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Abstract

When continuous-time portfolio weights are applied to a discrete-time hedging problem,

errors are likely to occur. This paper evaluates the overall importance of the discretization-

induced tracking error. It does so by comparing the performance of Black-Scholes hedge

ratios against those obtained from a novel estimation procedure, namely local parametric

estimation. In the latter, the weights of the duplicating portfolio are estimated by �tting

parametric models (in this paper, Black-Scholes) in the neighborhood of the derivative's

moneyness and maturity. Local parametric estimation directly incorporates the error from

hedging in discrete time. Results are shown where the root mean square tracking error is

reduced up to 41% for short-maturity options. The performance can still be improved by

combining locally estimated hedge portfolio weights with standard analysis based on histori-

cally estimated parameters. The root mean square tracking error is thereby reduced by about

18% for long-maturity options. Plots of the locally estimated volatility parameter against

moneyness and maturity reveal the biases of the Black-Scholes model when hedging in dis-

crete time. In particular, there is a sharp \smile" e�ect in the relation between estimated

volatility and moneyness for short-maturity options, as well as a signi�cant \wave" e�ect in

the relation with maturity for deep out-of-the-money options.
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1 Introduction

Since the seminal paper of Black and Scholes [1973], derivatives analysis has been following a

standard pattern. First, continuous-time or binomial processes are posited for the underlying se-

curities. Second, the hedging strategy is determined, leading to a dynamic portfolio that replicates

the payo� on the derivative perfectly. Third, the pricing restrictions imposed by absence of arbi-

trage are derived. These take the form of a partial di�erential equation (in the continuous-time

case) or a di�erence equation (in the binomial case), most often to be solved numerically. Fourth,

the parameters of the posited processes are estimated, with the aim of evaluating prices o�ered

in the market and of hedging open positions.

There is nothing logically wrong with the traditional approaches. Nevertheless, they do have

disadvantages. Focusing on the continuous-time modeling, one can immediately mention the

impossibility of hedging in continuous time. This causes misspeci�cation. The ultimate goal of the

present paper is to better understand the nature of the error from blindly applying continuous-time

modeling to a discrete-time setting. In addition, there is the di�culty of estimating the parameters

of the continuous-time value processes. Even if the relationship between the available time series

and underlying processes is straightforward, actual estimation has revealed plenty of problems,

such as near-unit-root behavior of continuous-time interest rates (e.g., Gibbons and Ramaswamy

[1993]), of stochastic volatility (e.g., Bossaerts and Hillion [1993]) and lack of precision in the

estimation of the mean return (which is not irrelevant when the data come in discrete time; see

Lo and Wang [1995]).

Let us start with the latter. One of the striking constants that emerges from a re-reading of

empirical work in �nance is the ease with which correlation across securities can be estimated.

Not only are the estimates precise, they are reasonably stable over time. For common stock

returns, this can best be exempli�ed by the almost universal practice of using �ve-year windows

to estimate \betas" (already present in the early work of Black, Jensen and Scholes [1972] and

Fama and MacBeth [1973]).

In fact, derivatives analysis is a prime example of an exercise that is founded on correlation: it
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exploits (usually time-varying) correlation between securities in order to construct a perfect hedge

and derive its pricing implications. Contrast this with the standard implementation of derivatives

analysis, whereby univariate time series properties, mainly volatility, are focused on. Variables

such as volatility are not of immediate interest. Nevertheless, they form the crucial input with

which to compute hedge ratios (and their integral, prices).

It seems to be a roundabout way to compute auxiliary variables such as volatility in order

to obtain estimates of quantitites that are fundamentally related to correlation, namely hedge

ratios. This impression grows when one realizes that the auxiliary variables are not always easily

estimated, as pointed out before. Therefore, one ought to try an alternative approach. One that

keeps the essence of derivatives analysis (hedging), but that is more amenable to implementation.

The new approach should primarily be based on the one aspect of return data that has been

proven to be reasonably stable and easily estimable, namely correlation.1

Such an approach is suggested here. The idea is to formulate the derivatives problem in terms

of hedge equations, to be estimated directly with a 
exible, yet robust procedure. The estimation

technique has become known as local parametric estimation: one �ts parametric models (such

as Black-Scholes) locally, thereby exploiting at a maximum the insights of standard derivatives

theory as far as curvature (convexities) is concerned. It has recently been suggested by Hjort

[1995].

One of the �rst issues that our approach can shed light on is the nature of the tracking er-

ror from hedging in discrete time. With local parametric estimation, one can directly estimate

appropriate portfolio weights with which to duplicate the return on a derivative over nonin�nites-

imal time intervals. The present paper evaluates the performance of locally estimated hedges and

1One often overlooks that standard time series estimators of the parameters of the processes of the underlying

values, such as maximum likelihood estimators, are not necessarily optimal for somebody whose criterion is de�ned

in terms of hedging (e.g., minimization of the squared tracking error). Decision theory teaches us that the optimal

estimators are context-dependent. It would be an interesting theoretical exercise to derive the actual optimal

estimator of the hedge ratios in a well-speci�ed case, such as the model of Cox, Ingersoll and Ross [1985], and

compare its performance to the maximum likelihood estimator.
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compares it to that of Black-Scholes hedges. It follows Hutchinson, Lo and Poggio [1994] in mea-

suring the tracking error. Not surprisingly, the paper reports that the errors from Black-Scholes

hedging in discrete time are most important for those options whose return is nonlinearly related

to that of the underlying security, namely, short-maturity, out-of-the-money options. Best out-of-

sample tracking records are obtained by combining locally estimated hedge portfolio weights with

Black-Scholes weights obtained from historical volatility estimates. The optimality of this combi-

nation indicates that our local parametric approach to options analysis and traditional derivatives

analysis exploit complementary information from historical samples.

When �tting Black-Scholes portfolio weight functions locally, the estimated parameter can be

plotted against the two factors, namely moneyness and maturity. In the Black-Scholes world, this

parameter equals the volatility of the underlying stock price. It obviously looses this meaning

in local parametric estimation. There, it is a parameter that absorbs the misspeci�cation of

using Black-Scholes hedge portfolio weights in discrete time, and, hence, will generally depend on

moneyness and maturity. Its meaning is better compared to that of the notion of local volatility

(used, for instance, in Rubinstein [1994]). Plots of the estimated volatility parameter against

moneyness exhibit strong \smile" patterns. Less pronounced is a \wave" in the relationship

between locally estimated volatility and maturity. This �nding indicates that there is an additional

explanation for the empirically observed smile and wave e�ects in local volatility (see, e.g., Derman

and Kani [1994]), namely, the impossibility to hedge in continuous time. This does not mean that

discrete-time hedging would displace traditional explanations of the smile e�ect. One of them,

namely, stochastic volatility, is so relevant empirically that it is likely to continue to explain the

bulk of the mispricing e�ects (see Renault and Touzi [1992]).

