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Abstract

The purpose of this paper is to discriminate between 2- and 3-parameter nested
alternatives for the gamma, Weibull and lognormal distributions. Monte Carlo ex-
petiments are conducted to evaluate the likelihood ratio test, Akaike's information
criterion, Schwarz's information criterion, the Chi-square test and the Kolmogorov-

Smirnov test. The performance of the tests and criteria depends on the types of nested
distributions under consideration, the parametric values of the parent diatributions, the
confidence levels used (if applicable), and the sample sizes. The practical usefulnesa of
the techniques is illustrated by observing the errora of the models in fitting the upper

percentilea of the parent distribution. Two sete of air pollution data, namely hourly
pollutant observati~ns of p-scattering and nitrogen dioxide,from an urban airshed are
used to examine the similarities and differences in fitting 2- and 3-parameter distribu-

tions where historical practice suggesta there is a preference for the more parsimonious

model.

Keywords: diacrimination criteria; likelihood ratio teat; gamma, Weibull and

lognormal distributions; estimating upper percentiles; ,0-acattering

and nitrogen dioxide.

I



1 Introduction

Several statistical criteria have been developed to discriminate among alternative para-

metric probability distributiona. This paper deals with discrimination between 2- and
3-parameter nested alternatives for three common shape-scale-location pazametric dis-

tributions, namely the gamma, Weibull and lognormal distributions. These 2- and
3-parameter distributions have frequently been used to model air pollution and envi-

ronmental quality data; for example, see Jakeman and Taylor (1989) and the references

cited therein. In the Monte Cazlo experimenta, we evaluate the well-known likelihood

ratio (LR) test, Akaike's (1974) Information Criterion (AIC), Schwarz's (1978) Infor-

mation Criterion (SIC), the Chi-squaze teat, and the Kolmogorov-Smirnov test. Using
extensive Monte Carlo simulations from 2- and 3-parameter parent distributions, we

investigate the performance of these testa and information criteria. The performance
of the tests and criteria depends to some extent on the typea of nested distributions

being considered, the parametric valuea of the parent distributions, the confidence lev-
els used (if applicable), and the eample aizes. The pazameter apace investigated covers

an extensive range of valuea which might azise in practice. For an illustrative exam-

ple, the sensitivity of the results to the values of the location and shape pazameters is

evaluated.

Selection of an appropriate criterion should depend upon the intended use of the

model. The practical usefulness of the techniques is illustrated by observing the errors

of the models in fitting the upper percentiles of the parent distribution. Two sets

of air pollution data from an urban airshed are used to examine the similarities and
differences in fitting 2- and 3-parameter distributions where there is a preference for

the more parsimonious model.

The paper also considers the relationship between the LR test and the two infor-
mation criteria. The former is an hypothesis test which implicitly assumes that one of
the distributions being tested is true, while the latter makes no such assumption and
attempts to discriminate among alternatives in terma of the maximized log-likelihood
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value, with an allowance made for the number of parameters and obeervations used in

estimation. Since the LR teat performs quite well, it ia useful to interpret the equiva-
lence of the test and the information criteria at a given confidence level in terms of a

generalised information criterion which relates directly to the critical region of the LR
test.

The plan of the paper is as followa. In Section 2 the distribution functiona and

log-likelihood equations are presented. The discrimination criteria and loss functions

are given in 5ections 3 and 4, respectively. Sections 5 and 6 contain discusaions of the

simulation procedure and Monte Carlo results, respectively. An empirical application

on hourly pollutant observationa of ,Q-scattering and nitrogen dioxide ie outlined in

Section 7. Some concluding remarks are given in Section 8.

2 The Distributions

Standardized probability density functions for the 3-parameter gamma, Weibull and

lognormal diatributiona for a random sample are given by:

Gamma:

f(x) - ar(a)(x ~ 7)~-lexp[-(x a y)~

Weibull:

Lognormal:

f(x) - Q(x ~ 7)~-lexp[-(x Q ry)p~

s
Ï(x) - a 2~r(x -7)-lexp{-

log(x

2a
)- Q)~ }.

