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THE CONTINUITY OF THE EQUILIBRIUM PRICE DENSITY: THE CASE OF
SYMMETRIC JOINT COSTS, AND A SOLUTION TO THE SHIFTING-PATTERN PROBLEM *

By Anthony Horsley' and AndrzejJ. Wrobel

Center for Economic Research, University of Tilburg, Hogeschoollaan 225,
P. 0. Box 90153, SO000 LE Tilburg, The Netherlands.

Abstract: We give a continuity result for the price density in a competitive
equilibrium model with L* as the commodity space. The result applies to commodities
—- differentiated over characteristics such as time and events of delivery —- with
symmetric joint costs (i.e., with a joint cost of production that is a symmetric, viz.,
rearrangement-invariant, function of the output bundle). Cost symmetry is
characteristic of peak-load pricing problems, which motivate the analysis. Our price
continuity result applies to the case of a separably additive utility function on L*, in
which Jones' method (1984, p. 524) -- based on finding a suitable extension of the
utility function from L* to the space of measures, M —- fails. No price continuity
result for an economy with L* as the commodity space can be obtained from Richard's
(1989) general analysis, either. An extension of our result to the case of non-
symmetric costs is possible if costs are additively separable, and it is outlined. Our
approach can also be used for other LP-spaces (but not for 9, since both the concept of
cost symmetry and that of additive separability are based on the presence of an
underlying measure). We apply our analysis to a multi-station electricity pricing
problem (with constant returns to scale) to prove that, though the variable costs of the
stations are different, the equilibrium price is a continuous function of time. This
result implies that the equilibrium output profile contains offpeak plateaux, in addition
to a peak plateau. This equilibrium configuration is the basis of an example, given by
Horsley and Wrobel (1989b, Example 1 in Section S), of a short-run equilibrium with
the capital inputs optimal (for the short-run equilibrium output) that is not a long-run
equilibrium -- for the given equipment prices -- even though the long-run cost is
exactly covered.



Our purpose in this paper is to prove the continuity of the density for equilibrium
prices for a commodity differentiated over time, random events, etc., for which the joint
cost of production is symmetric in the output bundle, i.e., apart from its dependence on
input prices, the cost depends only on the distribution of output over the set of
commodity characteristics. We use this result to solve the "shifting-pattern problem"
in peak-load pricing with more than one production technique in the technology, e.g., in

a two-station model of electricity generation.

Our price continuity result is obtained for a variant of Bewley's (1972)
competitive equilibrium model. This' model, with L* as the commodity space, is
developed by Horsley and Wrobel (1989a, Section 3; 1990a, Section 2) for the study of
an industry producing a time-differentiated commodity, which is usually also
differentiated over events of delivery. The commodity may also be differentiated over
locations, but a “continuous™ description of locations may require the use of a commodity
space different from that of Bewley's model, such as the space of measures, M, for which
a price continuity result is given by Jones (1984). Our approach is specialized to the
commodity space L* (and other LP-spaces). It applies, however, to the important case
of a separably additive utility function on L*, in which Jones's (1984, pp. 524-525)
approach fails because such a utility function on L* has no weak*-continuous extension
to the commodity space M. (There is no such extension because, in general, a separably
additive utility function is not even weak*-continuous on L*, i.e., it is not continuous
even in the weak topology on L* generated by L', let alone in the weak topology

generated by space of (bounded) continuous functions, C, which is contained in L!.)

Relationship to other work is discussed at the end of this Introduction.

The characteristics of the industry’s products are taken to form a measure space,
E. For example, in continuous-time, cyclic, deterministic pricing problems, = can be
taken as the unit time interval, representing one cycle. (This interval, [0, 1], is taken

with the Lebesgue measure. In the case of a stochastic demand, = is taken to be the



product of the interval, [0, 1], and of the set, Q, of the states of the world, with the
product of the Lebesgue measure and of the probability measure on Q.) A bundle of the
differentiated commodity is modelled as an (essentially) bounded function, x € L*=(Z),

on =, and a price for the differentiated commodity is represented as an integrable
function, p € L'(2), on =. For simplicity, all other commodities in the economy are
taken to be homogeneous, and their number to be finite, but this is not essential. (In
Section 3, households' initial endowments consist solely of these other commodities and
contain none of the differentiated commodity produced by the industry, so the pure
exchange case is of no interest. When there are nonzero initial endowments of the
differentiated commodity, the prige continuity result also holds, provided that the total
initial endowment is continuous on Z=: see Remark 4.2. This case includes pure
exchange economies.) The main result of this paper (Theorem 3.3) is that, in every
equilibrium, the price density for the differentiated commodity, p'. is a continuous
function on the space of commodity characteristics, Z. On the supply side of the market,
the key property for this result is that output bundles with the same distribution (with
respect to the underlying measure on Z, e.g., over time and/or events) require the same
quantities of inputs. In more formal terms, the section of the industry’s production set
by any given input bundle is a symmetric (or rearrangement-invariant) subset of
L*=(Z): see Assumption (a.1). Equivalently, the joint cost of production, C(y), is a
symmetric function of y (i.e., it depends only on the distribution of y over =, and not
on the way in which the values uy(k), for § € =, are arranged on Z), for every input
price vector. Cost symmetry is a distinctive feature of peak-load pricing problems,
e.g., as with utilities like electricity and water: see Horsley and Wrobel (1986a_.
1987b). The crucial implication of cost symmetry, derived in Lemma 2.3, is that a
product price profile, p, and a corresponding revenue-maximizing output bundle, y, are
always similarly arranged on Z, i.e., the output is not higher when the price is lower.
Equivalently, in terms of production costs, a marginal cost profile, p, is is always
arranged similarly to the output bundle, y, at which it is calculated. (N.B.: The

comparison of quantities and prices is between different product characteristics, i.e.,



the similarity of arrangement of p and y means that for each £ and &' from =, if

p(E) > p(E’), then y(E) 2 y(&).)

On the demand side of the market for the differentiated commodity, we assume
that the that households’ marginal utilities (as well as the marginal productivities of
firms using the differentiated commodity as an input, when these are included in the
model) are continuous in the product characteristics. This is formalized as Assumption
(a.6), for utility functions of the additively separable form specified in Formula (3.2).
Given this assumption and the symmetry of costs, a heuristic argument for the
continuity of the equilibrium price density, p*, goes as follows. Suppose that p*(£) is
discontinuous in §. Since marginal utilities (or, in the case of input demand, marginal

productivities) are continuous in &, an upward jump in p*(E) -— as £ varies —-

would bring about a downward jump in the trajectory of each household's demand,

x:(E), and also in input demand (when it is included in the model). On the supply side,

however, the price, p*, and the output, g‘. are similarly arranged (as a result of cost
symmetry, as pointed out above), and this means that g‘(E) is higher (or at least not
lower) for those & for which p'(E) is higher. In particular, the output is not lower

after the upward price jump than before it. Since Zj, xh =y®. the downward jump in

the trajectory of demand is contradictory to the the lack of decrease in supply.

Therefore, the equilibrium price density, p*(£), is continuous in .