We should point out here that there is independent work on discrete-time hedging. In particu-

lar, Gouri�eroux and Laurent [1994] report the results from an alternative approach to estimating

the optimal discrete-time hedge ratios. In the spirit of the �rst author's work on indirect inference

(see Gouri�eroux, Monfort and Renault [1993]), an estimation strategy is developed whereby the

correct discrete-time hedge formulae (or a linearized version) from a misspeci�ed model are �t to

the data. The parameters are not obtained from the minimization of a statistical criterion, but of
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a hedging criterion.2 While di�erent, the estimation procedure of Gouri�eroux and Laurent [1994]

generates analogous results. Unfortunately, stochastic interest rates and volatility were introduced

simultaneously with discrete-time hedging in their paper, so that the e�ect of the latter alone is

di�cult to discern (in particular, they do not report smile and wave e�ects in the estimates of

the volatility parameter). There is also the paper of Liang [1994], which is an embryonic version

of ours. He approximates the optimal hedge ratios by means of polynomials and estimates the

parameters by least squares. For his procedure to recover the correct parameters, however, the

polynomial degree has to increase with the sample size.

The remainder of this paper is organized as follows. Section 2 provides a more detailed dis-

cussion of our estimation approach. Section 3 discusses the performance of our approach when

hedging in discrete time in a world where Black-Scholes holds. It compares the tracking error

with that of using the (continuous-time) hedge portfolio weights suggested by Black-Scholes. Sec-

tion 4 investigates the patterns in the relation between the locally estimated free parameter, the

volatility parameter, on the one hand, and moneyness and maturity, on the other hand. Section 5

concludes by suggesting further research topics.

2 Local Parametric Estimation

2.1 The Derivatives Pricing Problem

To understand our approach, let us introduce a canonical representation of the derivative securities

pricing problem. Let C denote the value of the derivative and �C the change in value. Let Vi

denote the value of the ith risky asset used in the replicating portfolio (i = 1; :::; n), and �Vi the

corresponding change. The �rst step in derivative securities analysis is to determine coe�cients

a() and bi() such that the error e in the following equation is minimized:

�C

C
= a() +

nX
i=1

bi()
�Vi
Vi

+ e: (1)

2The idea of local estimation is actually used in the speci�cation test in Gouri�eroux and Laurent's paper. The

theoretical analysis of this speci�cation test can be found in Gouri�eroux, Monfort and Renault [1994].
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If the sum of squared errors is used as minimization criterion, we essentially ask for the least

squares intercept and slope coe�cient in the projection of changes in the derivative's value onto

the payo�s of the assets constituting the replicating portfolio. The slope coe�cients determine

the weights accorded to each of the assets in the replicating portfolio, with the remainder, namely,

1�
nX
i=1

bi();

invested in a one-period riskfree asset.

The power of derivatives securities analysis lies in allowing the hedge portfolio weights (i.e.,

the regression coe�cients) to vary over time as a function of the available information, such as

moneyness, maturity, interest rates, etc. For this reason, we have been writing the coe�cients a()

and bi() with parentheses, to indicate that they are functions of as yet unspeci�ed information.

But this is also the di�culty of derivative securities analysis: in general, it is not clear which hedge

functions would lead the error to be negligible.

We have written Equation (1) in terms of returns. Usually, however, theoretical derivatives

pricing problems are formulated in terms of payo�s. Once one realizes that we are going to estimate

the hedge portfolio weights, it should be clear why the former is preferable. It is likely that

the values of the underlying assets are nonstationary. For instance, they could follow geometric

Brownian motions. In that case, returns are stationary, but the payo�s on the underlying assets

and those of a derivative with a �xed moneyness will be nonstationary, rendering the theoretical-

statistical analysis of estimation of (1) extremely di�cult if it had been written in terms of payo�s.

In particular parametric cases, the replication error can be reduced to zero by a judicious

choice of a() and bi(). One example is Black and Scholes [1973]' model. There, the derivative is

a call option, written on common stock. One uses only one risky security in the hedge portfolio

(n = 1), namely the stock itself. Let m denote the option's moneyness, i.e., its stock price divided

by the exercise price, and let � denote its maturity. Let r be the interest rate, assumed positive
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and constant, and let � be the instantaneous volatility of the stock price. Set:3

b1(m; � ; �) =
1

1� e�r�

m

N(d2(m;� ;�))

N(d1(m;� ;�))

; (2)

and a() = (1�b1(m; �))
, for some 
 > 0. N() denotes the standard normal distribution function,

and:

d1(m; � ; �) =
logm+ r�

�
p
�

+
1

2
�
p
� ;

d2(m; � ; �) = d1(m; � ; �)� �
p
� :

This choice for the hedge portfolio weight eliminates the tracking error (e = 0) provided: (i) the

stock price follows a geometric Brownian motion, (ii) the hedging interval is in�nitesimal. If there

are no arbitrage opportunities, 
 = r.

2.2 Estimation Of Hedge Portfolio Weights

Instead of deriving the functional form of the coe�cients a() and bi() from a full speci�cation of

the stochastic properties of the underlying assets, we propose to directly estimate them in a robust

way from the correlation properties in a dataset of call price changes and changes in the values

of the underlying assets. A rough procedure would be to approximate the weight functions with

polynomials and apply least squares (see Liang [1994]). The correctness of this approach would

require that the degree of the polynomial increase with the sample size.

Instead, we propose local parametric estimation. This is a cross between least squares and

kernel estimation. The idea is the following. To obtain estimates of a() and bi() at a particular

value for the factors on which they (the hedge portfolio weights) are supposed to depend, one

implements weighted least squares, using observations with neighboring values for the factors,

whereby the weights depend on how far away the latter are. To obtain best results, one does

3b1(m; � ;�) is usually referred to as the hedge elasticity, which is the hedge ratio divided by the option premium.

By Itô's Lemma, the hedge ratio is the derivative of the theoretical call price with respect to the price of the

underlying asset. Eqn. (2) is then obtained after substituting the analytical call price formula for the call price in

the de�nition of the hedge elasticity.
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not �t a linear or polynomial function locally. Instead, a parametric model is used. For instance,

the Black-Scholes hedge portfolio weights (Eqn. (2)) could be �tted locally. This exploits at a

maximum the local curvature (convexities) of parametric option pricing models.

The resulting procedure, local parametric estimation, has recently been proposed by Hjort

[1995] in the context of duration models. It is an extension of local polynomial estimation, when

polynomials are �tted locally, initially proposed by Stone [1977] and Cleveland [1979].

