallace (1968) made this point and they

showed that a uniformly most powerful test is obtained from the probability

Yr ~~6~ G c~92 - 1~ - 1- a, (2.13)

3This result is `well-known' in the sense that, in sorne form, it has been azound (or a long time, but

not in the sense that many econometricians know it. The earliest reference is possibly exercise 12 in
Wold (1953, p. 246) which he attributes to J. Durbin. See Wallace (1964) and Leamer (1983, p. 308).
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where a denotes Lhe level of significance.' For exarnple, a 5Qlo test and a 1~o test rrow
correspond to r. - 2.65 and c- 3.33, respectively. Application of thc sccond test obvi-
ously leads to more frequent use of the restricted estimator.

We notice that both the first and the second test lead t.o an estirnator b for Q of the
form (2.l 1). There are two problems in applying cither of these two tests. Tbe first is
that the choice of significance level is largely arbitrary. The second problem is that, a(ter
the preliminary test in which we decide whether to use b, or b,,, neither of these two is
the correct estimator for ,Q. The correct estimator is given in (2.11) and is known as the
tradilional pretesl eslimalor. Let us rewríte (2.1 I) as

b - a(á)bu f (i - a(è))b., (2.14)

where

0 ií ~~~ C c,
~(B) - 1 if ~0~ 1 c. (2.15)

This formulation shows b as a weighted average o! b„ and b,. Any estimator of (3 of the
form (2.14), where a is a real-valued function of 0 satisfying certain regularity conditions
will bc called a weightcd-avcraqr, (casl squares (WAI,S) est.imator. "1'hi~ prctest esf imator
is a ve.ry simple (and not a very good) example of such an estimator. [t is intuitiveh-
appealing to think oí a WALS estimator as a continuous function of ~ snch that the larger
is ~B~ the more weight is given to 6„ relative to b,. WAIS estimation can thus be viewed
as a stepwise regression procedure, where we first obtain B and then b as a function of
0. As such it relates to Mallow's (1973) Cp critcrion, the Akaike (1974) Inforrnation
Criterion, Sawa's (1978) BIC criterion and Amemiya's (1980) PC critorion. .ludgc et al.
(1985) show that all of these are essentially stepwisc regression procedures based on 0.
The mean, variance and mean squared error of the WALS estimator b, defined in (2.14),
are given in Theorem 2.2.

'1'heorem 2.2. Let ~- a(~)B - B. Then the conditional distribution of b given ~ is

'See also E3ancroft (1944, 1964), Wallacc (1964), Wallace and '1'oro-Vizcarrrnndo (19(i9). Wallace
(1972), Goodnight and Wallace (1972), Wallace and Ashtar (1972) and Feldstcin I 1973).
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6~Ó .., N(,Ci - wq, vZ(X'X )-~ )

and the (unconditional) mean, variance and MSE of b are

Eb - Q - ( ~)9
var(b) - o2(X'X)-r f (var(w))qq'

MSE(b) - a~(X'X)-' f (Ew2)99.

Our task is to find an optimal weighting function a such that the WALS estimator

6 is best in the sense of having lowest mean squared error. One glancc at the last line

of Theorem 2.2 reveals that MSE(b) is minimized if and only if Ewz is rninirniz,ed, that

is, if and only if MSE(a(B)B) is minimized. The striking consequence of Theorem 2.`l is

therefore that finding the best WALS estimator for f3 is equivalent t.o finding the best

estimator a(6)8 for B. If we estimate a linear combination of the elements of Q, say R(3,

by Rb, where b is a WALS est.imator for Q, then MSE (R6) is rninimized when MSE(b) is

minimized. Hence, even if we are interested in est.imating a particular linear combination

of the ,0's, we need to find the best WALS estimator for Q first. It is therefore permit-

ted to think of the regression problem as one where we wish to estimate the complete

Q-vector.

Although we have emphasized that we are interested in the parameters Q and not in

B(that is, ry) which is a nuisance parameter, we now see, ironically, t.hat optimal WALS

estimation for Q depcnds completely on finding t,he optimal estimator for 0. The ouly

information we have on 0 is that 0~ N(f7, l), see (2.10). Hence, the regression problem is

solved if and only if we can solve the N(0,1) problem: given one obscrvation x~ N(0, 1),

find the best estimator for B (of the form a(x)x, but this is of no consequence). To the

solution of this problem we now turn.
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3 Risk, admissibility and regret

Let x be a single observation from a univariate normal distribution with unknown mean
0 and variance 1, that is, x ti N(B, 1), -oo G 0 G oo. We wish to estimate B using
estimators of the form

t(x,a) - a(x)x, ~ E G, (3.1)

where G is some class of real-valued functions to be specified below. '1'he class of est.i-
mators will be denoted T(G). Thus,

T(G) -{t : t- t(x, a), a E G}. (3.2)

Throughout we assume squared error loss (t(x, a)-B)2. The riskof an estimator t E T(G)
is then defined as its mean squared error,

R(B, ~) - Ee(tÍx, a) - B)~, a E G, (3.3)

where EB denotes expectation with respect to the N(B, I) distribution. For any a~ E
G, az E G we say that tr - l(x, ~~ ) dominates t2 - t(x, a2) if

R(B, ar ) c R(B, aZ) for all 8 (3.4)

with strict inequality for some B. An estimator t E T(G) is said to be G-admissible if no
estimator in 7(G) dominates t. If t is G-admissible for cvery G, then t is admissible. If
t is dominated by some estimator t', not necessarily in T(G), thcn t is inadmissibtc. If
l is dominated by t' E T(G), then t is G-inadmissible. Thus an estimator can be (and
often will be) inadmissible, but still G-admissible for sorne G. (See '1'heorem 4.'l for an
example.)

An estimator t(x,a") is said to be G-minimax if

sup R(0, a') - inf sup R(B, a) (3.5)B aEL g
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for some a' E G. If t(z, a') is Gminimax for every G which contains a', then t(x, a`) is

said to be minimax.

Let us first consider the `usual' estimator for B, t(x,a) - x, obtained by choosing

a-1.

Theorem 3.1 (a - 1). The `usual' estimator for 0, t(x, a) - x, is unbiased, admissible,

has constant risk equal to 1, and is the unique minimax estimator.

'fhcsc are strong propcrtics in favour of x as an cstirnator of 0.5 Lct us scY~ why wc

might want to choose an estimator different from x. Define a~'1 - 1~(1 ~- c) Cor all ~c (c

constant and ~-1), so that in particular ao'1(x) - 1 and .~t~l(x) - O.r' Now consicícr

tt''(x; ~) - t(x, a~'') - x~(1 t ~) (s.s)

as an estimator of B. The risk is

R`''(B, ~) - R(e, a~'') - EB(x~(1 t c) - B)2 -~1~~~~z (3.7)

and this is minimized at c' - 1~82 with minimum risk

~~t'~(o,~') - B2~(1 t o2). (ï;.~)

It is easy to see that for -1 G c G 0, tt'~(x; c) is dominated by tt'~(x; 0) and sirnilarly,

for c G- 1, that tt'~(x; c) is dominated by tt'~(x; oo). Hence t~'~(x; c) is inadmissible for

cGO. ForOGcGoowehave

SThe admissibility of the `usual' estimator is not trivial If we wish to estimate B givcn one ohservat ion

x from a pdimensional normal distribution N(B, Io), then the 'usual' estimator t(x) - r is admissihle~

ifp- 1 and p- 2, but inadmissible for p 1 3(Stein (1955)). This rernarkable result gave rise to a hug~~

literature on `improved' (or 5tein-rule) estimators for thr. mean of a(multivariate) normal distribution.

We mention James and Stein (1961), Cohen (1965), Brown (1966, 1971), Sclove (1968), Baranchik

(1970, 1973), Efron and Morris (1971, 1972, 1973), Bock (1975), Judge and Bock (1976), Stein (1981)

and Berger (1982). See Judge and Bock (1978, Chapters B and l0) for a survey.

óThe reason for not defining a~'~ - c is to facilitate comparison with a~Z~ - a~6~ to be defined later.
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Theorem 3.2 ( a constant). For any c, 0 C c G oo, the estimator t~'t (x; c) - x~(1 -} c) is
admissible. -

The simple estimator (3.6) for c~ 0 will be called the norma! Bayes estimator of B,
because it is the Bayes estimator induced by a normal prior (see Lhe proof of Theorem
3.2). In Figure 3.1 we graph the risk R~'1(B, c) as a function of ~ for three values of c, la-
beled 1-3, namely c- 0, 1 and oo. The dotted line gives the lower bound (3.8). The figure

FIGURE 3.1

confirms that no estirnator dominates another. For example, at c- 1, the risk of
the estimator tl'1(x; l) lies between the risks of l~'1(x; 0) and t~'1(x; oo), except when
3f G B G f in which case t~'1(x;I) is bettcr ( has lowcr risk) Lhan both. This docs
not mean that tl'1(x; 1) or any of the normal Bayes estimators is particularly desirable.
But it does show that the `usual' estimator tt'1(x; 0) is not necessarily the best. In Figure
3.2 we have drawn three important relations between 0 and c : Rt'1(B, c) - 1,

FIGURI? 3.'l

Rl'1(B, c) - BZ and R~'1~(0, c) - 0(where Rl'1 reaches a minimum with respect to c). For
cach c, the interval between the curves R~'1 - B2 and R~'1 - 1 determines the 8's where
the normal Bayes estimator has lower risk than both tt'1(x;0) and t~'t(x; oo).

Since for any c 1 0 the estimator t~'1(x; c) is a weighted average of t~'t (x; 0) and
tt't(x; oo), let us compare these two estimators: the `usual' one, t~11(r; 0) - x, and the
`silly' one, ft't(x; oo) - 0. Clearly,

Rt'1(B, 0) - 1, R~'1(B, oo) - B2

and hence

R~'1(9,00) C Rt'1(B,0) if and only if ~t7~ C 1. (3.10)

This is, of course, the essence of Theorem 2.1. IL suggests that thc `usual' estimator
t~'1(x;0) - x is good when ~B~ is large, but not so good when ~B~ is small. In fact, the
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I igure ~.I. - Kisk K"y0,c) of ihe numTal Rayes es[imator (nr three oalucs of c.

íHETA

Fieure 3?. - Ihrec relations between 0 and c for thc normal Qayes estimator t"'.
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result in (3.8), that R~'l (B, c) is minimized at c' - 1 ~[a2, tells us the same, namely that
a- 0(c - oo) performs well when ~B~ is small, a- 1(c - 0) performs well when ~9~ is
large and that the larger is ~B~ the larger should be a. Since a~'1 - 1~(1 -1- c) and the
optimal c is given by c' - 1~82, we find the optimal a to be a' - a~a - O2~(1 -~ B~).
Thc optimal a', as a fuuction of 0, thus satisfies 0 C J~'(0) C 1, a'(-l7) -~'(4), and ~'
is increasing on (0, oo). Now, B is not known. But if we think of x as a preliminary esti-
matorof f7, then these ideas lead quite naturally and intuitively to the following minimal
regularity conditions for a.