Cost symmetry is a characteristic of peak-load pricing problems, and in
Example 3.5 of this paper we continue the development of a rigorous theory of the kind
called for by Dreze (1964, pp. 16-17) which we started in earlier papers (Horsley
and Wrobel (1986a, 1987b, 1988a, 1988b, 1988c, 1989a, 1989b, 1990a)). In the
context of peak-load pricing with more than one production technique, our price
continuity result removes the doubts about the existence of an equilibrium that originate
from an apparent discontinuity of marginal cost. The difficulty, which we call “the

shifting-pattern problem” (in view of some similarities to the shifting-peak problem



solved definitively by Horsley and Wrobel (1989a, 1990a)), can be described as
follows. For simplicity, we look at a deterministic, two-station model of electricity
generation with given unit capital costs per period, ry and rj, and given unit fuel costs,
wi and wp, for the two types of station. Assume that ry >rp, wy < wp, and that the
(positive) number p = (ry-rp)/(wy-w;) is smaller than 1. Thus, the first station
is the base-load station, and the second station is the peak station (since, to minimize
long-run costs, a station designed to be operated for a total time of more than p per

period must be of the first type, and a station designed to be operated for a time shorter

than p must be of the second type). Assume also that rp =0, to simplify the notation.
Consider some time-profile of demand, y. Denote by k; and kp, respectively, the
capacities of the two types of station in the long-run cost-minimizing plant mix for the
production of y (explicit formulae for k; and k, are given in Example 3.5 in Section
3 but these are not needed here). With ro =0, the marginal cost, i.e., the cost, p(t), of
supplying an additional unit at time t is equal to the base-load unit fuel cost, wy, when
y(t) < ky, and it is equal to the peak unit fuel cost, wp, when y(t) > k. These
conditions describe p(t) completely if y(t) does not remain at the level k; for a
positive time. Since p(t) takes only two values, it is discontinuous at at least one
instant, ty. Suppose, for the sake of argument, that there is an upward jump in the
marginal cost for y, p(t), as t increases passing through tg, i.e., that the right-hand
limit, p(to+), is larger than the left-hand limit, p(tg-). This is the case if y is
(strictly) increasing around to (with y(tg) =ky), which implies y(tg-) < y'to+).
(For a globally increasing output, the marginal cost is illustrated in Figure 3.) Faced
with these marginal costs as prices, electricity users may reduce their consumption
immediately after the price jump to a level lower than that before the price jump. That
is, for the new time-profile of demand, y, i.e., the demand at prices p for which
p(to-) < p(to+), one has y(ty-) > y(ty+), in which case p is not a marginal cost
price system for y' (since marginal cost is not higher when output is lower). Thus,

demand changes its pattern around a point of price discontinuity, and, as a resuit,



around tg, the price charged, p, is equal to the wrong fuel cost. If a long-run marginal
cost price system, p’, for the new demand profile, y', is then tried, the pattern may well
shift again in a similar way. The resulting iterative sequences of demands and marginal
costs need not converge. However, an equilibrium, in which prices are equal to marginal
costs, exists. Under the assumption that electricity consumption is harmlessly
interruptible, this follows from the result of Horsley and Wrobel (1989a, Section 3;
1990a, Section 2) which, unlike Bewley's analysis (1972, Theorem 3), is applicable
also in the presence of input demand (in addition to household demand) for electricity.
The most interesting case is that in which both types of station are used in equilibrium,
i.e., their equilibrium capacities, kT and k3, are both positive. By the preceding
argument, the equilibrium price is continuous, but this raises the question of how the
continuity of marginal fuel cost is possible with just two (or, more generally, any finite
number) of unit fuel costs, wy and w,. Our solution (presented in detail in Example
3.5, in Section 3) is that in equilibrium the time-profile of output, y*, has a plateau
(perhaps consisting of a number of intervals, as illustrated in Figure 2) at a level equal
to the equilibrium capacity of the base-load type of station, kT. During this plateau,
the output stays at a kink of the intantaneous fuel cost curve (c(2) in Figure 6), and
there are multiple short-run marginal costs, which take, at any time, any value
between the unit fuel cost of the first station, w, and that of the second station, wo.
(Long-run marginal costs are also multiple on the plateau, although they are more
specified than the short-run marginal costs, since, in addition to being between Wi

and wo, their integrals over the plateau all have the same value.) As a result of this

multiplicity of marginal costs (i.e., of cost nondifferentiability), a gradual, continuous

transition of marginal costs from wy to wp is possible, and this takes place in the

equilibrium price (as illustrated in Figure 5). The gradual price change prevents the
“shifting-pattern” problem that would arise if the price were always equal either to w

orto wp. Note that this is an off-peak plateau (since k3 > 0). (In the case rp >0 the

equilibrium output, g’. also has a peak plateau, over which the peak capacity cost is

charged. This is Boiteux's (1964, pp. 81-82) conjecture on the form of a solution to



the shifting-peak problem, which is formalized and proved by Horsley and Wrobel
(1989a, 1990a).) Similarly, in an M-station model, generally there are M-1 off-
peak plateaux in the equilibrium output, in addition to a peak plateau. (More precisely,
the number of offpeak plateaux is one less than the number of stations actually used in
the equilibrium generating system.) A difference between the roles of the peak and the
off-peak plateaux should be noted: whereas the peak plateau is necessary for the
existence of an equilibrium price, in a multi-station model the off-peak plateaux are

necessary for the equilibrium price to be continuous.

We next point to possible extensions of the analysis presented here. First,
competitive firms with an input demand for the differentiated commodity can be
included, along with households, in the model (under assumptions on the production
functions similar to those on the utility functions). Second, in the case of a stochastic
demand, a variant of the result proving the continuity of price in, say, time alone is of
interest (since there may even be no suitable topology on the probability space), and it
can be given. Third, the assumption of a separably additive utility is made for
convenience when formulating the continuity assumption about marginal utilities, and
this form of preferences is not essential. Fourth, an extension to the case of non-
symmetric costs is possible if costs are additively separable, and this is outlined in
Section 4 and given in detail by Horsley and Wrobel (1990d). Fifth, some extension to

the case of increasing returns to scale appears to be possible.

In the literature, continuity properties of an equilibrium price (as a linear
functional on the commodity space), viz., the result that the equilibrium price belongs
to some specified dual, L', of the commodity space, L, is usually obtained under
assumptions which include the lower semicontinuity of preferences in some topology (on
the commodity space), ¢, that is compatible with the given duality, i.e., for which the
continuous dual, (L, ©)*, of L is equal to L'. The reasons for this can be explained as

follows. With monotone preferences on the consumption set taken to be the nonnegative



cone, L, the lower semicontinuity of preferences alone guarantees that any equilibrium
price is in (L, ©)* if L, has a nonempty t-interior. (This is because a linear
functional is t-continuous if it is bounded, either below or above, on a set with a
nonempty t-interior.) In many examples, however, the t-interior of L, is empty.
The above, "quick” argument for price continuity can be extended to this case if:

(i) preferences are convex and extensible to convex, t-continuous preferences defined

on a t-neighbourhood of L, and (ii) the equilibrium consumption of the household in
question is in the algebraic interior of L, (relative to the whole space, L). For
exchange economies, the second of these conditions holds if the total initial endowment is
in the algebrajc interior of L., as is assumed, for L =L, by Bewley (1972, Theorem
2). Bewley's argument is more precise than the above “quick” one, since he does not
assume extensible preferences: for example, an additively separable, concave utility
cannot be extended beyond L% if the marginal utility at zero consumption level is
infinite, as noted by Back (1988, pp. 97-98). The first of the two conditions used for
the "quick” proof of t-continuity, i.e., the condition that preferences be extensible to a
neighbourhood of L, is somewhat stronger than the extensibility condition of Richard
and Zame (1986, Theorems 2 and 4). As they show, the latter property is essentially
equivalent to the "t-uniform properness” of preferences, introduced by Mas-Colell

(1986a).

The above Conditions (i) and (ii) for the "quick" argument are too restrictive for

at least two reasons. First, in some commodity spaces, e.g., in the space of measures, M,

the algebraic interior of the nonnegative cone is empty. Second, even if the algebraic

interior of L, is nonempty, these conditions are too restrictive for economies with
production: for a detailed discussion of the problem in the case L =L*, see Horsley and
Wrobel (1989a, Introduction; 1990, Subsection 3.2). The position is then more
complicated, and, as a result, it is generally not true that all equilibrium prices are in
the t-dual, even if assumptions, additional to the t-closedness, are imposed on the

production sets. What one aims to prove in this case is the existence of a t-continuous



price. For L =L*, sucharesult is given by Bewley (1972, Theorem 3). Bewley's analysis is
improved upon by Horsley and Wrobel (1989, 1990a) whose equilibrium pricing model for

time- differentiated commodities is based on this extension.

