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THE CONTINUITY OF THE EOUILIBRIUM PRICE DENSITY: THE CASE OF

SYMMETRIC JOINT COSTS, AND A SOLUTION TO THE SHIFTING-PATTERN PROBLEM ~

By Anthony Horsley' end Andrzej J. Wrobel

Center for Economic Research, University of Tilburg, Hogeschoollaan 225,

P. 0. Box 90153, 5000 LE Tilburg, The Netherlands.

Abstract: We give a continuity result for the price density in a competitive

equilibrium model with L~ as the commodity space. The result applles to commoditles

-- differentiated over characteristics such as time and events of delivery -- with

symmetric joint costs (i.e., with a joint cost of production that is a symmetric, viz.,

rearrangement-invariant, function of the output bundle). Cost symmetry is

characteristic of peak-load pricing problems, which motivate the analysis. Our price

continuity result applies to the case of a separably additive utility function on L~, In

which Jones' method ( 1984, p. 524) -- based on findfng a suitable extension of the
utility functlon from LM to the space of ineasures, 91f-- falls. No Drice continuity

result for an economy with L~ as the commodity space can be obtalned from Richard's

(1989) general anafysis, either. An extenslon of our result to the case of non-

symmetric costs is possible if costs are additively separable, and it is outlined. Our
approach can also be used for other Lp-spaces ( but not for 91~ since both the concept of

cost symmetry and that of additive separability are based on the presence of an

underlying measure). We apply our analysis to a multi-station electricity Dricing

problem ( with constant returns to scale) to prove that, though the variable costs of the

stations are different, the equilibrium price i s a continuous functlon of time. This

result implies that the equilibrlum output profile contains offpeak plateaux, in addition

to a peak Dlateau. This equilibrium conflguration is the basis of an example, given by

Horsley and Wrobel ( 1989b, Example 1 in Section 5). of a short-run equilibrium with

the capital inputs optimal (for the short-run equilibrium output) that is not e long-run

equflibrium -- for the given equipment prices -- even though the long-run cost is

exactly covered.
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Our purpose in this paper is to prove the continuity of the density for equilibrium

prices for a commodity differentiated over time, random events, etc., for which the Joint

cost of production is symmetric in the output bundle, i.e., apart from its dependence on

input prices, the cost depends oniy on the distribution of output over the set of

commodity characteristics. We use this result to solve the "shifting-pattern problem"

in peak-load pricing with more than one production technique in the technology, e.g., in

a two-station model of electricity generation.

Our price continuity resuit Is obtained for a variant of Bewley's (1972)

competitive equilibrium model. Th(s model, with L~ as the commodity space, is

developed by Horsley and Wrobel (1989a, Section 3; 1990a, Sectfon 2) for the study of

an industry producing a time-differentiated commodity, whlch is usually also

differentiated over events of delivery. The commodlty may also be differentiated over

locations, but a"continuous" descriptlon of locations may require the use of a commodity

space different from that of Bewley's model, such as the space of ineasures, 91f, for whích

a price continuity result is given by Jones (1984). Our approach is speclalized to the

commodity space L~ (and other Lp-spaces). It applles, however, to the Important case

of a separably additive utllity function on L~, In which Jones's (1984, pp. 524-525)

approach fails because such a utility function on LM has no weakM-continuous extension

to the commodity space 'M (There is no such extension because, in general, a separably

additive utility function Is not even weakM-continuous on L~, i.e., it is not continuous

even in the weak topology on L~ generated by L1, let alone In the weak topology

generated by space of (bounded) continuous functlons, C, which is contained in L i.)

Relationship to other work is discussed at the end of this Introduction.

The characteristics of the industry's products are taken to form a measure space,

-. For example, in continuous-time, cyclic, deterministic pricing problems, - can be

taken as the unit time interval, representing one cycle. (This interval, [0, 1], is taken

with the Lebesgue measure. In the case of a stochastic demand, - is taken to be the
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product of the interval, [0, 1], and of the set, (1, of the states of the world, with the

product of the Lebesgue measure and of Lhe probability measure on 4.) A bundle of the

differentiated commodity is modelled as an (essentially) bounded function, x E LM(-),

on -, and a price for the differentiated commodity is represented as an integrable

function, p E L1(-), on -. For simplicity, all other commodities in the economy are

taken to be homogeneous, and thelr number to be finite, but this is not essential. (In

Section 3, households' initial endowments consist solely of these other commodities and

contain none of the differentiated commodity produced by the industry, so the pure

exchange case is of no interest. When there are nonzero initial endowments of the

differentiated commodity, the price continuity resuit also holds, provided that the total

initial endowment is continuous on -: see Remark 4.2. This case includes pure

exchange economies.) The main result of this paper (Theorem 3.3) Is that, In every

equilibrium, the price density for the differentiated commodity, px, is a continuous

function on the space of commodity characteristics, -. On the supply side of the market,

the key property for this result is that output bundles with the same distribution (with

respect to the underlying measure on -, e.g., over time andlor events) require the same

quantities of inputs. In more formal terms, the section of the industry's production set

by any given input bundle is a symmetric (or rearrangement-invariant) subset of

L~(?): see Assumption (a.1). Equivalently, the Joint cost of production, C(y), is a

symmetric function of y(I.e., it depends only on the distribution of y over -, and ppj,

on the way in which the values y(E), for s; e-, are arranged on -), for every input

price vector. Cost symmetry is a distinctive feature of peak-load pricing problems,

e.g., as with utilities like electricity and water: see Horsley and Wrobel (1986a,

1987b). The crucial implication of cost symmetry, derived in Lemma 2.3, is that a

product price profile, p, and a corresponding revenue-maximizing output bundle, y, are

always similarly arranged on -, i.e., the output is not higher when the price is lower.

Equivalently, in terms of production costs, a marginal cost profile, p, is Is always

arranged similarly to the output bundle, y, at which it is calculated. (N.B.: The

comparison of quantities and prices is between different product characteristics, i.e.,
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the similarity of arrangement of p and y means that for each F and ~' from -, if

P(E) ~ D(E'). then y(E) t y(E')J

On the demand side of the market for the differentiated commodity, we assume

that the that households' marginal utilities (as well as the marginal productivities of

firms using the differentiated commodity as an input, when these are included in the

model) are continuous in the product characteristics. This is formalized as Assumption

(a.6), for utility functions of the additively separable form specified in Formula (3.2).

Given this assumption and the symmetry of costs, a heuristic argument for the

continuity of the equilibrium price density, p~, goes as follows. Suppose that p'(s;) is

discontinuous in s;. Since marginal utilities (or, in the case of input demand, marginal

productivities) are continuous in ~, an upward jump in p'(~) -- as á; varies --

would bring about a downward jump in the trajectory of each household's demand,

xh(~). and also in input demand ( when it is included in the model). On the supply side,

however, the price, p`, and the output, y', are similarly arranged (as a result of cost

symmetry, as pointed out above). and this means that y'(~) i s higher ( or at least not

lower) for those ~ for which p'(s;) is higher. In particular, the output is not lower

after the upward price Jump than before It. Since ~h xh- y', the downward jump in

the trajectory of demand is contradictory to the the lack of decrease in supply.

Therefore, the equilibrium price density, p~(~), is contlnuous in E.

Cost symmetry is a characteristic of peak-ioad pricing problems, and in

Example 3.5 of this paper we continue the development of a rigorous theory of the kind

called for by Dreze (1964, pp. 16-17) which we started in earlier papers (Horsley

and Wrobel (1986a, 1987b, 1988a, 1988b, 1988c, 1989a, 1989b, 1990a)). In the

context of peak-load pricing with more than one production technique, our price

continuity result removes the doubts about the existence of an equilibrium that originate

from an apparent discontinuity of marginal cost. The difficulty, which we call "the

shifting-pattern problem" (in view of some similarities to the shifting-peak problem
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solved definitively by Horsley and Wrobel (1989a, 1990a)). can be described as

follows. For simpiicity, we look at a deterministic, two-statlon model of electricity

generation with given unit capital costs per period, r i and r2, and given unit fuel costs,

w i and w2, for the two types of station. Assume that r I~ r2, w I c w2, and that the

(positive) number p-(rl -r2)~(w2 -wl ) is smaller than 1. Thus, the first station

is the base-load station, and the second statlon is the peak station (since, to minimize

long-run costs, a station designed to be operated for a total time of more than p per

period must be of the first type, and a station designed to be operated for a time shorter

than p must be of the second type). Assume also that r2 - 0, to simplify the notation.