To illustrate the approach, consider hedging the payo� on a call (with price C) with the

underlying asset and the riskfree security, assumed to have a constant return r. In Equation (1),

n = 1. Let S denote the value of the underlying asset, i.e., S = V1. We will refer to the

underlying asset as the \stock." �S denotes the change in the stock price. There is a dataset of

M observations ((�C=C)j; (�S=S)j; mj; �j) (j = 1; :::;M), where mj and �j denote the option's

moneyness and maturity, respectively, for observation j.

Consider �tting Black-Scholes hedge portfolio weights (Eqn. (2)) locally to obtain b1(m; �). To

estimate a(m; �), one could �t one minus the Black-Scholes weight function times a constant, 
.

This would mean that one minimizes the weighted sum of squared error in the following equation

with respect to the two parameters, � and 
:

�
�C

C

�
j

= (1� b1(mj; �j; �))
 + b1(mj; �j; �)
�
�S

S

�
j

+ uj: (3)

If 
̂ and �̂ denote the optimum, the estimates of a(m; �) and b1(m; �) are de�ned as (1 �
b1(m; � ; �̂))
̂ and b1(m; � ; �̂), respectively.

The weights in the optimization are determined by the values of kernel functions evaluated

at the distance between (mj; �j) and (m; �). An example is the Epanechnikov kernel, de�ned as

follows:

Kh(u) = 0:75

 
1�

�
u

h

�2
!
1fju

h
j�1g;

where 1fg denotes the indicator function. The argument of the function, u, could be the Euclidean

distance between (mj; �j) and (m; �).

The parameter of the weighting function, h, is referred to as the bandwidth. As the sample

size increases, this parameter can be decreased in order to obtain consistency. A small bandwidth
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generates low bias but may cause over�tting, and, hence, excessive variance. A large bandwidth

tends to smooth �ts, but increases the bias. The issue of bandwidth selection is important, and

we will come back to it shortly.

2.3 The Nature Of Local Parametric Estimation

With the help of Figures 1 and 2, we can get a better idea of the nature of local parametric

�tting of Black-Scholes portfolio weights. Figure 1 shows a plot of �C=C against �S=S and m,

keeping � constant at 0.1. Call price changes are computed from the stock price changes using

the Black-Scholes formula. The following parameters were used: volatility = 0.4; stock price drift

= 0.15; riskfree rate (r) = 0.05. Stock returns (�S=S) and corresponding option returns (�C=C)

are measured over a time interval set equal to 0.01, the equivalent of approximately 2.5 trading

days if one unit of time corresponds to one trading year.

The linearity of the relation between �C=C and �S=S for large m is apparent in Figure 1.

This means that Eqn. (3) can be made to hold with almost zero error (uj = 0) for an appropriate

choice of volatility parameter �. In fact, the best choice will be given by the true volatility of

the underlying stock. In contrast, the relationship is clearly nonlinear for deep out-of-the-money

options (small m). The choice of � that minimizes the error uj of (3) is now less obvious. Local

parametric estimation provides a convenient way of determining the correct value. Keeping �S=S

constant, the nonlinearity of the relation between �C=C and m stands out. This nonlinearity is

captured by varying the free parameter � in the hedge portfolio weight of Eqn. (3) as a function

of m.

(Figure 1 about here)

Figure 2 displays a plot of �C=C against �S=S and � , keeping m constant at 0.8. In all other

respects, the parameter values are the same as in Figure 1. Figure 2 reveals that Eqn. (3) can be �t

most easily for large values of � . The appropriate choice of � for low values of � (short-maturity

options), however, is less obvious. Again, local parametric estimation will determine the right
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value. The nonlinearity in the direction of changing maturity will be captured by varying the free

parameter in Eqn. (3), �, as a function of maturity.

(Figure 2 about here)

In our application of local parametric estimation, the best choice of � for each moneyness (m)

and maturity (�) will be determined in an empirical fashion: we use a dataset that is simulated

under the Black-Scholes assumptions and �nd the the values of � that minimize the weighted sum

of squared errors. This approach has the advantage of weighing the di�erent outcomes (moneyness,

maturity, stock price changes) with the frequencies that are consistent with the theoretical model.

In the real-life implementation that we are presently carrying out (but not reporting here), the

optimal choice of � is obtained from the empirically observed frequency with which moneyness,

maturity and stock price changes occur, rather than those obtained from simulating a theoretical

model.

Traditional option pricing theory speci�es assumptions such that equations like (3) hold with

zero error. In Black-Scholes, for instance, it is argued that instantaneous large stock price changes

happen with zero probability, and, hence, that a linear relationship like the one of Eqn. (3)

obtains without error (a consequence of Itô's lemma). Such a theory is therefore essentially a

linear approximation argument justi�ed by the impossibility of large changes over short periods of

time. Likewise, the binomial option pricing model is based on the view that stock price changes

over a discrete time interval can take only two possible values. Eqn. (3) without error obtains

trivially.

In discrete time, or when stock price changes are not binomial, tracking errors will be non-

trivial. In order to understand those tracking errors when Black-Scholes portfolio weights are

blindly applied to discrete-time hedging, Figures 3 and 4 replicate Figures 1 and 2, but, instead of

displaying the actual option return against stock price changes, they show the theoretical option

return that would have resulted if continuous-time relationships were extendable to discrete time.

The theoretical continuous-time option return is given by Itô's lemma.

(Figure 3 about here)
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A comparison of Figures 3 and 4 against 1 and 2 immediately reveals the inadequate nature of

Black-Scholes hedge ratios when used to hedge deep out-of-the-money and short-maturity options.

It is most apparent in the fact that the theoretical option return could be below �1 even for

stock price changes that cannot be considered unreasonable over a time interval equal to 0.01

(approximately two trading days if one unit of time corresponds to a year)! Hence, the errors

from blindly applying Black-Scholes in a discrete-time setting can be large. This paper studies

how relevant these errors are overall if the theoretical discrete-time frequency of stock price changes

from the Black-Scholes model is used as weighting norm.

(Figure 4 about here)

The discussion of Figures 1 through 4 is a good occasion to emphasize that our procedure

implicitly takes into account the drift in stock prices when determining hedge portfolio weights.

The optimal hedge ratio could indeed be a function of the underlying stock's drift, because the

option's expected return will often be an explicit function of the latter (see, e.g., Rubinstein

[1984]). Yet, the Black-Scholes hedge ratio ignores this drift, and, hence, would insure incorrectly

if applied in a discrete-time setting.

Before we turn to a discussion of the bandwidth selection, we should brie
y mention that

we also estimated the hedge portfolio weights by means of local polynomial estimation. With

this technique, polynomials are �t locally, instead of a parametric model as in Eqn. (3). Local

polynomial estimation was originally suggested in Stone [1977] and Cleveland [1979], and later

analyzed in Tsybakov [1986], Tibshirani and Hastie [1987], Cleveland, Devlin and Grosse [1988],

Staniswalis [1989], Fan [1993], Fan and Gijbels [1992], Ruppert and Wand [1994], and applied in

a �nancial context in Bossaerts, H�ardle and Hafner [1995], Bossaerts, Hafner and H�ardle [1995]

and Gouri�eroux and Scaillet [1994].

