
Learning, Experimentation, and Long-Run

Behavior in Games�

Andreas Blume

Department of Economics

University of Iowa

November 8, 1994

Abstract

This paper investigates a class of population-learning dynamics. In every pe-

riod agents either adopt a best reply to the current distribution of actual play, or a

best reply to a sample, taken with replacement, from the distribution of intended

play (the strategies adopted at the end of last period), or they are inactive. If sam-

pling with replacement and being inactive have strictly positive probability, these

dynamics converge globally to minimal curb sets in the absence of mistakes. For

two-player i� j-games, i; j � 3; the same result holds even if only best respond-

ing to actual play and being inactive have positive probability. If players make

mistakes in the implementation of their strategies, these dynamics select among

minimal curb sets.
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1 Introduction

This paper characterizes the long-run outcomes of a class of learning dynamics in games.

The characterization is in terms of properties of subsets of the space of strategy pro�les

of the underlying games. Young [1993] has shown that under some conditions on players'

memory and the completeness of their information, adaptive play converges almost surely

to a pure strategy equilibrium, provided the game satis�es an acyclicity requirement.

The present paper is in the same spirit. It looks at a di�erent dynamic and, more

importantly, it drops the acyclicity condition. Without this condition, the question

arises which objects can take the place of the pure strategy Nash equilibria. In general,

one suspects that this will depend on details of the dynamic. This paper argues that

there are interesting classes of dynamics whose long-run outcomes can be characterized

in terms of curb (closed under rational behavior) sets.

A product set of strategies is closed under inclusion of best replies if it contains all

best responses to independent beliefs supported on itself. Basu and Weibull [1991] who

�rst examined the properties of such sets, refer to them as closed under rational behavior

(curb). Curb sets which do not properly contain another curb set are referred to as

minimal curb sets. In generic normal form games these coincide with persistent sets (the

extreme points of persistent retracts), Kalai and Samet [1984], Balkenborg [1992]. While

the set of rationalizable strategies, Bernheim [1984] and Pearce [1984], is a maximal �xed

point under the best reply mapping, a minimal curb set is a minimal �xed point under

this mapping.

Curb sets have a number of attractive features. They share with strict equilibria the

property that they contain all best replies against themselves. Every curb set contains the

support of a Nash equilibrium; such equilibria are referred to as curb equilibria. Blume

[1994] shows that in games with one-sided pre-play communication, the minimal curb

condition selects the communicating player's favorite equilibrium if it is not too risky.

Hurkens [1993] demonstrates that in pre-play communication games where messages are

made distinct via nominal message costs, all minimal curb equilibria are e�cient for the

communicating players, if the underlying game has a strict equilibrium which gives the
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communicating players their most preferred payo�.

Like strict equilibria, curb sets will be locally stable under a large class of plausible

dynamic adjustment rules. The question I want to pose in this paper is whether it is

possible to provide a �rmer dynamic foundation for minimal curb sets. This requires

that one address two issues. Are there dynamics which converge globally to minimal

curb sets? Are there dynamics which select among minimal curb sets?

Hurkens [1994] provides one answer to the �rst question. He examines a dynamic in

the spirit of Young [1993] which converges almost surely to a minimal curb set from any

initial condition. In his dynamic, only one pair of agents plays in any given time period.

Each of them takes a possibly incomplete sample from �nite length histories of past play

and best responds to some distribution over the sample. The fact that only the support

of the sample matters, guarantees that every belief over strategies in the current state

is possible. Therefore the dynamic will eventually leave any set of strategies that is not

curb. Finite length histories guarantee that once the process has spent su�cient time

in a minimal curb set it cannot exit the minimal curb set anymore. Hurkens shows that

his dynamic converges globally to minimal curb sets, almost surely. He then goes on

to ask whether adding mutations to his dynamic yields selection among minimal curb

sets. This is not the case because as soon as a mistake enters the current state, it is

possible that the active players attribute any probability to the corresponding strategy.

Therefore one mistake is su�cient to upset any minimal curb set in Hurkens' framework.

I want to propose a di�erent dynamic. I consider large populations of agents. All

agents play in every period; when they play, they use the strategies they had adopted at

the end of last period, unless they are experimenting. If they are experimenting, they

randomize, choosing each of their available strategies with strictly positive probability.

Agents di�er in how they process information. In each period every agent either best

responds, or gathers information or is inactive. Best responding agents learn the true

current distribution of play from playing against the entire population. Agents who

gather information sample (with replacement) from the distribution of strategies agents

had adopted at the end of last period. Either of these active agent groups adopt a
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best reply against their information.1 Inactive agents carry over the strategy they had

adopted at the end of last period into the next period. Because play partners are

identi�able, the information available to best responders is modelled as coming from

sampling without replacement and for simplicity as learning the true distribution of

play, whereas information gathering is potentially indirect and therefore modelled as

sampling with replacement.