(1)

(2)

(3)

In equations (1), (2) and (3), ~ represents the shape parameter, p the acale parameter,

y the location parameter, and I' is the gamma function. The 2-parameter versions of

the density functions of the gamma, Weibull and lognormal distributions are the same

as in (1), (2) and (3), with y- 0 in each case. In the above equations, ,Q 1 0, a~ 0

and ry is less than the minimum observed sample value.
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The properties of these three distributions and the asymptotic behaviour of esti-
mators depend very heavily on the values of the parameters, particularly that of the
shape parameter. Figures 1 and 2 show that the resulting density functions of the
gamma and Weibul] distributions are similaz to the exponential distribution at a- 1,
reverse 'J' shaped for ~ C 1, and 'bell' shaped for ~~ 1. Figure 3 shows that the
curves for the lognormal distribution change from nearly symmetric to heavily skewed
as a is increased from 0.3 to 1.2. These values span a lazge range of shapes which
arise in the analysis of real data, such as air pollutant concentrationa. In order to as-
sesa the different criteria for discriminating among competing deacriptions of the data,

the shape parameter is examined over an extensive range of posaible casea where the
density functiona vary from being skewed to aymmetric.

The maximized value of the likelihood function is an essential statistic employed in

many criteria used to discriminate among alternative models. For a sample x~, xZ, ..., x„
of n independently and identically distributed random observations, the log-likelihood

functions for the 3-pazameter gamma, Weibull and lognormal distributiona are given
as follows:

Gamma:

logL - -nalog,Q - nlogT(a) ~- (ct - 1) ~ lo9(xr - 1') - ~(x~ a y ) (4)
~-1 i-1

Weibull:

logL - nlog~ - nctlo9p t(a - 1) n lo x- n x' - y
~ 9( ~ 7) - ~( a )tr (5).-i ~-i

Lognormal:

logL - -2log(2~raZ) - ~ lo9(x~ - 7) - 2a~
~(lo9(xt - 7) - ,Q]~. (6)

;-~ ;-1

The parametera of the three log-likelihood functions are estimated by maximum like-
lihood methods. Since the general maximum likelihood procedure for the 3-parameter
gamma and Weibull distributions will frequently fail to converge when the (unknown)
shape parameter is less than or equal to unity, a computationally efHcient approach
that circumvents this problem is used (for further details, see Bai et al. ( 1989)).
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3 Discrimination Criteria

Let x7, xz, ..., x„ represent a random sample of n observations. Interest here lies in

discriminating among nested 2- and 3-parameter distributions in which the null hy-

pothesis of interest is Ho : ry - 0 against the alternative Hl : y~ 0. The standard

LR test can be employed for this problem. Denoting the maximized values of the 2-

and 3-parameter variants of a particular log-likelihood function as logLo and IogLl,

reapectively, the LR test can be expressed as:

LR - -2(logLo - IogLl) ~ X~(1) (7)

under the null hypothesis that the location parameter ia zero. The AIC and SIC may

be expressed, respectively, as:

Choose the ( 3 y parameter distribution if

AIC : logLo - 2{ ~} logLl - 3

SIC : logLo - logn {`~ IogLl - 3logn~2.

(8)

(9)

When Ho holds for testing a 2-parameter disttibution against a 3-parameter alternative,
rearranging ( 8) and ( 9), and defining OL - logLa - logLl, corresponds to choosing
the ( 3) parameter distribution if

AIC : -~L ( j } 1 (10)

SIC : -OL ( j ~ 12n. (lI)

4



Since the information criteria and the LR test are based on the maximized value of the

likelihood function, it is possible to compare the information criteria and hypothesis test

in terms of the probability of accepting the underlying null distribution. By comparison

with (10) and (11), the LR test will accept Ho if

LR : -~L ~ 2 (12)
where c is the critical value of the X2(1) statistic. It is easy to see that an equivalence

among the LR test, AIC and SIC can be found when the nested model ia regarded

as the true diatribution. Use of the AIC criteríon ia equivalent to the LR atatistic

at the 84.2 per cent confidence level (i.e. when c- 2) and SIC, for a sample size of

365, is equivalent to the LR statistic at the 98.5 per cent confidence level (i.e. when

c- logn). When the sample size is decreased to n- 100, SIC ís equivalent to the LR

statistic at the 96.81 per cent confidence level, but will be increased to the 99.14 per

cent confidence level for n- 1000.

The equivalence demonstrated above could be used to construct generalised infor-

mation criteria (GIC) which, when the neated diatributiona is true, is equivalent to the

LR teat at different confidence levels. In thia paper, we uae two such criteria, GIC1
and GIC2 which can be regarded as LR analogues at the 40 per cent and 99 per cent

confidence levela, respectively, and indicate two extreme casea: the lowest and highest

confidence levels that might reasonably be considered in applications. These two cases
can also help to illustrate the tradeoff between the confidence level and power of a test.