We �tted linear and quadratic functions locally. The performance of these estimates, however,

were far inferior. This indicates that parametric models such as Black-Scholes provide useful infor-

mation about the local curvature of the duplicating portfolio weights as a function of moneyness
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and maturity. We decided not to report any results from the more agnostic local polynomial

estimation here. Instead, we focus entirely on local parametric estimation.

2.4 Bandwidth Selection

Until now, we have presented local parametric estimation of hedge portfolio weights as a sim-

ple exercise of local nonlinear least squares �tting. It provides the estimates that minimize the

weighted sums of hedge errors. This estimation criterion, however, can be justi�ed from speci�c

statistical assumptions. An exploration of these assumptions is not only illuminating about the

kind of restrictions local parametric estimation exploits in the data. It also facilitates bandwidth

selection.

Let us introduce a time index, t. In terms of our example of call options, to be hedged with

the underlying stock, local parametric estimation then generates estimates of the functions a()

and b1() in the following equation:

�Ct+1

Ct

= a() + b1()
�St+1

St
+ et+1: (4)

Local parametric estimation provides consistent estimates of these functions if there indeed exist

smooth a() and b1() which are functions solely of moneyness m and maturity � such that

E[et+1jFt] = 0; (5)

and

E[et+1

�St+1

St
jFt] = 0; (6)

where Ft is information available at time t (which consists, at a minimum, of the option's mon-

eyness and maturity). Hence, our procedure is justi�ed if a() and b1() are functions of only

moneyness and maturity, and neither the hedge error nor the correlation between the hedge error

and stock price change are predictable from past information.

The assumptions in (5) and (6) facilitate optimal bandwidth selection by means of crossval-

idation. In this technique, an out-of-sample hedge error is computed for each observation. This
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is accomplished by estimating a() and b1() on the basis of information that is orthogonal to the

true hedge error for the observation at hand. Subsequently, one sums the squared estimated

out-of-sample hedge errors and minimizes the result with respect to the bandwidth parameter.

Assumptions (5) and (6) determines that prior information is orthogonal to the hedge error of

a particular observation. Consequently, the out-of-sample hedge error could be computed on the

basis of estimates of a() and b1() that make use only of prior observations. Pairs of call and stock

price changes that occur simultaneously with a given observation must not be used.

Notice that this crossvalidation technique di�ers from the standard one. In the latter, an

out-of-sample hedge error would be computed on the basis of estimates of a() and b1() that use all

data points except the observation at hand. But Assumptions (5) and (6) allow hedge errors to

be predictable from, among other things, contemporanoues hedge errors on calls with a di�erent

moneyness and/or maturity. If one were to implement the traditional crossvalidation technique,

serious over�tting will result: the hedge errors are not entirely out-of-sample, because correlated

information is used in the estimation.

In a previous version of this paper, we reported the out-of-sample performance of hedges

based on local parametric analysis where we had employed the standard crossvalidation technique.

We reported serious over�tting: the locally estimated volatility parameter changed erratically

with moneyness and maturity. Altering the crossvalidation procedure in accordance with the

assumption in (5) and (6) lead to a much smoother relationship between the locally estimated

volatility parameter and moneyness or maturity. It also improved substantially the out-of-sample

hedging performance. We will report those results in the next section.4

4By setting the weights in the out-of-sample weighted mean square prediction error equal to zero for some ob-

servations, a drastic reduction in computation time can be obtained without invalidating the bandwidth selection

technique. We implemented this trick because the size of our samples made comprehensive cross-validation im-

practicable. In previous versions of this paper, we also increased the bandwidth whenever less than 40 observations

were assigned positive weights. This bandwidth adjustment was essentially a simple version of the Gasser-M�uller

estimation technique (Gasser and M�uller [1979]). As the sample size increases, however, the adjustment would

have become unnecessary, which implies that the usual asymptotic properties continue to hold. With the new

bandwidth selection technique, however, this adjustment appeared unnecessary.
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Let us add here that assumptions like the ones in (5) and (6) could easily be tested. Since we

are in a local estimation context, the techniques of Gouri�eroux, Monfort and Tenreiro [1994] and

Gozalo and Litton [1994] could be used. Such tests are an important way of assessing the validity

of a crossvalidation technique in a particular context. Absent this, only an extensive out-of-sample

performance analysis would indicate whether a bandwidth selection technique is appropriate.

3 The Tracking Error of Hedge Portfolios Obtained From

Local Parametric Estimation

We implemented several variations of local parametric estimation and investigated their out-of-

sample hedging performance against Black-Scholes hedges. In the results to be reported here, we

�tted Black-Scholes portfolio weights locally while setting 
 = r in Eqn. (3).

We followed closely Hutchinson, Lo and Poggio [1994] in the setup of the hedging performance

evaluation. We thus generated several \training samples", to be used to (i) determine the optimal

bandwidth through cross-validation as explained in the previous section, (ii) provide the necessary

data for local �ts with which to carry out an out-of-sample tracking analysis. The training samples

were obtained from simulating stock price changes over two years, introducing call options in the

way that the CBOT does, and computing the theoretical Black-Scholes prices for each of them.

Since the interval between portfolio rebalancing was set at 0.01, 200 stock price changes were

obtained, as well as price changes for all the calls that were trading concurrently. Typically, this

generated a dataset of about 3; 000 call price changes and corresponding stock price changes. The

stock price drift and volatility were set equal to 0.15 and 0.40, respectively, and the short-term

interest rate was �xed at 0.05.

Although the training sample included several thousand observations, we picked only 200 ob-

servations to determine the optimal bandwidth. All training sample observations were used to

obtain both the in-sample cross-validation �ts as well as the out-of-sample �ts. We observed little

improvement in the out-of-sample hedging performance when increasing the number of observa-
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tions that were included in the cross-validation exercise.5

The out-of-sample hedging performance was evaluated on �fty \testing paths". We generated

independent stock price paths and observed the performance of a portfolio long in a call option

with a certain moneyness and a maturity of 0.1 and short in the duplicating portfolio. The

duplicating portfolio weights were determined by the local parametric estimation results or by

Black-Scholes. In the latter case, we used the training-sample estimate of the volatility of the

stock price (instead of the true volatility, as in Hutchinson, Lo and Poggio [1994]).6

For each variation of local parametric estimation, we repeated ten times the construction

of training samples, the cross-validation and the out-of-sample performance evaluation on �fty

independent testing samples. This produces 500 out-of-sample tests in total.