I derive two main results; one under the condition that the mistake probability is

zero and one for positive but small mistake probabilities. Without mistakes the dynamic

converges to minimal curb sets regardless of the initial condition. With mistakes the

dynamic selects among minimal curb sets. For two-player games with two exhaustive

minimal curb sets, I characterize the condition for selection of one of the minimal curb

sets; this condition reduces to Harsanyi-Selten risk dominance in 2�2 games. Intuitively,

the two sets of states where the populations play entirely according to one of the two

minimal curb sets (minimal curb states sets) are exceptional. The dynamic can leave

these sets of states only if su�ciently many mistakes occur simultaneously. Any other

state, outside of these sets, belongs to the basins of attraction of both minimal curb state

sets. Thus all that matters is how many mistakes it takes to upset either one of the two

minimal curb state sets.

I also investigate to what extent we need sampling with replacement or as in Hurkens

[1994] a direct assumption that every distribution which is supported on the current state

has positive probability. I show that we may be able to do without such assumptions.

At least in two-player i� j-games with i; j � 3 a simple best-reply rule where agents are

either inactive or move to one of their best replies, converges globally to minimal curb

sets almost surely.

Besides the problem of �nding dynamics which lead to and select among minimal

curb sets in a game, there is the dual problem of when it is possible to �nd simple char-

acterizations of stable sets of a dynamic in terms of the game. For a Markov process

with stationary transition probabilities the stable sets are the recurrent communication

1For technical reasons I will have to work with almost best replies or restrict the analysis to a generic

class of games.
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classes of the process. As Young [1993] has shown, one can select among the recurrent

communication classes by considering limits of perturbed processes as the perturbation

vanishes. The limiting distribution will have its support concentrated on the commu-

nication classes with the least stochastic potential. In general, it will be di�cult to

characterize these communication classes in terms of the underlying game. The present

paper proposes a class of dynamics for which such a characterization is possible; for these

dynamics the recurrent communication classes of the unperturbed dynamic correspond

to the minimal curb sets of the underlying game. The correspondence is as follows: for

a given recurrent communication class there is exactly one minimal curb set such that

each state has support only on this minimal curb set; conversely, given any minimal

curb set, every state with support on this minimal curb set belongs to one and the same

recurrent communication class. Furthermore, for a non-trivial class of games one can de-

rive su�cient conditions for the selection of a particular minimal curb set via perturbed

dynamics. Interestingly, it turns out, that the payo�s in the equilibria belonging to the

minimal curb sets play a secondary role as far as selection is concerned. Suppose one

starts with a strict equilibrium that is selected by the perturbed dynamic. If one then

replaces this equilibrium with a game that is a minimal curb set in the newly formed

game and has a unique equilibrium with the same payo�s as the original equilibrium,

this minimal curb set need not be selected by the perturbed dynamic.

The paper is organized as follows. The next section describes the model. Section 3

introduces the dynamic without mutations and derives the global convergence to min-

imal curb sets. Section 4 introduces mistakes in the implementation of strategies and

demonstrates that the dynamic selects among exhaustive minimal curb sets in two-player

games. Section 5 concludes.

2 The Setup

Consider a �nite set of populations P with typical element p 2 P: Denote the size of

population p by Np: Each population corresponds to one of the players in the game

G = fS; ug: Sp is the �nite set of pure strategies available to a type p player; assume
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that Np > #(Sp); the cardinality of player p's strategy space. S := �p2PSp with typical

element s 2 S; and up is a type p player's utility function; up : S ! <: Let �p denote a

type p player's set of mixed strategies, and � := �p2P�p: A typical element of � will be

denoted by �: If we exclude the pth element from �; the resulting vector will be written

as ��p: up extends to � in the usual way.

For any �nite set X; let �(X) stand for the set of probability distributions over

X: Let BRp(�) denote player p's pure best reply correspondence, and de�ne BR(�) :=

�p2PBRp(��p): I will also use the natural extension of BR(�) to sets of strategies as

arguments.

Basu and Weibull [1991] introduced the notion of curb (closed under rational behavior)

sets. A product set of strategies Q = �p2PQp; Qp � Sp; is closed under inclusion of best

replies (curb) if each Qp is nonempty and

BR(�p2P�(Qp)) � Q:

If a curb sets does not properly contain another curb set, it is called minimal. The strate-

gies which form a minimal curb set are called curb strategies, and equilibria belonging

to minimal curb sets are curb equilibria.

Blume [1994] and Hurkens [1993] show that the curb equilibrium requirement selects

e�cient outcomes in games with pre-play communication. Blume considers games with

costless messages; Hurkens analyzes the case of nominal message costs. Consider the two

games below. Both games have two minimal curb sets corresponding to the two strict

Nash equilibria (U;L) and (D;R):

U

D

L R

3,3 0,0

0,0 1,1

G1

U

D

L R

9,9 0,8

8,0 7,7

G2

If we allow player one to send one of two messages m1 or m2 before playing the game,

the reduced normal forms corresponding to the G1 and G2 are.
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(m1; U)

(m1;D)

(m2; U)

(m2;D)

LL LR RL RR

3,3 3,3 0,0 0,0

0,0 0,0 1,1 1,1

3,3 0,0 3,3 0,0

0,0 1,1 0,0 1,1

�1

(m1; U)

(m1;D)

(m2; U)