An appropriate confidence level for air pollutant concentrations will be recommended

in a later section when examining real data.

The performance of two well-known procedures for testing goodness of fit are also

considered, namely the chi-square (CHI) test and Kolmogorov-Smirnov (KS) test. Clas-

sifying the n observations into k categories, the chi-square statistic is of the form (see

Pearson (1900)):
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CHI - ~ (Ï~ - nP;)~ (13)

~-i nP:
which has an asymptotic X ~ distribution with ( k -!- 1) degrees of freedom when

Ho holds. The p; are hypothetical probabilities, the f; are empirical frequencies and

l is the number of parametera eatimated for each distribution ( for further details, see

Kendall and Stuart ( 1979)). For the experiments conducted in Section 6 below, k-

10 and l - 2 or !- 3. The KS test, which is defined in terma of the maximum

absolute difference between the sample distribution function S„(x) and the hypothetical

distribution function Fo(x) (see e.g. Bury (1975, p. 204)), is given by

Dn - 9llp ISn(x) - FO(x)I'~ (14)

Large observed values of the D„ statistic lead to rejection of the hypothesis Fo(x).

4 Loss ~nctions

An assessment of the performance of different teats and criteria requires some form of

loss function or performance criterion which should rely on the nature of the problem

and the major purpose of the application. Standard performance criteria for asaesaing

neated hypothesis tests are aize and power. In thia Monte Carlo atudy, loss functions

recommended for asaesaing air quality modela have also been choaen (see Fox (1981)) to

establish the effect of discrimination criteria on the intended use of the model. These

functions aze the relative bias (bias) and the relative root mean squaze error (rrmse)

which are evaluated at the upper percentiles of the distributions. For an estimate q;

of a quantity of interest q, these loss function aze defined in terms of deviations from

the true or pazent value q in each replication of the Monte Carlo experiments. The

definitions used for the loss functions are:

bzas(4) - N ~(q~ q q) (15)
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rrmse(q) - (1 ~(q~
- q)a~o.s

(16)
N ~-~ 9

where N is the number of replications of the experiment. For present purpoaes, the

quantity q denotes the upper percentiles of the underlying distributions.

5 Simulation Procedure

In order to assess the various criteria for discriminating between modele over different

independently and identically diatributed random samples, simulation over an extensive

range of possible cases is considered. For all parameter sets in the tables and figures

reported here, one thousand simulation experiments are processed. The main sample

size used is n- 365, since it represents a common case: a full year of 24-hour average

observations. For two extreme cases associated with poasible applicationa, n- 100

and n- 1000 are considered here as illustrative examples. The shape parameters take

the values 0.5, 1, 2, 4, 6 for the gamma distribution; 0.5, 1, 2, 3, 4 for the Weibull

distribution; and 0.3, 0.5, 0.7, 0.9, 1.2 for the lognormal distribution. It should be

noted that the lognormal distribution has the opposite behaviour to the other two as

the shape parameter ia increased. In all of the cases investigated in this paper, the

arbitrary scale parameter is set at unity. In most cases the location parameter is also

set to unity, but the sensitivity of our resulta to other values ie also examined.

The random sample generators used for the Monte Carlo experiments are DRNGAM

for the gamma, DRNLNL for the lognormal and DRNWIB for the Weibull diatribution.

These aze available as subroutines in the International Mathematical and Statistical

Library (IMSL) in version 1.0 of April 1987. The same seed number (1234) is used to

obtain the first random sample of the first of the 1000 simulations. Varying the initial

seed produces similar results to those given in the paper. For maximum likelihood

estimation, a golden section seazch algorithm is uaed with final estimatea being accepted

when the relative error between two successive approximations is less than 10-g. Two

subroutines, namely DCHIGF and DKSONE, are chosen from IMSL to perform the
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CHI and KS tests. All results are obtained on a VAX8700 mainframe computer at

ANU.

6 Monte Carlo Results

Consider initially an investigation oí the performance of the discrimination criteria for

random samples of size n- 365 from the gamma distribution. In thia paper, the scale

parameter is always set at (3 - 1, and the values of the location parameter aze ry- 0 or

ry- 1. It should be noted that, for a fixed value of the location parameter, it becomes

increasingly difficult to reject the false null hypothesis that ry- 0 as the value of the

shape parameter increases (i.e. power decreases). Table 1 shows the results in two

situations: first, the null hypothesis Ho is true, so that the samples for each Monte

Carlo experiment are taken from a 2- parameter distribution; second, the alternative

hypothesis Hl is true so that the samples are taken from a 3-parameter distribution.

