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1 Introduction

The following claim is widely prevailed concerning the fairness of indirect voting systems:

"An indirect voting system is [air, or voters have the same influence, if seats are allotted

to electoral districts in proportion to their populationr. The claim implicitly assumes

that each voter's influence varies inversely with population of his districts. It has been

shown, however, that the assumption is not true from the viewpoint of the Banzhaf

power index when each district has one seat. Instead, the so-called "square-root effectT

arises; that is, the decreasing influence of voters measured in terms of the Banzhaf index

varies inversely with the square root of the increasing population. See Banzhaf [1966]

and also Lucas (1983]. ~

The model assumed in these studies is basically the following. In each district, voters

vote "yesn or "no" on a certain bill. Then the representatives vote "yes" or "no" on the

bill based on the majority opinion of the voters of their own districts. "Approval" or

"disapproval" of the bill is decided through the simple majority rule among the repre-

scntatives.

In our actt~al voting systems, however, voters usually vote a political party or vote a

person that a party puts forward as a candidate; not directly yes or no.

When there exist only two parties as in the United States, the model above can be

straightforwardly applied. The basic idea is the following. In each district voters vote

one of the two parties, say Party A or Party B; and then the seat is given to the party

that received the majority votes. In the House, representatives belonging to the same

party behave as a block; and vote yes or no on each bill proposed. To measure voters'

power, we list up all "Party A-Party B~ combinations of voters' votes and all "yes-no"

combinations of parties' votes. Then for each voter, count the number of combinations

in which he can change final decisions in the House from approval to disapproval or

vice versa by changing his vote from one party to the other.~ It is easily seen that this

procedure reaches the Banzhaf index of the original "yes-no" setting.

~Refer to Dubey and Shapley [1979] for mathematical propertiea of the Banzhat index.
~Voters can indirectly alter final decisiona through the change of the party that represents their

district.



When more than two parties exist, as observed in Japan, many European contries,

etc., however, the Banzhaf index is not directly applicable since voters have more than

two alternatives. The aim of the paper is to study voters' power in such voting systems.

First we need to modify the Banzhaf index preserving at least its spirit. The idea

of modification is based on the discussion above for systems with two parties. We first

líst up all combinations oí voters' choices, and also all yes-no combinations of parties'

choices. Then for each voter, count the number of combinations in which he can change

final decisions in the House írom approval to disapproval or vice versa, by changing his

vote, say from one party to one of the others. By the use of this modified Banzhaf index,

we will show that the square-root effect holds even when more than two parties exist:

this is the pricipal finding of the paper.

'I'he rest of the paper will be organized as follows. In Section 2, the model is described

on which we work throiighout the paper. The modification of the Banzhaf index is given

in 5ection 3. Section 4 presents the main theorem: the proof is given in Sections 5 and 6.

Since the proof is complicated, we first present the detailed proof for the simplest three

party case in Section 5; and then in Section 6 we briefty explain how the proof can be

extended to the case with more than three parties. Some of the mathematical details of

the proof are given in the appendix. The paper ends in Section 7 with short remarks.

2 A Model

Let D-{d~,...,d"} be the set of electoral districts. For each district d', let Q' be the

set of its voters, and let q' - ~Q'~, i.e., the number of voters in Q'. The sets Q"s are

mutually disjoint. Let P-{p~,...,pm} be the set of political parties. Exactly one seat

is allotted to each district.

In each district, there are m candidates: the jth candidate stands for the jth party

p„ j - 1, ..., m. Each voter has exactly one vote and casts it to one of the candidates;

and a candidate who obtains the largest number of votes wins the seat. Ties are resolved

by a random choice.

For notational convenience, denote a voter k's vote, k E Q', by an m-dimensional
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vector v'k -(v~k, ..., v'm ) with one 1 and (m - I) 0's where v~k - 1 if the voter k votes

the j th candidate. Let v~ -~kEq~ v~k, j- 1, ..., m, and let v' -(vi, ... , v;,, ): v~ is the

total number of votes given to the jth candidate in the district d'. Let j' - argmax{v~ :

j - 1, ..., m}. Then the j'th candidate wins the seat. If there are more than one such j',

each of thein ~nay win with equal probability. Let r' -( r~, ... , r;~) be an m-dimensional

vector with one 1 and (m - 1) 0's where r~ - 1 if the jth candidate, or the jth party,

wins the seat in the district d'.