(m2;D)

LL LR RL RR

9,9 9,9 0,8 0,8

8,0 8,0 7,7 7,7

9,9 0,8 9,9 0,8

8,0 7,7 8,0 7,7

�2

If messages are costless, then Blume [1994] shows that all curb equilibria in �1 support

the e�cient payo� pair (3; 3): This result generalizes provided a condition that trades

o� the risk of the e�cient equilibrium in the underlying against the size of the message

space is satis�ed. In �2 which is based on G2; all equilibria are curb equilibria because

there is a tension between risk dominance and Pareto dominance in the underlying

game. If messages carry a nominal cost which distinguishes them, these results can

be strengthened considerably. Hurkens [1993] shows that with nominal message costs,

0 � m1 < m2; f(m1;U )g�fLL;LRg is the unique minimal curb set in both of the above

communication games. He shows that this result generalizes to n-player games in which

a subset of the player set can send a message.

3 Dynamics

In this section I describe the learning dynamic, and characterize its long-run outcomes

in the absence of experimentation. I will show that the process converges almost surely

to a curb set, regardless of the initial population state. In the following section I will

examine this process further under the condition that the experimentation probability

is di�erent from zero.

The state of population p at time t is given by the vector !p;t = fsitgi2p: The state of

the dynamic system at time t is given by !t = f!p;tgp2P : In period t state !t�1 is replaced

by !t according to the following rule. Agent i enters period t with pure strategy si;t�1:
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Every agent in p plays against all agents in Pnp:When she plays in period t, an agent uses

strategy si;t�1; unless she experiments (or makes a mistake). Each agent experiments

with probability � � 0; in that case she chooses each of her pure strategies with strictly

positive probability. There are three di�erent ways in which agents process information

in period t and thereby generate the new state st: With probability �1 an agent adopts

a best reply against the current distribution of actual play in period t; with probability

�2 she gathers information about the strategies that were adopted last period, and with

probability �3 = 1��1��2 she is inactive in period t: Subsequently I will refer to agents

in these various roles as, best responding, information gathering and inactive players.

A best responding agent meets all agents from populations she does not belong to and

learns the true distribution of current play (including mistakes) in the current period in

those populations; she then adopts a best reply against this distribution. An information

gathering agent takes a sample (with replacement) from the strategies that were adopted

in period t � 1 (the intended play of period t); she then adopts an �-best reply against

uncorrelated beliefs based on this sample. An agent who is inactive in period t passes

through that period without changing her strategy.

Play with mistakes in period t generates a temporary state ~!t to which best responding

players best respond at the end of period t. Note that for each agent i 2 p each partial

temporary state ~!�p;t naturally can be identi�ed with an uncorrelated belief ��p =

�1�� � ���p�1��p+1�� � ���#(P ) for agent i 2 p over S�p := �q 6=pSq; which itself can be

identi�ed with an element of ��p = �q 6=p�q: This belief is based on the observed relative

frequencies of strategies in the populations not including i: With this identi�cation of

states and beliefs we can say that a best responding agent i 2 p adopts a pure strategy

in BRi(~!�p): For the remainder of this section I will set the experimentation probability

to zero; I return to the case of � > 0 in the next section.

Denote the period t sample from population p obtained by an information gathering

agent i =2 p by Xipt: Agent i's entire period t sample is then Xit := fXiptgp2P;p63i Like

states, samples give rise to uncorrelated beliefs. Therefore it makes sense to consider

BR�
i(Xit); the set of agent i's pure �-best replies against uncorrelated beliefs based on
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the sample Xit: An information gathering agent i adopts one of these �-best replies;2 in

case of indi�erence, she randomize, putting strictly positive probability on each of the

strategies in BR�
i(Xit): Let sample sizes be time invariant and denote the size of player

i's sample from population p; i 62 p; by Nip:

The dynamic process described here is a Markov chain with stationary transition

probabilities on the state space, denoted by 
: The �rst objective of this paper is to

characterize the recurrent communication classes of this Markov chain. The recurrent

communication classes are subsets of 
 such that (i) from every state there is a �nite

length sequence of positive probability transitions to at least one of these classes, (ii)

within each class every state can be reached from every other state via a �nite length

sequence of positive probability transitions, and (iii) no state outside one of the classes

can be reached from a state inside through a positive probability transition. Since

(minimal) curb sets will �gure prominently in this characterization, de�ne a set of states

supported entirely on one (minimal) curb set, and including all such states as a (minimal-

)curb-state set.

Let

	(�) := f� 2 �jsupp(�i) � �ig 8� � S:

For any subset � of the set of pure strategy pro�les, this is the set of all mixed strategy

pro�les or equivalently uncorrelated beliefs with support in �: For any such � one can

de�ne the set

V (�) := � [ BR(	(�)) 8� � S

consisting of the union of � and all best replies against uncorrelated beliefs concentrated

on �: Let V t denote the t-fold iteration of V: It is easily seen that, starting with a set �

2I use �-best replies because the sampling process only allows one to approximate the set of possible

beliefs over a given support of strategies. Alternatively one could proceed like Hurkens and argue directly

in terms of supports; i.e. one could simply postulate an updating rule in which players can move to any

strategy which is a best reply to some beliefs over a given support. Also, in a generic class of games,

we can replace �-best replies by best replies in our dynamic. The generic property to look for is that

any strategy that is a weak best reply to some beliefs concentrated on support Q; is a strict best reply

against some beliefs concentrated on Q as well.
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one reaches a �xed point of V by iterating V su�ciently often.