When a 1 2, y- 0 and n- 365, the empirical performance of the LR test is not

significantly different from the nominal level of 0.05 given by asymptotic theory. The

empirical probabilities vary only slightly with the shape pazameter and with the initial

seed used for the random number generator. Acceptance rates for AIC, SIC, GIC1 and

GIC2 are also similar to those expected from the derived equivalent (LR) confidence

intervals reported in Section 3, namely the 84.2, 98.5, 40.0 and 99.0 per cent levels,

respectively. The CHI test has rejection frequenciea which are very similar to those

predicted by theory, while the KS test rarely rejects the true null hypothesis.

The power of any of the first five tests is inveraely related, in general, to the ac-

ceptance rate when cY ? 2. The lower the confidence level imposed for acceptance of

the null hypothesis, the higher is the power. Quantifying this inverse relationship for

different parameter values is a major concern in tetms of how often we can expect

underfitting of 2-parameter distributions to occur in samples taken from 3-parameter

parent distributions. For a fixed value of the location parameter, power decreases as

the shape parameter is increased.
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Notice that, for the gamma distribution when a- 0.5 and a- 1.0, the LR test

and the four discrimination criteria tend to overfit, a 3-parameter distribution being

generally preferred when Ha is true (i.e. ry- 0), especially for a- 0.5, and always

preferred when Ho is false (i.e. ry- 1). This behaviour is due to the fact that the

distributions approach the exponential when ct G 1, and likelihood values increase

when the location parameter is set near the first order statistic. However, the CHI test

has empirical sizes that are unaffected by whether the value of the shape parameter is

less than or greater than unity, and the KS test still rarely rejects a true null hypothesis.

Figure 4 portrays the cumulative frequency over 1000 experiments of the differ-

ences between the maximized log-likelihood values of the 2- and 3-pazameter gamma

distributions when the samples aze taken from a 3-parameter parent distribution. The

figure demonstrates why power decreases as the value of the shape pazameter increases.

Figure 5 ahowa the differences when the samples are taken from a 2-parameter parent

distribution. Whatever the value of the shape parameter, the differences are large in

only a small proportion of the 1000 cases.

Consider the power of the LR test at the 95 per cent confidence level for different

values of the location parameter. Figure 6 showa the resulta for a- 2, 4 and 6. For

a- 2, the power of the LR test is high for quite low location values; for example,

power is 0.98 when ry- 0.34. Power is also 0.98 for the combinations (a - 4, y- 2.4)

and (a - 6, y - 6.5).

Table 1 also provides the results for rejection probabilities of the null hypothesis

and powers of the tests and discrimination criteria over a range of parameter values for

the Weibull and lognormal distributions. The conformity with theory of the LR test

and AIC, SIC, GIC1 and GIC2 is good for the Weibull distribution when a 1 2 and

for the lognormal distribution for all values of ~ when the sample size is n- 365. The

empirical sizes of the CHI and KS tests of the Weibull and lognormal distributions are

very similar to those of the gamma distribution for all values of the shape parameter.

Sizes for the CHI test are close to the nominal size of 0.05, while the sizes for the KS
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test are almost zero in all cases. Not surprisingly, the powers of the CHI and KS tests

are much lower than fot the LR test.

The power of the LR test, when applied at the 95 per cent confidence level for

the Weibull and lognormal distributions, is shown in Figures 7 and 8, respectively,

as a function of the shape and location parameters. Compared with the case of the

gamma distribution in Figure 6, a similar pattern of power as a function of the shape

and location parameters is observed for the Weibull distribution. High power will be

obtained when the shape parameter is 2 for quite low values of the location parameter,

as shown in Figure 7. For example, power is 0.98 when cr - 2 and y- 0.17. When the

value of the shape parameter is increased, large values of the location parameter will be

required to maintain high power. For instance, power is also 0.98 for the combinations

(n - 3, y - 0.49) and (n - 4, ry- 1.48). Figure 8 provides similar results for the

lognormal distribution, except that the lognormal has the opposite behavour to the

other two as the shape parameter is increased. For power to be 0.98, the combinations

of shape and location parameters are (or - 0.9, ry- 0.41), (a - 0.7, y- 1.25) and

(a-0.5,y-3.91).