Regularity Conditions Rl: a is a real-valued function defined on R and satisfies the fol-
lowing conditions:

(a) 0 C a(x) G 1 for all x,

(b) a(-x) - a(x) for all x,

(c) ~ is nondecreasing on [0, oo),

(d) a is continuous except possibly on a set of ineasure zero.

Condition (a) defines t(x, a) as a shrinkage estimator (towards 0). 'I'his makes good
sense, since, if a(x) were such that a(x) ~ a~ 1 for all ~a~ ~ M, then t(x) - ~(x)x
would be inadmissible (Strawderman and Cohen (1971), Theorem 5.5.1). Condition (b)
has several rationales. The simpleat, perhaps, is the following. Let n(B) be a prior den-
sity of B. Since we are ignorant about B, let us assume that a(B) is symmetric around 0.
Then Lhe mean t(x) of the posterior distribution of O~x, that is, thc liayes estirnator for
(7, satisfies t(x) --t(-x) and hence a(x) - a(-x). Condition (c) makes sense too if we
think of t(x) as a weighted average of x and 0: t(x) - a(x) f(1 - a(x))0. The larger is
~x~, the better is x as an estimator for B. Hence, when ~x~ increases we wish to put more
weight on x and less on 0, that is, we wish to make a(x) larger. Condition (d), finally,
is a minimal smoothness condition.

The class of functions satisfying regularity conditions Rl is denoted Co. Subclasses of
Go will be denoted G~'l,.C~2}, ... Thus, the class of normal Bayes estimators is denoted
GI'~. In many cases we shall have a(0) - O,a(oo) - 1, so that a can be interpreted as
a distribution function on [0, oo). Condition (b) immediately leads to the following two
results.
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Theorem 3.3 (antisymmetry of the bias). I,et BIAS(B, ~) - EB(t(x, ~) - B) denote the

bias of t(x, a), a E Go. Then,

(a) BIAS(B, a) - -BIAS(-B, ~),

(b) The only unbiased estimator of B is t(x, 1) - x (obtained for a- aor} - I),

(c) If a ~ ao'}, then

70 iC BGO
BIAS(0, ~) - 0 if B- 0

G 0 if B 1 0.

Theorem 3.4 (symmetry of the risk). For any estimator t(x, ~), a E Go, we have

R(B, a) - R(-B, a).

We know from Theorem 3.1 that the `usual' estimator t~'1(x; 0) is unbiased. Theorem

3.3 shows, inter alia, that it is the only unbiased cstimator. In view of Theorems 3.3 and

3.4 we shall report results Cor 0~ 0 only.

Let us reconsider the class Glrl where t~rl(x;c) - x~(l f c), c~ 0. "1'hese estirnators

satisfy Rl and they are admissible. However, it is clear frorn (3.7) that their risk is un-

bounded unless c- 0. This property is unattractive, especially to non-Bayesians. 'I'hus

we shall often impose the following condition.

Regularity Condition R2 ( bounded risk): het e(x) - ( 1 - a(:r.))x. 'Chen there exists a

K G oc such that ~e(x)~ G K for all x.

Theorem 3.5 (Brown). Let t(x, a), a E G~, be an estimator of 0. R(0, a) is bounded iC

and only if R2 holds.

Condition R2 requires that a(x) approaches 1 sufficiently fast as x-~ oo. In particu-

lar, estimators which, for large ~x~, behave like

t(x,.~) - I 1- Iclp~ x (3.I1)
` x
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have bounded risk when p 1 1.

We next address the question of admissibility. There are estimators, such as t(x, a) -
0, which are admissible but nevertheless unappealing. There are other estimators, such
as

z
t(x, a) - 1~ xzx or t(s, a) -~1 - e-~~) x (3.12)

which have attractive properties, but can, surprisingly perhaps, be shown to be inad-
missible (Strawderman and Cohen (1971)). '1'he facL that we can prove an estimator
to be inadmissible does not imply that we can find a better one. Our approach to t.hc
admissibility problem is therefore a compromise.~ Admissibility is important (and evcn-
tually we shall arrive at an admissible estimator), but inadmissible estimators will be
considered if they appear to be attractive otherwise. In order to prove (in)admissibility
the following condition is required.

Regularity Condition 1i3: Let E(x) -(1 -~(~))a. 'Chen

(a) e(x) is continuously differentiable,

(b) there exists a measure C(B) such that

~ 1
exp -ffe(y)dy, - f ~exP [-2(x - 0)2~ dC;(l7).

Actually, condition R3(a) is irnplicYl by R3(b). It, is sl.ated sr~par.~fc,ly Lo cmphasizr~
t,IraL estimators which are not diíferentiable ( or worse still, discontinuous) can not satisfy
R3(b). We now have

'Thcx,rem 3.6 (admissibility). Let t(x, a) be an rstimator fur 0 and assunic that li I huLl,.
Then,

~A lot has been written about the importance of adrnissibility, see e.g. llergrr (1985, section 4.8).
Any 'kinked' estimator (that is an estimator t(x) which is continuous but not evcrywhere ditTerentiable,
for example tt4~ defined in (6.10)), is not diNerentiablc and therefore not admissible ('I'heorem 3.6), but
the difference in risk between the `kinked' estimator and an admissible improvement can be miniscule.
Some authors distinguish between inadmissible and 'seriously inadmissible', hut we shall not do this.
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(a) R3 is a necessary condition for t(x, a) to be admissible,

(b) R'l and R3 together are sufficient for t(x,a) to be adrnissible.

Theorem 3.6 is a powerful result which gives a complete characterization of the ad-

rnissibility oí bounded risk shrinkagc cstimators.

Finally, we need to discuss how we shafl judge an estimator's performance. We shall

do this by looking at the risk function R(t7,a). f3ut when two estirnators are buth G-

admissible in some class G E Go, then neither estimator dominates the other and some

further criterion is needed. The minimax approach sometirnes leads to unreasonable

or trivial results (Hodges and Lehmann (1950)). Indeed, in our case, minimizing thc

maximum risk always leads to the `usual' estimator t(x, a) - x, see Theorem 3.1. On

both theoretical and practical grounds (Savage (1951), ChernofF and Moses (1959), Sawa

and Hiromatsu (1973)) we shall adopt the minimax regret approach where we minimize

the maximum regret instead of the maximum risk. 1'he G-regret of an estimator t E T(G)

is defined as

rL(e, ~) - R(B, ~) - áE~ R(B, ~) (3.13)

and an estimator t(x, a') E 7(G') is G-minimax regret with respect to G' C G if

sup rL(B, a") - inf sup rL(B, a).
B ~EL~ B

(3.14)

In order to implement the minimax regret approach we require, for each B, the lower

bound of the risk R(B, a) over all estimators t(x, a), a E Go. In (3.8) we showed that

t.hc class of estimators t(x, a~rl) has lowcr bound 02~(1 f 0~). This, in fact, is thc lowcr

bound in Go as well.

Theorem 3.7.

Bz
AELo R(B' ~) - 1 f

B2.

We not,e that in the class Gtrl of normal f3ayes estimators no minimax regret solution

exists since the risk is not bounded. These estiniators arc therefore not acceptable from
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our poinL of vicw.

As an alternative to finding the minimum (over ~) of the maximum (over B) regret,
wc could try and obt.ain Lhc rninimunr of thc uvrragc rcgrct. 'I'his atitiunics spccificat.ian
of a prior distribution a(0) of 0. Sincc thc di(fcrcncc bctwcx,n avcragc rcgret and avcragc
risk does not depend on a, minimizing average regrct is the sarnc as rninimizing averagc
risk. In Baycsian parlance, average risk is thc Bayes risk of an estirnator t(x, a) with
respcct to n. If wc rniuimizc Lhc avcragc riak (13ayati risk) ovnr all a, thcn wc obtain thc
I3ayes estirnator (which is the mcan of the posterior distribut,ion of 0 givcn r). If we
rniuimizc thc avcragc risk (or, cquivalcntly, thc avcragc regrct.) ovcr a subsct of G~, thcn
the resulting estimator will, in general, not be the Bayes estimator.

Our ultimatc goal in this papcr is to find an cstimator which pcrforms well under
both criteria: minimax regret and minimum average regret. Our approach to this goal
is to concentrate on minimax regret first. Of each cstimat.or of interest we report both
the rnaximurn regret and the average regrot. In calculating average mgrct we must
specify a prior density for 4. The choice of prior is, of course, diffïcult.s In view of
Theorem `l.l and (3.10), we are particularly interc:,ted in priors whcre t.he distribution
of 0 is located at 0 and the distribution of 02 is located at 1. Such a prior will be called
neutrnl. (More on this at the end of section 4.) 'I'he simplest such distribution is .N(0, 1).

Theorem 3.8 (average risk). Assume a N(0, 1) prior density for 0, dcnoted a(~). 'I'hen
the average risk of an estirnator l(x, a), a E Go, is given by

Exr,'(B, a) - 2 t afo"(a(u~) - 2) ~u'~(u)du,

where Ex denotes expectation with respcct to s(f7).

Theorem 3.8 allows us to calculate the average risk (regret) with respect to a~~'(0, 1)
prior in a simple manner for any estimator t(x,~). We emphasize, howevcr, that our
purpose is not to find the minimurn average mgret estimator wit.h respect to a N(0, 1)
prior for 0. We know that the answer to this is a- 1 ~2, that is, t(x, ~) -:x~2. ('I'his is
confirmed by Theorem 3.8.) 'I'he risk of this cstirnator is not bounded, but its expected

dThia is the 'elicitation' problem. See Kadane et. al. (1980), Kadane and Winkler (1988), and
Lcamer (1992) for possible solutiona to this problem and further references.
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risk (with respect to the chosen prior) is 1 ~2 and the expect.ed risk of any other estimator

thus exceeds 1~2. We shall use average regret results with a N(0, 1) prior as a benchmark,

but our primary purpose remains to obtain the best possible maximum regret estimator.

We have already considered one subclass of Go, namely Ctll. In sections 4-7 we shall

find Go-tninimax regret est,imat,ors with respect to various other subclasses of G". In

section 4 we consider the class of traditional pretest estimators, which, in spite of their

sad properties, are used in almost every applied econometrics paper.



4 The traditional pretest estimator

On the tiny remote island of I, the I-landers lived mainly on fish. .Since the wind around
lhe island varied from day to day, lhe f-landers had built lwo Goals Jor lheir fishrr-
men, the R-boat and lhe U-boat. The R-boat (R Jor `rLSt J was ideal when there was

no wind, the U-boat (U for `unrest'~ in a heavy storm. F,ach evening after dinner the
King annauraced his wcalher Jonecasl Jor lhc nr.xl du~ upon which anr oj lhc two boats
was prepared. An {ncorrect forecast of the weather and hence a wrong choice of boat
could hnve serious consequences. All I-landers remembered the recenl hurricane. which

the I~ing had Jailed lo forecast and where the I{-boat capsizcd, resuhing in the death of
all fishennr,n on board. One day a young adventurer A Jound hirrzsclf sfranded at I. A
inspected the two fishiny boafs and founrl lhem well-buill Jor thcir przrpose. ffe noticed,

however, lhat the eztreme weather conditions for which lhe boats wc re designed rarely
occun~ed. Most days al the island saw a moderate ómezc. A der.ided to build a boat him-
sclJ. Aftr,r scveral monlhs, his work completcd, he proudly prrsr.nled his new boat to the

assembled I-landers. `flow does your boat perJorn2 when there is no wind?' asked OTLc

of the fishermen. `Well,' said A, `you can't expect my boat to do quite so well as your

R-boat, whir.h was buill for the. pnrpose, óut il docs definilcl,y beller lhan the U-boat auhcn

lhr.re is little or no wind.' `And how docs ~our Goal perforrrz in stor~ny wcather'!' asked
a second itsherman. `Again,' answcred A, `yaur (1-Goat dars br.ltcr in a slorm, bvt my
Grxil pcrfornLS Gcllr,r lhan licc h'-bwil. In parlicular, nzy bnal will uol rapsizr in a storrn.'