Let r~ -~~-1 r~, j- 1, ..,m, and let r- (r~,.. ,r,,,). The number r~ is the total

number of seats that the jth party holds in the House. Note that ~~ ~ r~ - n since

exactly one seat is allotted to each district.

In the House, "Approval (A)" or "Disapproval (D)r of each bill is decided by a simple

majority rule among the elected representatives. We assume that representatives be-

longing to the same party behave as a block; hence all of them vote "Yes (Y)r or all of

them vote "No (N)". Thus for each bill, if the set of parties voting "Y" is S, then the

bill is approved when and only when S has the majority. To avoid ties in the House, we

assume n to be odd; thus the condition is ~~ES r~ 1(n ~ 1)~2.

Our main concern is to measure each voter's power, i.e., to evaluate to what extent

he has an influence on decisions on bills in the House. The power index used below is

similar to the Banzhaf index at least in its spirit. In our model, however, each voter

has only an indirect influence on final decisions in the House. What he may directly do

is to alter the party that wins the seat in his district. It then may alter the number

of representatives belonging to each party in the House; and thus, it may change final

decisions on bills.

3 A Modified Banzhaf Index

The Banzhaf index, in usual direct voting systems, measures each voter's power by

counting the number of "Y" -"N" combinations of votes in which he may change final

outcomes by changing his vote. More prc~cisely, consider all "Yr -"Nr combinations of

all voters. In each combination, a voter is called a swing if he may change a final outcome
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from "A~ to "Dr (or from "D" to "A") by changing his vote írom "Y„ to "N" (or from

"N" to "Y"). The Banzhaí index, more precisely the absolute Banzhaf index, of a voter

is given by the fraction of his being a swing over all "Yr -"N" combinations of votes,

or in other words, by the probability that he is a swing provided that each combination

is equiprobable.

In our model, however, each voter may only indirectly alter a final outcome; and

further he rnay have multiple ways to change his vote. Recall there are m candidates in

his district, and thus he has (m - 1) possible ways to change his vote. On the basis of

these characteristics of our model, we define a power index for our model in the following

manner.

Consider first all possible combinations of voters' votes in all districs; in addition,

consider all combinations of parties' votes in the House. Let H' be the set of all com-

binations of votes in the ith district, and IIN be the set of all combinations of parties'

votes in the House. Since there are m parties, each voter has m alternatives to choose.

Each of the m parties has two alternatives to choose, i.e., "Y~ or "Nn in the House.

Thus ~H'~ - m9` and (Hy~ - 2m: recall q' is the number of voters in the ith district. Let

II-II'x...xH"xHH;andthus,~H~-m9~x...xm9"x2m.

Take a combination a-(a', ..., ~r", nH) E H. Suppose the final decision induced by

the combination a is "Ar. Pick up a voter k in the ith district, and suppose he votes

for the jth candida.te in the combination n. Then he may change his vote to one of the

other (m - 1) candidates; thus he has (m - 1) different ways of changing his vote. Let

s~(a) denote the number that k can be a swing in n, i.e., the number of ways that k

may change the final outcome from "A" to "D~. Thus 0 C sk(a) G m- 1. If sk(n) - 0,

then k has no way to change the final outcome; and if sk(a) - m-1, then k may change

the final outcome by changing his vote from the jth candidate to any of the others. If

0 G sk(a) G m- 1, then we have an inbetween of these two extremes. Assuming that

each of m4' x... x m9" x 2m combinations is equiprobable and that ties of the largest

number of votes are resolved by a random choice, we define a modified Banzaf index Qk

of the voter k by the expected number of his being a swing. It is to be noted that since

voters in the same district are symmetric their modified Banzhaf indices are identical.
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Thus in what follows we denote by ~3' the modified Banzhaf index of a voter in the ith

district.