We now turn to an evaluation of the performance of the discrimination criteria

for other sample sizes using the gamma distribution as a guide. Table 2 provides the

analogous results to those in Table 1 where the sample sizes are n- 100 and n- 1000.

As expected, at n- 1000 the criteria perform according to asymptotic theory in terms

of correctly accepting 2-parameter models, since a similar result is achieved at the lower

sample size of n- 365. The empirical sizes for the KS test are still very low, and the

powers of the CHI and KS tests are considerably lower than for the LR test. Again,

power declines with the shape parameter for a fixed value of the location parameter, but

at the larger sample size the power is much higher for any specific shape parameter and

criterion. At n- 100, the acceptance rates of 2-parameter distributions for the LR and

CHI tests and the four criteria are lower than those predicted by theory, while power

is consistently lower than at n- 365 for any specific shape parameter and criterion.

The acceptance rates for the KS test vary with the value of the shape parameter, being
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too high when a- 2 and too low when a- 4 and a- 6. The powers of the CHI and

f~S tests are considerably lower than those of the LR test for all values of the shape

garameter.

7 Application to Models of Air Pollution

Hourly pollutant observationa of p-scattering and nitrogen dioxide for Melbourne, Aus-

tralia, are available at state site numbers 11 (Museum), 27 (Alphington), 34 (Dande-

nong) and 81 (Camberwell) for the years indicated in Tables 3 and 4. These data are

converted into samples of 24-hour averages for those yeazs and sites where the number

of the resultant daily samples available is greater than 100. These data sets aze used

to illustrate an application of the discrimination criteria for the situation where the

intended use of the model is predicting extreme concentrations and historical practice

suggests there is a preference for 2-parameter models.

Table 3 gives results for Q-scattering when the 2- and 3-parameter lognormal dis-

tribution is estimated. For these pollutant data, (3-pazticle beams emitted from a ra-

dioactive source are detected by integrating nephelometer equipment which measures

light scattering through all angles (see Finlayson-Pitts and Pitts (1986)). Notice that,

in general, the probabilities of rejecting the 2-parameter lognormal model arc very high

and the maximized log-likelihood values are much lower for the 2-parameter lognormal

distribution than for its 3-parameter counterpart. Indeed, the lognormal distribution

yields much larger maximized log-likelihood values for the 3-parameter models than

the gamma and Weibull distributions in 18 of the 20 cases considered. Omitting the

single case in 1977 for site 11 where the 2- and 3-pazameter log-likelihoods are equal,

the minimum value of the acceptance threshold for the null hypothesis is 0.9860 for site

11 in 1976. If the parent distribution is the 3-parameter lognormal, then fitting the

2-parameter lognormal to samples from this parent yields substantial errors which can

be quantified by simulation. For example, for the 3-parameter lognormal distribution,

r,he rrmse obtained by simulation over 1000 experiments is 0.092 for the maximum
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percentile (MAX1), 0.078 for the second-highest percentile (MAX2), and 0.058 for the

9a'th percentile (98010), while for the the 'L-parameter lognormal these values are 0.136,

0.112 and 0.076, respectively. Admittedly, if we do not wish to risk obtaining errors

of these magnitudes in such air quality applications, we should set our acceptance

threshold for the null hypothesis below 98.6 per cent.

In order to fine-tune the estimate of where this threshold should be, given a prefer-

ence for 2-parameter models, consider the resulta foc daily nitrogen dioxide samples in

Table 4. The 3-parameter gamma and lognormal distributions have the highest maxi-

mized log-likelihood values. However, the 3-parameter lognormal diatribution generally

has a negative location parameter, which ia regarded aa physically unrealistic. Let us,

therefore, assume that the gamma distribution is appropriate. The simulation results

reported in Table 1 indicate that, even when the parent distribution is a 2-parameter

model, the probability of rejecting the 2-parameter gamma distribution with the LR

test is unity when the shape parameter is less than unity. In such cases, the true under-

lying model may not be determined even when the estimate of the location parameter

for the 3-parameter gamma distribution is very small.