The out-of-sample hedging performance was evaluated as in Hutchinson, Lo and Poggio [1994]

by computing several statistics generated from the model's \tracking error". The latter is essen-

tially the maturity-date dollar payo� on a portfolio long one call option and short the duplicating

portfolio. We looked at the average absolute tracking error, the average squared tracking error and

the frequency with which the absolute tracking error of the locally estimated duplicating portfolios

was lower than that of Black-Scholes.

We soon observed a bias in the out-of-sample tracking error of locally estimated duplicating

portfolios. In particular, the average payo� of the portfolio long in the call and short in the

duplicating portfolio was almost invariably positive when using locally estimated portfolio weights.

With Black-Scholes hedge ratios, the average payo� was much closer to zero. To understand the

impact of this bias, we also report the standard deviation of the tracking error, as well as the

frequency with which the (signed) payo� of the portfolio with the hedged call was higher under

5We selected observations [N=200], [2N=200], ..., N , where N denotes the sample size and [�] denotes the

rounding function. Because the data are ordered, �rst by maturity, then by exercise price and �nally by trading

time, a representative subsample was generated. The representativeness was con�rmed when we observed only

miniscule changes in the optimal bandwidth when increasing the crossvalidation sample size.
6The relative hedging performance of Black-Scholes hedges were hardly a�ected by the use of estimated volatility

in lieu of the true one. Of course, this re
ects the fact that the volatility of a geometric Brownian motion can be

estimated very accurately over only 200 observations.
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local parametric estimation than under Black-Scholes.

One could attribute the bias in the out-of-sample tracking error of locally estimated hedges to

the well-known biases of local estimation when an optimal bandwidth is selected. This conjecture

was proven wrong in the following experiment. Biases in local estimation decrease as the band-

width is lowered. Hence, we ought to observe decreases in the bias of the out-of-sample tracking

error of locally estimated hedge portfolios as the bandwidth is reduced. Instead, we recorded no

changes in the average return on the hedge portfolio, rejecting the conjecture. As we will argue

later, the average positive return on the hedge portfolio may re
ect mispricing of options in a

world where one can only hedge in discrete time.

The average correlation between the tracking error of locally �tted hedge portfolio weights and

Black-Scholes portfolio weights was found to be surprisingly low.7 Hence, we also investigated the

tracking performance of a portfolio whose hedge ratio is obtained as an equally weighted average

of the locally �tted ratio and the Black-Scholes ratio. As we will see, this improves on either way

of obtaining the hedge ratio. In other words, it is preferable to combine both procedures. This

�nding essentially means that hedge ratios estimated with local parametric estimation are based

on di�erent information from that used to compute the historical volatility. The latter is used

to compute the Black-Scholes hedge ratio. Consequently, the optimal strategy from a decision-

theoretic point of view uses a combination of traditional option pricing and local parametric

derivatives analysis.

One could also conjecture that the improved performance of the combined hedge strategy is due

to the superiority of local parametric analysis for hedging of out-of-the-money options, while this

superiority disappears as the derivative moves in-the-money. To evaluate this possibility, we also

investigated the hedging performance of a strategy whereby we switched from locally estimated

hedge portfolio weights to Black-Scholes weights as the option's moneyness increased above 1.05.8

It will be clear from the results, however, that this strategy is dominated even by the one where

7A similar phenomenon is present in the results reported in Gouri�eroux and Laurent [1994].

8We thank an anonymous referee for suggesting this tactic.
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locally estimated hedges are used throughout. Consequently, this alternative explanation of the

impressive performance of the combined strategy could be proven false.

Finally, we checked the performance of local parametric estimation for options with extremely

low moneyness and maturity. In such cases, the hedge portfolio weights are very large. When

transformed to hedge ratios (de�ned to be the units of stock to be shorted in order to hedge

the payo� on one option), however, the values should still be below one. Portfolio weights are

translated to hedge ratios using the theoretical Black-Scholes call prices, which, unfortunately, do

not necessarily provide the correct values when one is forced to hedge in discrete time. Hence,

the corresponding hedge ratios may violate the bound without being incorrect. Hedge ratios were

computed to be above one on average in less than 1% of the cases. Hence, the hedge portfolio

weights translate well into hedge ratios even when using theoretical Black-Scholes option values.

Also, we never observed hedge portfolio weights below one, thereby validating the lower bound.

Let us now turn to a discussion of the results. Table 1 displays the out-of-sample hedging

performance of (i) hedges obtained from locally �tting Black-Scholes portfolio weights, (ii) Black-

Scholes hedges based on historical volatility, (iii) hedges obtained as an equally weighted average

of the former and Black-Scholes weights, (iv) hedges based on local parametric estimation, but

switching to Black-Scholes as the moneyness of the option increases beyond 1.05. Results are

reported for initial moneyness equal to 0:80; 0:85; :::; 1:05.9

(Table 1 about here)

Table 1 focuses on short-maturity options (maturity equals 0:1, or about 1:2 calendar months).

The improvement of local estimation over Black-Scholes is pronounced for out-of-the-money op-

tions. The superiority is clearest in terms of squared tracking error or standard deviation of the

(signed) tracking error, which means that someone with a quadratic loss function would be espe-

9In all the results to be reported, the bandwidth was set equal to the average optimal bandwidth from several

trial runs, namely, N�

1

5 , where N is the sample size. The distance measure used in the Epanechnikov kernel is the

simple weighted Euclidean distance, with weights determined by the relative range of the two inputs (moneyness

and maturity).
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cially attracted by our technique. There are biases, as already pointed out before: the average

return on the hedge portfolio based on local parametric estimation is positive.

The reduction in performance of local parametric estimation as a function of the initial mon-

eyness of the option is not surprising. For in-the-money options, the relationship between call

returns and stock returns is essentially linear (see Figures 1 and 2). Black-Scholes hedges assume

linearity (see Figures 3 and 4). Local parametric estimation, however, is designed to capture

nonlinearities, and, therefore, can be expected not to outperform when the true relationship is

linear.

The tracking error is measured as the dollar payo� on a portfolio long in the option and short

in the hedge. Hence, for an initial moneyness of 0.8, Table 1 indicates that the square root of

the average squared payo� (root mean square tracking error) on hedges based on local parametric

estimation is $4.90, whereas that based on Black-Scholes equals $8.34, a 41% improvement. This

superiority reduces to less than 1% for at-the-money options (m = 1:00) ($13.33 vs. $13.39).

By far the most impressive performance is generated by the combination of hedges based on

local parametric estimation and Black-Scholes: even for initially in-the-money options (m = 1:05),

the reduction in root mean square tracking error is above 15% (above 9% for the absolute tracking

error). As mentioned before, this is due to the less-than-perfect correlation between the tracking

errors from local parametric estimation and Black-Scholes (0:469 across all the simulations used

for Table 1).