For an economy with the commodity space L*, no continuity result for the equilibrium
price density can be deduced from the price- continuity results given by Jones (1984) for the
commodity space M and by Richard (1989) for a class of commodity spaces including M. This is
because such an extension of their analyses would have to be obtained by embedding L™ in M and
by suitably extending the preferences (and the production sets). In the case of Jones' model, a
separably additive utility function on L™ is not, in general, continuous in the weak*-topology,
o(L=,L1), on L™, and, therefore, does not have a 6(M/, C)-continuous extension to the
commodity space M, 8s noted by Jones' (1984, pp. 524). Richard's (1989) result on the
existence of a T-continuous equilibrium price is given for a production economy with a
commodity space, L, that is both an ordered topological vector space and a vector lattice, with the
topology denoted by T and the nonnegative cone denoted by L, . In addition to the T-continuity of

preferences, Richard (1989, Theorem 1) assumes the t-uniform properness of preferences and
production sets (to deal with the problem of an empty t-interior of L, ). Unlike Mas- Colell
(1986b), whose work Richard extends, he does not assume that L is a topological vector lattice!,
i.e., the lattice operations may be t-discontinuous, as is the case with, e.g., L equal to M with
the weak* topology, T = 6(M, C). In Richard's model, the best result for the commodity space M
is obtained, however , by taking the Mackey topology, T = T(M, C), for the duality with the given
price space, C. Although we do not know2 whether an additively separable, concave utility function
on LT with continuous marginal utilities, s in our Assumption (2.6), is continuous in the
restriction to LT of the topology t(M, C), the embedding approach for L™ cannot succeed in
Richard's model, either. This is shown by the one-consumer, no- production example of Jones
(1984, Example 4 ). To put it briefly, the character of the assumptions made for an economy
with the commodity space M is unsuitable for deriving a continuity result for the equilibrium
price density by embedding L*= into M: if this approach were applicable to any L*°-economy at

all, then it would also apply to the economy of Jones' example, which is impassible (since that is a
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counterexample to the continuity of the price density). Though we are not sure which of Richard's
conditions fails in the process of trying to extend a separably additive utility function from LT to

M, , we know that at least one of them fails. This can be shown in detail as follows. In Jones'

example, at time, t, the instantaneous utility is a continuously differentiable, strictly concave
function, u(x(t)), of the consumption level, x(t), for t€ [0, 1]. (That is, the instantaneous
marginal utility is not only continuous when the consumption level, x(t), varies continuously, but
also stays constant when the consumption level stays constant; a more general instantaneous
utility hes the form u(x(t), t).) The initial endowment in Jones' example, X (1), is
discontinuous, over t, and this causes the (unique) equilibrium price, p(t) = Du(x(t)), to be
discontinuous. By Richard's result, it follows that the separably additive utility function,

U(x) = [ u(x(t)) dt, which is defined on L3, has no extension to M, that is concave,

(M, C)-continuous and uniformly proper in the direction . Since X is is bounded away from
zero, it follows that U has no concave and continuous extension thet is uniformly proper in any
direction in L*™. (This is because, for monotone preferences, uniform properness in a direction,
x, implies uniform properness in any direction x" with x' 2 x and, also, in the direction Ax for
every positive scalar \.) Thus, even for the no-production, one-consumer economy with the
utility function U, specified above, and with a continuous initial endowment, X € C, the continuity
of the equilibrium price density, which holds in this case, cannot be deduced from Richard's
result. This is because either the T(M, C)- continuity, or the uniform properness, or both of
these conditions fail for any concave extension of the utility function to M. (In the case of
infinite marginal utility at zero, i.e., if Du(0+) = + 0o, one knows that the uniform properness
condition fails: as noted above, such preferences are not uniformly proper on L3 even in the

topology T(L™, L), which is stronger than T(M, C).)

In each section (or appendix), the number ing of formulae, etc., is independent of other
sections. For example, (3.1) is the first formula of Section 3, and (B.1) is the first formula of
Appendix B. Assumptions are numbered separately, as (a.1), etc. The other formal paragraphs
(definitions, theorems, etc.) are numbered consecutively within each section (or appendix).
Appendices A and B contain mathematical definitions and results needed for Sections 2 and 3.
Appendix C contains the proof of the main result, Theorem 3.3 given in Section 3.
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2. Revenue Maximization with Symmetric Production Sets

In the next Section we give a continuity result for the equilibrium price of a
differentiated commodity with a symmetric joint cost of production (i.e., with a joint
cost that depends only on the distribution of the output level over the set of commodity
characteristics). To prepare the ground for this resuit, in this Section, after
introducing the commodity space, we study the implications of cost symmetry. The
analysis is set up in the framework of Horsley and Wrobel's (1990a, Section 2) variant
of Bewley's (1972) competitive equilibrium model. This framework is designed for the
study of marginal cost pricing for an industry producing a time-differentiated
commodity (which is usually also differentiated over events of delivery and over
locations), e.g., as with utilities like electricity and water. The characteristics of the
industry's products are taken to form a set, =, with a finite, nonnegative measure, y, on
a sigma-algebra, A, of subsets of =. (For example, in continuous-time, deterministic
pricing problems, = can be taken as the unit time interval, [0, 1], with the Lebesgue
measure on the sigma-algebra of Borel subsets of the interval.) The commodity space
for the industry's products is L=(Z, A, ), abbreviated to L=(Z) or to L*. Every
price system for the industry's products that we consider in this paper can be
represented by a density, p, which is a p-integrable functionon =, i.e., p € L1(Z).
Every such function, p, has a natural interpretation as a list of prices, with the value of

any differentiated commodity bundle, x € L*(Z), calculated as the integral,

IE x(E)p(E) u(dg), of the quantity of the commodity for each characteristic, § € =,
multiplied by its price; for brevity, this integral is denoted by (x, p). In setting up the
model, the norm dual of L*=(Z), which is larger than L1(Z), is used as the price space
for the industry's products: see Horsley and Wrobel (1989a, Section 3; 1990a, Section
2). However, with this commodity space only those price systems with a density have a
useful economic interpretation, and the singular term is excluded from the equilibrium
price system by the imposition of appropriate assumptions. For economies with

production, a result of this kind was first given by Bewley (1972, Theorem 3), and an
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extension that applies to the important case of a differentiated commodity that is used as

an input is given by Horsley and Wrobel (1989a, Theorem 2; 1990a, Theorem 3.4).

All commodities in the economy other than the given industry's products are
taken to be homogeneous, i.e., nondifferentiated. It is assumed that their number is
finite, and they are numbered by n=1, 2, ..., N. Therefore, the full commodity space is
L=(Z)xRN, and a commodity bundle is written as a pair (x, m), where x € L*(Z) and

m € RN. A price system is written as (p, q), where p € L!(Z) and q € RN,

The industry’s production possibilities are specified in terms of a set, Y,
consisting of commodity bundles,(y, a), each of which represents a nonnegative output of
the differentiated commodity, y € L**(Z), that the industry can produce from an input
bundle, a € RN, of the homogeneous commodities. (The possibility that the industry can
also produce some of the homogeneous commodities, in which case some components of a
are positive, is not excluded.) The production set Y is taken to include free disposal,
ie., Y -LT(E)xRN = Y. If, as is usual in practical examples, the industry's
production possibilities (or, equivalently, its production costs), are originally specified
only for nonnegative product bundles, then Y is taken to be the free-disposal hull of the
original production set. A closedness result for the free-disposal hull, which is needed
in this case, is given by Horsley and Wrobel (1990a, Appendix A: 1990b). Note, also,
that the symmetry property stated in (a.1) is preserved under the operation of taking

the free-disposal hull.