Let us now re-examine the data sets and evaluate the errors in percentiles when

we obtain an acceptance threshold below the value of .9860 found to be too high in

the Q-scattering case. The 1978 data set at site 11 yielde an acceptance threshold of

0.9782. Again we can calculate the errors assuming that the 3-parameter gamma is the

underlying parent distribution. The rrmse values for MAX1, MAX2 and 9801o for fitting

the 3-parameter gamma distribution are 0.063, 0.060 and 0.055, respectively, compared

with 0.081, 0.075 and 0.065, respectively, when fitting the 2-parameter gamma distri-

bution. These results provide further information as to where to set the confidence

levela, given the errors that can be tolerated. If there is seen to be a strong need to

use a 2-parameter model, such as might be set by historical precedent, then from the

results presented here, it can be observed how often and by how much the use of such

a model is likely to exceed tolerable errors.
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Any criterion used to discriminate between nested models will involve a trade-off

between acceptance of the true null hypothesis and rejection of the false null hypothesis.

What level of bias should be chosen for overfitting? This should depend on answers to

the following two basic questions: (i) Under what conditions would it be inaccurate to

assume that the true model is the 2-parameter null? (ii) When would it be inaccurate

to assume that the true model is the 3-parameter alternative? Of course, the precise

answers depend on the acceptable levels of inaccuracy. Basically, for the first question,

inaccuracy is greatest for those parameter sets where the powers of the discrimination

criteria are around unity. The answer to the second question is when the information

content of the sample is too low to give reasonably efiicient estimates of the three

parameters.

The answers given above can be refined in specific cases. Consider, for example,

predicting the upper percentiles of the underlying parent distribution. This is a moti-

vation in analysing data sets for environmental quality. Environmental guidelines for

air and water pollutants can be written in terms of allowable excessea of some extreme

concentration. In this paper we confine attention to the annual maximum concentra-

tiori MAX1, the second highest value MAX2, and 9801o values. More detailed results for

the comparative errors in fitting 2- and 3-parameter alternatives to the distributions

with parameters within the range of Table 1 are given in Bai et al. (1990). However,

some indication of the errors is warranted here. We use the gamma distribution as a

guide and begin with the situation where the underlying parent is a 3-parameter dis-

tribution. For a- 2, the comparative errors begin to diverge for y) Z. For instance,

when ~- 2, ry- 1 and n- 365, the rrmse of MAX1, MAX2 and 98QI'o is more than

double that of the 3-parameter estimates when the location parameter is not estimated

but is set to zero. When the parent distribution is 2-parameter and the sample size is

365, there is little additional error in fitting a 3-parameter over a 2-parameter model.
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8 Concluding Remarks

The purpose of this paper has been to discriminate between 2- and 3-parameter nested
alternatives for the gamma, Weibull and lognormal distributions. Monte Carlo ex-
periments were conducted to evaluate the likelihood ratio test, Akaike's information
criterion, Schwarz's information criterion, the Chi-square test and the Kolmogorov-
Smirnov test. The performance of the tests and criteria was shown to depend on the
types of nested distributions under consideration, the parametric values of the parent

distributions, the confidence levels used (if applicable), and the sample sizes. The prac-
tical usefulness of the techniques was illustrated by observing the errors of the models
in fitting the upper percentiles of the parent distribution. Two sets of air pollution
data, namely hourly pollutant observations of ~3-scattering and nitrogen dioxide, from
an urban airshed were used to examine the similarities and differences in fitting 2- and

3-parameter distributions where historical practice suggests there is a preference for
the more parsimonious model.
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Table 1
Probabilities of rejecting the null óypothesis that ry- 0 using seven tests and discrimination criteria over 1000 replications of raudom

samples of size n- 365 ((i - 1)

Gamma Weibull Lognormal

Values of Shape Parameter a Values of Shape Parameter o Values of Shape Parameter a

True Criteria 0.5 1.0 2.0 4.0 6.0 0.5 1.0 2.0 3.0 4.0 1.2 0.9 0.T 0 5 0 4Distribution . .
LR 1.000 0.332 0.061 O.OG1 0.050 1.000 0.217 0.091 0.045 0.049 0.053 0.049 0.048 0.043 0 043Two AIC 0.883 0.62T 0.175 0.164 0.167 1.000 0.506 0.129 0.136 0.192 0.163 0.153 0.146 0.145

.
0 140Parameter SIC 0.904 0.148 0.017 0.020 0.015 1.000 0.087 0.010 0.010 0.043 0.017 0.012 0.016 0.015

.
0 016(ry - 0) GIC1 1.000 0.889 0.5T3 0.632 0.589 1.000 0.893 0.579 0.581 0.601 0.588 0.598 0.596 0.59T

.
0.597GIC2 1.000 0.10T 0.010 0.013 0.012 0.999 0.059 0.007 0.003 0.008 0.011 0.009 0.009 0.010 0 010

CHI 0.055 0.058 0.056 0.056 0.053 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062
.