4 Passage to the Limit and the Main Theorem

Our concern is to evaluate each voter's relative power measured by the modified Banzhaf

index when every district's population is quite large. For this purpose, we augment every

district's population keeping their proportions fixed, and study asymptotic behavior of

ratios of voters' indices in different districts. Let a', ..., a" be rational numbers repre-

senting proportions of districts' populations, and ]í be their least common multiple. Let

M be a positive integer, M- 1,2,..., and q'(M) - a`ItM, i- 1,...,n. Let p'(M)

be the modified Banzhaf index of a voter in the ith district when the district has q'(M)

voters, i- 1,...,n. We want to examine the asymptotic behavior of p'(M)~Q''(M) as

M-~ oo for each pair of i, i' - 1, ..., n, i~ i'. As a main theorem, we obtain the follow-

ing. The theorem shows that the relative power per capita of each district is inversely

proportional to the square root of its population. Hence the "square root effect" shown

in Banzhaf [1966] and Lucas [1983] also holds even if there are more than two parties.

Main Theorem: For each two districts d' and d'~,

lim Q~(M) - a''
My~ p.,(M) - á..

5 A Proof of the Main Theorem: the Case with

Three Parties

For simplicity of presentation, we first present a proof for the simplest case with three

parties. A similar proof holds even if there are more than three paries, which will be

given in the next section. Only a major difference is that the normal distribution which

wíll appear in the following discussion is replaced by a multi-variate normal.
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5.1 Decomposition of i3'(A1)

Let pr,p2 aud ps be the three parties, and sappose each district i has ~'KR~1 voters,

z- 1,...,n. Pick up a district, say the ith district, and take one of its voters, say the

kth voter. We first rewrite the modified Banzhaf index Q`(M) of this voter. Recall every

voter in this district has the same index, and thus the notation ~3'(M) is used. In what

follows, we use the following notations to represent several events:

V(j),j - 1,2,3: the voter votes the jth candidate: recall that the candidate belongs

to the jth party;

V(j -r j'), j, j' - 1, 2, 3, j~ j': the voter changes his vote from the jth to the j'th

candidate;

R'(j),j - 1,2,3: the jth party wins the seat of the ith disctrict;

R'(j -~ j'), j,.j' - 1, 2, 3, j~ j': the party winning the seat is changed from the jth to

the j'th.

A H D: a final outcome in the House is changed from A to D or from D to A.

Then since the modified Banzhaf index Q'(M) is defined as the expected number of

the kth voter's being a swing, ~3'(M) is rewritten as

Prob (A H D~V(j -i j')) Prob (V(j))

I

Here Prob(-) denotes the probability that an event - occurs. Since the kth voter may

change a final outcome through the change of a winning party of the district, the inner

sum of (5.1) is further rewritten as
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3 3

~ ~
i'-i l,.v-i
i'~i I;E9

Prob (A H D~R`(f -' 9)) x Prob (R`(f ~ 9)~V(j ~ j~))).

Prob(-~ .-) denotes the conditional probability of . given ...

5.2 Evaluation of Prob(A ~ D~R`( f-~ g)), f, g- 1, 2, 3, f~ g

Let h be the party other than f, g. Denote a combination of parties' voters by (., ~, r) :~

stands for Y or N, and the first (second, third, resp.) element corresponds to a vote by

the party f (g, h, resp.). For example, (Y,N,Y) implies that f and h vote Y and g votes

N.
ftecall first there are '23 - 8 combinations of parties' votes in the House. Thus the

desired probability, henceforth denoted a(f,g) for saving spaces, is rewritten as

a(f,9) - Prob(A ~ D 8L (Y,Y,Y)IR`(f -~ 9))

t.. .-} Prob (A H D 8t (N, N, N)~R'(f~ g)) (5.3)

Let a( f,g; ( ~, ~, ~)) - Prob(A .-a D 8t (~, ~, ~)~R'(f ~ g)) where s stands for Y or N.