We assume that the production set Y has the following symmetry property with

respect to the output of the differentiated commodity:

(a.1) Forevery yeL>=(Z) andevery a€RN,if (y,a)€Y,§elL>E, A p) and

y has the same distribution as y, with respect to the measure u, then (g, a)e Y.



13

In other words, for each a € RN, the section of Y by a, viz., the set
Y2 = [y € L=(Z) | (y, a) € Y), is symmetric, or rearrangement-invariant, in the sense

defined formally in Appendix A.

A key result about revenue maximization with a symmetric production set is
that, given an input bundle and an output price system, in every revenue-maximizing
output bundle the output of a product with a lower price is not higher than the output
level of a product with a higher price (note that the comparison of quantities and prices
is between different products, i.e., different characteristics of the differentiated
commodity). Stated more precisely, this means that for each pair of product
characteristics, § and &', if, at an output price system, p, with p(§) > p(§’), an output
bundle, y, yields the maximum revenue among those output bundles producible from a
given input bundle, -a, then y(§) 2 y(§’). (Equivalently, in terms of the production
cost of y, given an input price system, q, the marginal cost is not higher for those
products with lower output levels, i.e., for each § and §' with y(§) > y(&"),if p isa
marginal cost profile at an output bundle, y, then p(E) 2 p(§")). This is stated formally
in Lemma 2.3 below in terms of the property of similar arrangment, defined as follows
by Day (1972, p. 932).

Definition 2.1: Two A-measurable, real-valued functions, p and y,on Z, are

said to be similarly arranged if for every A € A and every B € ¥, the condition

€ss Sup EeAp(i)( essinf p(§) implies that esssup EEAg(i)s essinf ieBy(E)'

£E€B

Remark 2.2: Although in Definition 2.1 the roles of the two functions, p and y,
are not formally symmetric, similarity of arrangment is a symmetric relation, i.e.,
p and y are similarly arranged if and only if y and p are similarly arranged. This
follows from, e.g., an equivalent condition for similarity of arrangement, given by Day

(1972, Proposition 5.6), which is discussed in Remark A2,
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Lemma 2.3: Assume that the measure u is nonatomic on ¥, that Y is a subset
of L=(Z, A, u) satisfying Assumption (a.1). Take any output price, p € LI(Z, A, p),
and any input, -a € RN, For any y € L=(Z) with (y,a) €Y, if {y, p)2{y,p) for
every y with (y,a)€Y C(i.e. if y maximizes the revenue among outputs producible

from the given input), then y and p are similarly arranged.

Remark 2.4: Lemma 2.3 can be generalized by dropping the assumption that p

is nonatomic and replacing Assumption (a.1) by the following assumption on Y:

(a.1') For every y € L*=(Z) and every a€RN,if (y,a)€Y, § € L=(E, A, u)

and y is majorized by y, then (J, a)€ Y;

where the term "majorized” is used in the sense of Hardy, Littlewood and Polya,
discussed, e.g., by Ryff (1965) and Day (1972, 1973). Condition (a.1') is equivalent
to Assumption (a.1) if: (i) the section, Y2, of Y by any a € RN is convex, and

(ii) p is either a nonatomic measure on ¥, or isomorphic to the counting measure (in
which case the space L*(Z) is finite-dimensional). In general, (a.1') is stronger than

(& 1),

Remark 2.5: Production-supporting prices for the industry's outputs can be
calculated as marginal costs. This is convenient when, as in Example 3.5 below, the

relationship between the properties of the output prices and the properties of the output

bundle is to be studied. For any input prices, q € R'i. and for any output, y € L*=(Z), the

production cost is defined as

Cly, q) = inf {—(a, q) | (y, ) € Y).
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In many examples (e.g., that of electricity generation, discussed in Section 3) the cost,
C(y), is a nondifferentiable function of the output bundle, y, and, to give a precise
meaning to the notion of "marginal cost”, we use the subdifferential, i.e., the collection
of all subgradients, 3C(y), as the concept of a generalized derivative, with respect to
output. Properties of subdifferentials are discussed by, e.g., loffe and Tihomirov
(1979). Under Assumption (a.1), the cost is a symmetric function of the output
bundle, i.e., if § and y have the same distribution, then C(g) = C(y). If C is
symmetric and p € 3C(y), then p and y are similarly arranged (Horsley and Wrobel
(1988b, Theorem 1)), and (for the convex case) this is an equivalent statement of

Lemma 2.3.
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3. The Continuity of Equilibrium Price

To obtain the price continuity result we assume in this Section that the set of
product characteristics, =, is a topological space —- in addition to being a measure space

described in Section 2 - with the sigma-algebra of the Borel subsets, B, of = that is

contained in the sigma-algebra 2A.

There is a finite number of households, which are the industry's customers.
(For simplicity we assume that there are no other producers in the economy.)
Households are numbered by h=1, 2, .., H. For each household, h, the set of feasible

consumption plans is taken to be the nonnegative orthant,

(3,19 Xp = LT, A, w=xRN,

The initial endowment of household h is denoted by (0, my,), i.e., it consists of an

amount, My, of each homogeneous commodity, n. Preferences of household h are

represented by a utility function of the form

(3.2) Unxo m) = [ up(x(®), )€ + vi(m),

where up: ZxRy <R and vy: Rf - R. The utility function, defined by (3.2) on X, is
extended to the whole commodity space by setting Up(x, m) = -e for (x, m)& X, as

is standard in convex analysis. The share of household h in the industry is denoted by

Sh, with sp 20 and Zp sy = 1 (in the case of constant returns to scale, the distribution

of shares is irrelevant for the competitive equilibrium solution).

A feasible allocation is a list of: consumption plans, (x,, my) € X}, for each

household, h, and a production plan for the industry, (y, a) € Y, such that:
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(i) Zpxy = y,and (i) Zymp +a =2, my. In writing sums, etc., we follow the

convention that the range of an index is understood to be the largest possible, with any
restrictions specified; e.g., in Condition (iii) of Definition 3.1 below, j ranges from 1

to J.

Definition 3.1: A pair consisting of a feasible allocation, ((x:. m:)h_:'. (g', a .,

and a price system, (p*, g*) € L1(E) xRN, is termed a competitive equilibrium if: the
industry maximizes profits, and the consumption plan of each household maximizes its

utility subject to the budget constraint, i.e., in formal terms, if:
(i) * p*)+(a”* a®) = sup u. p*) +(a, a*) I (y, a) € Y);

(i) for each h, (xp.p")+(m}, a*) = (shu®. p*) + (mp+ spn*, a*):

and

(iii) for each h and every (x, m) € Xy, if (x, p*)+ (m, p®) ¢ (x;. p*) + (m:, a*),

then Ux(x, m) < Up(xy, mb).
h hi% K h

Remark 3.2: If Y is a cone, with polar Y*, then Condition (i) in Definition 3.1
can equivalently be replaced by the conditions that {y*, p*) = (-a, q*) and that

(*. a*) ey, ie, that (y, p*) < (-a, q*) for every (y,a)€ Y.

The following assumptions on households and the industry are made, in addition to
(a.1) of Section 2. Assumption (a.2) is a rudimentary form of the adequacy (or

survival) assumption. It ensures that in equilibrium each household has a positive
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income, and, therefore, that prices are equal to marginal utilities: see Step 1 in the

proof of Theorem 3.3. The rest of the assumptions are assumptions on uy, (and vy), in
particular, the continuity, over Z, of marginal utility over the set of characteristics,

E, of the differentiated commodity is assumed in (a.6). The infinite marginal utility at
zero is assumed, in (a.8), only to ensure that demand is positive and bounded away from
zero in equilibrium, and it can be dropped if, e.g., the positivity of equilibrium demand

is assumed directly.

(a.2) Each household is endowed with a positive amount of each homogeneous

commodity, i.e., mp, >0 for each h and n.