0 062KS 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
.

0.000
LR 1.000 1.000 1.000 0.690 0.243 1.000 1.000 1.000 1.000 0.9T7 1.000 1.000 0.997 0.925 0 752Three AIC 1.000 1.000 1.000 0.865 0.462 1.000 1.000 1.000 1.000 0.975 1.000 1.000 1.000 0.986

.
0 896Parameter SIC 1.000 1.000 1.000 0.479 0.128 1.000 1.000 1.000 0.999 0.925 1.000 1.000 0.993 0.815

.
0 575(y - 1) GICl 1.000 1.000 1.000 0.987 0.890 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996

.
0.992

GIC2 1.000 1.000 1.000 0.920 0.103 1.000 1.000 1.000 0.999 0.912 1.000 1.000 0.992 O.T81 0 412CHI 1.000 1.000 0.586 0.105 0.071 1.000 1.000 0.986 0.602 0.312 0.963 0.T43 0.497 0.222
.

0 134
KS 1.000 1.000 0.211 0.003 0.001 1.000 1.000 0.510 0.071 0.027 0.705 0.281 0.105 0.025

.
0.006

Note: The LR, CHI and KS tests have a nominal level of significance of 0.05.



Table 2
Probabilitiea of rejecting the null hypotheais that 7- 0 for the gamma distribution uaing
seven testa and discrimination criteria over 1000 replications of random aamples of aizes

n- 100 and n- 1000 (,3 - 1)

n - 100 n - 1000

Shape Parameter a Shape Paramet er a

7~ue Criteria 2.0 4.0 6.0 2.0 4.0 6.0
Distribution

LR 0.088 0.066 0.051 0.042 0.043 0.048
Two AIC 0.199 0.178 0.168 0.143 0.152 0.143

Parameter SIC 0.058 0.039 0.041 0.005 0.013 0.014
(y - 0) GIC1 0.648 0.628 0.609 0.546 0.576 0.575

GIC2 0.026 0.018 0.014 0.005 0.016 0.014
CHI 0.086 0.083 0.091 0.055 0.049 0.065
KS 0.002 0.112 0.087 0.019 0.000 0.000

LR 0.930 0.256 0.114 1.000 0.987 0.569
Three AIC 0.979 0.473 0.276 1.000 0.996 0.789

Parameter SIC 0.898 0.189 0.079 1.000 0.931 0.2T9
(y - 1) GIC1 0.999 0.844 0.695 1.000 1.000 0.963

GIC2 0.787 0.090 0.040 1.000 0.942 0.299
CHI 0.286 0.112 0.087 0.965 0.227 0.193
KS 0.019 0.000 0.000 0.896 0.040 0.103

Note: The LR, CHI and KS teata have a nominal level of aigniflcance of 0.05.
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Table 3
Maximized log-likelihood valuea, eatimated parameter values and probabilitiea of rejecting thennll hypothesis that ry- 0 for the 3- and 2-parameter lognormal diatributiona fitted to n daily(3-scattering samples over different years and sample aizes ((3 - 1)

Sitc Year n Probabilitiee
of rejecting

7 - 0

Max(log L)
Lognormal (3)
Lognormal (2)

Shepe
o

Scale
R

Location
y

11 1975 156 0.9993 -458.89 0.73 1.84 1.84
-464.68 0.56 2.14 0.00197G 311 0.9860 -85S.T8 0.57 1.89 1.25
-858.80 0.47 2.09 0.00197T 251 0.0000 -644.G2 0.43 1.99 0.01
-844.62 0.43 2.00 0.001978 215 1.0000 -644.42 0.87 1.71 2.10
-859.12 0.63 2.11 0.001979 257 0.9999 -655.32 0.57 1.70 1.99
-663.19 0.42 2.04 0.00

1980 199 1.0000 -478.81 0.68 1.38 1.79
-487.36 0.46 1.80 0.001981 277 1.0000 -587.44 0.81 0.92 1.57
-602.63 0.49 1.48 0.001982 272 1.0000 -563.11 0.91 0.75 1.77