Suppose both of f and g vote Y or both vote N. Then a final outcome never changes

even if a winning party of the district changes from f to g. Thus we obtain

a(f,9;(Y,Y,Y)) - a(f,9;(Y,Y,N))

- a(f,9;(1V,N,Y))-a(f,9;(N,N,N))-0 (5.4)

Take a(f, g; (Y, N, Y)). It is easily seen that under the combination (Y, N,Y) the

change of a winning party from f tog alters a final outcome only when r~ frh -(n-}.1)~2:

in this case the final outcome changes from A to D. Recall ri is the total number of

seats that the party j holds in the House, j- 1,2,3. Therefore
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aÍf,9;(I;N,Y)) - Prob (r~~rn -(n~1)~2 8z (Y,N,Y)IR`(f-'9))

- Prob ( r9' - (n - 1)~2 8c (Y, N,Y)IR`(f -' 9))

where r9' - ~ r9. (5.5)

;~-t
i~~~

r9' is the number of seats that the party g holds in districts other than the ith.

Now since in the i'th district, i' ~ i, combinations of voters' votes are equiprobable,

and further ties of the largest votes are resolved by a random choice, we have

Prob (R'`(f )) - Prob ( R'`(h)) - Prob ( R'`(h)) - 1~3.

Recall R'`(j) denotes the event that the party j wins the seat of the i'th district, j-

1, 2, 3. Therefore (5.5) is rewritten as

a(f,9;(Y,N,Y)) - 23 x
rY~~

(n - 1)! r I l "-r

((n - I)~z)!z!y! `3I

rtv-(n-~)Ix
r, y integen

From the same reason, we have

a(f,9; (}~, N,Y)) - Q(f,9; (N,Y, N)) - the r.h.s. of ( 5.6). (5.7)

Hereafter we denote the sum of the r.h.s. of (5.6) by X. It should be noted that X

depends neither on f nor on g. Thus (5.6) and (5.7) hold for all f, g- 1, 2, 3, f~ g.

Thus from (5.3), (5.4), (5.6) and (5.7), we obtain

a(f,9) - X~2 for all f,9 - I,2,3, f~ 9. (5.8)



It is to be noted further that X is independent oí districts' population.

5.3 Evaluation of Prob (R'(f ~ g)~(V(j -~ j')), f,g - 1,2,3,

f ~9

In what follows denote this probability by 6( f, g; j, j'). Let j" be the party other than

j and j'. First let f- j'. Then v'(j') ? max(v'(j),v'(j")) aince the party j' wins the

sc~at. Recall v'(j)(v'(j'),v'(j"), resp.) is the total number of votes that the candidate

(or t.h~~ partY) J(7`.J", r~'sP.) obtains. 1'hus under V(l ~ J'), t,he party j' still wins the

seat. IIence

b(J ,j;j,j`) - b(j`,j";j,j`) - 0

In a similar manner, we obtain

b(j",j;j,j`) - 0. (5.10)

We now examine the remaining three probabilities b( j, j'; j, j'), b(j, j'; j, j'), and

6(j", j; j, j'). Recall the ith district has a`líb1 voters. We first assume ~'KM is a

multiple of three, and let a'K M- 32 where Q is a positive integer.

following five cases in which V(j -~ j') induces

(1) v`(j) - v`(J`) - 2'`(7`~) - Q;

(2) v`(j) - v`(j`) ~ v`(j") -F 3;

(3) v`(j) - v'(j') f 1~ v'(j") f 2;

(4) v`(7) - v`(7`) f~ ~ v`(j") f 4;

R`(7 ~ J`).

Then we have the

(5) 2'`(7) - v`Í7`) t 1- v`(7") -I- 2.
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Hence

b(j,j';j,j') - Prob (R`(j ~ j') ~ (1)I~(j ~ j'))
f ... f Prob (R~(j ~ j~) ~ (5)~VÍj ~ 7~)). (5.11)

In the following we explain in detail the two cases: Cases (1) and (3).

Case (1): Since ties are resolved by a random choice, each of the three parties may win

the seat with equal probability 1~3. When the voter k changes his vote from j to

j', the party j' wins the seat for sure. Thus

)~ a~-i
the first term of the r.h.s. of (5.11) - 3 x (Qp 1)~Q~p~ x~3~ . (5.12)

Applying Stirling's approximation to the r.h.s. of (5.12) we obtain the following

proposition.

Proposition 5.1 :

the ftrst ferm of ~5.11) i y~~ x~

where ~ impties thnt the ratio oJ both sides converges to 1 as e~ oo.
t

Proof. See the appendix.