Consider some time-profile of demand, y. Denote by k i and k2, respectively, the

capacities of the two types of station in the long-run cost-minimizing plant mix for the

production of y(explicit formulae for k~ and k2 are glven in Example 3.5 in Section

3 but these are not needed here). With r2 - 0, the marginal cost, i.e., the cost, p(t), of

supplying an additional unit at time t is equal to the base-load unit fuel cost, wl, when

y(t) c ki, and it is equal to the peak unit fuel cost, w2, when y(t) ~ kl. These

conditions describe p(t) completely if y(t) does not remain at the level kl for a

positive time. Since p(t) takes only two values, it is discontinuous at at least one

instant, tQ. Suppose, for the sake of argument, that there is an upward jump in the

marginal cost for y, p(t), as t increases passing through t0, i.e., that the right-hand

limit, p(tpt), is larger than the left-hand limit, p(t0-). This is the case if y is

(strictly) increasing around tp (with y(tp) - ki ), which implies y(tp-) s y'(tpt).

(For a globally increasing output, the marginal cost is illustrated in Figure 3.) Faced

with these marglnal costs as prices, electriclty users may reduce their consumption

immediately after the price jump to a level lower than that before the price Jump. That

is, for the new time-profile of demand, y', i.e., the demand at prices p for which

p(tQ-) c p(tp}), one has y'(tp-) ~ y'(tpt), in which case p is not a marginal cost

price system for y' (since marginal cost is not higher when output is lower). Thus,

demand changes its pattern around a point of price discontinuity, and, as a result,
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around tp, the price charged, p, is equal to the wrong fuel cost. If a long-run marginal

cost price system, p', for the new demand profiie, y', is then tried, the pattern may well

shift again in a similar way. The resulting iterative sequences of demands and marginal

costs need not converge. However, an equilibrlum, in which prlce5 are equal to marginal

costs, exists. Under the assumption that electricity consumption is harmlessly

interruptible, this follows from the result of Horsley and Wrobel (1989a, Section 3;

1990a, Section 2) which, unlike Bewley's analysis (1972, Theorem 3), is applicable

also in the presence of input demand (in addition to household demand) for electricity.

The most interesting case is that in which both types of station are used in equilibrium,

i.e., their equilibrium capacities, kj and k2, are both positive. By the preceding

argument, the equilibrium price is continuous, but this raises the question of how the

continuity of marginal fuel cost is possible with just two (or, more generally, any finite

number) of unit fuel costs, w 1 and w2. Our solution (presented in detail in Example

3.5, in Section 3) is that in equilibrium the time-profile of output, y~`, has a plateau

(perhaps consisting of a number of intervals, as illustrated in Figure 2) at a level equal

to the equilibrium capacity of the base-load type of station, k j`. During this plateau,

the output stays at a kink of the intantaneous fuel cost curve (c(Q) In Figure 6), and

there are multiple short-run marginal costs, which take, at any time, any value

between the unit fuei cost of the first station, wi, and that of the second station, w2.

(Long-run marginal costs are also multiple on the plateau, although they are more

specified than the short-run marginal costs, since, in addition to being between wi

and w2, their integrals over the plateau all have the same value.) As a result of this

multiplicity of marginal costs (i.e., of cost nondffferentiability), a gradual, continuous

transition of marginal costs from wi to w2 is possible, and this takes place in the

equilibrium price (as illustrated in Figure 5). The gradual price change prevents the

"shifting-pattern" problem that would arlse If the price were always equal either to w~

or to w2. Note Lhat this is an off-oeak plateau (since k2 i 0). (In the case r2 ~ 0 the

equilibrium output, y~, also has a peak plateau, over which the peak capacity cost is

charged. This is Boiteux's (1964, pp. 81-82)conjecture on the form of a solution to



the shifting-peak problem, which Is formalized and proved by Horsley and Wrobei

(1989a, 1990a).) Similariy, in an f1-station model, generally there are M-1 off-

peak plateaux in the equilibrium output, in addition to a peak plateau. (More precisely,

the number of offpeak plateaux is one less than the number of stations actually used in

the equilibrium generating system.) A difference between the roles of the peak and the

off-peak plateaux should be noted: whereas the peak plateau is necessary for the

existence of an equilibrfum prlce, in a multi-station model the off-peak plateaux are

necessary for the equilibrium price to be continuous.

We next point to possible extensions of the analysis presented here. First,

competitive firms with an input demand for the differentiated commodity can be

included, along with households, in the model (under assumptions on the production

functions similar to those on the utility functions). Second, in the case of a stochastlc

demand, a variant of the result proving the continuity of price in, say, time alone is of

interest (since there may even be no suitable topology on the probability space), and it

can be given. Third, the assumption of a separably additive utility is made for

convenience when formulating the contlnuity assumption about marginal utllities, and

this form of preferences is not essential. Fourth, an extenslon to the case of non-

symmetric costs is possible if costs are additively separable, and this is outlined in

Section 4 and given in detail by Horsley and Wrobel (1990d). Fifth, some extension to

[he case of increasing returns to scale appears to be Dossible.

In the literature, continuity properties of an equilibrium price ( as a Ilnear

functional on the commodity space), viz., the result that the equilibrium price belongs

to some specified dual, L', of the commodity space, L, is usually obtained under

assumptions which include the lower semicontinuity of preferences in some topology (on

the commodity space), [, that is compatible with the given duality, i.e., for which the

continuous dual, (L, t)", of L is equal to L'. The reasons for this can be explained as

follows. With monotone preferences on the consumption set taken to be the nonnegative
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cone, Lt, the lower semicontinuity of preferences alone guarantees that any equilibrium

price is in (L, t)" if Lt has a nonempty t-interior. ( This is because a linear

functional is t-continuous if it is bounded, either below or above, on a set with a
nonempty t-interior.) In many examDles, however, the t-interior of Lt is empty.

The above, " quick" argument for price continuity can be extended to this case if:

(i) Dreferences are convex and extensible to convex, t-continuous Dreferences defined
on a t-neighbourhood of Lt, and (ii) the equillbrium consumption of the household in

question is in the algebraic interior of L~ (relative to the whole space, L). For

exchange economies, the second of these conditlons holds If the total Initial endowment is
in the alQebraic interior of Lt, as Is assumed, for L - L~, by Bewley (1972, Theorem

2). Bewley's argument Is more precise than the above "quick" one, since he does not

assume extensible preferences: for example, an additively separable, concave utility

cannot be extended beyond Lt if the marginal utility at zero consumption level is

infinite, as noted by Back (1988, pp. 97-98). The first of the two conditions used for

the "quick" proof of t-continufty, i.e., the condit(on that preferences be extensible to a

neighbourhood of Lt, is somewhat stronger than the extensibility condition of Richard

and Zame (1986, Theorems 2 and 4). As they show, the latter property is essentially

equivalent to the "t-uniform properness" of preferences, introduced by Mas-Colell

(1986a).

The above Conditions (i) and (il) for the "quick" argument are too restrictive for

at least two reasons. First, in some commodity spaces, e.g., In the space of ineasures, ~f,

the algebraic interior of the nonnegative cone Is empty. Second, even if the algebraic

interior of Lt is nonempty, these conditions are too restrictive for economies with

production: for a detailed discussion of the problem in the case L- L~, see Horsley and

Wrobel (1989a, Introduction; 1990, Subsection 3.2). The position is then more

complicated, and, as a result, it is generally not true that all equilibrium prices are in

the t-dual, even if assumptions, additional to the t-closedness, are imposed on the

production sets. What one aims to prove in this case is the existence of a t-continuous
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pria. For L- L~, such a result is qiven by Bewley (1972, Theorem 3). Bewley's anolysis is

improved upon by Horsley end Wrobel ( I 989a, 19917a) whose equilibrium pricinq model (or

time-differentiated commodities is t~sed on this extension.