Lemma 1 8� � S; 9T : (8t > T; V t+1(�) = V t(�)):

Proof: V : 2S ! 2S is monotonic and 2S is �nite. 2

We next need notation to describe the �xed point that is reached if one starts the

iteration with the support �(�) of a strategy pro�le �:

Let

�(�) := fs 2 Sjsi 2 supp(�i)g
t(�) := minft 2 NjV t+1(�(�)) = V t(�(�))g
W (�) := V t(�)(�(�))

t(�) is the minimal number of periods needed before one reaches the �xed point from

�(�); and W (�) is the �xed point reached from �.

Lemma 2 W (�) contains a minimal curb set for all � 2 �:

Proof: W (�) is closed under inclusion of best replies. 2

The set of states 
 can be identi�ed with a �nite subset of the set of mixed strategies.

The dynamics can be described by a transition probability �(�j�) such that 8 �; � 2 
;

�(� j�) denotes the probability that the system will be in state � in period t + 1; if

in period t it is in state �: � depends on population sizes, sample sizes and �: Let

N := ffNpgp2P ; fNipgp2P;i=2pgg: Let ��;N be the transition probability as a function of �

and N :

The set 
 does not contain states corresponding to every belief. Therefore it is possible

that our dynamic with best replies, instead of �-best replies, does not leave a given set

of states even though that set is not a curb-state set. The following game provides an

example
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t1 t2 t3

s1

s2

s3

1,1 1,0 0,b

1,0 1,a 0,b

0,0 0,0 .1,.1

where a =
p
2; and b =

p
2

1+
p
2
:

In this game only the strict equilibrium (s3; t3) forms a minimal curb set. However

the product set fs1; s2g � ft1; t2g is closed under inclusion of best replies against beliefs

for which each probability must be a rational number. Only if the column player puts

probability b on the �rst strategy of her opponent is her third strategy a best reply

against beliefs concentrated on the �rst two strategies of her opponent.

On the other hand, with su�ciently large sample sizes any belief can be approximated

arbitrarily closely. Therefore, with �-best replies there is a chance that our dynamic

eventually leaves every set that is not a curb-state set.3 This motivates the next lemma

which says that every best reply to a given belief is an �-best reply to an open neigh-

borhood of that belief. Thus, if we can approximate beliefs arbitrarily closely, the set

of best replies to any product set of strategies is a subset of the set of �-best replies to

the �nite approximation of the same set, provided the approximation is su�ciently close.

Lemma 3 8� > 0; 8� 2 �; 8si 2 BRi(�);9� > 0 : j~� � �j < � ) si 2 BR�
i(~�):

Proof: Suppose not, and let si 2 BRi(�): Then there exists ~�n ! �; ti(~�n) 2 Si such

that

ui(ti(~�n); ~�n) > ui(si; ~�n) + � 8n:

Compactness of the strategy space and continuity of u imply that there exists a ti 2 Si

such that

ui(ti; �) � ui(si; �) + �;

3In a generic class of games this problem does not arise.
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which contradicts si 2 BRi(�): 2

For any given � 2 
 � �; ��;N induces a probability distribution over the set 2S of

supports. This is the probability that next period's state will have a certain support

given that the current state is �: Let the probability of support � 2 2S given the current

state is � be denoted P�; �N(�j�); given the transition probability ��;N (�j�): Let P t
�;N (�j�)

denote the probability of support � after t periods if the initial state is �: In particular

P 1
�;N (�j�) = P�;N (�j�): Let Nmin := minfNipgi2I;p2P :
A central characteristic of our learning rule is that from any state � there is positive

probability that next period's state will have support V (�(�)): Iterating this argument,

one may conclude that from any � there is positive probability that after a �nite number

of periods the state has a support which is a �xed point of V (�): This is the content of
the following lemma.

Lemma 4 If �2; �3 > 0; then 8� > 0; 9 �N;T : Nmin > �N )
P T
�;N (W (�)j�) > 0; 8� 2 
:

Proof: Let 
(�) be the set of possible samples with replacement, given the current state

�:: Given the identi�cation of samples with beliefs, 
(�) is a �nite approximation of

	(�(�)): Furthermore, 
(�) converges to 	(�(�)) in the Hausdor� sense as Nmin !1:

Let BRi(	(�(�))) be the (�nite) set of (pure) best replies by agent i to the beliefs

concentrated on �(�): For every i; 8si 2 BRi(	(�(�))); choose � (si) 2 	(�(�)) such

that si 2 BRi(� (si)): Note that for every � > 0; 9N� : Nmin > N� ) 8�;8i;8si 2
BRi(	(�(�)));9~� (si) 2 
(�) such that j� (si) � ~� (si)j < �: To see this note that there

are �nitely many i; �nitely many combinations of �(�) and si 2 BRi(	(�(�))); and

that each single � (si) can be approximated by a belief in 
(�):