(5.13)

Case (3): The party j wins the seat for sure; whereas if the voter k changes his vote

from j to j', the party j' wins the seat. Thus

((sr-1)~2] (3P - 1)! 1 ~-~
the third term of (5.11) - ~ x~ ~ (5.14)

r-~ x!x!(3f - 2x - 1)! `3
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where [.] is the largest integer in .. Using a similar device to the proof of DeMoivre-

Laplace's convergence theorem (the convergence of a binomial to a normal distri-

bution, e.g. refer to Feller (1957]), we obtain the following proposition: the detailed

proof is given in the appendix.

Proposition 5.2 :

the third term oJ (5.11J ~ 2 1~~ x ( 1 -~(0)) - 4 1~Q (5.15)

where ~(-) denotes the normal distrióution function with mean 0 and variance 1.

Proof. See the appendix.

As for the remaining three cases, we have similar asymptotic values. In Case (2), the

parties j, j' may win the seat with equal probability 1~2, and when the voter k changes

his vote from j to j', the party j' wins for sure. In Case (4), the party j wins the seat,

and the parties j, j' may win the seat with equal probability 1~2 after the change of voter

k's vote. In Case (5), the party j wins the seat, and after the change of voter k's vote,

three parties may win the seat with equal probability 1~3. Thus in a similar manner as

above, we obtain the following proposition.

Proposition 5.3 :

the second and fotirth terms ~ 4~ x 2

nd the fifth term ~
1

Hence, from (5.11), (5.13), (5.15) and (5.16) we obtain

1
6(j,7~;j,j~) ~ 2~~

(5.16)

(5.17)
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We next examine b(j, j"; j, j'). We have the following three cases in which V(j -a j')

induces R'(j ~ j").

1. v'(J) - v`(j") ~ v'(J') f 3;

2. v'(J) - v`(J") f 1- v`(J') } 2;

s. i,~(j) - v'(j") f 1,,,~(j~') 1 v~(j') f 4:

recall that a'I~M is a multiple of three. Thus in a similar manner as above, we obtain

1
b(j,j";j,J') ~ 4~

As to 6(j", j'; j, j'), we similarly obtain

6(j",J';J,j') ~ 4~

Since a'KM - P, we have from (5.17), ( 5.18) and (5.19)

b . .,, . ., b( . .,,. . .,) } 6( .,, ., . .,) N 1

(5.18)

(5.19)

(5.20)(J,J ,J,J ) t J,J ,J,J J ,J ,J,J m ~(~;h M~3).

It is easily shown that (5.20) holds even if ~'KM is not a multiple of three.

5.4 Evaluation of ~3`(M) and of the ratio ~3'(M)~,Q`'(M)

We first obtain írom (5.2), (5.8), (5.9), (5.10) and (5.20) that the asymptotic value of

(5.2) (the inner sum of (5.1)) is given by

3 3 X 1
~ Prob (A ~--~ D~V(j -a j')) M ~ 2 x n(a~KM~3)

i'-1 i'-~
i' ~ i i' ;t i

(5.21)
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wherc .?í is the sum o( the r.h.s. of (5.6). Recall that X does not depend on dis-

tricts' populations. Since every combination of voters' votes is equiprobable, we have

Prob (V(j)) - 1~3. Thus it follows from (5.1) and (5.21) that

Q'(M)
X

M 2 aa'KA1~3

Therefore for each i and z' we obtain the desired relation

lim Q~(M) - 1~~ - a~
n~-'~ ~3''(M) 1~~ - ~

6 A Proof of the Main Theorem: the Case with

More Than Three Parties

Suppose there are m parties (m ~ 3), and let the set of parties P-{pl,...,p,,,}. Then

similarly to (5.1) and (5.2), we liave

p'(~1) -~ ~ Prob (A H D~V(j -~ j ')) Prob (V(j)) (6.1)

i-' i~ - i
i'~i

and the inner sum of (6.1) is rewritten as

m 1

~ ~ Prob (A H DI R`(f -~ 9)Prob (R~U -i 9)~V(j --~ j~))
i'-~ J,s-~
i' ;t i J ;f v
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6.1 Prob (A ~ D~1?'( f-~ g))