For an eoonomy with the commodity space L~, no continuity result far ihe equilibrium

price density can be deduced from the price-continuity results given by Jones (1984) for the

comnadity space ~( ond by Richord (1989) far a class of comnrodity spaces includinq Af. This is

Uecause such an extension of their analyses wauld have to be obtained by embeddinq L~ in A! and

by suitebly extendinq the preferences (and the production sets). In the cese of Jones' model, a

separably edditive utility function on L~ is not, in qeneral, continuous in the week~-topology,

ó(L~, L 1), on L~, and, therefore, does not have a ó(A(, C)-continuous extension to the

commodity space 7~(, as noted by Jones' (1984, PP. 524). Richord's (1989) result on the

existence of a t-continuous equilibrium price isqiven for a production econany with o

commodity spece, L, that is both en ordcred topolaqical vector spece and a vector lattice, with the

topoloqy denoted by t and the nonneqotive cane derwted by L4. In addition to the t-cantinuity of

preferences, Richard (1989, Theorem 1) essumes the t- unitorm properness o( preterences and

productian sets (todeal with the problem of an empty t-interior oi L, ). Unlike Mas-Colell

(1966b), whose work Richard extends, he does not assume that L is a topological vector latticel,

i.e., the lattice operaf ions may t~e t-discontinuous, as is the cose with, e.g., L equol to ~Í with

the weok' tapoloqy, t z 6(A(, C). In Richard's rnodel, the best result far the commodity space At'

is obtained, however, by takinq the Madcey tapoloqy, t L t(A(, C), for the duality with the qiven

price space, C Although we do not krqw2 whether an edditively seporable, corxove utility function

an L; with cantinuous morqiml utilities, es in our Assumption (a.fi), is continuous in the

restriction to L; of the topology t(7if, C), the anbeddiny approach for L~ cannot succced in

Richards madel, either. This is shown by the ane-consumer, no-production example of Jor~es

(1984, Exemple 4). To put it briefly, the charecter of the assumptians made for an economy

with the commodity spece Aí is unsuiteble for derivinq a continuity result for ihe equilibrium

price density by embeddinq L~ into ~f: if this opprooch were applicaDle to any L~-economy at

all, then it would elso apply to the ecorwmy of Janes' example, which is impossible (since thet is a
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counterexemple ta the continuity of the price density). Though weare not sure which ot Richards
coráitions fails in the pracess of trying to extend eseperebly edditive utility function from L, to

7~(4 , we krww that at leost one of them tails. This can be shown in detail es follows. In Jones'

example, et time, t, the instentarxous utility is e continuously differentiable, strictly concave

function, u(x(t)), of the consumption level, x(t), for t E ( t),1 ]. (That is, the instanter~eau

merginel utility is not only continuous when the ~mption level, x(i), veries continuously, but

also stays oonstent when the cxtnsumption level stays constent; e more generel instantaneous

utility has the form u(x(t), t).) The initial endowment in Jones' example, z(t), is

díscontinuous, over t, end this ceuses the (unique) eyuilibrium price, p(t) ~ Du(x(t)), to be

discontinuous. By Richards result, it follows that the aeperebly edditive utility function,
U(X) - J U(X(t)) dt, Wh1Ch is lteflned Ofl Lt , has n0 dttensl0n 10 ~Íi tiMt 1 S COfICaVE,

~(A(, C)-continuous and unifarmly proper in the direction x. Since z is is bounded away from

zero, it (ollows thet U Ims no caicave end continuous extension thet is umformly proper in any

directian in L~. (This is t~cause, for mawtone preferences, uniform properness in e directian,

x, implies unitorm properness in any directian x' with x' z x end, also, in the directian ]`x for

every positive scalar ~.) Thus, even tor the no-production, one-oonsumer ecorwmy wilh the
utility function U, specified above, and with a~jpygy~ initial endowment, z E C, the continuity

of the equilibrium price density, which ~~ in this cese, cennot be deduced from Richards

result. This is baxuse either the t(~f, C)-continuity, ar the unilorm properness, or both of
these canditions feil for any concave extension of the utility function to }(4. (In the case of

infinite margirml utility at zero, i.e., if Du(0~ ) ~. oo, one knows that the unitorm properness
condition fails: as noted above, such preferences are not uniformly proper an Lt even in the

topolagy t(L~, L t) , which is stronger than t(~(, C).)

In eech section (or oppendix), the numt~ering of formulae, etc., is independent of other
sectians. Far example, (3.1) is the first farmula of Section 3, and (B.1) is the first farmula of
Appendix B. Assumptions are numbered separately, as (a 1), etc. The other formal paragrophs
(definitions, thcorems, etc.) ere nurnbered consecutively within cach sectim (or eppendix).
Appendias A and B contain mothemotical definitions and results needed for Sectians 2 and 3.
Appendix C cantains the proof of the moin result, Theorem 3.3 given in Sectian 3.
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2. Revenue Maximlzatlon wfth Symmetric Production Sats

In the next Section we give a continuity result for the equillbrium price of a

differentiated commodity with a symmetric Joint cost of production (i. e., with a Joint

cost that depends only on the distribution of the output level over the set of commodity

characteristics). To prepare the ground for this result, in this Section, after

introducing the commodity space, we study Lhe implications of cost symmetry. The

analysis is set up in the framework of Horsley and Wrobel's ( 1990a, Section 2) variant

of Bewley'S (1972) competitive equilibrlum model. Thls framework is designed for the

study of marginal cost pricing for an industry producing a time-differen[iated

commodity (which is usually also differentiated over events of delivery and over

locations), e.g., as with utilities like electricity and water. The characteristics of the

industry's products are taken to form a set, -, with a finite, nonnegative measure, N, on

a sigma-algebra, ~I, of subsets of -. (For example, in continuous-time, deterministic

pricing problems, - can be taken as the unit time interval, [0, 1], with the Lebesgue

measure on the sigma-algebra of Borel subsets of the interval.) The commodity space

for the industry's products is L~(-, á, N), abbreviated to L~(-) or to Lp. Every

price system for the industry's products that we consider in this paper can be

represented by a density, p, which is a N-integrable function on -, i.e., p E Li(-).

Every such function, p, has a natural interpretation as a list of prices, with the value of

any differentiated commodity bundle, x E L~(-), calculated as the integral,

J- x(E)p(E) N(dE), of the quantity of the commodity for each characteristic, E e-,

muitiplied by its price; for brevity, this integral is denoted by (x, p). In setting up the

model, the norm dual of Lp(-), which is larger than Li(-), is used as the price space

for the industry's Droducts: see Horsley and Wrobel ( 1989a, Section 3; 1990a, Section

2). However, with this commodity space only those price systems with a density have a

useful economic interpretation, and the singular term is excluded from the equilibrium

price system by the imposition of appropriate assumptions. For economies with

production, a result of this kind was first given by Bewley (1972, Theorem 3), and an
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extension that applies to the important case of a differentiated commodity that is used as

an inout is given by Horsley and Wrobel (1989a, Theorem 2: 1990a, Theorem 3.4).

All commodities in the economy other than the given industry's products are

taken to be homogeneous, i.e., nondifferentiated. It is assumed that their number is

finite, and they are numbered by n- i, 2, ..., N. Therefore, the full commodity space is

L~(-) x RN, and a commodity bundle is written as a pair (x, m), where x E L"(-) and

m E RN. A price system is written as (p, q), where p E L1(-) and q E RN.

The industry's production possibilities are specified in terms of a set, Y,

consisting of commodity bundles,(y, a), each of which represents a nonnegative output of

the differentiated commodity, y E L~(?), that the industry can produce from an input

bundle, a E RN, of the homogeneous commodities. (The possibility that the industry can

also produce some of the homogeneous commodities, in which case some components of a

are positive, is not excluded.) The production set Y Is taken to include free disposal,
i.e., Y- Lt(?) x R N - Y. If, as is usual in practical examples, the industry's

production possibilities ( or, equivalently, its production costs), are originaliy specified

only for nonnegative product bundles, then Y is taken to be the free-disposal hull of the

original production set. A closedness result for the free-disposal hull, which is needed

in this case, is given by Horsley and Wrobel ( 1990a, Appendix A; 1990b). Note, also,

that the symmetry property stated in (a.1) is preserved under the operation of taking

the free-disposal hull.