The low correlation between the hedge error using local parametric estimation and that from

Black-Scholes is a re
ection of the low correlation between the sampling errors of the statistics

behind each methodology. Black-Scholes hedges use the historical volatility as main statistical

input; local parametric estimation exploits the correlation between call and stock returns. It

appears that the error from estimating historical volatilities and correlations are not perfectly

correlated. Hence, an improvement in the out-of-sample hedging performance is obtained by

combining both procedures.

The promising track record of the combination of Black-Scholes hedges with locally estimated

portfolio weights cannot be attributed to the former's enhanced performance for in-the-money
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options. If that were the case, a policy whereby one switches from local parametric analysis to

Black-Scholes from the moment the option's moneyness reaches 1.05 would do much better. In

fact, Table 1 documents that such a policy is inferior across the board.

The maturity of the options on which the performance analysis of Table 1 is based is short:

only about 1.2 months. As we increase the maturity, the results will not alter, but there will be

less di�erentiation across levels of initial moneyness. We did observe this. Table 2, therefore,

reports only the overall results from a replication of the analysis behind Table 1 for a maturity

of 0.6 (about 7.2 months). The numbers are based on simulations that are independent of those

used to generate Table 1.

(Table 2 about here)

For this aggregate sample, local parametric estimation keeps its lead over Black-Scholes in

terms of root mean square tracking error ($8.72 vs. $9.68, a 10% improvement). As mentioned

before, this is important for hedgers with a quadratic loss function, i.e., those who would prefer to

penalize outliers heavily. The outperformance of local parametric estimation disappears in terms

of absolute tracking error.

Most impressive is the uniform outperformance of the combined policy: even in terms of

absolute tracking error, the improvement is of the order of 9% ($3.40 vs. $3.73). The root mean

square tracking error is reduced by 18%.

Let us emphasize again that the data on which the performance analysis is based have been

generated assuming Black-Scholes. The nice results from local parametric analysis can only be

due to its ability to track the option return better in a discrete-time framework. Because of this,

we expect the improvements of local parametric analysis over traditional Black-Scholes hedging

to lower as we (i) move towards hedging in continuous time, (ii) reduce the volatility. A reduction

in volatility, however, may improve the �t from local parametric estimation, because the training

sample will include more observations with a moneyness and maturity similar to the ones used

in the out-of-sample performance tests.10 Moreover, the number of observations in the training

10Remember that the training sample is constructed to re
ect actual options data from the Chicago options
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sample also increases, because we kept the original length of the sample as before (two years),

but decreased the return interval from about 2.5 to one trading day. This lead to an increase in

the number of observations in a typical training sample from about 3000 to 4500, generating a

corresponding improvement in the precision.

Table 3 documents the trade-o� between a reduction in outperformance of local parametric

analysis over Black-Scholes as a result of more frequent rebalancing and lower volatility, on the one

hand, and higher precision because of lower volatility and bigger training samples, on the other

hand. It repeats the analysis of Table 1, but uses the parameters in Hutchinson, Lo and Poggio

[1994], whereby rebalancing happens every trading day (based on a 253-day year) and the volatility

is reduced to 0.20. This volatility value would be adequate for stock indices or foreign currency,

whereas the value in Tables 1 and 2 (0.40) re
ects the level for a typical common stock.11 A

closer look at Table 3 will reveal that local parametric analysis keeps its lead over Black-Scholes,

despite the substantial increase in rebalancing frequency and concurrent decrease in volatility.

The same pattern as in Table 1 appears: the outperformance of local parametric estimation

and the combined strategy is most pronounced in terms of root mean square error. In terms of

mean absolute tracking error, however, Black-Scholes beats hedging based on local parametric

estimation alone, at least as far as at-the-money and in-the-money options are concerned. The

switching strategy is dominated overall.

markets. When the volatility is high, short-maturity options with extreme moneyness are more likely than when

the volatility is low.
11The stock price drift is set equal to 0.1. This is perhaps a good occasion to point out that the purpose

and approach of Hutchinson, Lo and Poggio [1994] di�ers markedly from ours. For one thing, they focus on

nonparametric estimation of the pricing function. We estimate hedge portfolio weights. Also, they obtain hedge

ratios as �rst derivatives of the estimated pricing function, which they convert to hedge portfolio weights, to be

used in the out-of-sample tracking evaluation. We estimate the hedge portfolio weights directly. It should not come

as a surprise, then, that in one of their analyses, where they assume Black-Scholes as we do, hedge portfolios on

the basis of �rst derivatives of nonparametrically estimated pricing functions perform worse than Black-Scholes.

Improvements over Black-Scholes can only be expected when Black-Scholes is known to be misspeci�ed, as in the

second application of Hutchinson, Lo and Poggio [1994], where real-market option data are investigated.
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(Table 3 about here)

4 Patterns In The Locally Estimated Volatility Parame-

ter

Local parametric estimation is based on locally �tting a parametric model using nonlinear least

squares. If Black-Scholes is used as parametric model, one parameter only needs to be �t (provided

one sets 
 = r in Eqn (3)), namely the one that plays the role of volatility in the original model.

Because this parameter is �t locally, the estimates will generally di�er across values of the factors

that determine the optimal hedge ratio in a Black-Scholes world, namely moneyness and maturity.

It is interesting to investigate what the di�erences are between the estimated volatilities across

moneyness and maturity.

In the case of moneyness, the relation of the estimated volatility and moneyness is reminiscent

of the well-known empirical \smile" e�ect. Here, it means that the optimal volatility parameter

to be used to hedge deep out-of-the-money or in-the-money call options is higher than the one

needed to hedge at-the-money options. Figure 5 illustrates this. It provides a scatter plot of

volatilities estimated using local parametric estimation against moneyness for a randomly chosen

training sample.

(Figure 5 about here)

Figure 5 may be confusing to some, because it displays locally estimated volatilities for several

maturity levels. In order to enhance the interpretation, Figure 7 provides a three-dimensional

plot of locally estimated volatility against moneyness and maturity. From it, one can deduce that

the plot in Figure 5 should be interpreted as follows. The locally estimated volatilities for short-

maturity options lie on a sharp V curve, extending as a straight line for moneyness beyond 1.25.

As the maturity increases, the V curve becomes 
atter, generating, for long-maturity options, a

straight line through 0.4.

20



The e�ect of maturity on locally estimated volatility can also be seen from Figure 6. The uni-

form optimality of a volatility of 0.4 for long-maturity options is apparent. This is not surprising:

we already know from Figure 2 that the relationship between call and stock returns is linear for

long-maturity options. As the maturity decreases, the range of local volatilities increases. While

not apparent in Figure 6, there is a signi�cant \wave" e�ect in the relation between local volatility

and maturity for deep out-of-the-money options. It is very apparent in Figure 7.