Then the k'ing said: `If the weather is Jair, with a gentle breeze, what perfor-mance has

your boat?' Somewhat embarrassed A replied: `I must admit that undcr such conditions
my óoat performs worse lhat both the R-boal and the U-boal.' `Throu. this man into the
ocean!' cried the ICing, and A was neven c~ard oJ again.

We shall scY~ in this secLion thaL the pmtesL esLitnaLor perfonns like the boat designed
by our hero in the above story. 'Phe traditional pretest estimator Cor the regression
problem is defined in (2.11).9 The equivalent estimator for t.he N((7, 1) problem is

t(2)(z;c) - t(x,~~2)) - l O if ~x) ~ c,
(4.1)

'Early work on the traditional plretest estirnator inchzdes Bancroft (1944, 1964). Iluntsberger (1955),
Larson and Bancro(t (1963), Cohen (1965), Wallace and Ashtar (1972), Sclove, Me~rris and Radhakrish-
nan (197'2), Bock, Yancey and Judge (1973) and Rock, Judge and Yanccy (197:i) Sec the surveys by
Judge and Bock (1978, 1983). For a Baycsian perspecGvr, see'l.ellncr and Vandacl~ (1974), Lcamer ancl
Chamberlain (1976) and Giles and Rayner (1979).
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where

~~~1(y) -
r 0, if ~x~ C c,

Sl l, if ~x~ ) c.

Wc shall rcfcr to f.hc cstimator (9.1) as thc prctest ustimator as wcll, if thcrc is no possiblo

ambiguity. The class of a-functions of type (4.2) is denoted G~~1, that is,

,C~~l -{a : a- a~~l, b C c G oo}. (4.3)

We notice that a~2~ is well defined at c- 0 and at c- oo. At c- 0 we have ao~1 - 1

and tlZ~(x; 0) - x, the `usual' estimator. At c- oo we have ah~ - 0 and t~21(x; oo) - 0,

the `sillv' cstimator.

Thc prctcsL i~stimator (4.1) Las a discontinuity at x- fc and wc would t.horeforc

expect the estimator Lo behave badly. We shall see thaL this is indeed the case. Judgc

and Bock (1978) were the firsL to provide a thorough discussion of pretest estimators in

a regression context, but they did not notice the essential equivalence mentioned above.

We providc a full and simplificd t,roatment of this important case.

We first obtaín an expression for the risk function R(B, a~~1), which we shall write as

R~~1(B, c).

Theorem 4.1. The risk of the pretest estimator t~~1(x; c) is given by

R~zl (B, ~) - 1 f(c f B)~(~ t B) t(c - B)~(~ - e) f(B ' -1)P(B, ~),

Bt~
where ~ denotes the standard normal density and P(B, c) - f ~(u)du.

s-~

An alternative expression can be obtained from Bock (1975, Theorems A and B); see

also Judge and Bock (1978).

There appears to be some confusion about the admissibility of the pretest estimator.

This confusion arises because in the class of pretest estimators no estimator dominates



any other. But outside this class there are cstimators which dominate the pretest esti-
mator, becausc of its discontinuity; see Cohen (19fi5). Wc have

Theorem 4.2. The estimator tt~l (x; c), 0 C c G oo, is

(a) admissible if c- 0 or c- oo, inadmissible otherwise;

(b) G~2)-admissible.

Some further properties of Lhe pretc~sL estimator arc given in 1'heorern 9.3.

'I'heorern 9.3. 'I'he risk RI~1(~,c) of the pretest c..~t.imator satisfies:

(a) R~~l(B, c) is symmetric in B,

(b) Rhl(B,0) - lr Rh)(B,~) - B~,

(c) RIZI(0, c) is bounded for every c G oo,

(d) for every c C oo,RtZl(B,c) --~ 1 as ~B~ -~ oo.

These properties are clarified in Figure 4.1, where R~ZI(B, c) is given as a function of B
for seven different values of c, labeled 1-7. These values are, respectively: 0.0, 1.0, 1.2007,
1.3692, 1.96, 2.576, eo. The figure confirms that no estimator in this class dominates
any other (Theorem 4.2(b)), and that the risk is bounded and converges to 1 as B--r o0
(unless c - oo).

FIGURF. 4.1

Closer inspection of Figure 4.1 reveals a particularly damaging property of the pretest
estimator: for 6 close to 0 we see, as expected, that the pretest estimator is better than
the. `usual' estimator t~2)(x; 0) - x, but worse thaL the `silly' estimator t~21(x; oo) - 0.
When ~ is large, the situation is reversed. This, again, is what we would expect. llow-
ever, for moderate values of 9, in particular around B- 1, we would like an improved
estimator (such as the pretest estimator) to perform better (have lowcr risk) than both
the `usual' and the `silly' estimator. Figure A.1 shows thal, the oppositc~ is t,he case!~n We.

roThis result is not new - it even appears in sorne of the textbooks, see Juclgr rt aL (1985, p. 75) -
but its harrnful consequences don't seem to have been fully appreciated.
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shall return to this property shortly. We have seen that tt'1 does not have this bad prop-
erty and we shall see that other improved estimators also behave as we would expect.
'I'hcse other estimators thus either outperform both the `usual' and the `silly' estimator
or Lhey are better than one and worse than the other, but never are they worse than
both. In the language of our story, it is possible to design a boat which performs well in
all weather conditions, but this is not the boat designed by our hero.

The values for c in P'igure 4.1 are chosen with care. We have c- 0 and c- oo as our
extremes (in dotted lines). In between we have the irnportant cases c- l, c- 1.96 and
c- 2.576. T'hese last Lwo values correspond of course to the usual Fi`h and 1`7o Ievels of
significance. 'I'here are two further graphs, c- 1.2007 and c- 1.3692, corresponding to
minimax regret solutions to be discussed later.

'lb obtain furthcr insight we study thc bchaviour of Lhc risk fimct,iun for c closc Lo 0
and for f7 close to 0.

Theorem 4.4.

(a) ['or c close to 0,

~21(B, ~) - 1 t 3 m(e)(B2 - 2)~' ~ 0(~5);

(b) For B close to 0,

R~~l(9,c) - ho(c) ~ h,(c)82 f O(B'),

whcre

iEp(C) - 1 ~ 2Ctb(C,) - I- c~(iL)(Itl, h~ (f) - C(('2 - ~)~(f) ~ ~ ( (~(1!)(Íll~

(c) 0 G ho(c) G 1, hó(c) G 0, hi(c) ~ 0, h~(c) - I for c- l.fil99 aud c- o0 only.
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There arc four relations between 9 and c of particular interest. 'I'hese are graphed in

Figure 4.2.

F[GURE 4.2

The first relation is RtZI(B, c) - 1, giving all points where the risk of a pretest estirnat,or

equals the risk of the `usual' estimator (c - 0). The relation can be solved explicitly for

Q in terms of c. That is, there exists a unique function Oo, defined on [0, oo), such that

RtzJ(Bo(c),c) - 1. The function Do is monotonically increasing and

12f C Oo(c) C 1 for all c E ( 0, oo],

using Theorem 4.4(a). The second relation is Rtzl(Q, c) - QZ, which gives all points

where the risk of a pretest estimator is equal to the risk of the `silly' est.imator (c. - co).

There exists a unique function B~, defined on [0, oo), such that Rt~1(Q~(c), c) - 8~,. 'I'he

function B~ is monotonically increasing and Q~(c) 1 1, for all c 1 0. Next we consider the

relation RBZI (Q,c) - dRt~1(B,c)~aQ - 0, providing all points where IZtZ~(Q,c), considered

as a function of B, attains a maximum (or a minimum, but this does not occur). [t

follows from Theorem 4.4(a) that, for c close to 0,

kézt (Q,c) - -4Q(QZ - 5)~(Q)c3 f ~(cs).3 2

Thus, there exists a unique function 9m,,, defined on (0, oo) such that Rt2~(0,,,„x(c), c) -

sup Rt2~(B, c). The function B,,,a„ is monotonically increasing and Omax(c) ~ 2 10 for
e

c~ 0. Furthermore, Rt21(Bm~(c),c) is monotonically increasing in c. The fourth relation

in Figure 4.2 is R~ZI~(B,c) - 8Rt21(B,c)~8c - 0. At these points, Rt'1(Q,c), considered as

a function of c, attains a maximum! Again applying Theorem 4.4(a) we have, for c close

to 0,

R~'1~(B,c) - 4(Q2 - ~)~(Q)c't ~(c4).

Thus, there exists a unique function c,,,~,,, defined on [~~,oo), such that

f,?(Z)(Q,cm„x(B)) - sup RtZt(Q,r.). Thc functions c,,,,,x(Q) and l~t~l(Q,r,,,T,(Q)) arc hotL
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rnonotonically increasing in B.

With Oo and B~ as defined above we have, for every c 1 0,

BZ G R~21(B,c) c 1 if ~B~ G Bo(c),

R1~l(B,c) ~ 1~ B~ if Bo(c) G ~B~ G 1,

RI2}(B, c) 1 B~ , 1 if 1 G ~B~ G B~(c),

l G RIZI(e,c) G e~ if ~e~ , e~(~).
This shows again that there exists a range of B's where the pretest est.imator has higher
risk than both the `usual' and the `silly' estimator.

An immediate consequence of (4.7) is Theorem 4.5.

Theorem 4.5. In the class of pretest estimators,

inf R~~l ( B, c) - min(1, B2).~

In ordcr to understand the importance of 'I'hcrorem 4.fi, let us consider once again the
`usual' estimator ( c - 0, R~~1(B, c) - 1) and the `silly' estimator (c - oo, R~~l (B, c) - BZ).
If we had to choose between these two we would choose the `usual' estimator if ~B~ ~ 1
and the `silly' one if ~B~ G f. (Of course, B is unknown.) If we now consider the whole
class of pretest estimators, then Theorem 4.5 tclls us that of all prctc~st estimators we
would still choose the `usual' estimator x if ~B~ 1 f and the `silly' est.imator 0 if ~B~ C 1.
Thus, in the context of pretest estimation, the only question which appears to be impor-
tant is whether ~B~ C 1 or ~B~ ~ 1. (We can go even one step further, see the discussion
following Theorem 4.7.)

Civen that ~B~ - 1 appears as the natural pivot in the class of pretest estimators,
we would like to choose c such that, at the, very least, the estimator performs well (has
low risk) around ~B~ - 1. One glance at Figure 9.`l tells us that Lhe worst estimator in
this respect is obtained around c- 1.9 whcre the curve R~ - 0 crosses the líne B- 1.
(The exact value is c- 1.9150.) This corresponds to a significance level of 5,55Q1o. Thus,
ironically, Lha usual ~i~ri cstirnator (c - 1.9(i) is vcry closc to bciug LLc worst choii c uf c
in the sensc that it gives the highest risk in the interval around 0- 1!
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Let us now consider the minimax regrct solut,ions. We have two options here, since