We assume that the production set Y has the following symmetry property with

respect to the output of the differentiated commodity:

(a. 1) for every y E L~(~) and every a E RN, if (y, a) E Y, y E L~(-, M, N) and

y has the same distribution as y, with respect to the measure N, then (y, a) E Y.



13

In other words, for each a E RN, the sectfon of Y by a, viz., the set

Ya -(y e L"(-) I(y, a) E Y), is symmetric, or rearrangement-invariant, in the sense

defined formally in Appendix A.

A key result about revenue maximizatlon with a symmetric productlon set is

that, given an input bundle and an output price system, in every revenue-maximizing

output bundle the output of a product with a lower price is not higher than the output

level of a product with a higher price ( note that the comparison of quantities and prices

is between different products, i.e., different characteristics of the differentlated

commodity). Stated more precisely, this means that for each pair of product

characteristlcs, ~ and E', if, at an output price system, p, with p(E) ~ D(E~), an output

bundle, y, yields the maximum revenue among those output bundles producible from a

given input bundle, -a, then y(E) 2 y(!;'). (Equivalently, in terms of the production

cost of y, given an input price system, q, the marginal cost is not higher for those

products with lower output levels, i.e., for each E and E' with y(E) ~ y(s;'), if p is a

marginal cost proffle at an output bundle, y, then p(~) t p(1;')). This is stated formally

in Lemma 2.3 below in terms of the property of simllar arranqment, defined as foliows

by Day (1972, p. 932).

Definition 2.1 : Two ~-measurable, real-valued functions, p and y, on -, are

said to be similarlu arranaed if for every A E 2( and every B E Z(, the condition

esssup~EAp(~)~ es5inf ~EBp(E) implies that esssup~EAy(E)s essinf ~EBy(E).

Remark 2.2: Although In Definition 2.1 the roles of the two functlons, p and y,

are not formally symmetric, similarity of arrangment is a symmetric relation, i.e.,

p and y are similarly arranged if and only if y and p are similarly arranged. This

follows from, e.g., an equivalent condition for simllarity of arrangement, given by Day

(1972, Proposition 5.6), which is discussed in Remark A2.



14

Lemma 2.3: Assume that the measure N ís nonatomic on á, that Y is a subset

of L~(-, ~(. N) satisfying Assumption (a.1). Take any output price, p E L1(-, á, N),

and any input, -a E RN. For any y e L~(-) with (y, a) E Y, if (y, p) i(y', p) for

every y' with (y', a) E Y (i.e., if y maximizes the revenue among outputs producible

from the given input). then y and p are similarly arranged.

Remark 2.4: Lemma 2.3 can be generalized by dropping the assumption that N

is nonatomic and replacing Assumption (a.1) by the following assumption on Y:

(a.1') For every y e L~(-) and every a E RN, If (y, a) E Y, y e L~(-, 2I. N)

and y is maJorized by y, then (y, a) E Y;

where the term "maJorized" is used in the sense of Hardy, Littlewood and Polya,

discussed, e.g., by Ryff ( 1965) and Day (1972, 1973). Condition ( a.1') is equivalent

to Assumption ( a.1) if: (i) the section, Ye, of Y by any a E RN is convex, and

(ii) N is either a nonatomic measure on 7(, or isomorphic to the counting measure (in

which case the space L~(-) is finite-dimenslonal). In general, (a.t') Is stronger than

(a. 1 ).

Remark 2.5: Production-supporting prices for the industry's outputs can be

calculated as marginal costs. This is convenient when, as in Example 3.5 below, the

relationship between the properties of the output prices and the properties of the output

bundle is to be studied. For any input prices, q E RN, and for any output, y E L~(-), the

production cost is defined as

C(y, q) - inf (-(a, q) I(y. a) E Y).
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In many examples (e.g., that of electricity generation, discussed in Section 3) the cost,

C(y), is a nondifferentiable function of the output bundle, y, and, to give a precise

meaning to the notion of "marginal cost", we use the subdifferential, i.e., the collection

of all subgradients, aC(y), as the concept of a generalized derivative, with respect to

output. Properties of subdifferentials are discussed by, e.g., loffe and Tihomirov

(1979). Under Assumption (a.1), the cost is a symmetrfc function of the output

bundle, i.e., if y and y have the same distribution, then C(y) ~ C(y). If C is

symmetric and p e dC(y), then p and y are similarly arranged (Horsley and Wrobel

(1988b, Theorem 1)), and (for the convex case) this is an equivalent statement of

Lemma 2.3.
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3. The Continulty of Equilibrlum Price

To obtain the price continuity result we assume in this Section that the set of

product characteristics, -, is a topological space -- in addition to being a measure space

described in Section 2-- with the sigma-algebra of the Borel subsets, B, of - that is

contained in the sigma-algebra ~[.

There is a finite number of households, which are the industry's customers.

(For simplicity we assume that there are no other producers in the economy.)

Households are numbered by h- 1, 2. ..., H. For each household, h, the set of feasible

consumption plans is taken to be the nonnegative orthant,

(3. 1) Xh - Lt(-, 7l, N)x RN.

The initial endowment of household h is denoted by (0, mh), i.e., it consists of an

amount, rnh~, of each homogeneous commodity, n. Preferences of household h are

represented by a utility function of the form

(3.2) Uh(x, m) - J uh(x(E),i:)ds; t vh(m),

where uh: - x R. . R and vh: RN - R. The utility function, defined by (3.2) on Xh, is

extended to the whole commodity space by setting Uh(x, m) --~ for (x, m)é Xh, as

is standard in convex analysis. The share of household h in the industry is denoted by

sh, with sh z 0 and ~h sh - 1 (in the case of constant returns to scale, the distribution

of shares is irrelevant for the competitive equilibrium solution).

A feasible allocation is a list of: consumption plans, (xh, mh) E Xh for each

household, h, and a production plan for lhe industry, (y, a) E Y, such that:
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(i) ~h xh - y, and (ii) ~h mh t a -~h rnh. In writing sums, etc., we follow the

convention that the range of an index is understood to be the largest possible, with any

restrictions specified; e.g., in Condition ( lii) of Definition 3.1 below, j ranges from 1

to J.

Definition 3.1 : A pair consisting of a feasfble allocation, ((x h, m h)h.H, (yr , a' )),

and a price system, (p', q') E LI(-)x RN, is termed a comoetitive eouilibrium if: the

industry maximizes profits, and the consumption plan of each household maximizes its

utility subject to the budget constraint, i.e., in formal terms, if:

( ) (y~, P~) t(a', qr) ' suD ((y, P~) t(a, q~) I(y, a) e Y);

(ii) for each h, (xh~ P~) }(mh~ q~) '(Shyx, P~) t(mht Shn~, q~);

and

(iii) for each h and every (x, m) e Xh, if (x, p') f(m, px) S(x h~ Px) }(m h~ qx)~

then Uh(x, m) s Uh(xh, mh).

Remark 3.2: If Y is a cone, with polar Y', then Condition (i) in Definition 3.1

can equivaiently be replaced by the conditions that (y', p~) -(-a, q~) and that

(p~`, q') E Y', i.e., that (y, p`) s(-a, q`) for every (y, a) e Y.

The following assumptions on households and the industry are made, in addition to

(a.l ) of Section 2. Assumption ( a.2) is a rudimentary form of the adequacy (or

survival) assumption. It ensures that in equilibrium each household has a positive
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income, and, therefore, that prices are equal to marglnal utllitles: see Step 1 in the

proof of Theorem 3.3. The rest of the assumptions are assumptions on uh (and vh), in

particular, the continuity, over ?, of marginal utility over the set of characteristics,

?, of the differentiated commodity is assumed in (a.6). The infinite marginal utility at

zero is assumed, in (a.8), only to ensure that demand Is positive and bounded away from

zero in equilibrium, and it can be dropped if, e.g., the positivity of equilibrium demand

is assumed directly.

(a .2 ) Each household is endowed wfth a positive amount of each homogeneous

commodity, i.e., mh~ ~ 0 for each h and n.