~ -586.93 0.49 1.45 0.001983 324 0.9999 -735.19 0.61 1.35 1.25
~ -742.98 0.45 1.66 0.0027 1979 291 1.0000 -812.74 0.81 1.8G 1.69

-821.60 0.49 2.13 0.001980 304 1.0000 -686.81 0.69 1.21 3.30
-722.44 0.37 1.95 0.001981 302 1.0000 -755.21 0.72 1.41 2.74
-790.78 0.46 1.98 0.001982 279 1.0000 -686.98 0.72 1.37 1.94
-708.51 0.49 1.82 0 001983 32G 0.9948 -824.74 0.55 1.70

.
1.18

-828.64 0.45 1.92 0 0034 1981 272 1.0000 -589.83 0.68 1.14
.

1.44
-600.24 0.46 1.5G 0 001982 298 1.0000 -694.29 0.68 1.29

.
1.43

-703.41 0.48 1.67 0.001983 280 0.9991 -828.90 0.59 1.35 1.23
-634.44 0.44 1.G6 0 0081 1981 160 1.0000 -319.99 0.76 0.85

.
2.gg

-343.30 0.37 1.72 0 001982 312 1.0000 -985.45 0.78 1.99
.

3.05
-1002.13 0.54 2.40 0 001983 301 1.0000 -827.81 0.73 1.84

.
2.54

-- -842.02 0.49 2.10 0.00

;1.~ta: Sites 11, 27, 34 and 81 are Museum, Alphington, Dandenong and Camberwell, rc-spectively. Lognormal ( 3) and Lognormal ( 2) are the 3- and 2-parameter lognormaldistributions, respectively.
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Table 4
Maxiuiized log-likelihood values, estimated parameter values and probabilitiea of rejecting thenull hypothesis that y- 0 for the 3- and 2-parameter gamma distributions fitted to n daily

iiitrogen dioxide samples over different yeara and sample aizea ((3 - 1)

Site Year n Probabílities Max(log L) Shape Scale Location
of rejecting Gamma (3) a ~3 .

7 - 0 Gamma (2)
y

11 1975 116 0.5457 - 253.42 2.68 1.50 0.25
-253.70 3.14 1.37 0.001976 280 0.1938 - 687.36 2.06 2.36 0.03
-687.39 2.10 2.33 0.001977 297 0.5835 - 678.94 3.44 1.43 0.13
-679.27 3.20 1.49 0.00

1J78 227 0.9782 - 013.74 1.32 4.26 0.25
-616.37 1.57 3.74 0.00

1979 271 0.9996 - 586.23 1.76 1.98 0.53
-592.92 2.60 1.54 0.001~J80 175 0.766fi -365.56 2.30 1.52 0.18
-368.2T 2.65 1.39 0.001981 276 0.9600 -518.99 2.05 1.33 0.14
-521.10 2.35 1.22 0.001982 292 0.9698 -T73.78 1.59 3.47 0.22
-778.13 1.80 3.18 0.00

1983 313 0.5024 -T41.46 2.67 1.81 0.12
-741.69 2.85 1.74 0.0027 1979 317 1.0000 -525.33 0.64 3.29 0.04
-556.82 0.95 2.24 0.001980 302 0.9787 - 477.91 1.19 1.52 0.03
-480.56 1.29 1.43 0.001981 245 0.9832 -355.64 1.22 1.31 0.03
-357.82 1.34 1.22 0.001982 188 1.0000 -380.20 0.61 5.04 0.17
-908.71 0.92 3.53 0.001983 241 1.0000 - 470.45 0.84 3.13 0.09
-480.57 1.10 2.40 0.0034 1981 193 1.0000 -244.10 0.67 2.07 0.04
-260.4G 1.1;, 1.24 0,00

1982 256 0.9630 -426.33 0.9G 2.04 0.04
-428.52 1.23 1.62 0.001981 139 0.1585 - 219.45 1.52 1.23 0.01
-219.47 1.55 1.21 0.001982 251 0.9995 -536.92 1.35 2.37 0.25
-543.01 1.74 1.99 0.001983 230 0.8945 -477.96 1.17 2.53 0.03
-479.27 1.24 2.42 0.00

N~~t~~: Sites 11, 27 and 34 are Museum, Alphington and Dandenong, respectively. Gamma (3)
nnd Gamma ( 2) are the 3- and 2-parameter gamma distributiona, respectivcly.
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