the minimum risk in G~ is 0~~(1 -~ r7~) ('1'hc~rern 3.7), while thc rninirnum risk in ,Cf~t is

higher, namely rnin(1,01) (Thc~orem 4.5). 'fhus, we havc two regret functions:

02
ro(~,c) - Rt~}(~,c~ - 1 t Oz

and

rz(O,r) - Rf~}(O,c) - min(1,~~).

Sawa and Hirornatsu (1973) obtained the Gf2}-minirnax regret solution, that is, they

found c which rninimizes sup r2(O,c).~~ We provide both the Gf~E and the Go-minimax
e

regret solutions. To prove that these solutions are unique, we notice t.hat, for 0 close to

0, bot.h regref, functions can be writ.t.en as

r(e,r) - fro(~~~ f(n,(c) -})o~ f c~(o"), (4.10)

see Thex)rcm 4.4(b), and hence both frmetions att.ain a local maximurn at ~- 0 if and

only if 0 G c G 1.6149 (Theorem 4.4(c)).

Theorem 4.6 ( Minimax regret). With respect to Ct2~, thc class of pretesL est,imators,

(a) the Lo-minimax regret estimator is obtained for c- 1.2007 with G~-minimax rcgret

ró - 0.6958;

(b) the Gf2~-rninimax regret estimator is obtained for c- 1.3692 with Gt2~-minimax

regret rZ - 0.5988.

The risk functions associated with c- 1.2007 and c- 1.3692 are graphed in Figure

4.1.

Finally, let us discuss the tninimum average regret approach, discussed in section 3.

In order to irnplement this approach we need to specify a prior distribution for 0. Which

~~Sn~ also Farebrother (1975), E3rook (19ïfi) and Droge (199:1).



30

prior should we choose? Toyoda and Wallace (1976) considered this question and chose
a di(fusc prior for 0. They then concluded Lhat thc `usual' cstirnator ~ is the minimurn
average regret estimator. Given our previous results, this is not surprising. A diffuse
prior on B implies that Pr(~0~ ~ 1) - 1 and we know that x has lowest risk when ~B~ 1 1.
In our view, a diffuse prior is not appropriate. For example, it puts equal weight on the
intervals (100, 101) and (0, 1) and this is counterintuitive. In section 3 we suggested a
N(0,1) prior for B. This prior is neutral between the `usual' and the `silly' estimator

(the extremes).

For a normal prior, not necessarily neutral, we havc

Theorem 9.7 (Minimum average risk). Let rr(0) be a N(~r, rZ) prior density of B. Then,

(a) the average risk ( with respect to rr) of the pretest estimator is given by

ExRI~1(~, c) - 1-(a f Qr2)~(a) f(Q f~r2)~(Q) t(Frz f rz - 1)1F4(u)~u,
0

where

-c-p c-p
a- ~

1 ~ r~' - 1 -~ r2'

(b) the minimum average risk in G1~~ is

inf ExRI~1(B,c) - min(1,~2 -} rZ)
~

and the minimum is obtained for

oo, if ~~ -~ r2 C 1,
c„ -

0, if ~~ t r~ ~ 1.
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The surprising consequence of 'I'heorem 4.7 is Lhat, with a normal prior for 0, t.hc

minimum average regret solution is the `usual' estimator ~ when G~2 ) 1 and the `silly'

estimator 0 when EBZ G 1. This emphasizes once again that, for the traditional pretest

estimator, the key issue is whether ( the expectecí value of) 0~ is larger or srnaller than 1.

If our neutral prior for 0 is N(0, 1), than '1'heorem 4.7(a) shows that Lhe expected risk

equals 1 Jor every value oJ c. (We used this result in the proof of '1'hcorem 4.2.) This

prior does therefore not yield a minimum averagc regrct estimator.

c maxirnurn rcgrct avcragc regrct

0.0 1.0 0.6557
1.0 0.8013 O.fi557
1.2007 0.6958' 0.6557
1.3692 0.8412 0.6557
1.96 1.6450 0.6557

2.Fi76 2.9522 0.6557

00 00 0.()557

'I'able 4.1. - Maximum and average Co-regret for seven pretest estimators.

In 'I'able 4.l we present the maxirnum and average Go-regret of seven pretest esti-

mators. In each case the regret function is ro, given in (4.8). 'I'he maximutn regret is

minimized at c- 1.`L007 in acc,ordance with Throrem 4.(i(a). ([n this and subscquent

tables a star ' denotes the minimum.) The average regret is taken with a N(0, 1) prior.

We know that the risk is always 1 in this case and since

1~ 1 f B2 ~(B)dB - 0.3493

we find a constant average regret of 0.6557.

(4.11)

Wc havc discusscd Lhc I,raditional prctcst. cstinrat.or iu sumc dctail bccansi~ il. is an

estimator which is routinely used in econometrics and othcr areas of applied statist ics.

This does not mcan that wc belicvc it is a good estimal.or. On thc contrary, wc have

emphasiud its poor proportiees throughout this section. We have sc.rn in section :} that
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the normal Bayes estimator t~'1 is admissible, but has unbounded risk (unless c- 0)
and therefore permits no minimax solution. In the current section we have seen that
Lhe pretest estimator t~21 is inadmissible (iL is noL even continuous) and has pathological
behaviour around ~0~ -}, but that its risk is bounded. We next turn to an estimator
which, while still inadmissible, has considerable intuitive appeal and combines bounded
risk with good behaviour around ~B~ - 1.
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5 The Huntsberger-Thompson-Feldstein estimator

We know from `1'heorem 3.7 that R(B,a) ~ B2~(1 f 42) for every 0 and every ~ E G".

The lower bound is attained when ~- B2~(1 f ~2). An obvious and suggestive choice (or

a is therefore a(a) - x2~(1 ~- z2). In t.his section we shall study a slight generaliration

of this, namely

a~'1(T) -
x2

, OccGoo.
c2 -f a2

The class of ~-frmctions of this type is denoted Gt31. "I'he estimator takes the sirnple

form

xs
tt~)(~. Cl - t(~ ~~3)1 - (J.2)

i i f2 } ~.2

For c- 0 and c - oo we again find Lhe `usual' and the `silly' c~stimat,ors as special cases.

'I'hc estimator lt''1 was first considcrcd by Hunt.sberger (1955) in thc context of pooling

two estimators based on a preliminary test of significance. Thompson (1968) proposed

(a generalization of) t,his estirnator as a shrinkagc astirnator, whilc hcldstcin (1973) con-

sidered it in the context of multicollinearity. We shall refer Lo the estimator (5.2) as I,he

HTh' estimator.

In spite of its intuitive appeal the HTF estimator is inadmissible, although within I,he

class of HTF cstimators no estimator dorninates another.

Theorcm 5.1. 'fhe II`l'F estirnator tt~'~(x; c), 0 c c G oo, is

(a) admissible if c- 0 or c- oo, inadmissible otherwise;

(b) Gt31-adrnissible.

Denoting the risk of the IITF estimator by Ht'1(O,c) wc find, again, that Rt~'~(D,c) is

symmetric in 0, is bounded for every c G oo (but not for c- oo) and approachcs I a-v

~p~ -~ oo for every c G oo. In Table ~i.l wc prescnL thc maximum and avcragc G"-rc,gret

(that is, Rtal(0, c) - BZ~(1 -~ B~)) for five values of c. Average regret is taken with respect
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to a N(0, 1) prior for B.

c maximum regret average regret

0.0 1.0 0.6557
1.0 0.4670 0.3606
1.0920 0.4251' 0.3379
2.1647 1.1591 0.2327'
~ ~ 0.6557

Table 5.1. - Maximum and average Go-regret for five H'1'F estimators.

The minimax regret solution is this class of estimators is obtained for c- 1.0920 and
the minimum average regret solution for c- 2.1647. The risk functions of these five
estimators, labeled 1-5, are graphed in Figure 5.1.

FIGURF, 5.1

The minimax regret estimator (r. - 1.0920) in this class, in spite of being inadmissible,
looks good. Its average regret is also quite acceptable. One particularly plcasing aspcct
of the HTF estimator (in contrast to the pretest estimator) is that, thcrc now exists, for
every c, an interval around B- 1, where the HTF estirnator is better (has lower risk)
than thc `usual' estimator and the `silly' estimator. Also, there is no value of B whcrc
thc IITF estimator is worse than both the `usual' and the `silly' cstimator.

In Figure 5.2 further insight is provided through the four relations R- 1, R- B2, R'e -
0, R~ - 0. The most important difference with Figure 4.2 is that thc curve R- I now
lics to the right of R- OZ. `I'he area between R- p2 and R- 1 is the area whcre
the HTF estimator períorms better than both the `usual' and the `silly' estintators. We
comment briefly on each of the four graphs.

FIGURE 5.2

(i) R131(B,c) - 1: 'I'his relation implies a unique funct.ion Oo, definc~d on (O,oo~, such
Lhat R131(4o(c), c) - 1. Thc function t7o approaches L'31 as c~ 0, rcachcs a maxinturn at
c- 0.90 where Bo(c) - 1.45 (point A in the figure) and I G Bo(c) C 1.4.5 for all c E(0, oc~.
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Figure 5.1. - Risk R"'(f~,c) of the H"fF estimator for five values of c.

iNETA

]l ~0

Figure 5?. - Fbur relations between 6 and c(or the H"fF estimator t"'.
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(ii) R131(O, c) - 9~: This implies a unique function B~, defined on [O, oo), such that
R131(B~(c),c) - B~. The function 8~ is monotonically decreasing and 0 c B~(c) C 1
forallc~0. -

(iii) RB31 (B,c) - 0: A unique function Bm,,, exists, defined on (O,oo), such that

R13~(Om„~(c),c) - sup R131(B,c). The function BR,~ is monotonically increasing and
B

8,,,,,~(c) 1 2.13 for c~ 0. Furthermore, R~31(8,,,,~(r.), c) is monotonically increasing in c.

(iv) R~31~(O,c) - 0: There exist two functions c,,,;,, and Cmas. `I'he function c,,,;,,, defined
on (0, 1.48~, satisfies R~31(B, c,,,;,,(B)) - inf R~3}(O, c) and decreases morrotonically. At B-~
1.48, c,,,;,,(B) - 0.58 (point B). The function R~31(B, C,,,;,,(B)) defines the lower bound in
,C~31. The function c,,,a„ defined on [1.31, 1.48~, satisfies R~3~(B, c,,,a,~(B)) - sup R~31(B, c)
and increases monotonically. R~31(~, c,,,ax(~)) increases monotonically as well.

At Lhis point we conclude that the minimax regret estimator in Lhe HTF class (with
c- 1.0920) is our `best' estimator so far. There arc two reasons why we believe a better
estimator can be found. FirsL, the estimator is inadmissible and therefore a better
estimator must exist. Secondly, the class of HTF-estimators is small. In a larger class
we expect to find an estimator with lower maximurn regret. In the next section we define