By Lemma 3 8�; 8� (si);9� > 0 : j� (si) � � j < � ) si 2 BR�
i(� ): Since there

are �nitely many such � (si) to consider across all individuals and all supports, we can

interchange quanti�ers to obtain 8�; 9� : 8i;8� (si); j� (si)� � j < �) si 2 BR�
i(� ):

Combining the last two observations, we may conclude that: 8� > 0; 9 �N : Nmin >

�N ) 8�;8i;8si 2 BRi(	(�(�))); 9~� (si) 2 
(�) such that si 2 BR�
i(~� (si)): Since all
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samples from 
(�(t)) have positive probability, each si 2 BRi(	(�(�(t)))) has positive

probability of being in the support of �(t + 1); because �3 > 0; any si 2 �(�(t)); also

has positive probability of being in the support of �(t+ 1):

Since Np > #(Sp); with positive probability all the strategies in V (�(�(t))) are

present in the population in period t + 1. Therefore, 8� > 0;9 �N : Nmin > �N )
P�;N (V (�(�))j�) > 0; 8� 2 
: The conclusion follows by applying this last observation

repeatedly and combining it with Lemma 1. 2

According to the lemma there exists an upper bound on the minimal number of posi-

tive probability transitions it takes from any initial state to reach a state which \covers"

a curb set. At that point there exists a positive probability transition into a minimal

curb set.

Corollary 1 If �2; �3 > 0; then 8� > 0; 9 �N; T 0 such that for Nmin > �N; from any

initial state � 2 
; the system moves into a minimal-curb-state set after no more than

T 0 iterations with positive probability.

Proof: From the proposition, after T steps the system reaches a state whose support

\includes" a minimal curb set. There is positive probability that in the next round all

agents are active and draw samples from the curb set. Let T 0 = T + 1: 2

The following lemma veri�es that if, for a given game, � is chosen su�ciently small,

then the learning dynamic cannot exit a minimal-curb-state curb set once it has entered

it.

Lemma 5 9�� > 0 : 80 < � < ��; if �(t) is an element of a curb-state set �; then

supp(�(t+ k)) � �; 8k � 0

Proof: If si 62 BRi(�); then there exists ��(si) > 0 such that 80 < � < ��(si); si 62
BR�

i(�): Consider �� := minf��(si)ji 2 I; si 62 BRi(�);� � Sg: 2

We are now ready to state the main result of this section. If players use almost best

replies and sample sizes are su�ciently large, then regardless of the initial conditions,
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the learning process will eventually end up in one of the minimal-curb-state sets.

Proposition 1 If �2; �3 > 0; then, 9�� > 0; such that 80 < � < ��; 9 �N such that for

Nmin > �N; and for any initial state � 2 
; the learning process converges almost surely

to a minimal-curb-state set.

Proof: For a given � let Nmin and T 0 be given as in Corollary 1 such that

P�;N (�(t+ T 0) 2 minimal-curb-state setj�(t) = �) � � > 0 8� 2 
:

Then

P�;N (�(t+ kT 0) 62 minimal-curb-state setj�(t) = �) � (1 � �)k:

Thus the probability that the system does not converge to a minimal-curb-state set

equals

lim
k!1

(1 � �)k = 0:

2

Not only does the learning dynamic converge globally almost surely to one of the

minimal-curb-state sets. Inside such sets every state is reached from every other state

via a �nite length sequence of positive probability transitions. This follows from lemma

4. Therefore we have the following corollary:

Corollary 2 If �2; �3 > 0; then, 9�� > 0; such that 80 < � < ��; 9 �N such that for

Nmin > �N; the minimal-curb-state sets are the recurrent communication classes of the

learning dynamic.

3.1 A Simple Best-Reply Rule

In some interesting classes of games one obtains convergence to minimal-curb-state sets

from a simple best-reply rule.4 Consider a dynamic in which agents are either inactive,

4Again, in general we have to consider �- best replies, and large populations. I will largely ignore

these details as it is easy for the reader to �ll them in where needed.
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with probability 1� �; or move to a best reply, with probability �; 0 < � < 1: One can

easily check that this process converges almost surely to the unique minimal-curb-state

set in the pre-play communication game with reduced normal form �1: In this case there

is no need to introduce sampling with replacement to generate a rich enough set of beliefs

out of the current state.

It is easy to see that this observation generalizes for this class of communication

games. However, it is not clear how far one can extend it beyond this class. In this

subsection I will show that the observation is valid for all two-player i � j-games with

i; j � 3: In this class of games it is su�cient that some agents move to a best reply while

others don't to generate beliefs which will induce exit from any product set, that does

not contain a minimal curb set.

For technical reasons I will again replace best replies in the dynamic by �-best replies

and refer to the \�-best-reply rule." In the proofs I will argue in terms of best replies.

This su�ces for generic games; the arguments for general games in terms of �-best replies

are analogous to the ones made above and therefore omitted. There are two populations,

p=1,2.