As in Section 5.2, R'(f ~ g) may induce A~ D only when the parties f,g vote differ-

ently, i.e., f votes Y and g votes N, or f votes N and g votes Y. Thus letting S be a

set of parties which vote Y, we obtain

Prob (A H DIR~(f ~ 9)) -~ m Is1 ~ ( n - 1)~ 1 l n-1 1
ISI-~ C xl!...2m! `mI x 2

L~ESr' - ( n-1)~~

~alx~-n-1

where mC~s~ denotes the number of combinations of taking ~S~ out of in elements. This

probability does not depend on districts' populations similarly to the three party case.

6.2 Prob ~R'~f ~ 9)~V~~ ~ .7'~) -

We first notice that, as in Section 5.3, V(j -~ j') may induce R'(f -~ g) only in the

following three cases: (1) f- j, g- j'; (2) f- j, g- j"; and (3) f- j", g- j' where

j" ~ j, j'. One of the typical cases which induce the case (1) is

v'(j) - v(j') t l,v`(j') ? v`(j") for all j" ~ j, j' : (6.3)

this case corresponds to Case (3) of the evaluation of b( j, j'; j, j') in Section 5.3. We

obtain

Prob (R'Íj -~ j') 8t (6.3)IV(j -~ j'))
l(a'F~M-~)I21 (a'ltM)! ( 1 l a'KM-1

- ~ x!.r.!v,!...vm-z! `mI ~
r - ((o'ti M - 1)~m]

vl }...}Ym-z-o'hM-1-2x

Y,~...,Ym-z G z

It is shown in a simila.r manner to the proof of Proposition 5.2 that this probably is of
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the order l~a'lí M; but the normal distribution appeared in the proposition must be

replaced by a multi-variate normal. By the use of this fact, the desired result follows in

a similar manner to that in the three party case.

? Concluding remarks

We have studied voters' power in indirect voting systems with multiple, in particular

more than two, parties. Since voters have more than two alternatives, we have first

propose a modification of the Bamzhaf index. Then using the modified index, we have

shown the square root effect holds even when more than two parties exist. We conclude

the paper with short remarks concerning possible future research directions.

The first is to extend the model so that it may cover the case where districts may

have unequal numbers of seats. In the case of two parties, studies were done by Owen

[1975] and Muto [1989].3 The former assumed the party received majority of votes takes

all seats, and analyzed voters' power in the U.S. Presidential Election; while the latter

assumed the seats are given to each party in proportion to the votes they received,

and demonstrated the following: (1) voters in districts with even number of seats are

completely powerless, a.nd (2) voters' power in districts with odd seats depends only on

districts' population and never depends on the number of seats allotted to districts. It

must be interesting to study their counterparts in the case with more than two parties.

The second and more conceptually difficult question is on the application of the

Shapley-Shubik index. Since the Shapley-Shubik index is defined on the basis of coali-

tion formation, it seems much more difficult to extend this notion so that it may be

applied to voting systems with more than two parties. The difficulty arises since coali-

tion formation among political parties must be taken into consideration together with

coalition formation among voters.

These problems will be studied in future papers.

3Banzhaf [1966] also analyzed the case with unequal numbers of seata; but his analysis was limited

to voters'influences within districts. Voters'influences on final decisions made by representatives were

not considered.
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Appendix

Proof of Proposition 5.1: ll follows from (5.12) that

the first term of (5.11) - 3 x(Q3~ 1~ QiQ~ x~3~~~~

(3Q~i Q 1 si

- Q!Q!Q! x 32 - 1 x`31 ~

By Stirling's approximation, we obtain

(3f)~ ~ l ~.u ~~a(3Q)(3l)~ exp(-3E) 1
Q!~!C! x 3 t ( 2ae(E')~exp(-2))3 X 3áe

f
- 2rre~
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Further limr~„o 2~(3e - 1) - 1~3. Hence we obtain

the firat term oí (5.11) ~ 1 x 1
r 2frr Q

Proof of Proposition 5.2: We first recall (5.14), i.e.,

Q.E.D.