a much larger class of estimators of which all three classes G~~1, G~2~ and G~31 are special
or limiting cases.
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6 The Burr family

ln search of a more general class of a-functions we begin by noticing Lhat any a-funr tiun

satisfying Ii l for which a(0) - 0 aud 1(00) - I is a distrihution func~l.ion on (0, oo). Su

our objective is to select an appropriate class of distribution functions. IL would scv,m

desirable Lhat this class of distribution functions has as special or limiting cases Lhe

three classes of a-functions discussed so far (1 - 1~r1 (normal Baycs), a- a~2} (pretest),

a- at31 (HTF)) and that a(x) is given explicitly in terms of x and not as an integral.

1'he class of distribution functions we shall use is

~~(~; ~, Q) - 1 - [l f (í~~c~)a~-lr (f.l )

whcrc a ~ 0, Ji ~ 0 and c is again a scalc parametcr. '1'his clistribution function wati (irsl.

proposed by Burr ( 194`l). Burr and Cislak ( 1968) showed that thc Burr farnily covcrs

important regions of rnany well-known distribution functions.

For o- a 0, a~ approaches 1- 2-p, a constant E(0,1). For nr -~ oo, aB -r a~21. I~'or

a- 1, ~i - l, a~ - a~~jl. So the Burr family ( 6.1) contains all threc previously discussed

estimators as special or lirniting cases.

Since estimators based on a~31 are inadmissible, Burr estimators cannot, in general,

bc admissiblo, although certain lirnit.ing cases (likc cY -. 0, bnt not cr --r oo) will bc

admissible.

llefining, as usual, e(x) -(1 - a(~))x, we obt.ain

e(y) -
~,2cr(f x

- (~2a } C2a)p,

and hencc, for largc x,

e(x) ti i2"íry-(2aA-r)

'I'his leads to
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'fhrnrem 6.1. The risk R(la,c;o,~) of an estimator t(x,aH) in Lhe Burr class is bounded
in 0 if and only if `la(i ~ I. Furthermore, for ~0~ -, oo,

r 1-}- c~ , if 2nQ - l
R(B,c;a,Q) -~

St 1 , if 2aQ ~ ] .

Since minimax regret solutions cannot exist when the risk is unbounded, we must
impose 2a~3 1 1. For specific values of ,Q we now find the optimal values a', c', 8' for
which the maximum (over B) of the regret function is minimized (over a and c). The
minimax regret, which is a function of Q, is denoted r'.

cr' 2 a`Q L7' r'

10.0 0.40 8.00 24.24 3.28 0.414
5.0 0.43 4.30 8.43 3.24 0.411
2.0 0.52 2.08 2.24 3.18 0.405
1.0 0.69 1.38 1.01 3.09 0.397
0.5 1.08 1.08 0.64 3.00 0.390
0.2 2.50 1.00 0.55 2.81 0.385
0.1 5.00 1.00 0.55 2.74 0.385
0.0 00 1.00 0.54 2.73 0.385

Table 6.1. - Minirnax regret results for the Burr family.

Table 6.1 (and many more calculations not reported here) suggests very strongly
that the optimal estimator from the minimax rcgreL poinL of view is obtained by letting
2a~3 - 1 and cr --~ 00,~3 -. 0. In order to find this limit, we let h(t,a) -(1 -}- to)r~a, for
t 1 0. A simple application of 1'Hóspital's rule then yields

- r l , if OGtcl,lim h(t, ~)
Sl

v~~

Now writing

~B(x;~,Q) - 1 - [h(x~~c2 n)~-aa

we find that, along the path 2a~3 - 1,

t , if t11.



~y~ aB(x; ~, a) - ~~41(x), (~.6)

wherc

0 , if ~x~ G c,
~~4~(x) - 1- I~I , if ~x~ ~ c.x

The estimator t'(x;c) - t(x, a~'1) will be called the optimnl 73urr eslimntor and Lhe

class o( a-[unctiona defined by ((i.7) is denoted Gt'~. IL is rcmarkablc LhaL Lhe optinial

Burr estimator, obtained as the rninimax regret solution (or the very large Burr class,

should take such a simple form. Its risk is given in Theorem 6.2.

Theorem 6.2. The risk of the optimal Burr estimator t~'1(x; c) is given by

Rt'1(B, c) - 1 f c2 - (c - B)~(~ t e) -(~ ~ o)m(c - a) t(e2 -1 - c')P(B, c)

where P(B,c) - f-B~ ~(u)du.

Unfortunately the optimal Burr estimator is `kinked', hence not differentiable and

thus inadrnissible by Theorem 3.6.

Theorern 6.3. The optimal Burr estimator tt'1(x; c), 0 G c G oo, is

(a) admissible if c- 0 or c- oo, inadmissible otherwise.;

(b) Gt'1-admissible.

The risk R~'1(B, c) is bounded, but it does not approach 1 as ~0~ -~ oo. In vicw of

Theorem 6.1 we have

Rt'1(B,c) --. 1-}- c2 as ~0~ ~ oo. (6.8)

The maximum and avcrage Co-regret for five self~cted values of c. is presented in Table 6.2.
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c maximum regret average regret

0.0 1.0 0.6557
0.545 0.3850' 0.2927
0.866 0.8164 0.2508'
I.0 1.0603 0.2564

~ ~ 0.6557

Table 6.2. - Maximum and average Go-regret for five optirnal Burr estimators.

The minimax regret solution in the class of optimal Burr estimators (and hence in
the whole Burr class) is obtained for c- 0.545 and the minimum average regret in
Gt'1 is at c- 0.866. Compared with the minimax regret estimators in the HTF class
we see that the best estimator in the optimal Burr class has not only lower maximum
regret (0.3850 versus 0.4251) but also lower average regret (0.2927 versus 0.3379). The
risk functions of the five estimators in Table 6.2 are labeled I-5 and graphed in Figure 6.1.

FIGURE 6.1

Before we graph various relations between c and B we provc the following theorem
which relates Lo the behavior of the risk when c or 6 is close to 0(cornpare Theorem 4.4).

'I'hcorem 6.4.

(a) For c close to 0,

Rt~l(B, c) - 1- 4~(8)c f c~ - 3(Oa f- 1)c' -~ d(cs);

(b) For B close to 0,

Rt~l(B,c) - ho(c) -} hr(c)B~ f O(B'),

whcre

ho(c) -(c2 f 1)(1 - f ~(u)du) - 2c~(c), h c(c) - f ~~(u)du;
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Pi ~un 6.1. - Kisk K"'(O,c) of the optimal ldurt estimator for Irvr values of c.
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Fieure 6'. - Thrcr relations between N and c for the optimal Burr estimator t"'.
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(c) 0 G ho(c) G 1, ha(c) G 0, 0 G hr(c) C 1, h~(c) ~ 0.

Theorem 6.4 shows, inter alia, that the regret function can, for B close to 0, be written
as

r(B,~) - hr,(~) - ( 1 - h,(~))B' f o(e4). (s.s)

Since 0 G hr(c) G 1, the regret function attains a local maximum at B- 0 for every

value of c.

In Figure 6.2 we graph the relations R- 1, R- B2 and R~ - 0. (2'o is always ~ 0
in this case.) The relationship R~ - 0 definc~s points where Rl~l(B,c) is minimized with

respect to c. The area between R- B2 and R- 1 is the area where the optimal Burr
estimator has lower risk than both the `usual' and the `silly' estimator.

FIGURIJ 6.2

To summarize, we have identified, within a very large class of estimators (the Burr

class), one estimator which minimizes the rnaximum regret (defined as R~"1(B, c) - B~~

(1 -F B~)). This estimator, the optimal Burr estimator, can be written as

xfc , if xG-c,
tt41(x; c) - 0 , if -c c x C c,

x-c , if x~c,

(6.10)

with c- 0.545. The estimator also has good average regret (with respect to a N(0, I)
prior for B) and would therefore appear to be a strong candidate for `the best' estimator
for B.
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7 Some generalizations and a proper Bayes solu-

tion

There are, however, several objections which can be raised against Lhe optirnal Burr es-

timator (6.10). '1'he estimator is inadmissible, is not smooth at x- fc, doc.w not dep~,nd

on x when ~x~ G c, and it is not a Bayes estimator. In this section we shall c;onsider somc

generalizations of (6.10) which deal with some of these objections. Eventually this leads

to an estimator, which is very close to the optirnal Burr estimator, buL has none of the

objections just raised. This will be our `ideal' estimator.

To try and remedy these four objections, consider the following generalization of

(6.10):

x~(1 - a(c))c, if x G-c,

t'(x; c) - a(x)x, iC -c C x G c,

x-(1 - a(c))c, if x~ r.,

where the function a(x) satisfies: (a) 0 G a(x) c 1, (b) a(-x) - a(x), (c) a(x) is nonde-

creasing and continuous for all ~x~ C c. Any estimator t' satisfies conditions RI and It2

and is continuous at x- ic. We consider four special cases:

(i) a(.r.) - 0. 'I'his is thc opt.irnal 13urr cwLimalor.

(ii) a(x) - a(constant). This is the limited translation estimator ptoposed by Efron

and Morris (1971). The estimator was developed in order to control the unbounded

risk associated with normal priors. Efron and Morris were not aware of the fact

that their estimator has near-optimal minimax regret properties. Searching over

a and c we firrd the minimax regret solution at a- 0.15 and c- 0.65. The

minimax regret at this point is 0.3843, slightly lower than the minimax regret in

the optimal Burr class (0.3850). The limited translation estimator depends on x

when ~x~ is small, but it still suffers from three of the four objections raised above.

In particular, it is not differentiable at x- ic. The next two estimators are

continuously differentiable.

(iii) a(x) - x2~(c~tx2). This estimator is the HTF estimator for ~x~ C c and approaches

the optimal Burr estimator for ~x~ 1 c. The estimator is continuously differentiablc~

and slightly cnrvcd around x- 0, buL il. is ncither admissiblc nor Baycs. 'I'hc
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rninimax regret solution is found for c- 1.102 and 0- 2.861 and takes the valuc
0.3850. This is exactly the same value as the minimax regret for the optimal Burr
estirnator.

(iv) a(x) - ~x~~(2c). This estimator is inspired by Huber's favourite choice of function
for M-estimation; see Huber (1977, p. 13) in the context of robust procedures. The
estimator, like the previous one, is continuously differentiable and suitably curved
at x- 0, but ncither admissible nor Bayes. The minirnax refireL is obtained for
c- 1.107 and B - 2.91 and it takes the value 0.3857, slightly l~igher than for the
optimal Burr estimator.

These estimators are slight generalizations of the optimal Burr estimator and they
mcet two of the four objections raised at the beginning of this section. We now develop
an estimator which meets all four objections. To this end we rewrite ( 6.10) as

t}41(x; c) - w(x)(x - c) f(1 - w(x))(x ~- c), (7.2)