Proposition 2 Let G be any i � j-game with i; j � 3: Then, for all 0 < � < 1; there

exists ��; such that for all 0 < � < �� there exists �N such that Np > �N implies that under

the �-best-reply rule the process will almost surely converge to a minimal-curb-state set.

Proof: Note that from any state there is positive probability that in one step the process

moves to a state such that within each population all agents use the same strategy. If

one of these strategies is a minimal curb strategy, we are done, because there is positive

probability that only the other population moves and that within that population every

agent moves to a best reply. Therefore continue under the assumption that we start with

a state in which every member of a population uses the same strategy which is not a

minimal curb strategy.

Since this initial state (s1; t1) is not curb, the dynamic process exits this state with

positive probability, and moves to a state in which one population is concentrated on
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one and the other is concentrated on two strategies; e.g., the new state is supported

on fs1; s2g � ft1g: If s2 is a curb strategy we are done because (s2; t1) was one of the

states reached with positive probability from (s1; t1): Otherwise, fs1; s2g � ft1g is not

curb, which means that either s3 is a best reply to t1; in which case we are done because

there are only three strategies and one of them has to be curb, or there exist beliefs

concentrated on fs1; s2g such that the column player has a best reply which is not t1;

without loss of generality let it be t2: If t3 is also a best reply to some beliefs on fs1; s2g

we are done because either t2 or t3 would have to be a curb strategy. Suppose not,

i.e. let t2 be the only best reply and let it not be a curb strategy. Note that from

the initial state (s1; t1) (almost) every distribution over the two strategies s1 and s2 has

positive probability. Therefore, with positive probability we move to a state supported

on fs1; s2g � ft1; t2g: In particular, for (almost) every distribution over ft1; t2g; there is

a corresponding state which can be reached with positive probability.

None of the strategies s1; s2; t1; and t2 is a curb strategy. And since there is no belief

over fs1; s2g to which t3 is a best reply, it must be the case that s3 is a best reply to some

beliefs over ft1; t2g: Suppose we are at a positive probability state where the distribution

over ft1; t2g is such that s3 is a best reply. At that point there is positive probability

that the entire row population moves to s3 which from the foregoing must be a curb

strategy. 2

There is still the question of whether it is possible that the dynamics may end up

being con�ned to a subset of a minimal-curb-state set. Ideally we would want to show

that the recurrent communication classes of the �-best reply dynamic coincide with the

minimal-curb-state sets. I will prove a somewhat weaker result.

Proposition 3 Let G be any two-player i�j-game with i; j � 3. Then, for all 0 < � < 1;

there exists ��; such that for all 0 < � < �� there exists �N such that for Np > �N the following

holds: For every minimal curb set Q = Q1�Q2 of G; every q 2 Qi; and every recurrent

communication class C supported on Q; there is at least one state in C in which q has

positive weight.
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Proof: Obvious for 1� j; j = 1; 2; 3; minimal curb sets.

What about 2�2? Consider a minimal curb set of the form fs1; s2g�ft1; t2g:Without

loss of generality we can start with a pure strategy combination, say (s1; t1): Also wlog

s2 is a best reply, and there exists a belief, �; over fs1; s2g to which t2 is a best reply.

The result for 2 � 2 minimal curb sets follows because we can move any fraction of the

population to a best reply.

Next consider minimal curb sets of the form fs1; s2g � ft1; t2; t3g: Without loss of

generality we can start the process at (s1; t1): Then either s2; or t2; or t3 is a best reply.

Suppose �rst that s2 is a best reply to t1. Then the dynamic can generate all possible

beliefs of the column player over fs1; s2g. Since we are dealing with a minimal curb set,

there must exist beliefs �2 and �3 concentrated on this set such that tj 2 BR(�j); j = 2; 3:

Now suppose instead that s2 is not a best reply to t1: Then, if t2 and t3 are both best

replies to s1; the dynamic can generate all distributions over ft1; t2; t3g and there will be

at least one distribution over these three strategies which makes s2 a best reply.

It remains to consider the case where only t2 is a best reply to s1: In that case s2

must be a best reply to t2; for otherwise fs1g � ft1; t2g would form a minimal curb set.

This is analogous to the case where s2 was a best reply to t1:

Next consider minimal curb sets of the form fs1; s2; s3g�ft1; t2; t3g: As before, wlog,

we can start the dynamic out at a state corresponding to the pure strategy combination

(s1; t1): Also, wlog, s2 is a best reply to t1, which means that we can move to any belief

concentrated on fs1; s2g:

If s3 is a best reply as well, we are done because we can move to any mixture over

fs1; s2; s3g and there is at least one such mixture for each t2 and t3 which makes them

best replies.