(a.3) For each @ > 0O, the function & - up(R, ) is u-integrable on Z,i.e.,
up(e, *) e LI(E);

(a.4) For each £ € Z, the function 2 - up(Q, §) is: continuous, nondecreasing and

concave on R,, differentiable on R,,, and u,(0, §) = 0;

(a.5) For every @, the function & - Dyup(R, E), i.e., the partial derivative of uj, with

respect to its first variable, considered as a function of the second variable of Up, is

bounded on Z;

(a.6) The function (R, §) = Dyup(2, £), is continuous in its second variable uniformly

over any compact range for the first variable;

(a.7) Dyup(R, &) >0 for every & € = and for every 0> 0;

(a.8) Dyun(R, §) = += uniformly for £ € = as 0 - 0+,
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(a.9) The function vy, is continuous, nondecreasing and concave on R’i.

Assumptions (a.5) and (a.6) hold if the function (2, §) - Dqup(®, §) is jointly

continuous on ExR,, and = is compact.

Theorem 3.3: Under (a.1) to (a.9), if (p*, ™) is an equilibrium price

density with q® =0, then p* is continuous on =.

Remark 3.4: (i) Since p*, as an element of L'(Z), is an equivalence class of
functions (equal to each other almost everywhere) rather than a single function, the
assertion of Theorem 3.3, stated more formally, is that there exists an equivalent
modification of p’ that is continuous. (This property should not be confused with
“continuity almost everywhere”, which holds, e.g., for every step function on an
interval of the real line.)

(ii) From the continuity of price it follows that the equilibrium output is also
continuous, under the assumption that the inverse marginal utility is continuous. This
identifies a class of models with, in effect, the commodity space of continuous functions,

(=), and with consumption sets equal to the nonegative orthant (and, therefore, having

a nonempty norm-interior), in which the existence of an equilibrium can be proved by
embedding AAZ) in L*=(Z). Note, however, a basic difference between the continuity-
in-equilibrium result obtained in this framework and the framework of Horsley and
Wrobel (1988a, 1988c¢), in which commodity bundles are modelled as continuous
functions and preferences are porm-continuous. For the case = =[O0, 1], in the

(L*, L1)-framework, the Mackey-continuity assumptions on the demand side mean that
consumption can be harmlessly interrupted, and this is needed for the existence of an

equilibrium price density, although the equilibrium time-paths of consumption are

continuous. The framework with the space (AZ) is designed to accommodate a richer
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price structure, including concentrated charges, to deal with the case of preferences that
are norm continuous but not Mackey-continuous. In peak-load pricing, when
interruptions in consumption are not harmless, pointed peaks (rather than a peak
plateau) occur in equilibrium, and peak charges, represented mathematically as Dirac
measures, are levied at particular instants (rather than being spread over a peak

plateau). The two set-ups are compared in detail by Horsley and Wrobel (1990c¢).

Example 3.5: Theorem 3.3 can be applied as follows to solve the shifting-pattern
problem in peak-load pricing for electricity, described in the Introduction. We show
that the equilibrium marginal cost price is continuous over time, and that this is only
possible in the presence of some offpeak plateaux in the equilibrium output (see Figures
1 and 5). For simplicity, consider the deterministic, two-station model of electricity
generation. (It is straightforward to extend the analysis to the case of a technology with
more than two stations and, also, to the analysis of marginal expected costs in the case of
uncertainty.) We assume that each kind of generating station can be run only on one kind
of fuel: thus, there are only two generating techniques, which correspond to the two
kinds of station, denoted by 6 =1, 2. Capital equipment is taken to be perfectly
divisible, and constant returns to scale are assumed. As a result, every generating
station has a specified maximum level of output, called its capacity, and the rate of fuel
consumption is proportional to the station's instantaneous level of output, which cannot
exceed the capacity. Hence, the production of an output bundle y(t), t € [0, 1], by the
use of any single technique requires an amount of the relevant capital equipment equal to
the maximum of y(t) over t. The amount of the appropriate fuel that is consumed is
proportional to the total amount of energy in the bundle, viz., ﬁ, yt)dt. (Thisis
usually referred to as the case of “rigid capacity”, cf. Boiteux (1964, pp. 63-67) and
Dreze (1964, pp. 9 ff).) Besides electricity, generating equipment and fuel, there may
be other (homogeneous) goods in the model (their number is N -4), and a vector of

their quantities is denoted by g = (g, g2, ...)). In this example, the set of commodity
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characteristics, =, is the unit interval of the real line, [0, 1], taken with the Lebesgue

measure, mes, on the sigma-algebra of all Borel subsets, B, of [0, 1]. It represents the
relevant time period (usually a year), and an annual output bundle, y, is represented as
an element of L*=[0, 1]. The installed capacity of station type @ is denoted by kg, and it
is measured in the same units as the output level, y(t), say, in MW. The amount of fuel

input of type 8 is denoted by vg, and it is measured in MWyears (one MWyear of fuel is
the amount needed to run a unit station continuously for a year). With this notation, the
production set for electricity, Y, which is a subset of L*[0, 1] xRN, can be written as

the sum
(3.3) Y = YD 4 y(@),

where

1

YD) = ((y, -k, -ko, -vq,-vp,-g) | esssup y*(t)s ki, jg*(t)dt <vy. (kg vo, g) € RN-2),
te(0,1] 0

and, similarly,

1
Y2 = ((y, Ky, kg, -vi. v, -9) | esssup y*(L)s k. [ y*()dt < va. (ky, vy, @) € RY2).
(1]

te[0,1]

(The symbol “ess sup” stands for the essential supremum with respect to the Lebesgue
measure.) The production set Y is Mackey closed, or, equivalently in view of its
convexity, weak*-closed. (The proof of this, which is not given in detail here, follows
from the Mackey lower semicontinuity of esssup y, the Mackey continuity of the
mapping Y - y*, and from the capacity constraints in the definitions of Y@ together
with the relative weak* -compactness of bounded subsets of L*.) The set Y also

satisfies the other assumptions of Horsley and Wrobel (1990a, Theorem 2.1), and,
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therefore (with the demand side that satisfies the assumptions of that result) there

exists an equilibrium price system, (p*; r{, r3, wi. w3, ..), with a density, i.e.,
with p* € L1[0, 1]. The other prices, rT. etc., are scalars, and, since the analysis is
concentrated on p*, they are written as ry, etc., to avoid clutter. We take the
equipment prices to be expressed as annual rental prices, i.e., re¢ is measured, say, in
£/MW p.a., and it is equal to the (equilibrium) purchase price of a unit station of type @
multiplied by the sum of the interest rate and the capital depreciation rate for equipment
of type @ (the depreciation rate is assumed to be independent of the degree of equipment
utilization). With amounts of fuel of each type are measured in MWyears (one MWyear
of fuel is defined as the amount needed to run a unit station continuously for a year),

Wg is also expressed in £/MW p.a. Thus, ry is the capital cost per period, and Wy is

the fuel cost per period of operation, for a unit station of type 6.