(a.3) For each R ~ 0, the function E . uh(R, E) is N-integrable on ?, i.e.,

uh(R, ~) e Ll(-);

(a.4) For each E e-, the function R. uh(R, E) is: continuous, nondecreasing and

concave on R„ differentiable on Rt„ and uh(0, E) - 0;

(a.5) For every R, the function E- Diuh(R. E), i.e., the partial derivative of uh with

respect to its first variable, considered as a functlon of the second variable of uh, is

bounded on -,

(a.6) The function (R, E) ~ Dluh(R, E). is continuous in its second variable uniformly

over any compact range for the first variable;

(a.7) Dluh(R, E) ~ 0 for every E e? and for every R~ 0;

(a.8) Dluh(R, E) - t~ uniformly for E E ? as R- Of.
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(a.9) The function vh is continuous, nondecreasing and concave on RN.

Assumptions (a.5) and (a.6) hold if the functfon (Q, E) ti D1uh(R, E) is Jointly

continuous on - x Rtt and - is compact.

Theorem 3.3: Under ( a.1) to (a.9), i f (p`, q') is an equilibrium price

density with q' ~ 0, then p' is continuous on -.

Remark 3.4: ( i) Since p~, as an element of L1(-). is an equivalence class of

functions ( equal to each other almost everywhere) rather than a single function, the

asser[ion of Theorem 3.3, stated more formally, is that there exists an equivalent

modification of p' that is continuous. ( This property should not be confused with

"continuity almost everywhere", which holds, e.g., for every step function on an

interval of the real line.)

(ii) From the continuity of price it follows that the equilibrium output is also

continuous, under the assumption that the inverse marginal utility is continuous. This

identifies a class of models with, in effect, the commodity space of continuous functions,

L(-), and with consumption sets equal to the nonegative orthant ( and, therefore, having

a nonempty norm-interior), in which the existence of an equilibrfum can be proved by

embedding LT-) in L~(-). Note, however, a basic difference between the continuity-

in-equilibrium result obtained fn this framework and the framework of Horsley and

Wrobel ( 1988a, 1988c), in which commodity bundles are modelled as continuous

functions and preferences are norm-continuous. For the case -- f0, 1]. in the

(L~. L 1)-framework, the Mackey-continuity assumptions on the demand side mean that

consumption can be harmlessly interrupted, and this is needed for the existence of an

equilibrium ~rice density, although the equilibrium time-paths of consumption are

continuous. The framework with the space Lï-) is designed to accommodate a rlcher
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price structure,including concentrated charges,to deal wlth the case of preferences that

are norm continuous but not Mackey-continuous. In peak-load pricing, when

interruptions in consumptfon are not harmless, pointed peaks (rather than a peak

plateau) occur in equilibrium, and peak charges, represented mathematically as Dirac

measures, are levied at particular instants (rather than being spread over a peak

plateau). The two set-ups are compared in detail by Horsley and Wrobei (1990c).

Example 3.5: Theorem 3.3 can be appiied as follows to solve the shifting-pattern

problem in peak-load pricing for electricity, described in the Introduction. We show

that the equilibrium marginal cost price is continuous over time, and that this is oniy

possible in the presence of some offpeak plateaux in the equllibrium output (see Figures

1 and 5). For simplicity, consider the deterministic, two-station model of electricity

generation. (It is straightforward to extend the analysis to the case of a technology with

more than two stations and, also, to the analysis of marginal exoected costs in the case of

uncertainty.) We assume that each kind of generating station can be run only on one kind

of fuel: thus, there are only two generating techniques, which correspond to the two

kinds of station, denoted by 6- 1, 2. Capital equlpment is taken to be perfectly

divisible, and constant returns to scale are assumed. As a result, every generating

station has a specified maximum level of output, called its capacity, and the rate of fuei

consumption is proportional to the station's Instantaneous level of output, which cannot

exceed the capacity. Hence, the production of an output bundle y(t), t e f0, 11, by the

use of any single technique requires an amount of the relevant capital equipment equal to

the maximum of y(t) over t. The amount of the appropriate fuel that is consumed is
proportional to the total amount of energy in the bundle, viz., Joy(t)dt. (This is

usually referred to as the case of "rigid capacity", cf. Boiteux (1964, pp, 63-67) and

Drèze (1964, pp. 9 ff).) Besides electricity, generating equipment and fuel, there may

be other (homogeneous) goods in the modei (their number is N-4), and a vector of

their quantities is denoted by g-(g i, g2, .,.)), In this example, the set of commodity



zi

characteristics, -, is the unit Interval of the real Ilne, (0, 1], taken with the Lebesgue

measure, mes, on the sigma-algebra of all Borel subsets, B, of I0, 1]. It represents the

relevant time period (usually a year), and an annual output bundle, y, is represented as

an element of L~[0, i]. The installed capacity of station type 9 is denoted by ke, and it

is measured in the same units as the output level, y(t), say, in MW. The amount of fuel

input of type A is denoted by ve, and it is measured in MWyears (one MWyear of fuel is

the amount needed to run a unit station continuously for a year). With this notation, the

production set for electrici[y, Y, which is a subset of L~[0, 1] x RN, can be written as

the sum

(3.3)

where

Y ~ Y(t) t y(2)

1

Y(I) -((y,-kl,-k2,-vl,-v2,-g) I esssup yt(t)i kl, J yt(t)dt i vl, (k2, v2, g) E RN-2),
tE(O,1] ~

and, similarly,

1

Y(2) -((y.-k~,-k2,-vl,-v2,-g) I esssup y}(t)i k2, J yt(t)dt i v2, (kl, vl, g) E RN-2).
tE [~.1) ~

(The symbol "ess sup" stands for the essential supremum with respect to the Lebesgue

measure.) The productfon set Y is Mackey closed, or, equivalently in view of its

convexity, weak"-closed. (The proof of this, which is not given in detail here, foliows

from the Mackey lower semicontinuity of esssup y, the Mackey continuity of the

mapping y. yt, and from the capacity constraints in the definitions of YB together

with the relative weak"-compactness of bounded subsets of L~.) The set Y also

satisfíes the other assumptions of Horsley and Wrobel (1990a, Theorem 2.1), and,
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therefore (with the demand side that satisfies the assumptions of that result) there
exists an equilibrium price system, (p'; r j, r2, wj, w2, ...), with a density, i.e.,

with p' E L 1[0, 1 J. The other prices, r j, etc., are scalars, and, since the analysis is

concentrated on p~, they are written as ri, etc., to avoid clutter. We take the

equipment prices to be expressed as annual rental prices. i.e., ra is measured, say, in

EIMW p.a., and it is equai to the (equilibrium) purchase price of a unit station of type 9

multiplied by the sum of the interest rate and the capital depreciation rate for equipment

of type 6(the depreclation rate is assumed to be independent of the degree of equipment

utilization). With amounts of fuel of each type are measured in MWyears (one MWyear

of fuel is defined as the amount needed to run a unit station continuously for a year),

wg is also expressed in LIMW p.a. Thus, re is the capital cost per period, and wg is

the fuel cost per period of operation, for a unit station of type 9.

Directly from the definition, (3.3). of Y it follows that this set satisfles the

symmetry assumption, (a.1). Therefore, with firms and households that satisfy the

other assumptions of Theorem 3.3, the equilibrium price density for electricity, p~`, is

continuous on [0, 1]. The corresponding equllibrium output of electricity is y~, with

ess inf ys i 0. The most interesting case is when both types of station are needed to

produce the equilibrium output, y', at a minimum (long-run) cost, i.e., when

(possibly, after re-numbering the techniques): (i) w1 c w2, r1 i r2, and 0 c p c1,

where

(3.4) p . r1 -r2
w2-w1 '

and (ii) yT ((1-p)t) c ess sup ys, where y' denotes the nondecreasing

rearrangement of y', defined as the nondecreasing function on [0, 1] with the same

distribution (with respect to the Lebesgue measure, mes) as that of y'. The second of

these conditions ensures that the second, peak type of station is needed; the need for the
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first, base-load type of station follows from y'((1 - p)-) z ess inf y' ~ 0. (We show

below that It then follows from Theorem 3.3 that y~ is continuous at 1-p, and even

constant on an interval, from some t' to some t', that contains 1-p: see Figure 1.