where

0, if x G -c,

~(x) - z(1 i- x~c), if -c G x G c,

1, if x~c.

Equation (7.2) shows the optimal Burr estimator as a data-based weighted average of
x - c and x~ c. In particular, for all c~ 0,

x- c G tt41(x; c) G x-} c. (7.4)

We now ask ourselves the following questions: Uoes t.hcre exist a 13ayes cstimator of
the form (7.2)? (The answer is yes.) If so, docs the prior for B, which underlies this
estimator have an appealing intuition? (Yes again.) The prior we arc looking for turns
out to be the Laplace (or double exponentian density given by

rr(B; c) - Z exp (-c~9~) , -oo G B G oo, c~ 0. (7.~i)
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Laplace (1774), in his fundamental memoir on inverse, probability, deduced this distri-

bution from the principle of `insuf6cient reason'.12 The density (7.5) is unimodal and

symmetric around 0. Hence the mean and median of B are both 0. The mean and median

of B2 are

E(B2) - Z
cZ ' median(Ca~) - (log2)2

c2

Since :r~~ -~ N(0, ]) and assurning a Laplace prior density rr(0; c) for 0, the mean of the

posterior distribution of B~a can bc expressed as

ttsl(x,~) - 1 t2 (y)(~ - ~) t 1-2(y)(z t ~) - x- h(x)c, (7.7)

where

h(x) - 1- ez~d(~) ~ d(z) -~(-~ - c)1 -} e d(x) ~(x - c)

and ~ denotes the standard normal distribution function.13 We r~otice that h is mono-

tonically increasing on (-oo,oo) with h(-oo) --1, h(0) - 0, h(oo) - 1, and that

h(-x) - -h(~).

The estimator ttsl is of the form (7.2). It is a Bayes estimator and hence admissible.

It is smooth at x - tc and suitably curved when a is close to 0. Ilence the cstimator

does not suffer from any of the objections against the optírnal Burr estimator. We shall

refer to the estimator (7.7) as the Laplace estimator and we shall dcnote the class of

a-functions induced by (7.7) as Ctsl. The maximum and minimum Gu-regret and ,Cn-risk

for three selected values of c are presented in Table 7.1.

regret risk
c maximum minimum maximum minimum

0.6567 0.4645' 0.1051 1.4313 0.4645

0.6931 0.5127 0.1006 1.4805 0.4446

1.4142 2.0215 0.0345 3.0000 0.1858

12See Stigler (1986, p. ill) on the wonderful hietorical details. One of Laplace's problems was that

he lacked a symbol ïor abaolute value. The current eymbol ~r~ was introduced by Weíeratrass in 1841,

aee Cajori (1993, vol. II, 123-124).
'3See Pericchi and Smith (1992). Our expresaion (7.7) ia easier for computational purpoaea than their

formula (6), because. h ia monotonic.
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Table 7.1. - Maximum and minimum Co-regret and risk for three Laplace estimators.

The minimax regret solution for the Laplace cstimator is obtained for c- 0.6567 with
minimax regret 0.4645, somewhat higher than the optimal Burr estimator (0.3850). The
other two selected values for c are c- log2(- 0.6931) and c- f(- 1.4142). To under-
stand the rationale behind these values, we recall from section 3 that a neutral prior is
one where the distribution of B is located at 0 and the distribution of B2 is located at 1.
For the Laplace prior this implies EB - 0 and either F.(6~) - 1 or, more appropriately,
median ( B~) - 1. From ( 3.6) we see that E(l1Z) - 1 when c- f and that median
(62) - 1 when c- log2. The risk functions oí the three estimators, labeled 1-3, are
graphed in Figure 7.1.

F[GURE 7.1

It is evident from the graph that the risks for estimators 1 and 2 are very close for all B.

We note that the risk Rtsl(B, c) increases monotonically with ~B~ and R~S~(f7, c) -~ 1 f c2
as ~B~ -. oo. Since c- log2 is close to the minimax solution c- 0.6567 and has the
neutrality properties

Pr(t7c0)-Pr(B10)-2, Pr(~9~c1)-Pr(~9~~1)-2, (7.9)

we choose the estimator t~sl given by (7.7) with c- log 2 as the `ideal' Laplace estimator.
For its risk we have

0.4446 C R~51(B,c) G 1.4805, (7.10)

and for its regret

s
0.1006 C Rls~(B, c) - 1} Bz c 0.5127. (7.11)

The minimum regret is obtained for l) - 1.27 and the maximum regret for B - 4.93. We
see from Figure 7.2 that, for l7 close to 0, the `ideal' I,aplace estimator is better (has lower
risk) than the `usual' estimator t(x) - x, but worse than the `silly' estimator t(x) - 0.
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Fi~urc 7.1. - Ritik R"'(13,c) af thc Laplacc cstimator Fur thrcc valucs uf c.

R' `0 Ic

R-I

R-B
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Fieure 7?. - Three relations between 9 and c for the Laplace estimator t"'.
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This is what we would expect. For ~B~ large, the situation is reversed. Again, this is
what we would expect. But for quite a large and important interval, 0.739 C ~B~ C
2.001, the Laplace estimator is better than both the `usual' and the `silly' estimator.
The maximum regret is obviously small compared to other estimators, since the Laplace
estimator is close to the minimax regret estimator. In fact, both risk and regret compare
very favourably with the other estimators.

In Figurc 7.2 we present again the relations R- 1, Ii! - 02 and R~ - 0. (Iió is always
~ 0 as in the optimal Burr class.) The relationship R~ - 0 defines points where the risk
is minimized with respect to c.

FIGURI; 7.2

The `ideal' estimator in the Laplace class should appeal to both Bayesians and non-
Bayesians. To non-Bayesians because it is near minimax regret. To Bayesians (a) because
it is a proper Bayes estimator, (b) because the prior is neutral (in the sense of section
2 and (7.9)) with respect to the `usual' and the `silly' cstimators, and (c) because the
Laplace prior is a particularly suitable one frorn the viewpoint of rnaxirnum entropy.r'
This aspect of the Laplace distribution was recently emphasized by Zellner (1994). The
argument is based on two well-known facts:

(i) Given two random variables B and aZ, the conditional density for O~a2 which max-
imizes the entropy subject to the conditions E(B[az) - 0 and var(B~o2) - 02 is the
normal distribution N(0, Q~); and

(ii) Given one positive random variable o2, the density for Q~ which maximizes the
entropy subject to Eo~ - sZ is the exponential density (1~s2)exp[-QZ~s~].

From (i) and (ii) we can obtain thc joint density for 0 and a2 and, integral.ing over á2,
the marginal density for B. Zellner (1994) showed that this density for B is Laplace.

But there is more to be said in favour of I,aplace. Suppose we wish to determine a
neutral prior. There are six continuous densities ~r(0) in cornmon use which are syrnnretri~
around zero: uniform on [-a,a], triangular on [-b,b], normal N(O,r2), logistic (a),
student t(v) and Laplace (c).rs Imposing the second condition for neutrality (median

14See Rao (1973, p. 162 and 172-173) for a definition and brief discussion.
~sThe Laplace density is given in ( 7.5). The logistic density is defined as x(B; a) - ae-ae~( ] f e-ae )2
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(B2) - 1) determines for each of these one-parameter densities the value of the parametcr:

a- 2, 6- 2 t f, r~ - 2.1981, a- log3, v - 1, c- log2. The uniform and triangular

densities are unsuitable because their support is not (-oo, oo). The tails of the normal

distribution are too thin ( leading to unbounded risk). '1'his leaves Lhe logistic, Cauclry

and Laplace priors. With a prior density ~r(B), the mean of the postcrior distribution of

B~x can be written as

t„(x) - x- f
urr(x - u)~(u)du

f a(x - u)~(u)du ~

Hence (7.12) gives the Bayes estimator for B induced by the prior rr(B). It enables us to

calculate the risk and regret functions associated with the logistic and Cauchy estima-

tors. 'I'he results are summarized in Table 7.2.

regret risk

prior maximum minimum maximum minimum

normal oo (B - oo) 0.0 (B - 1.48) oo (B - oo) 0.4724 (B - 0)

logistic 1.2150 (B - 10.01) 0.0377 (B - 1.41) 2.2069 (B - oo) 0.4643 (B - 0)

Cauchy 0.6332 (B - 3.54) 0.0 (B - oo) 1.5618 (B - 3.68) 0.3757 (B - 0)

Laplace 0.5127 (B - 4.93) 0.1006 (B - 1.27) 1.4805 (B - oo) 0.4446 (0 - 0)

Table 7.2. - Maximum and minimum Go-regret and risk for four Bayes estimators with

neutral priors.

The table compares four Bayes estimators induced by neutral priors: N(0,2.1981), lo-

gistic ( with a- log3), Cauchy and Laplace ( with c - 1og2). The values for B at which the

maxima and minima are attained are presented a.s well. The normal prior with variance

r~ -`2.1981 leads to unbounded risk and regret. 'I'he minimum regret is attained at

B- r - 1.48. The minimum risk (r2~(1 f r2))Z - 0.4724 is attained at B- 0. i'or the

logistic estimator, both the maximum regret (1.2150) and the maximurn risk ( 2.2069) arc

higher than for the Laplace estimatot. For the Cauchy estimator the maximum regret

is 0.6332 ( higher than Laplace) and this maximum is attained at B- 3.54 ( lower than

Laplace). Also the maximum risk is higher than Laplace and is attained for a lower B. All

these findings favour Laplace over logistic and Cauchy. We may therefore conclude that

the Laplace estimator t~51 wins over the logistic and Cauchy estimators on three counts:

its maximum regret is lower ( which should please the frequentists), its justification as
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a prior is stronger (which should please the Bayesians), and it is computationally very
much easier to work with (which should please both).

This brings us the end oI our discussion of Lhe N(0, 1) problem. Implications for the
regression problem will be discussed in the concluding section.
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8 Conclusions

In this paper we have attempted to solve an old and classical problem in applied statistics.

The problem is how best to estimate the parameters of interest Q in a linear regression

model

y-X(ifryz~-u. (8.1)