Directly from the definition, (3.3), of Y it follows that this set satisfies the
symmetry assumption, (a.1). Therefore, with firms and households that satisfy the
other assumptions of Theorem 3.3, the equilibrium price density for electricity, p*, is
continuous on [0, 1]. The corresponding equilibrium output of electricity is g*, with
essinf g' > 0. The most interesting case is when both types of station are needed to
produce the equilibrium output, g‘. at a minimum (long-run) cost, i.e., when
(possibly, after re-numbering the techniques): (i) Wi <wp, ry>rp,and O<p <1,
where

Fy=rg
wo-wy '’

(3.4) p=

and (i) yy((1-p)+) < esssup y*, where y; denotes the nondecreasing

rearrangement of y*, defined as the nondecreasing function on [0, 1] with the same
distribution (with respect to the Lebesque measure, mes) as that of y'. The second of

these conditions ensures that the second, peak tupe of station is needed; the need for the
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first, base-load type of station follows from g,’((1—p)—) 2 essinf y* > 0. (We show
below that it then follows from Theorem 3.3 that g: is continuous at 1-p, and even
constant on an interval, from some 5' to some t*, that contains 1-p: see Figure 1.
The amounts of base-load and of peak types of station in the optimal plant mix are:

kT =yr(1-p) and k3 = esssup y® - k7, respectively (if rp > 0).) This is the case
we consider below. As a function of output, y, the long-run cost derived from the

production set Y is given by

(3.5) Cly) = Coly) + rp esssup y(t),
te[o,1]
and
[ 1-p
(3.6) Cow) = wy Jy (Wdt + wy jg,(t)dt.
0 0

where y, denotes the nondecreasing rearrangement of y, which is defined as the
nondecreasing function on [0, 1] with the same distribution (with respect to the
Lebesgue measure, mes) as that of y. (The generalization of Formula (3.6) to the case
of an arbitrary number of stations is derived by Horsley (1982) and is also given by -
Horsley and Wrobel (1986a).) The equilibrium price for electricity, p*, is a time-

profile of marginal cost, i.e., by Horsley and Wrobel (1990a, Remark 2.2), it belongs
to the subdifferential of C, which is equal to the sum of the subdifferentials of Co and

of rp esssup. Since Cp is a Mackey continuous function of y by Horsley and Wrobel
(1986b, Theorem; 1988b, p. 468), each of its subgradients has a density. In formal
terms, it follows that

£

(3:7) p* = p0% 4+ rpu®,

for some
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(3.8) p0* €dCoy®)cL10,1]

and some v* € L'[0, 1] with

1

(3.9) Iv’(t)dt = 1
0
and
(3.10) v*(t) =0 for (almost) every t e [0,1] with y*(t) < esssup T

(The description of those subgradients of esssup with a density is given by, e.g., loffe
and Tihomirov (1979, Section 4.5.1, on p. 219).) The existence of sucha v* implies
that y* has a peak plateau, illustrated in Figure 2. We next show that the continuity of

p*() in t implies that g’ has an off-peak plateau. Under rearrangement, this

plateau in y* corresponds to a plateau in g: that extends from some g‘ to some t*
and contains 1-p, i.e., with &’ < J-p<¢ t*. In the absence of such a plateau,

p%* would have to take the value w1 on aset of instants, t, of measure 1-p (which is
positive and less than 1), whereas at all other times p®* would have to take the

value wp, which is greater than wy. This follows from the description of ACo(y) given
by Horsley and Wrobel (1988b, Theorem 4 and Remark 5; 1989b, Proposition 4),
which is illustrated in Figure 3 (for the case of a nondecreasing output, y). As a resuit,
the function t - pO*(t) would be discontinuous (more precisely, it would have no
continuous equivalent modification). Then t - p*(t) would also be discontinuous
(since v™(t) >0 only at peak, when pO¥*(t) = w2), but by Theorem 3.3, this is not

the case.
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To see in detail how a gradual transition of the equilibrium price density,
pO*(t), from the fuel cost of one station to that of the other is made possible by the
presence of the off-peak plateau, note that, by Horsley and Wrobel (1988b, Theorem 4
and Remark 5; 1989b, Proposition 4), pQ € bCo(g') if and only if:

(i) wy < pO(t) s wp for (almost) every t on the off-peak plateau containing
1-p, i.e., for every t with y*(t)= g:(I—p), and the integral of pO(t) over the
plateau is equal to w(1-p- 5’) + wz(f‘ -(1-p)),

(i) pO(t) =w, for those t €[0,1] with y*(t) < y¥(1-p), and

(i) pO(t) = wy for those t € [0,1] with y*(t) > yT(1-p).

A time-continuous variant of marginal fuel cost, p® € dCo(y) is illustrated in Figure 4

(for the case of a nondecreasing output, y). This should be compared with Figure 3

which illustrates the no-plateau case.

The equilibrium price density, p*, is illustrated in Figure S. As shown above,
its existence implies that the equilibrium output, g'. has a peak plateau, and its

continuity implies that g‘ has an off-peak plateau. This is illustrated in Figure S.

Remark 3.6: The above analysis of electricity generation is set up in the long

run, but symmetry of costs also holds in the short run, i.e., in the case of an a priori

specified plant mix, (ky, ko). Hence, in a short-run equilibrium the price, pgp. is also
continuous. As before, assume wj < wp. At output levels lower than k; the marginal
fuel cost is w, and at output levels higher than k; the marginal fuel cost is wp. When
output level is equal to k{, a marginal short-run fuel cost can take any value between
wi and wp. This is illustrated in Figure 6. (Unlike the long-run case, in the short run
there is no additional restriction on the integral of a marginal fuel cost over the output
plateau at the level ky --if there is one —- since equipment prices are irrelevant in
the short run.) It follows from the continuity of pgR. that also the short-run

equilibrium output, US‘R' has an off-peak plateau at the level k; (on the assumptions
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that ky > O and at that some of the available capacity of the second type of station is

utilized, i.e., that ess sup Ugn > k).
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4. Extensions to Non-symmetric, Additively Separable Costs

A similar argument to that given in the Introduction (immediately before the
discussion of the the shifting-pattern problem for the two-station model of electricity
generation) shows that the price continuity result also holds if the production cost is a

convex integral functional, i.e., if

(4.1) Cly. @) = felyl®). & a)dk,

where c: R, XEXRE =R U (+e]). This cost function, C, may be non-symmetric in y,

since ¢ may depend on its second variable. The assumptions on ¢ are similar to the

assumptions on u, made in Section 3, namely:

(i) For each 2 and q, the function & - c(Q, &, q) is p-integrable on =;

(ii) For each & and q, the function 2 - c(®, £, ) is: lower semicontinuous,
convex and nondecreasing on R, and c(R,&,q)=0 for 2 < O. Note that we do not
assume that c is differentiable with respect to 2 (since the differentiability of up
suffices for our purpose), and we use the subdifferential as the concept of a generalized
derivative (so that, e.g., the case of the instantaneous short-run cost, c(2, t, w), of
Example 3.5, shown in Figure 6, is included);

(iii) For every 2 and every g, the correspondence £ - d,c(R, &, q), i.e., the
partial subdifferential of ¢ with respect to its first variable, considered as dependent
on the second variable of c, is bounded on =;

(iv) For every g, the correspondence (R, £) - d,c(R, &, g), is continuous in its

second variable uniformly over any compact range for the first variable.

The equilibrium price density, p‘. is continuous because, as before, an upward

(discontinuous) jump in p*(€) --as t varies —- would bring about a downward jump
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in the trajectory of each household’s demand, x:(E). and also in input demand (when it
is included in the model). On the supply side, however, in view of the continuity of the
marginal cost, dc, in &, an upward jump in price cannot bring about a downward
(discontinuous) jump in the trajectory of output, g'(E). so p* cannot be

discontinuous.

In Example 3.5, the short-run cost of electricity generation (i.e., the fuel cost
over the period, for given capacities of both types of station) has the additively
separable form, (4.1). It is also a symmetric function of y, since the integrand,
c(y(t), t, w) does not dependent directly on time, t. It follows that price continuity in
this example can be proved either by the method given in Section 3 for symmetric cost
(long-run or short-run), or by the method outlined above which is developed in detail
by Horsley and Wrobel (1990d). The latter method is for the short-run cost, but the
long-run case follows, since every long-run marginal cost is a short-run marginal cost

(i.e..,p € AC R(Y) implies p € ACgp(y), or, equivalently, p € dc(y(t)) for almost all

te[0,1)).