(Figure 6 about here)

(Figure 7 about here)

While the smile e�ect in volatilities implied from real-market call price data (using Black-

Scholes) has been widely discussed, the wave e�ect seems to have gone unnoticed, but can never-

theless be discerned. See, e.g., Figure 7a in Derman and Kani [1994]. Is there any relation between

these empirical e�ects and the patterns one observes in a local parametric analysis of hedging in

discrete time on simulated data?

It turns out that there is. Take our smile e�ect (Figure 5), for instance. One can show that

it implies that one needs to short more stock to hedge the risk of a deep out-of-the-money call

than Black-Scholes prescribes. This can be translated in terms of a portfolio which would be used

to create a riskfree asset. The portfolio is long one unit of stock and short in the call. It needs,

however, a less extreme short position in the call than Black-Scholes advises. Provided the stock

price and the riskfree rate are una�ected (i.e., provided markets are e�ectively complete), there

will therefore be an upward pressure on the call price. The no-arbitrage price level will end up

above the Black-Scholes level. Hence, the Black-Scholes implied volatility would be higher than

the true volatility.

Notice that one could therefore explain e�ects such as the \smile" in terms of constraints on

the frequency of hedge portfolio rebalancing. This contrasts with traditional explanations, which

have focused on misspeci�cation in the process of the underlying asset price. Renault and Touzi

[1992], for instance, argue that the smile e�ect could be the consequence of misspeci�cation of
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Black-Scholes when the stock price process exhibits stochastic volatility. Of course, we do not

want to push this point too far: stochastic volatility is a matter of fact in real markets, and,

hence, a prime source for misspeci�cation of Black-Scholes models.

Our alternative explanation of the smile e�ect, however, should be welcomed in view of the

recent evidence that stochastic volatility alone cannot explain the observed smile. If the smile

were to be driven solely by stochastic volatility, it would imply more persistence in volatility than

is actually present in the data (see Dumas [1995]). We provide an explanation of the smile e�ect

that could bridge the gap between mean-reverting volatility, on the one hand, and the observed

smiles, on the other hand. Ours is based on factual constraints on rebalancing frequencies.

5 Conclusion

Local parametric estimation combines the power of analytical derivative securities analysis with

the 
exibility of local least squares estimation. The result is a technique that generates signi�cant

improvements in hedging performance in situations where the theoretical option pricing model is

suspected to be inadequate, such as in discrete-time hedging.

The success of local parametric estimation for discrete-time hedging in a world where Black-

Scholes holds inspired us to investigate further issues, such as out-of-sample hedging based on

real-world data, outlier control, stochastic interest rates and volatility. We will report on those in

separate papers.

Finally, another urgent topic for research is that of tracking error control. Our hedge portfolios

blindly followed their prescribed path (as did those of Hutchinson, Lo and Poggio [1994]) even if

it was clear along the way that they were o�-track. No self-correction was built into the hedging

procedure. Substantial improvements are likely if such correcting mechanisms are introduced into

the hedging policy. Of course, one thereby deviates from the standard analysis of sel�nancing

portfolios: portfolios with feedback and control will need interim capital input or may generate

excessive funds along the way. Again, this is an issue we are presently investigating.
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Table 1

Performance Of Hedges Based On Local Parametric Estimation

Against Traditional Black-Scholes Hedges

Absolute Squared Tracking Error

Tracking Tracking

Error Error

Mean % Root Mean Average %

Mean S.Dev.

m = 0:80

LPE 1.55 40 4.90 0.36 4.87 50

BS 2.20 NA 8.34 -0.84 8.27 NA

50/50 1.80 47 5.78 -0.24 5.75 50

SWITCH 1.84 40 6.41 0.30 6.30 50

m = 0:85

LPE 3.84 43 9.17 1.57 8.96 44

BS 4.59 NA 11.33 0.74 11.21 NA

50/50 4.04 49 9.24 1.15 9.11 44

SWITCH 4.13 42 10.30 1.85 10.04 46

m = 0:90

LPE 6.62 41 11.84 1.30 11.67 42

BS 7.30 NA 14.46 -1.40 14.27 NA

50/50 6.47 44 11.18 -0.05 11.09 42

SWITCH 6.95 41 12.63 2.69 12.27 49

m = 0:95

LPE 8.17 37 13.18 2.09 12.89 44

BS 7.48 NA 13.94 -0.88 13.83 NA

50/50 6.93 41 11.18 0.60 11.06 44

SWITCH 9.54 33 15.08 3.71 14.54 59

m = 1:00

LPE 8.31 40 13.33 3.12 12.92 44

BS 7.69 NA 13.39 -0.64 13.23 NA

50/50 7.07 42 11.41 1.24 11.27 44

SWITCH 9.41 32 14.14 3.36 13.58 54

m = 1:05

LPE 6.97 31 11.93 2.23 11.64 39

BS 6.22 NA 12.08 -0.47 11.91 NA

50/50 5.65 36 10.17 0.88 10.01 39

SWITCH 8.37 21 13.64 0.74 13.52 38
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Remarks: Out-of-sample hedging performance of duplicating portfolios determined by (i) locally

�tting Black-Scholes hedge portfolio weights (\LPE"), (ii) Black-Scholes hedge portfolio weights

based on historical volatility (\BS"), (iii) weights that are an equally weighted average of those

under (i) and (ii) (\50/50"), (iv) weights that switch from those under (i) to those under (ii)

when the moneyness is above 1.05 (\SWITCH"). Results are displayed for di�erent values of the

initial moneyness (m). The tracking error is de�ned as the payo� of a portfolio long in one call

and short in the hedge portfolio. The call option has a maturity of 0:1, the underlying stock's

drift and volatility equal 0:15 and 0:40, respectively, and the short-term interest rate is set equal

to 0:05. Rebalancing of the hedge portfolio occurs over intervals of length 0:01. The results are

based on 500 out-of-sample stock price paths; the local parametric estimation and the volatility

parameter for the Black-Scholes hedges are based on training samples which are redrawn every

50 testing samples. \%" denotes the frequency that the indicated procedure outperforms BS.

\S.Dev." denotes standard deviation.
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Table 2

Performance Of Hedges Based On Local Parametric Estimation

Against Traditional Black-Scholes Hedges

Absolute Squared Tracking Error

Tracking Tracking

Error Error

Mean % Root Mean Average %

Mean S.Dev.