'1'he explanatory variables in X are regarded as belonging iu the eyuation according to

some theory, attd can be thought of as the rninimum set of variablcs required to explain

y. The explanatory variable z, however, is only included because the researcher believes

iL might lead to `bcLl,er' cstimatcs of ~i. '1'hc focus of our analysis is Lhc c~Lirnation of

one or several linear combinatious of the parameters ~3.

We propose to estimate ,Q as a weighted average of the unrestricted estimator 6„ and

the restricted estimator 6, (with ry- 0), that is, b- ab„ }( 1 - a)6r, where ~ is a

function of the t-ratio of y. We call this estimator a WALS ( weighted-average least

syuares) estimator. Judging the estimator's performance by its mean squared error, wc

see from Theorem `l.2 that if any ~-function is optimal for b as an cstirnator for (i, thcn

it is also optimal for a linear function t,i'b as an estimator for t(i'Q. Thus, (3 contains

the `parameters of interest' ( even when the íocus of our analysis is one particular linear

combination of the ~i's) and ry is a`nuisance parameter'.

This classical problem of estimating ~3 in the presence of a nuisance parameter ry we

have called the regression proólem. In Theorem 2.2 we show that the regression prob-

lem is equivalent to a fundamental statistical problem, which we have called the N(0, 1)

problem: Given one observation x from a N(B, 1) distribution, what is the `best' esti-

mator for B. This seemingly trivial problem turns out to be far from trivial. Sections

3-7 of the paper ate devoted to it. After a long journey through normal Bayes, pretest,

HTF, Burr, Laplace and Cauchy estimators, we finally arrive at an estimator (the `ideal'

Laplace estimator) which is near-optimal from the minimax regret point of view and

also has an attractive Bayesian interpretation with the prior median of t1Z cyual to one.

(The importance of fl~ - 1 as a natural pivot is discussed in Theorem 2.1, (3.10) and the

discussion following Theorems 4.5 and 4.7.) The Laplace estimator is defined in (7.7)

and is `ideal' for c- log2.
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The six main estimators discussed in sections 3-7 are graphed in Figure 8.1. Each

FIGIJRE 8.1

graph represents an estimator t(x) as a function of x when x~ N(t), 1). The dotted
line gives t(x) - x, the `usual' estimator. It is clear that the normal Bayes estimator
ttr) and the pretest estimator t~2) are far from satisfactory. The normal Bayes estimator
diverges from x and has therefore unbounded risk (Theorem 3.5). The pretest estimator
is inadmissible and discontinuous. Its pathological behaviour is discussed in detail in
section 4. The estimators t~3), ..., tts) are better. However, tt31 and t~~~ are inadmissible.

1'he Laplace estimator t~s) and the Cauchy estimator tts) are both admissible, but tt5)

has better minimax regret properties than t~s).

Arnong these estimators our preferred one is the `ideal' Laplace estirnator, because it has
attractive smoothness properties and near-optimal risk pcrformance. Considered as a.

Bayes estimator it is based on a prior with strong intuitive appeal. It, rnain cornpetitor
is the optimal Burr estimator with c- 0.545 (see (6.7)) whose maximum regret is smaller
than that of the `ideal' Laplace estimator and is casier to use, in practice. The two esti-
rnators are quite different when x is srnall, but their risk functions are sirnilar as can be
seen Crorn I''igure 8.2. hor 0 G ~0~ G 0.55 and ~0~ ~ 2.89 Lhc optirnal Burr estirnaLor has
slightly smaller risk, while for 0.55 C ~0~ C 2.89 thc `ideal' I,aplacc cstimator has slightly
smaller risk.

FIGURE 8.2

We now consider the application of these results to the regression problem. For ev-
ery estimator t(x) -~(x)x for the N(B, 1) problem wc have a corresponding WAI,S
estimator b- a(B)b„ ~(1 - a(B))b,. Every WALS estimator has t}ie advarrtage ovcr
a traditional pretest estirnator that the completely arbitrary choice of significance level
(0.01, 0.05 or something else) is avoided. A second advantage is that thc problern that in
a large enough sample the classical test will be virtually certain to reject (Berger (1985),
p. 20) does not occur here. The results for the N(D,1) problern irnply that a fixed a(for
example a- 1~2) is unacceptable, because it corresponds to the norrnal Bayes estimator
tt'). Also, the traditional pretest estimator (choose the restricted estimator br when the
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C-ratio for ry is srnall, choose the unrc~strícted c~tirnator b„ otherwisc) is unacceptable (scx~

section 4), even though it is the estimator routinely used. In fact, the famous 5qo pretest

estimator is very close to being the worst possible pretest estimator where the wholc

class of pretest estimators is poor to begin with. (Scx the discussion betwcen Theorems

4.5 and 4.6.) It is not surprising then that we do not recommend the traditional pretest

cstiural.or. '1'hc main compctil,ors arc t.hc optirnal 13urr estimator baticd on at~k and 1.6c,

`ideal' Laplace estimator based on a~sf. The optimal Burr estimator has lower maximrrm

regret and is easier to compute, while the `ideal' Laplace estimator is admissible and

has a strong and plausible Bayesian interpretation. We have a slight preference for the

`ideal' Laplace estimator.

A few words about the weighting function a. Condition Iíl reyuires that 0 c~(~) C 1.

Bounded risk implies that a(9) -r 1 as B--~ oc (Theorem 4.5), which shows that t.he

unrestricted estimator b„ is optimal when the t-ratio is very large. This, of course, is

plausible. But what would we expect a(B) to be when B is small, say B- 0? R.efering to

Figure 8.1, a(0) is given by the slope of t(x) at ~- 0. For the estimators tt~}, tt31 and

t141 we sm that a(0) - 0. But for the three Baycw estimators tt'l,ttsl and ltsl we havc

a(0) ~ 0. In fact, assuming a neutral prior, we find that a(0) - 0.6873 in the case o[ the

normal N(0,2.1981) Bayes estirnator, a(0) - O.~i896 for thc `ideal' Laplace e~sl.irnator,

and a(0) - 0.5251 for thc Cauchy catimator. lu cach c.asc ~(U) ~ 1~2. Ilcncc, cvcn

when B- 0, a neutral prior will lead to a WALS estimator for Q where more than half

the weight is put on the unrestricted estimator 6,,. For Bayesians this will be perfect,ly

plausible and acceptable and they should be happy with the `ideal' Laplace estimator.

For many non-Bayesians this may also be plausible and they too will be happy with the

`ideal' l,aplacc estimator. But somc non-Bayesians rnay argue that if ~0~ is srnall, say less

than about one half, we should choose the restricted estimator br. This view irnplies that

a(0) - 0 and leads to the optimal Burr estimator. As we have seen, the risk functions

of the two estimators are not very different.

For the application oï WALS estimation based on the `ideal' Laplace estimator we

need to compute the relevant a(B). In Table 8.1 we present a(B) for selected values of t7.

If the table is not sufLiciently precise, then a(B) can be computed from

a(a) - 1 b(ó~h'g2 (t7 ~ o), (n.z)
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where h(B) is defined in (7.8) with c-1og2. For B 1 4.5 the approximation a(B) -
1-(log2)~0 is accurate up to four decimal places. For ~B~ c 4.5 we can approximate
h(0) from the formulae in Abadir (1995), in particular (26) and (50), or calculate exactly

using standard computer software.

B a(B) B a(0) B ~(B) B a(9)

0.0 0.5896 2.0 0.6943 4.0 0.8268 6.0 0.8845
0.5 0.5973 2.5 0.7354 4.5 0.8460 G.5 0.84)34
1.0 0.6197 3.0 0.7722 5.0 0.8614 7.0 0.9010
1.5 0.6537 3.5 0.8027 5.5 0.8740 0o I.0000

Table 8.1. Optimal weights for the WALS estimator based on the `idcal' Laplace prior.

'I'he current paper has tried to concentrate on the main issues by making several sim-

plifying assumptions. Two of these can and should be removed in future work. First, the

assumption that o2 is known is clearly unrealistic. Preliminary investigations show that

the essence of our analysis, for example the analog of Theorem 2.2, still goes through and
that the difference for the WALS estimator between the case aZ known and a' not known
is similar to the difference between a N(0, 1) distribution and a Student distribution.rb

Secondly, we have assumed that there is only one nuisance parametcr 7. The basic set-up

is still valid when there are more than one nuisance parameters, but the details are more
complicated and furthe.r work is required.

In addition, we can apply the general idea oí the paper to areas other than estimation.

For example, instead of asking how to estimate ~j in thc presence of nuisance parameters,

we can ask how to predict y. In addition, we need to know more about the distribution

of the WALS estimator since this is relevant for inference.r' Theorem 2.2 is only a
beginning in this direction.

~sSe.e also Droge and Georg (1995).
~~See Adama (1991) for a cornprehensive investigation of the e(fécts o( model scarch on in(erence in

regression.



r)7

Appendix: Proofs of Theorems

Proof of Theorem 2.1: It is wcll-knowu that

br ~ N~(~ f ~9,~~(X~X)-~]

and

b„ ~ N[p,~~(X~X)-' ~ 49 ~.

I~ence,

MS1;(b,) - MSL(6„) - (02 - 1)qq'

and the results follow. (The theorern can also be proved as a special case of'Pheorem `l.'?.)

Proof of Theorern 2.2: A straightforward but sornewhat tedious application of standard

results on the multivariate normal distribution (ltao (1973, p. 52`l)) shows Lhat t.hc

conditional distribution of (b„ b„) given 0 is

(.) O~N Q-~~q ái (X~X)-r (X~X)-~

L` ~-(0-0)q I `(X'X) ' (X'X) ' ~

and the results follow.

Proof of 'hFIP.OfeiTl 3.1: Clcarly, t(s, ~) - x is unbiased and has risk (variance) cyual to

l. I31yth (1951) slrowed Lhat. ~ is admissiblc ( scc: also Bcrgcr ( 1985, p. 548)). Sincc :r.