The amounts of base-load and of peak types of statlon in the optimal plant mix are:

k j - y'(1 - p) and k2 - ess sup y' - k j, respectively (if r2 ~ 0)J This is the case

we consider below. As a function of output, y, the long-run cost derived from the

production set Y is given by

(3.5) C(y) - Cp(y) t ry esssup y(t),
tE (~.1]

and

p 1-p

(3.6) Cp(y) - wl Jy1(t)dt t w2 J y~(Udt,

0 0

where yr denotes the nondecreasing rearrangement of y, which Is defined as the

nondecreasing function on [0, 1) with the same distribution (with respect to the

Lebesgue measure, mes) as that of y. (The generalization of Formula (3.6) to the case

of an arbitrary number of stations is derived by Horsley (1982) and is also given by

Horsley and Wrobel (1986a).) The equilibrium price for electricity, p', is a time-

profile of marginal cost, i.e., by Horsley and Wrobel (1990a, Remark 2.2), it belongs

to the subdifferential of C, which is equal to the sum of the subdifferentials of Cp and

of r2 ess sup. Since Cp is a Mackey continuous function of y by Horsley and Wrobel

(1986b, Theorem; 1988b, p. 468), each of its subgradients has a density. In formal

terms, it follows that

(3.7) P' - P~~ t r2v',

for some
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(3.8) p~' E dCp(y') C L1(0, 1]

and some v' E LifO, 1] with

t
(3.9) Jv'(t)dt - 1,

0

and

(3, 1 0) v'(t) - 0 for (almosU every t E[0, 1] with y'(t) c ess sup y'.

(The description of those subgradients of esssup wlth a density is given by, e.g., loffe

and Tihomirov (1979, Section 4.5.1, on p. 219).) The existence of such a v' implies

that y' has a peak plateau, illustrated in Figure 2. We next show that the continuity of

p'(t) in t implies that y' has an off-peak plateau. Under rearrangement, this
plateau in y' corresponds to a plateau in y' that extends from some t' to some t'

and contains 1-p, i.e., with t' c 1-p c t'. In the absence of such a plateau,

po' would have to take the value w 1 on a set of instants, t, of ineasure 1-p (which is

positive and less than 1), whereas at all other times p~' would have to take the

value w2, which is greater than w1. This follows from the description of aCp(y) given

by Horsley and Wrobel (1988b, Theorem 4 and Remark 5: 1989b, Proposition 4),

which is illustrated in Figure 3(for the case of a nondecreasing output, y). As a result,

the function t. p~'(t) would be discontinuous (more precisely, it would have no

continuous equivalent modification). Then t. p'(t) would also be discontinuous

(since v'(t) ~ 0 only at peak, when P~'(t) - w2), but by Theorem 3.3, this is not

the case.
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To see in detail how a gradual transition of the equilibrium price density,

p~`(t). from the fuel cost of one station to that of the other is made possible by the

presence of the off-peak plateau, note that, by Horsley and Wrobel (1988b, Theorem 4

and Remark 5; 1989b, Proposition 4), p~ E aCp(y`) if and only if:

(i) w1 s p~(t) s w2 for (almost) every t on the off-peak plateau containing

i-p, i.e., for every t with y`(t)-y`(1-p), and the Integral of p0(t) over the

plateau is equal to wi(1-p- t`) t w2(G` -(1-p)),

(ii) D~(t) - wl for those t E[0, 1I with y`(U ~ yM(1-p), and

(iii) D~(t) - w2 for those t E[0, 1] wlth y`(t) ~ yT ( 1- p).

A time-continuous variant of marginal fuel cost, p~ E aCp(y) is illustrated in Figure 4

(for the case of a nondecreasing output, y). This should be compared with Figure 3

which illustrates the no-plateau case.

The equilibrium price density, p`, Is illustrated in Figure 5. As shown above,

its existence implies that the equilibrlum output, y`, has a peak plateau, and Its

continuity implies that y` has an off-peak plateau. This Is Illustrated in Figure 5.

Remark 3.6: The above analysis of electricity generatlon is set up in the long

run, but symmetry of costs also holds in the short run, i.e., in the case of an a priori

specified plant mix, (k1, k2). Hence, in a 5hort-run equilibrium the price, pSR, is also

continuous. As before, assume w1 ~ w2. At output levels lower than k1 the marginal

fuel cost Is w1, and at output levels higher than k1 the marginal fuel cost Is w2. When

output level is equal to k1, a marginal short-run fuel cost can take any value between

wi and w2. This is illustrated in Figure 6. (Unlike the long-run case, in the short run

there is no additional restriction on the integral of a marginal fuel cost over the output

plateau at the level k 1 -- if there is one -- since equipment prices are irrelevant in

the short run.) It follows from the continuity of pSR, that also the short-run

equilibrium output, ySR, has an off-peak plateau at the level k I (on the assumptions
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that k i~ 0 and at that some of the available capacity of the second type of station is
utilized, I.e., that ess sup ySR ~ k i).
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4. Extensions to Non-symmetrlc, Addltively Separable Costs

A similar argument to that given in the Introduction (immediately before the

discussion of the the shifting-pattern problem for the two-station modei of electricity

generation) shows that the price continuity result also holds if the productlon cost is a

convex integral functional, i.e., if

(4.1) C(y.q) - Jc(y(E).E,q)dE,

where c: Rt x- x R N- R v(ta ). This cost function, C, may be non-symmetric in y,

since c may depend on its second variable. The assumptions on c are similar to the

assumptions on uh made in Section 3, namely:

(i) For each Q and q, the function E. c(R, E, q) Is N-integrable on -,

(ii) For each E and q, the function Q- c(R, E, q) is: lower semicontinuous,

convex and nondecreasing on R, and c(Q, E, q) - 0 for Q i 0. Note that we do not

assume that c is differentiable with respect to Q(since the differentiability of uh

suffices for our purpose). and we use the subdifferentlal as the concept of a generalized

derivative (so that, e.g., the case of the instantaneous short-run cost, c(Q, t, w), of

Example 3.5, shown in Figure 6, is included);

(iii) For every Q and every q, the correspondence E- alc(Q, E. q), i.e., the

partial subdifferential of c with respect to its first variable, considered as dependent

on the second variable of c, is bounded on -,

(iv) For every q, the correspondence (Q, E) - alc(Q, E, q). is continuous in its

second variable uniformly over any compact range for the first variable.

The equilibrium price density, p', is continuous because, as before, an upward

(discontinuous) jump in p'(E) -- as E varies -- wouid bring about a downward jump
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in the trajectory of each household's demand, xh(s;), and also in input demand (when it

is included in the model). On the supply side, however, in view of the continuity of the

marginal cost, ij 1 c, in s;, an upward jump in price cannot bring about a downward

(discontinuous) jump in the traJectory of output, y'(~), so p~ cannot be

discontinuous.

In Example 3.5, the short-run cost of electricity generation (i.e., the fuel cost

over the period, for qiven capacities of both types of station) has the additively

separable form, (4.1). It is also a symmetric functíon of y, since the integrand,

c(y(t), t, w) does not dependent directly on time, t. It follows that price continuity in

this example can be proved either by the method given in Section 3 for symmetric cost

(long-run or short-run), or by the method outlined above which is developed in detail

by Horsley and Wrobel (1990d). The latter method is for the short-run cost, but the

long-run case follows, since every long-run marginal cost is a short-run marginal cost

(i.e., p E aCLR(y) implies p E aCgR(y), or, equívalently, p e ac(y(t)) for almost all

t E [0, 1 ]).

Remark 4.1 : Every (Mackey lower semicontinuous) convex, symmetric function

can be represented as a supremum of symmetric functfons of the form:

y" loyr(t)e(t)dt t const., where e(~) is a nondecreasing function on [0, 1]: see

Luxemburg (1967, Formula 13.4). This form Is that of the long-run electricity cost

function (with an infinite number of types of station, unless e(.) is a step function),

for which the equilibrium price continuity can be proved by arguing in terms of the

short-run cost, which is additively separable. By combining these facts it might be

possible to reduce the general case of symmetric costs to the case of addllively separablc

costs. However, this way of reasoning would be a little akward, since the formula for the

subdifferential, at y', of the supremum of a famfly of convex functions involves, in

general, points from an (arbitrarily small) neighbourhood of y~ (and, also, it

requires the supremum in question to be continuous rather than oniy lower
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semicontinuous): see, e.g., Valadier (1969, Theorem 1). The method developed in

Sections 2 and 3, based on the inequality of Hardy, Littlewood and Polya, is sfmpler and

more direct.