LPE 3.86 35 8.72 1.28 8.58 47

BS 3.73 NA 9.68 0.01 9.58 NA

50/50 3.40 44 7.96 0.64 7.87 47

SWITCH 7.04 22 12.25 0.81 12.13 51

Remarks: Out-of-sample hedging performance of duplicating portfolios determined by (i) locally

�tting Black-Scholes hedge portfolio weights (\LPE"), (ii) Black-Scholes hedge portfolio weights

based on historical volatility (\BS"), (iii) weights that are an equally weighted average of those

under (i) and (ii) (\50/50"), (iv) weights that switch from those under (i) to those under (ii)

when the moneyness is above 1.05 (\SWITCH"). The tracking error is de�ned as the payo� of

a portfolio long in one call and short in the hedge portfolio. The call option has a maturity of

0:6, the underlying stock's drift and volatility equal 0:15 and 0:40, respectively, and the short-

term interest rate is set equal to 0:05. Rebalancing of the hedge portfolio occurs over intervals of

length 0:01. The results are averaged over 500 out-of-sample stock price paths per moneyness m,

where m equals 0:80; 0:85; :::; 1:05; the local parametric estimation and the volatility parameter

for the Black-Scholes hedges are based on training samples which are redrawn every 50 testing

samples. \%" denotes the frequency that the indicated procedure outperforms BS. \S.Dev."

denotes standard deviation.
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Table 3

Performance Of Hedges Based On Local Parametric Estimation

Against Traditional Black-Scholes Hedges

Absolute Squared Tracking Error

Tracking Tracking

Error Error

Mean % Root Mean Average %

Mean S.Dev.

m = 0:80

LPE 1.62 57 4.97 0.56 4.90 24

BS 3.03 NA 9.70 -0.28 9.62 NA

50/50 2.31 64 6.60 0.14 6.60 24

SWITCH 1.65 57 5.09 0.64 5.00 25

m = 0:85

LPE 1.12 53 4.32 0.46 4.23 23

BS 1.39 NA 5.40 0.26 5.31 NA

50/50 1.15 60 4.26 0.36 4.16 23

SWITCH 1.15 53 4.38 0.53 4.29 23

m = 0:90

LPE 1.00 41 4.09 0.28 4.07 57

BS 1.13 NA 4.60 -0.17 4.54 NA

50/50 1.05 50 3.98 0.06 3.94 57

SWITCH 1.02 41 4.10 0.31 4.07 57

m = 0:95

LPE 3.87 37 8.97 0.50 8.83 40

BS 3.75 NA 9.56 -0.03 9.39 NA

50/50 3.59 43 8.14 0.23 7.99 40

SWITCH 4.10 36 9.09 0.96 8.94 44

m = 1:00

LPE 5.33 38 10.16 1.77 9.97 36

BS 5.21 NA 11.00 -0.35 10.91 NA

50/50 4.62 42 8.90 0.71 8.83 36

SWITCH 6.56 33 10.80 2.79 10.38 54

m = 1:05

LPE 3.01 33 7.31 1.07 7.12 32

BS 2.80 NA 7.63 -0.13 7.57 NA

50/50 2.48 40 6.35 0.47 6.27 32

SWITCH 4.92 13 8.35 0.94 8.18 41

4



Remarks: Out-of-sample hedging performance of duplicating portfolios determined by (i) locally

�tting Black-Scholes hedge portfolio weights (\LPE"), (ii) Black-Scholes hedge portfolio weights

based on historical volatility (\BS"), (iii) weights that are an equally weighted average of those

under (i) and (ii) (\50/50"), (iv) weights that switch from those under (i) to those under (ii)

when the moneyness is above 1.05 (\SWITCH"). The tracking error is de�ned as the payo� of

a portfolio long in one call and short in the hedge portfolio. The call option has a maturity of

20 trading days, the underlying stock's drift and volatility equal 0:10 and 0:20, respectively, and

the short-term interest rate is set equal to 0:05. Rebalancing of the hedge portfolio occurs over

intervals of one trading day. The results are based on 500 out-of-sample stock price paths; the

local parametric estimation and the volatility parameter for the Black-Scholes hedges are based

on training samples which are redrawn every 50 testing samples. \%" denotes the frequency that

the indicated procedure outperforms BS. \S.Dev." denotes standard deviation.
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Figure 1: Actual call return (�0:1!) over an interval of 0:01 year, as a function of the stock return

(between �0:2 and 0:2) and moneyness (between 0:8 and 1:2), for maturity �xed at 0:10 year.

The Black-Scholes model is assumed, i.e., the call return is obtained from the stock return using

the Black-Scholes pricing formula.

6



0

0.05

0.1

0.15

0.2

-0.2

-0.1

0

0.1

0.2

0

0.05

0.1

0

0.05

0.1

0.15

0.2

.2

-0.1

0

0.1

0.2

0

.05

.1

Figure 2: Actual call return (�0:01!) over an interval of 0:01 year, as a function of the stock

return (between �0:2 and 0:2) and maturity (between 0:02 and 0:20), for moneyness �xed at 0:80

year. The Black-Scholes model is assumed, i.e., the call return is obtained from the stock return

using the Black-Scholes pricing formula.
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Figure 3: Call return according to Itô's lemma (�0:1!), as a function of the stock return (between

�0:2 and 0:2) and moneyness (between 0:8 and 1:2), for maturity �xed at 0:10 year. The call

return is obtained from the stock return and Itô's lemma. The latter is strictly correct only in

a continuous-time di�usion world, and, hence, inaccurately predicts call price changes for nonin-

�nitesimal stock price changes.
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Figure 4: Call return according to Itô's lemma (�0:01!), as a function of the stock return (between

�0:2 and 0:2) and maturity (between 0:02 and 0:20), for moneyness �xed at 0:80 year. The

call return is obtained from the stock return and Itô's lemma. The latter is strictly correct

only in a continuous-time di�usion world, and, hence, inaccurately predicts call price changes for

nonin�nitesimal stock price changes.
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Figure 5: Scatter plot of estimates of the volatility parameter (\local volatility") against moneyness

for a typical training sample obtained as described in the Remarks to Table 1. The volatility is

estimated as the best nonlinear local least squares �t of Black-Scholes hedge portfolio weights at

the indicated moneyness (\local parametric estimate"). Bandwidth size: 2829�
1

5 .
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Figure 6: Scatter plot of estimates of the volatility parameter (\local volatility") against maturity

for a typical training sample obtained as described in the Remarks to Table 1. The volatility is

estimated as the best nonlinear local least squares �t of Black-Scholes hedge portfolio weights at

the indicated moneyness (\local parametric estimate"). Bandwidth size: 2829�
1

5 .
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Figure 7: Scatter plot of estimates of the volatility parameter (\local volatility") against moneyness

and maturity for a typical training sample obtained as described in the Remarks to Table 1. The

volatility is estimated as the best nonlinear local least squares �t of Black-Scholes hedge portfolio

weights at the indicated moneyness (\local parametric estimate"). Bandwidth size: 2829�
1
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