is admissiblc and has constanL risk it rnust bc uniquc minirnax (F3crgcr ( 1985, p. 3R'l,

exercise 32)).

Proof of '['hcorcm ;F.2: For any estimator l(r, a) wc havc, aL 0- 0, Ii(0, a) -

l:(a2(u)u2), whcre u~ N(0, I). 'I'hus, l~(0, a) ~ 0 wi1,h cyuality if and only if a- 0.

Sincc 11~1(x;oo) - a(r)x wit.h ~(x) - 0, we sce thaf, t1~1(x;oo) dorninates evcry ot.hcr

estimator at 0- 0 and hcncc is adrnissihlc. Also, 11r~(:c; 0) is admissiblc by 'I'hcorrrn a.l .

Assurnc next that 0 G c G oo and Ict a(0) bc a prior dr.nsity of 0. ln Frarl.icnlar, Ic,1. rr(0)
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be N(0, l~c). It is well-known ( Berger ( 1985, p 1'17-128 and p. 161)) Lhat Lhe mean of
the posterior distribution of 0 given x is given by F.(B~x) - x~(1 f c) - t~'~(x; c) and that
this is the Bayes estimator of B. Since thc risk function R~'l (B, c) is continuous in 0 for
every c and the prior ~r gives positive probability to any interval in R, it follows from
Berger ( 1985, p. 254) that t~~l(x, c) is admissible for 0 G c G oo and hence for 0 G c G oo.

Proof of Theorem 3.3: Let x- u~ B, where u ~ N(0, 1). Definc
h(u, B) - a(u ~ B)(u -~ B) - B. Then h(-u, B) --h(u, -B) and

[3IAS(B, a) - H;ah.(u, 0) - Eoh(-u, B) - - 1?oh(u, -B) - -IIIAS(-B, a).

This proves (a). To prove ( b) and ( c), let e(x) -(1 - a(x))x. Since a(-x) - a(x), we

have e(-x) --e(x). Hence, following Huntsberger (1955),

BIAS(B, a) --EE(x) -- f~ e(x)m(x - B)dx
- fó E(x)~(x ~ B)dx - Ió E(x)~(x - B)dx

- fó E(x)~(x ~B)(1 - P2Bx)dx.

For B~ 0, the integral is zero if and only if e(x) - 0(or all x, that is, a- ap~l. [f

a~ ao~l, then the sign of the bias depends on the sign of 1- eZBs, which completes the
proof.

Proof of Theorem 3.4: Let x- u f 0, where u ~ N(0, 1) and dclinc le as in thc proof of

'I'heorem 3.3. Then,

R(B, ~) - Eeh'(u, 9) - EehZ(-u, B) - EBh2(u, -B) - R(-B, a).

Prooí of Theorem 3.5: To prove that R.2 is sufficient, let x- u f B, a~ ~ N(0,1). Then,

R(B, a) - E(u - e(u f B))2 c 2E(u2 ~- E'(u f B)) C 2(1 ~ K2).

'Po prove necessity we write

!Z(B, a) - I~[a(x)x - 0]~~(x - 0)dx

~ f~~-e~~i]~(x)x - B]2~(x - B)dx

~ ~(1)f:-e~~i]~Íx)x-B]~dx
- ~(1)f-'i]E(ei-u)-u]zdu.
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Sincc l(r, a) - a(:c)x is nondecrcasing for x 1 0, w~, havc, fur ~u~ C I.rnd 0~ I,

I(t7 C u, ~) C L(r7 ~ 1,~) and hr~ncr, e(0 f u) - u~~(0 ~- I)- I. I'or cvcry 0 1 I sat,ivfying

E(0 t 1) ~ 1 wc Lhen find

1;(B,~) ~ 2~(1)[~(o t i) - 3)~.

Clearly, if e is unbounded then so is f~. (A morc gcncral result requiring a morc difFiciilL

prooC is givcn by Brown (1971, 'l'hcorcrn 3.3. I). )

Proof of Thcorem 3.6: Assume that 13:3 does not hold. 'fhen t(x, a) is not Gcncralizcd

Bayes (Strawderman and Cohen (1971), Berger and Srinivasan (1978)) and therefore not

admissible (Berger (1985, p. 542-544)). This proves (a). 'I'o prove (b) assume that 13`2

and R3 hold. 'I'hen Brown (1971) showcd that d(x,a) is admissiblo. (S~x~ also 13crgcr

(1985, p. 5Fi2-5Fi3) for further reCerences.)

Proof of Theorem 3.7: lJsing Lhe symrnetry condition ~(-x) - a(x), wc have

f z(xa(x) - 0)2~(x - 0)dx - f~(xa(x) t r7)Z~(x f t7)dx
u

and hence

li(0, a) - f~(xa(x) - 0)~~(x - 0)dx

- fi; ((xa(x) - n)~~m(.r - o) f(.r a(x) ~- o)~`~(.r f o))r~.r.

Now, Ict

1 - 0(x)
rl(x) - e-~r and h(x) -

y(1 f T1(x))

Then we obtain, after some algebra and compl~~t.ing the synare,

~(o, a) - fo x~(1 - ~ n(ax))(a(x) - o~i~(ox))~~(x - o)dx
f 401 fo' rl (Or) ~(x - r7)d.r .

f t p(ox)
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The following properties oí h(x) should be noted: h(-x) - h(x), le(r) -. 1 as x -a 0,
h(x) -~ 0 as x -~ oo, h'(x) G 0 for all x~ 0. Since h(x) is strictly decreasing on
(0, oo) and a(x) is nondecreasing on (0, oo), there exists a uniquc xo such that xo - 0
if a(0) ~ 02 and a(xo) - B2h(Bxo) if a(0) c B2. This can easily be seen by considering
graphs of the funetions a(x) and B~h(Bx) for both cases. (lf a(x) is not continuous, the
second condition is replaced by

a(xo - e) G B~h(Bxo) C~(xo f e)

for all e~ 0 sufficiently small.) With xo so defined we have

~a(x) - eZis(ex)~ ~ ~a(xo) - e2h(ex)~ for all x ~ o.

Let 1o denote the constant function such that ao(x) - a(xo) {or all x 1 0. It is then
clear that R(B, a) ~ R(B, ao). We also know from (3.8) that R(B, ao) 1 Bz~(1 f BZ). This
completes the proof. -

Proof of Theorem 3.8: With 0~ N(0, 1) and x~0 ~ N(B, 1), we obtain x~ N(0, 2) and
B~x ~ N(x~2,1~2). Then, writing

ExR(B,a) - E~r;,,r(a(x)x - B)2,

where E„~x denotes the expectation with r~pect to the distribution of B~;r and E, denotes
the expectation with respect to the distribution of x., the result follows.

Proof of Theorem 4.1: With a~~~(x) defined in (4.2), wc havc

Rt~l (B, ~) - L~(a~~}(x)x - e)~~(x - e)dx

- 9~ j~:~~~ ~(x - B)dx f I~:~~~(x - B)2~(x - B)dx

- 1 f Bz Js ~(u)du - js u'~(u)du

- 1 f(B~ - 1)P(B,c)- JS(u~ - 1)~(ec)du,
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whc,rc h' -{u : -I1-r G u G--0 f c}. Nol,ing that. ~'(u) --u~(u), ~"(u) -(uz- 1)~(n),

we (incl

~, 1 - 1)~(u)du - Js ~,;'(u)du - (Sl~ (r~)}s - -(c' f ~)~(c' f ~) - (r' - !l)~(c' - ~),

which concludcs the proof.

Proof o('I'hcomm ~.2: I~or c- 0 or c- oo, Lhc pretcst csl,imal,or IS iLdrf115ti1h1C by 'I'hc~cr-

rem 3.'l. h'or 0 G c G oo, tt~t(x; c) is cliscontinuous at x- fc, I,hus violating condil.iun

R3(a). Hence Lhe estimator is inadmissiblc by 'I'hcorcrn 3.G '1'his prove..~s (a). '1'o pruvc

(b) wc follow Kcrnpthornc (1984); scc also I)rogc (1993). Assurnc a prior disl.rihul.iun

n(D) for 0. In particular, Ict rr(0) bc N(0, 1). '1'hcn wc can show cithcr dircctly or using

`I'hcorcm 4.7 that. I?„Rt~l(O,c) - 1 for crvcry r. 'I'his irnplias thaL thcrc cannot cxisL Iwo

values ci ~ c1 such that IZt2t(f7,cr) G litz](0,ct) for all D with stricL incquality for somc

0. Ilence every prctest, estimator is Gt1J-admissible. (Sec t3erger (1985, p. `253-`l51).)

Proof of 'I'heorern 4.3: (a) folluws from '1'hc~crrem 3.4; (b) is easy, see also (3.9); (c) a.nd

(d) are clearly not true for c- oo. N~r c G oo, (c) follows from Theorem 3.5 and (d)

from 'I'hcorem 4.1.

Proo( of Theorem 4.4: For small c we have

~(c f B) -~(9) [1 - Bc f 2( 62 - 1)c2 - 60(B~ - 3)c'~ ~- O(c"),

frorn which wc obt.ain

~(~ ~ o) ~ ~(c - r7) - m(o) [2 ~ (o~ - i )r.~~ t o(~~),
~(~ t o) - ~(~ - o) - -~(o) (zoc t ;o(o` -:3)~'~ ~ o(~~),
l'(~, c) -~(0) ~2c f i( p2 - 1)r.:c~ -F O(cs).

Inscrting these expansions in Rt21(O,c), givcn in 'Chcorem 4.1, proves (a). (b) is

proved similarly. To prove ( c) we notice Lhat 2c~(c) G f`,.~(u)du c 1 and hence

0 G 2c~(c) G leo(c) G 1 and hr(c) 1 e~~(r) ~ 0. Also, hó(c) - -2r.~(c) G 0 and

h~(c) - r.l(r) -(.1)Q~(r). Sincc hi(0) - 0, !tr(oo) - I, it. fulluwa that t,hcrc cxinl,s a uniquc,

c,0 G c G f, such that h(c) - l. 'I'he valuc of i.his c can bc approxirnatc~cl to any
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degree of accuracy.

I'roof of'I'heorem 4.5: It follows from ( 4.7) that, for c E ( O,oo), Rtzl(O,c) 1 t7z if ~~~ G 1
and R~zl ( B, c) ~ 1 if ~f3~ ) 1. The bounds are obtained for c - oo and c- 0, respectively.

Proof of Theorem 4.6: A formal proof of the uniqueness of the Gtzl-minimax regret esti-
mator can be found in Droge (1993). For the case of Go the proof is sirnilar, but tedious.
Once we know that a unique solution exists, it can be formd numerically to any desired
degree of precision. (For readers who accept computer output as `proof', the output
shows unambiguously that there is a unique solution.)

Proof of Theorem 4.7: 1'he proof of (a) is a straightforward exercise in integration. To
prove (b) let us first consider the case ~- 0. If p- 0, then ExRlzt(t7, c) reduces to

E,.Rlzl(~,c) - 1 -f (rz - 1)~(c),

where

6 ~
~c(c) - f 6~(u)du - 2b~(ó), b- f ~ rz

Now, rc(c) is monotonically increasing on (0, oo) with n(0) - 0, a.(oo) - l. Hence, if
rz - 1~ 0 the minimum is obtained by choosing K(c) - 0(as small as possible), that
is, c- 0. If rz - 1 G 0 we must choose K(c) - I(as large as possible), that is, c- oo.
This proves (b) for the special case p- 0. The general case is rather tedious and is left
to the reader.

Proof of 'Theorem 5.1: For c- 0 or c- oo we have the `usual' and the `silly' estimator
respectively and we know that these arc admissible (Theorcm 3.2). hor 0 C c c oo wc
show that condition R3(b) is not satisfied. Then, by 'Pheorem 3.6(a), the estimator can
not be admissible. Now, e(x) -(1 - a(x))x - czx~(cz f xz). Hence,

A(x) -~r E(y)dy - 2~i~ czd-f- t- 2logcz
é xz

It follows that



f;3

s ~ l~f
cxp[-A(x)] - cxP

l- JO' E( ?I )dyJ c}
T

~

- ~ 2 2~

As notcd by SLrawdcnnan and Cuhcn (197I, p. 'l78) this has a nuu-rcmovablc singularit.y

at. x- fci. Ilcna" i~xp[-A(x)~ cannot, bc extcndcd analyt.ically into thc wholc cornpl~"x

plane and condition 1~3(b) cannot hold.

'To provc (b) we note that, at ~- 0,

3 2( 7L
~;ta)l~,C) - 1. ,f2~742

where u~ N(0, 1). Ilence Rt'r}(O,c) is a dccmasire~ function of c. On 1.he other Irancl,

whcn D is largc, wc havc

Rt:rt(0 r) - l~ c~(c0~
~) ~ ~~Ó~~

which is an incrr.asing fttnction oÍ c. Hcncc no ctitirnator in Gt'} can dorninatc anothcr.

Proof of 'l~hcorcrn fi.l :'I'his follaws trom (fi.3).

I'rool of '1'hcorcrn fi.2: Sirnilar Lo thc proo[ of 'I'hcorcnr ~. I.

Proof of 'Pheorem 6.3: Sincc t~~}(x; c) is not diffcrentiablc at x- tc, it is not adniis-

tiihlc ('I'hc~crrcnr a.fi(a)). "I'h~~ proof of (h) iti tiiinilar Lo thc prcxif of '1'hcYrrcm 5.1. I~or

0- O,leo(c) - Ht~l(O,c) is dcercasing in c(scc also "I'hcorem G.4). I~or 0 is largc, ((i.H)

shows that Rtn}(O,c) N 1{- c1, which is increasing in c. Ilence no cstimator dornina.tes

any other in Gt4t.

Proof of Theoretn 6.4: Sirnilar to thc proof of 'I'hcorern A.1.
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