Remark 4.2: The price contlnuity result also holds if households have (nonzero)

initial endowments of the differentiated commodity, provided that: (i) the total initlal

endowment is a continuous function of E, and (ii) the marginal utility, Dluh(11, f;) is

jointlu continuous in (R, E), for each h. In Jones's (1984, p. 524) one-consumer,

no-production example, the equilibrium price discontinuity is caused by the

discontinuity of the initial endowment.
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Appendix A: Symmetric Production Sets and Cost Functlons

A subse[, Y, of L~(-, á, N) is said to be symmetric if it contains every

rearrangement of each of its elements, i.e., If it contains every function with the same

distribution (with respect to N) as a function that belongs to Y. In formal terms, two

(real-valued) functions, y and y, defined on some measure space, (-, I(, N), are said to

have the same distribution if N(y-1(B)) - N(y-I(B)) for every Borel subset, B, of the
real line, in which case we write y- y. A set, Y, is called ~ymm rf if, for every

y E Y and for every y E L~(-) the condition y- y implies that y E Y. In these terms,

the symmetry assumption, (a.1), means that for each a E RN, the section of Y by a,

viz., the set Ya -(y e LM(-) I(y. a) e Y), Is symmetric. The key result about revenue

maximization on symmetric production sets can be stated in terms of the following

property of similar arrangment for functions.

Definitfon A1 : For any y and p from L~(-, ~(, N), the functions y and p are
similarlu arranaed if for every pair, A and B, of sets from N, the condition

esssuptEAy(E)~ essinf EEBy(~) implies that esssupEEAp(~)i essinf tEBp(f;),

Remark A2: The above definition of similar arrangement is given by Day (1972,

p. 932). For the case of a nonatomic measure N, an equivalent condition for similarity

of arrangement is also given by Day (1972, Proposition 5.6). For any measurable
function, y, on ?, define the nondecreasing rearrangement, yr, of y as the

nondecreasing function on [0, 1] with the dlstribution, with respect to the Lebesgue

measure on [0, 1], equal to the distribution of y with respect to the measure N. Since

N is nonatomic, there exist5 a measure-preserving mapping from - into [0, 1) such

that y - yf - S: see Day (1973, Proposition (3.3)) or, for the case - -[0, 1], Ryff

(1965, Lemma 1). Any such mapping Is called a oattern (or an arranqement) of y; the

set of all the arrangements of y is denoted by ,Sy. In these terms, y and p are

similarly arranged if and only if Sy n,Sp r A, i.e., if the two functions have a pattern In
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common. This condition is used by Horsley and Wrobel ( 1988b, p. 469 ff.) to calculate

subdifferentials of symmetric functions and their extreme points (using results of Ryff

(1967) and of Horsley and Wrobel (1987a)).

Lemma A3: Assume that the measure N is nonatomic on (-, ~[) and that Y is a

symmetric subset of L~(-, á, N). For every p E L1(-, 7(, N) and for every y E Y.

if (y, p) - sup [(y', p) I y' E Y), then y and p are similarly arranged.

Proof: We first find a rearrangement of y that maximizes (-, p) over the set of

all rearrangements of y. To this purpose take any S e,Sp, f.e., S is a measure-

preserving mapping from (-, á, N) into [0, 1 I with p- pr ~ S. (Such a mapping

exists by a result of Ryff (1965. Lemma 1) and Day (1973, Proposition (3.3)), since

N is nonatomic.) Then yT ~ S E Y by the symmetry of Y, and, since y maximizes (., p)

on Y,

(y. P) Z(yr' S, P) -(yr' S, Pr' S) -(yr. Pr)-

This, together with the inequality of Hardy, Littlewood and Polya (stated, e.g., by Day

(1972, Theorem 5.1)), impiies that (y, D) -(yr. Dr). Hence, by Day's

characterization of the case of equality in the Inequality of Hardy. Littiewood and Polya,

it follows that y and p are similarly arranged. Q. E. D.

Remark A4: In the case of a N with atoms, the assertion of Lemma A3 is true

either if: - consists of atoms of equal measure ( i.e., N is equal to the counting measure

on -, and L~(-) is a finite-dimensional sDace). or if: the conditions y' is majorized

(in the sense of Hardy, Littlewood and Polya) by y and y E Y together imply that
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y' E Y. (The latter condition on Y is equivalent to symmetry of Y if Y is convex and N

is either a nonatomic or a counting measure, but in general it is stronger than

symmetry.)
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Appendix B: Upper and Lowsr Essential Limits

Assume that - is a topologicai space, and that N is a measure on a sigma-

algebra, á, of subsets of - that contains the Borel sigma-algebra.

Definition Bi: The uooer essential limit of p at Ep, denoted by p(Ep), is

defined as the infimum of all the essential suprema of p taken over neighbourhoods

of Ep. Formally,

(8. 1) p(Ep) - inf (ess suP P(E) I W E aQEo)),
EE W

where ~Ep) denotes the family of all neighbourhoods of Ep. Similarly, define the

lower essential jj~J; of p at Ep by

(6.2 ) P(Eo) - suP (ess inf p(E) I W E 71QEp)).
- EE W

Lemma 62: (i) The extended real-valued function p is upper semicontinuous;
(ii) The extended real-valued function p is lower semicontinuous;

If the topology of - has a countable base of open sets, then

(iii) p i p N-almost everywhere; and
(iv) p s p N-almost everywhere.

Proof: To prove Part ( i), take any Ep e- and any number 6~ 0. By the

definition, (6.1), of p, there exists a neighbourhood, W, of Ep with

(B.3) esssuP P(E) s p(Eo) 4 6.
~Ew
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Also by (B.i), p(!;) t ess sup FEWp(E) for every s; E W, and from this and from (B.3)

it follows that p(~) S p(~p) t 6. This show5 that p is upper semicontinuous. To

prove Part (iii), take any number 6 ~ 0, and define G(S) -(E E- I p(E) t p(E) f 6).

For every i; E G(6), there exists a neighbourhood, W, of s; such that N(G(6) n W) - 0

(if there were no such W, then p(!;) i p(s;) f 6, which is false). Furthermore, such a

neighbourhood can be chosen from the countable base of the topology. It follows that
there exists a countable covering of -, (Wa)a-~ , such that N(G(6) n Wo) - 0,

for each a- 1, 2, ... . Hence u(G(6)) - 0 for every 6 ~ 0, and it follows that

N((E E- I p(E) ~ p(E))) - 0. The proofs of Parts (ii) and (Iv) are similar to those of

Parts (f) and (III), respectively. 0. E. D.

Remark B3: (i) For the case of - equal to the real line, variants of Lemma 62

for one-sided (e.g., right) upper and lower essential limits are given by Dellacherie and

Meyer (1978, p. 106, Theorem IV.37).

(ii) The upper essential limit as defined by (6.1), is a special case of the upper

limit concept in topology theory, since it Is equal to the upper limit (at Fp but

excluding the point EO in passing to the limit) in the so-called essential topology on -

(on the assumption that no singleton has a positive measure). For the case of - equal to

the real line (with the Lebesgue measure), this is remarked by Dellacherie and Meyer

(1978, p. 105). A similar observation applies to the lower essential limit.
(iii) In view of Lemma 62, the functions p and p are also called "the upper

and lower essential envelopes" of p, respectively.
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Appendix C: Proofs

Proof of Theorem 3.3: let (xh, mh)h-H and (y', a') be an equilibrium

allocation associated to (p', q'). Then y' -~hH x h. The proof is done in a number

of steps. In Step 1 we characterize the optimality of households' choices as the equality

of prices to marginal utllities. In Step 2 we show that the equilibrlum price for the

differentiated commodity, p', Is bounded. The Idea In Step 2 is that, on the demand side,

very high values of p'(E) would depress each household's demand, x h(s;), so much so

as to contradict the similarity of arrsngement between y' (whlch is equal to ~hH x h)

and p', which holds by Lemma A3 and by the symmetry assumptlon, (a.1 ). In Step 3

we use the boundedness of p' to show that x h Is bounded away from zero, for each h.