Therefore suppose that s3 is not a best reply to t1: If there are beliefs �2 and �3 over

fs1; s2g such that tj 2 BR(�j); j = 2; 3; we can generate all beliefs over ft1; t2; t3g in

the following way. First move to a state supported on fs1; s2g � ft1g corresponding to

the belief �j; j = 2; 3 with the least weight on s2; say �2: Then, simultaneously move

the row population to �3 and the desired fraction of the column population to t2: In the

next step move the desired fraction of the column population to t3: Again we are done
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because we have been able to generate all possible beliefs over ft1; t2; t3g

Suppose next that only for t2 there is a belief �2 supported on fs1; s2g�ft1g such that

t2 2 BR(�2): Then s3 must be a best reply to some beliefs over ft1; t2g: By an argument

analogous to the one just given it follows that we can generate all beliefs over fs2; s3g:

If there is such a belief such that t3 is a best reply, we are done. Otherwise, s1 must

be a best reply to some beliefs concentrated on t1; t2: Note also that t2 must be a best

reply to either s1 or s2: In either case we can repeat the construction from the previous

paragraph to generate all beliefs over fs1; s2; s3g which concludes the argument. 2

4 Selection

In the previous section I considered learning without experimentation, mistakes or mu-

tations. I showed that from any initial condition the dynamic converges almost surely

to one of the minimal-curb-state sets. The unperturbed dynamic does not select among

curb sets. Work by Young [1993], Kandori, Mailath and Rob [1993], Ellison [1993] shows

that similar dynamics select among strict Nash equilibria, provided they are augmented

to allow for mistakes. Samuelson [1993], N�oldeke and Samuelson [1993] [1994] inves-

tigate selection among nonsingleton recurring communication classes. Hurkens [1994]

shows that an intuitive class of dynamics which converges globally to curb sets does not

select among them once mistakes are added. I will show in this section that adding

mistakes to the population learning dynamics leads to selection much like in the works

cited above. In this section I will assume that �1; � > 0:

The key idea is that mistakes must remain transient; it must not be possible for a

small number of mistakes to propagate through the system and to induce large e�ects.

This property, transience of mistakes, is shared by the dynamics of Kandori, Mailath

and Rob, N�oldeke and Samuelson, etc..

The main result of this section relies on a property of Markov chains with stationary

transition probabilities which was established by Young [1993]; Freidlin and Wentzell

[1984] establish a similar property for a di�erent class of dynamics.

Consider a Markov chain on a �nite state space 
 with stationary transition prob-
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ability �0: Assume that with high probability the process follows �0; but with some

probability agents make mistakes. Let the corresponding noisy transition probability be

denoted by �� where � is a parameter measuring the overall level of noise in the system.

Assume that �� satis�es the following three properties:

1. �� is aperiodic and irreducible for all � 2 (0; ��];

2. lim�!0 ��(� j�) = �0(� j�); 8�; � 2 
; and

3. �� > 0 for some � implies 9r � 0 : 0 < lim�!0 �
�r��(� j�) <1:

It is well known that the �rst property implies that �� has a unique stationary distribu-

tion, and that this stationary distribution describes the long-run behavior of the dynamic

irrespective of initial conditions. For any stationary distribution �0 of �0 let �
0

� denote

the probability assigned to the state � by �0:

If the transition from � to � is not impossible under ��; r(�; �) = r is called the resis-

tance of the transition from � to �: Let 
1;
2; :::;
J denote the recurrent communication

classes of �0: For all i; j; i 6= j; let ri;j be the least resistance among all directed paths

beginning in 
i and ending in 
j: De�ne a graph G with vertices indexed by f1; 2; :::; Jg

and for each i; j-pair a directed edge (i; j) with weight rij: A j-tree in G is a spanning

subtree of G; i.e., for every vertex i 6= j there exists exactly one directed path from i to j:

The total resistance of a j-tree is the sum of the resistances of the directed edges in that

tree. The least total resistance among all j-trees, denoted 
j ; is the stochastic potential

of the recurrent communication class 
j: Young proves the following proposition.

Let �� be the unique stationary distribution of ��; for any �: Then,

1. as � ! 0; �� converges to a stationary distribution �0 of �0; and

2. � is stochastically stable (�0� > 0) if and only if � is an element of the recurrent

communication class with minimum stochastic potential.

Note that the learning process we examine in this paper is aperiodic and irreducible,

as long as players have no strategies which are never a best reply against any beliefs;

even if there are players with such strategies, the result continues to hold, because the
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perturbed process has only one recurrent communication class. Young's proposition and

Corollary 2 imply:

Proposition 4 If �1; �2; �3; � > 0; then, 9�� > 0; such that 80 < � < ��; 9 �N such that

for Nmin > �N; � is stochastically stable if and only if it belongs to a minimal-curb-state

set with minimal stochastic potential.

Also, a moment's re
ection shows that for any two states � and �; the resistance

r(�; �); if it is �nite, is equal to the minimum number of mistakes needed to move from �

to �: Recall that for the dynamic proposed here the role of mistakes is to activate certain

best replies of players. The mistakes themselves do not move the system. If there are

su�ciently many mistakes, a strategy may become a best reply that wasn't before; more

mistakes, of the right kind, will achieve the same e�ect.

I will demonstrate selection among minimal curb sets for a class of two-player games.

This is the class of games with two minimal curb sets, Q1 and Q2; such that each strategy

of each player is in the projection of at least one minimal curb set. In that case I will

say that the two minimal curb sets are exhaustive.