Remark 4.1: Every (Mackey lower semicontinuous) convex, symmetric function
can be represented as a supremum of symmetric functions of the form:
y - H,g,(t)e(t)dt + const., where e(:) is a nondecreasing function on [0, 1]: see
Luxemburg (1967, Formula 13.4). This form is that of the long-run electricity cost
function (with an infinite number of types of station, unless e(-) is a step function),
for which the equilibrium price continuity can be proved by arguing in terms of the
short-run cost, which is additively separable. By combining these facts it might be
possible to reduce the general case of symmetric costs to the case of addltively separable
costs. However, this way of reasoning would be a little akward, since the formula for the
subdifferential, at g'. of the supremum of a family of convex functions involves, in
general, points from an (arbitrarily small) neighbourhood of g' (and, also, it

requires the supremum in question to be continuous rather than only lower
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semicontinuous): see, e.g., Valadier (1969, Theorem 1). The method developed in
Sections 2 and 3, based on the inequality of Hardy, Littlewood and Polya, is simpler and

more direct.

Remark 4.2: The price continuity result also holds if households have (nonzero)
initial endowments of the differentiated commodity, provided that: (i) the total initial
endowment is a continuous function of &, and (ii) the marginal utility, Dyu,(2, §) is
jointly continuous in (R, §), for each h. In Jones's (1984, p. 524) one-consumer,
no-production example, the equilibrium price discontinuity is caused by the

discontinuity of the initial endowment.
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Appendix A: Symmetric Production Sets and Cost Functions

A subset, \7. of L=(Z, A, p) is said to be symmetric if it contains every
rearrangement of each of its elements, i.e., if it contains every function with the same
distribution (with respect to u) as a function that belongs to Y. In formal terms, two
(real-valued) functions, y and g, defined on some measure space, (Z, ¥, p), are said to
have the same distribution if p(y~'(8)) = p(G="(B)) for every Borel subset, B, of the
real line, in which case we write y ~ J. A set, \7. is called symmetric if, for every

yeY and for every y € L=(Z) the condition y ~ J implies that J€VY. Inthese terms,

the symmetry assumption, (a.1), means that for each a € RN, the section of Y by a,
viz., the set Y2 = (y € L=(Z)|(y, a) € Y), is symmetric. The key result about revenue
maximization on symmetric production sets can be stated in terms of the following

property of similar arrangment for functions.

Definition A1: For any y and p from L*=(Z, A, p), the functions y and p are

similarly arranged if for every pair, A and B, of sets from A, the condition
ess sup EeAg(E)( essinf te B5|(E) implies that ess sup EeAp(E)s essinf Eesp(E).

Remark A2: The above definition of similar arrangement is given by Day (1972,
p. 932). For the case of a nonatomic measure y, an equivalent condition for similarity
of arrangement is also given by Day (1972, Proposition 5.6). For any measurable
function, y, on Z, define the nondecreasing rearrangement, ys, of y as the
nondecreasing function on [0, 1] with the distribution, with respect to the Lebesgue
measure on [0, 1], equal to the distribution of y with respect to the measure Y. Since
U is nonatomic, there exists a measure-preserving mapping from = into [0, 1] such
that y =y, S: see Day (1973, Proposition (3.3)) or, for the case = = [0, 11, Ryff
(1965, Lemma 1). Any such mapping is called a pattern (or an arrangement) of y; the
set of all the arrangements of y is denoted by - In these terms, y and p are

similarly arranged if and only if 59 NS, *0, ie.,if the two functions have a pattern in
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common. This condition is used by Horsley and Wrobel (1988b, p. 469 ff.) to calculate
subdifferentials of symmetric functions and their extreme points (using results of Ryff

(1967) and of Horsley and Wrobel (1987a)).

Lemma A3: Assume that the measure p is nonatomic on (Z, A) and that Y isa
symmetric subset of L*=(Z, %, p). For every p € L'(Z, A, u) and for every y € v,

if {4, p) = sup({y,p)ly €V) then y and p are similarly arranged.

Proof: We first find a rearrangement of y that maximizes (-, p) over the set of
all rearrangements of y. To this purpose take any S € &, i.e., S Is a measure-
preserving mapping from (Z, A, u) into [0, 1] with p=p,+S. (Such a mapping
exists by a result of Ryff (1965, Lemma 1) and Day (1973, Proposition (3.3)), since
u is nonatomic.) Then y,*S € v by the symmetry of ¥, and, since y maximizes (-, p)

on Y,

(U p) 2 (Yr°S.p) = {Ys*S. py*S) = {up. py).

This, together with the inequality of Hardy, Littlewood and Polya (stated, e.g., by Day
(1972, Theorem S.1)), implies that (y, p) =(y,. ;). Hence, by Day’s
characterization of the case of equality in the inequality of Hardy, Littlewood and Polya,

it follows that y and p are similarly arranged. Q.E.D.

Remark A4: In the case of a p with atoms, the assertion of Lemma A3 is true
either if: = consists of atoms of equal measure (i.e., p is equal to the counting measure
on =,and L=(Z) is a finite-dimensional space), or if: the conditions y' is majorized

(in the sense of Hardy, Littlewood and Polya)by y and y € v together imply that
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y'€ Y. (The latter condition on Y s equivalent to symmetry of Yiry is convex and
is either a nonatomic or a counting measure, but in general it is stronger than

symmetry.)
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Appendix B: Upper and Lower Essential Limits

Assume that = is a topological space, and that p is a measure on a sigma-

algebra, A, of subsets of = that contains the Borel sigma-algebra.

Definition B1: The wpper essential limit of p at §g, denoted by B(Eo). is

defined as the infimum of all the essential suprema of p taken over neighbourhoods

of Eg. Formally,

(B.1) p(Eg) = inf{esssup p(E)IW € AJEp)),
EEW

where A(Eg) denotes the family of all neighbourhoods of §g. Similarly, define the

lower essential limit of p at §p by

(8.2) p(Eg) = sup(essinfp(E) I W € AlEq)).
= EEW

is upper semicontinuous;

is lower semicontinuous;

Lemma B2: (i) The extended real-valued function p
p

(ii) The extended real-valued function

If the topology of = has a countable base of open sets, then

(iii) p2p p-almost everywhere; and
(iv) psp u-almost everywhere.

Proof: To prove Part (i), take any §g € = and any number & > 0. By the

definition, (B.1), of p, there exists a neighbourhood, W, of o with

(8.3) esssup p(E) < p(Eg) + 6.
EEW
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Also by (B.1), p(E) < ess sup Eewp(E) for every & € W, and from this and from (B.3)
it follows that p(E) < p(§q) + 6. This shows that p is upper semicontinuous. To
prove Part (iii), take any number & > 0, and define G(8) = (£ € = Ip(E) 2 p(E) + 8).
For every & € G(8), there exists a neighbourhood, W, of £ such that u(G(E)AW)=0
(if there were no such W, then p(§) 2 p(E) + &, which is false). Furthermore, such a
neighbourhood can be chosen from the countable base of the topology. It follows that
there exists a countable covering of =, (Wq)gay, Such that p(6(8) n Wg) =0,

for each a=1,2, ... Hence u(G(6)) =0 for every & > 0, and it follows that

u((§ € = 1p(§) > p(E))) = 0. The proofs of Parts (ii) and (iv) are similar to those of

Parts (i) and (iii), respectively. Q.E.D.

Remark B3: (i) For the case of = equal to the real line, variants of Lemma B2
for one-sided (e.g., right) upper and lower essential limits are given by Dellacherie and
Meyer (1978, p. 106, Theorem IV.37).

(i) The upper essential limit as defined by (B.1), is a special case of the upper
limit concept in topology theory, since it is equal to the upper limit (at §g but
excluding the point Ey in passing to the limit) in the so-called essential topology on =
(on the assumption that no singleton has a positive measure). For the case of = equal to
the real line (with the Lebesgue measure), this is remarked by Dellacherie and Meyer
(1978, p. 105). A similar observation applies to the lower essential limit.