In Step 4, which is the main part of the proof, we formalize the argument that a

(discontinuous) Jump in price results in a Jump In demand, leading to dissimilarity of

arrangement between market demand and price. This cannot be the case in equilibrium,

since, the output, y', is arranged simllarly to the price, p'. (The result of Step 3 is

needed tn Step 4 because a downward Jump in demand cannot occur when demand is zero.)

Step 1(Proportionality of prices to marginal utilities): Slater's condition holds

for each household's utility maximization problem, by Assumption (a.2), since q' z 0

and q' ~ 0. Hence, for each h there exists a number, ah, such that

(C.1 ) 1`hp'(E) - Dtuh(xh(~). ~),

for N-almost every ~ E-. Also, ah i 0, by Assumption (a.7). (In equilibrium, also the

marginal utilities of the homogeneous commodities are proportional to thejr equilibrium

prices, q ~, but this is not used.)
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Step 2(The proof that ps is essentially bounded):

Since ps z 0, it suffices to show that pj is bounded from above. Take a number Q~ 0

with

(C.2) (~íEE?ly:(E)nQ}~0.

(Such an Q exists, since ys(~) ~ 0 for (almost) every à:, by (C.1 ) and by Assumption

(a.8).) By (C.2), take a number K c t~ such that the set defined by

(C.3) B - fEE~lyf(~)zQ,p:(E)sK)

has a positive measure, i.e., N(B) ~ 0. Take any positive number, Q', with Q'H c Q. By

Assumption ( a.5), take a number M' c t~ with

( C.4 ) D ~ uh(Q', F) S M', for every l: E ~.

Then

(C.5) xh(~) c Q' forevery ~ with Ps(~) i M'Iah.

(This is because the condition xh(~) t Q', toqether with (C.I ), the concavity of uh, and

(C.4), implies that Thpj(~) s M'.) We now show that that ps is essentially bounded

from above by the number

( C.6 ) f1" - max fK, M'~min ~h).
h

Define

(C.7) A-(~ E ~ I P~(~) ~ M'Imin ~h}.
h
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From (C.5) it follows that

( C.8 ) yj(~) -~h-H xh(~) ~ Q'H ~ Q, for every ~ E A.

By (C.8) and (C.3), ess sup ~E Ay~(i:) ~ 4 s ess inf ~E Byt(F). Also by (C.3), since

~(B) ~ 0, one has ess inf ~E Bps(~) c ess sup EE Bpf(à:) s K. Since yi and p~ are

similarly arranged, it follows (Definition A I) that ess sup ~E Ap~(à:) t K, which

means, by (C.6) and (C.7), that ps is N-almost everywhere bounded above by M".

Step 3( The proof that xh is bounded away from zero, for each h):

By Step 2 and Assumption ( a.8), take a positive number, Qh, with

( C.9 ) D i uh( Slh, ~) ~ ~h ess suP Pj,

for every ~ E H. Then

xh(~) ~ Rh,

for ~-almost every ~ E 3. This is because the condition x h(~ ) i S~, the concavity

of uh, and (C.9), together imply that

Diuh(xh(E), E) n D~uh((!h, F) ~)`hp~(E),

which condradicts (C.I ).
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SLeD 4(The proof that the lower and the upper essential limits of p' are equal,
i.e., that p'(E) a p`(E) for every E):

Assume the contrary, and take a number 6~ 0 with

(C.10) p~(EO) - P~(EO) ~ 6.

for some Ep E -. By Step 3, ess inf x h i 0, and it foliows that there exists a

neighbourhood, W, of EO such that for each h and for every pair, E and E', of points

from W, and for every pair, R and R', with ess inf x h s R s P' i ess sup x h one has

(C.1 1) D1uh(R', E') s D1uh(Q, E') ~ D1uh(R, E) t ahs.

(The first inequality in (C.1 1) follows from the concavity of uh in its first variable,

and the second inequality in (C.1 1) follows from the continuity of Dluh in its second

variabie, uniformly over any compact range for the first variable.) By (C.10),

(C.12) esssuP~EWP~(E)-essinf~EWp'(E)~6.

It follows directly from (C.12) that there exists a pair, A and A', of ineasurable subsets

of W with N(A) ~ 0, N(A') i 0, and

(C.13) essinfEEA.p'(E)-esssupEEAp'(E) ~ 6.

From ( C.13) and (C.1), for each h and for N-almost all E E A and E' E A',

(C.14) D1uh(xh(E~). E~) ~ D1uh(xh(E), E) t~h8,
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so, by (C.1 1).

xh(E')) ~ xh(E).

Since yr - Fh xh, it follows that

(C.15) esssupEEAy~(Y) ~ essinfEEA'y`(E)'

Since pr and y` are simllarly arranged, Formulae (C.13) and (C.15) are
contradictory. This proves that p~(EO) and p'(Ep) are equal, and, by Lemma B2,

their common value Is a continuous function of E0, equal to p~(Ep) for almost every

Eo E -. a. E. D.
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Figure 1: The nondecreasing rearrangement, yf , of the long-run equilibrium

output of electriclty, y', illustrated In Figure 2(Example 3.5).
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" offpeak plateau peak plateau offpeak pletenu ~
(firat part) (aecond pert)

Figure 2: The long-run equilibrium output of electricity, y` (Example 3.5).

With a two-station technology, there are output plateaux both at peak and, offpeak, at the

output level equal to the capacity of the base-load statfon, k j.
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Figure 3: In the absence of a plateau containing the pofnt 1-p, the long-run

marginal fuel cost (shown here for the case of a nondecreasing output), is unique and

discontinuous.
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LR marginel 1ue1 cost

p'(t)

0 t 1-p

Figure 4: A continuous variant of marglnal fuel cost that ex(sts in the presence
of a plateau (shown here for the case of a nondecreasing output, and extending from t to

t). The dotted area is equal to (w2 -w i X t-( 1- p)).
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offpesk pleteeu peek pleteeu offpeak plateau
in output in output in output

(firat part) (aecond pert)
Figure 5: The long-run equilibrium price of electricity is continuous (Example

3.5). With a two-station technology, the dotted area is equal to (w2 -w~ X t' -( 1-

p)), and the hatched area is equal to r2 (cf. Figure t).
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Xt-k1 ki; k2
output level (in MW)

4

Figure 6: A short-run marginal fuel cost, pt, of a plant mix, (k i, k2), at the

output level equal to the total capacity, kl, of the base-load type of station.



49

FOOTNOTES

" Journol of Ecorwrnic Litereture Clessificotión: 021.

AMS I 980 Mathemetia Subjed Classificetion (1985): Primary 90A14.

1. Richard elso shows thet the uniform properness assumption tor production sets cen be

simplif ied and weakened if L is a topologicel vector lattice. However, for L~ L~ with the

Meckey topolagy, t a~(L~, L t) , which is a topological lettice, Richerds ( I 989) theorem yields e

weaker result lhan the result of Horsley and Wrobel ( 1989e, 1990e) combined with Bewley's

(1972, Theorem 1) existence result for prices in the norm-dual, L~K: in addition to ihe fect ihat

nol ell hladcey-continuous preferences ere uniformly proper, the Madcey uniform properness of

praductian sets is a stronger assumption than the Elimination Property of Horsley and Wrobel

(far exemple, in the cose of e firm using the time-differentiated commodity as en input, it is

stronger lhen the Mackey lower semicontinuity essumpiion on ihe firm's produciion function).

Also, by using the Yoside-Hewitt decornposition, one proves thet the density part of any

equilibrium price is ilself an equilibrium price supporting the same ellocetion, and, as Horsley

end Wrobel (19890, 1990a) point out, in many cases of interest il follows that everu

equilibrium price is in L 1, which cannol be deduced lrom Riclmás generel result.

2. Since little epp~rs to be known ebout ti(~f, C) -- see the remarks of Hoffinenn-Jorgensen

(1972, p. 132) -- lhis seems to be en open question.
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