From Corollary 2 and Proposition 4, we know that if �1; �2; and �3 are all positive,

then there are two recurrent communication classes of the unperturbed process, 
1 and


2; corresponding to the two minimal curb sets, and the limit stationary distribution

will assign positive weight only to the states in the minimal-curb-state set with minimum

stochastic potential.

In order to �nd out which 
j is selected, we need to calculate the paths of least

resistance from 
1 to 
2 and vice versa. We can move from
1 to 
2 whenever su�ciently

many type-1 (or type-2) players make a mistake and use a strategy in Q2: Su�ciently

many mistakes of the right kind eventually turn actions in Q2 into best replies. Once the

current state is supported on strategies from both curb sets, the unperturbed component

of the process takes over and moves the state into either one the of the two minimal-curb-

state sets with positive probability. This property, that any state not belonging to 
1 or
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2 belongs to the basins of attraction of both minimal-curb-state sets, is a consequence

of sampling (not necessarily with replacement). The least number of mistakes needed to

transit from 
1 to 
2 can be expressed in terms of the players' beliefs. Let �p be player

p's belief and �p(Q
j
�p) the probability which player p's beliefs assign to Q

j
�p: De�ne

�j
p := minf�p(Q

j
�p)jBR(�p) \ Qj

p 6= ;g:

This is the least probability player p can attach to the set of strategies Qj
�p and still have

a best reply in Qj
p: For simplicity assume that population sizes are the same and equal

to N , and for any real number x let [x] be the smallest integer greater than or equal to

x: The least number of mistakes needed to transit from 
i to 
j is then equal to

minf[�j
1
N ]; [�j

2
N ]g:

This observation uses the fact that any state � with positive support on strategies from

both curb sets belongs to the basins of attraction of both curb sets. De�ne

�j := minf�
j
1; �

j
2g:

With these preliminaries we have the following result:

Proposition 5 If G is a two-player game, with two exhaustive minimal curb sets Q1

and Q2, if �1; �2; �3; � > 0; then, 9�� > 0; such that 80 < � < ��; 9 �N such that for

N;Nmin > �N; � is stochastically stable if and only if � 2 
j; and �j = minf�1; �2g:

In the case where G is a symmetric game and the two curb sets are strict equilibria,

the selection criterion in the theorem reduces to the familiar risk dominance criterion of

Harsanyi and Selten [1988].

5 Examples

Consider the following example
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5,1 1,5 0,0

1,5 5,1 0,0

0,0 0,0 2,2

In this example the upper-left hand curb set will be selected by the population learning

dynamic. After all both players can guarantee themselves a payo� of 3 against any beliefs

concentrated on this set which shows that more mistakes are needed to upset a state

supported on this curb set than a state where all agents use their third strategy. In this

example, a speci�cation of the underlying deterministic process in Kandori, Mailath and

Rob's (KMR) [1993] dynamic such that adjustment speeds are equal in both dimensions

in regions where the basins of attraction of the equilibria overlap would yield the same

selection. This shows once more that sampling with replacement is not a necessary

condition for selection among curb sets which are not strict equilibria.

Note that the selection we obtain here does not depend on the values of �1; �2 and

�3; as long as they are all positive. Furthermore, these values can be di�erent across

populations, or even within a population. Thus there is a wide range of mistake-free

dynamics which yield the same selection. This is a result of the fact that the basins of

attraction of di�erent curb sets overlap. In the above example and in 2� 2-coordination

games it is the case that from any state not supported entirely on one of the two curb

sets either of the two curb sets can be reached without mistakes. This phenomenon is

already noted in KMR's paper. They also point out that there are dynamics in the two-

population scenario which satisfy their Darwinian condition, that only the best strategy

in a population grows, yet select the (2;2)-equilibrium. This would be the case, for

example, if in a region where the basins of attraction overlap the speed of adjustment

toward one equilibrium is much faster than toward the other. Thus in the framework

presented here selection of and among curb sets is obtained obtained under a large set of

conditions. Outside of this framework it does matter how one formulates the mistake-free

process and how exactly one embeds the mistake process into it.
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That a dynamic satisfy the Darwinian condition is no guarantee that curb sets will

be selected, as the next example shows.5

x,x 2,2 2,2 2,2

2,2 5,0 0,5 0,0

2,2 0,0 5,0 0,5

2,2 0,5 0,0 5,0

Let x > 2 and close to 2. The game has a unique equilibrium, with payo� vector

(x; x): The unique minimal curb set coincides with this equilibrium.

Consider a dynamic in which agents from two populations are randomly matched to

play this game. As they play, they make mistakes with probability �: When they make

a mistake, they put strictly positive probability on each of their strategies. After each

round of play they learn the true distribution of play in the last period and move to a

best reply against this distribution. In the framework of this paper, this corresponds

to the case of �1 = 1: It is easily checked that for � = 0 this Markov process has three

recurrent communication classes, one corresponding to the equilibrium, one to a cycle in

which agents use only their last three strategies, and one to a cycle in which the payo�

vector is always (2; 2):

It is also easily checked that with x close to 2, the limiting stat