(iii) In view of Lemma B2, the functions p and p are also called “the upper

and lower essential envelopes” of p, respectively.
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Appendix C: Proofs

Proof of Theorem 3.3: Let (x:.m;)h_'? and (g', a*) be an equilibrium

allocation associated to (p*,a®). Then y* =Z, M x}. The proof is done in a number

of steps. In Step 1 we characterize the optimality of households' choices as the equality
of prices to marginal utilities. In Step 2 we show that the equilibrium price for the

differentiated commodity, p*, is bounded. The idea in Step 2 is that, on the demand side,

very high values of p*(E) would depress each household's demand, x‘;(E). so much so
as to contradict the similarity of arrangement between g' (which is equal to ):h_',‘ x: )

and p*, which holds by Lemma A3 and by the symmetry assumption, (a.1). In Step 3

we use the boundedness of p* to show that x} is bounded away from zero, for each h.

In Step 4, which is the main part of the proof, we formalize the argument that a
(discontinuous) jump in price results in a jump in demand, leading to dissimilarity of
arrangement between market demand and price. This cannot be the case in equilibrium,
since, the output, g'. is arranged similarly to the price, p’. (The result of Step 3 is

needed in Step 4 because a downward jump in demand cannot occur when demand is zero.)

Step 1 (Proportionality of prices to marginal utilities): Slater's condition holds

for each household's utility maximization problem, by Assumption (a.2), since q* 20

and q' » 0. Hence, for each h there exists a number, X\, such that

c.1 AP *(€) = Dyup(xh (E), E),

for p-almost every & € =. Also, A, > 0, by Assumption (a.7). (In equilibrium, also the

marginal utilities of the homogeneous commodities are proportional to their equilibrium

prices, qf. but this is not used.)
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Step 2 (The proof that p* is essentially bounded):

Since p' 2 0, it suffices to show that p' is bounded from above. Take a number 9> 0

with

(C.2) vEeZIy*E® 200

(Suchan Q exists, since y*(£)> 0 for (almost) every &, by (C.1) and by Assumption
(a.8).) By (C.2), take a number K < +eo such that the set defined by

(C.3) B =(eZly*®)29 p*E) <K

has a positive measure, i.e., u(B) > 0. Take any positive number, Q', with QH < Q. By

Assumption (a.5), take a number M' < +oo with

(C.4) Dyup(2,8) < M, forevery £ € =
Then
(c.5) xHE) < Q' forevery £ with p*(£)> M/,

(This is because the condition xf,(E) 2 @', together with (C.1), the concavity of up, and
(C.4), implies that Ap*(£) < M.) We now show that that p¥ is essentially bounded

from above by the number
(C.6) M" = max (K, M'/min Ap).
h

Define

(C.7) A = €eZIp*E&)> M/min Ap).
h
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From (C5) it follows that

(C.8) g'(E) = Zh=’|‘ x'h(E) < QH < @, forevery £ € A.

By (C.8) and (C.3), ess sup . QY (®) < @ < essinf *(%). Also by (C.3), since

te BY
u(B) > 0, one has ess inf te Bp"(i)s esssup Bp'(E)sK. Since y* and p* are

similarly arranged, it follows (Definition A1) that ess sup te Ap"(E) < K, which

means, by (C.6) and (C.7), that p* is u-almost everywhere bounded above by M".

Step 3 (The proof that xf‘ is bounded away from zero, for each h):
By Step 2 and Assumption (a.8), take a positive number, 9, with
(C.9) Dyup(®n, E) > A, ess sup p*¥,
for every £ € =. Then
xf,(E) > O,

for y-almost every § € =. This is because the condition xf,(E) < %, the concavity

of up, and (C.9), together imply that

D]Uh(X;(E),E) : Dyup(g,, ) > )\hp'(E),

which condradicts (C.1).
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Step 4 (The proof that the lower and the upper essential limits of p' are equal,
i.e..that p*(£) = B*(§) for every &)

Assume the contrary, and take a number & > 0 with

(C.10) p¥(E0) - p*(Ep) > 6,

for some Eg € Z. By Step 3, essinfx | > 0, and it follows that there exists a
0 h

neighbourhood, W, of §q such that for each h and for every pair, & and &', of points

from W, and for every pair, 2 and 0, with essinfxp < 0 < 0 < esssupx} one has

1) Dqun(2, &) < Dyup(R, ) < Dyup(R, &) + 8.

(The first inequality in (C.11) follows from the concavity of up inits first variable,
and the second inequality in (C.11) follows from the continuity of Djup in its second

variable, uniformly over any compact range for the first variable.) By (C.10),

- Ed
¢C.12) esSSUP ¢ o\ P (E)—essinfzewp (E) > 8.

It follows directly from (C.12) that there exists a pair, A and A’, of measurable subsets

of W with u(A)> 0, u(A") > 0, and

: » »
(- 13) essmeEA.p (E)—esssupieAp (§) > 8.

From (C.13) and (C.1), for each h and for p-almost all £ € A and &' € A,

(C.14) Dyun(xh (€, € > Dyup(xp(E), £) + M5,
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so, by (C.11),
X (€0) < xp(E).
Since y* =2 x}. it follows that

(C.15) esssupgeAg'(E) > essinfEeA.g'(E).

Since p* and y* are similarly arranged, Formulae (C.13) and (C.15) are
contradictory. This proves that ;_)‘(Eo) and p*(§g) are equal, and, by Lemma B2,
their common value is a continuous function of g, equal to p*(Eq) for almost every

Ep € E. Q.E.D.
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Figure 1: The nondecreasing rearrangement, g". of the long-run equilibrium

output of electricity, g', illustrated in Figure 2 (Example 3.5).
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Figure 2: The long-run equilibrium output of electricity, y* (Example 3.5).

With a two-station technology, there are output plateaux both at peak and, offpeak, at the

output level equal to the capacity of the base-load station, kT.
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Figure 3. In the absence of a plateau containing the point 1-p, the long-run
marginal fuel cost (shown here for the case of a nondecreasing output), is unique and

discontinuous.
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Figure 4: A continuous variant of marginal fuel cost that exists in the presence
of a plateau (shown here for the case of a nondecreasing output, and extending from t to

t). The dotted areais equal to (w2—w1)(f -(1-p)).
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Figure S: The long-run equilibrium price of electricity is continuous (Example
3.5). With a two-station technology, the dotted area is equal to (wo-w; Xt* -(1-

p)), and the hatched area is equal to rp (cf. Figure 1).
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Figure 6: A short-run marginal fuel cost, py, of a plant mix, (kq,kp), at the

output level equal to the total capacity, k1, of the base-load type of station.
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FOOTNOTES
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1. Richard also shows that the uniform properness assumption for production sets can be
simplified and weakened if L is a topological vector lattice. However, for L = L* with the
Mackey topology, T = t(L™, L!), which is a topological lattice, Richard's (1989) theorem yields a
weeker result than the result of Horsley and Wrobel (1989s, 1990a) combined with Bewley's
(1972, Theorem 1) existence result for prices in the norm-dual, L**: in addition o the fact that
not all Mackey-continuous preferences are uniformly proper, the Mackey uniform properness of
production sets is a stronger assumption than the Elimination Property of Horsley and Wrobel

(for example, in the case of a firm using the time-differentiated commodity as an input, it is
stronger than the Mackey lower semieonl.inuilg assumption on the firm's production function).
Also, by using the Yosida- Hewitt decomposition, one proves that the density part of any
equilibrium price is itself an equilibrium price supporting the same allocation, and, as Horsley
and Wrobel (198%a, 1990a) point ot..ut, in many cases of interest it follows that every

equilibrium price is in L1, which cannot be deduced from Richard's general result.

2. Since little appears to be known about t(M, C) -- see the remarks of Hoffmann-Jorgensen

(1972, p. 132) - - this seems to be an open question.
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