I(~-1)h1 (3e- 1)! 1 ar-i
the third term of (5.11) - ~ x!x!(3e - 2x - 1)!

x ~3~ . (A.1)
s-r

Denote the r.h.s. of (A.1) by A. Just for simplicity, suppose 3P - 1 is even in what

follows. Let ,y -:r - e, and thus 32 - 2a - 1- e- 1- 2y. Then

(3r-~)l~ ( 3Q- 1)t x ~1`~-1

A- ~(e f y)1(f f y)!(P - 1- 2y)! 3i1y-o
(A.2)

Denote each component of the sum of (A.2) by t(y), and for each s,s' with 0 G s G s' G

(Q - 1)~2, denote ~y-, t(y) by t(s, s'). Further let e' - [e'~1~~. Then we have

A- c(o, e21) - ~(o, e~) ~ c(e~ f l, e21)

- t(o e~) (1 f t(e~ f 1, (e -1)~2)1 (A.3)
t(o,e~) )

Claim A.1:

lim t(e' -F 1, (e - 1)~2) - 0.r~~ t(~,e')

Proof of Claim A.1: We first obtain



is

t(y) (Y t 1 - 2y)(P - 2y) for all y- 1,...,(L - 1)~2.
t(y - 1) - (P -} y)(P -f y)

As for the r.s.h., we easily obtain

0 G(P } I- 2y)(e - 2y)
G 1 for all y - 1, ...,(C - 1)~2; (A.4)

(P f y)(e f y)

and further this term is decreasing in y. Thus we have

t(y) G(2 - 2P' - 1)(P - 2P' - 2) for all y- C'-} 1,...,(P - 1)~2. (A.5)
t(y-I)- (e~P-ti)(e-i-e'fl)

Denote the r.h.s. of (A.5) by B: 0 G B G 1 from (A.4). Then we obtain from (A.5)

t(e' t u) t(e' t I) t(e' t 2) t(e' f u)
t(e') - t(e') x t(e' ~- I) x... x t(P, }~-1)

G B" for all u - 1,...,(l - 1)~2 - 2'.

Thus

t(P' f 1, ( P - 1)~~) C t(P~)(B~ f B~ t... t B~~-~1~2-f"~

G t(P~)(Bl t BZ f.........)

- f(P')(B~(1 - B)) : recall 0 G B G 1. (A.6)

In the meanwhile, it follows from ( A.4) that t(0) ~ t(1) 1... ~ t((P- 1)~2). Hence

t(~,P') ~ (2" f 1)t(F') (A.7)
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Thus from (A.6) and (A.7),

1(P' f 1,(P - 1)~2) 1 B
t(O,P') ~ l'~1 x 1-B~

(A.8)

Sincc: B is the r.h.s. of (A.5) and P' -[P7~'Z~, it follows from a straightforward calcu-

lation that the r.h.s. of (A.8) is of the order 1~P'~6. Noting that the I.h.s. of (A.8) is

positive by (A.4), we thus obtain that the Lh.s. of (A.8) converges to 0 as P-. oo. Q.E.D.

We now examine the asymptotic behavior of t(0, P'). We first note that t(y) is rewrit-

ten as

Let

at-i

- (3P)! x (113C x

`P

- Zy~
(P f y)!(e f y)l(2 - 2y)! `3J P

(3P - 1)! (1l
t(y) -(P f y)!(P f y)!(P - 1- 2y)! x`31

(3P)! 1 ~

~ - (P -F y)1(2 -F y)!(P - 2y)! x ~3~ ~

Then by Stirling's approximation,

C
~ P~

x
t 2R(P f y) - 2y (P f y)~titul(f - 2y)~-2v

~ 1
- 2n(P t y)~ x (1 t y~2)utsv(p - 2y~P)i-2v

(A.9)

(A.10)

We a.re examining t(O,P'), and thus y G P' -[P'~'2]. Thus we obtain
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the first term of (A.10) ~ ~
e 2aP~

(A.11)

We now examine the second term of (A.10). Let its denominator be D. Then

log~ D- (2P -1. 2y) log~(1 } y~?) f (B - 2y) log~(1 - 2y~f).

By T'aylor's expansion, log~ D- 3y2,P -} y3,PZ t 6y4~23 t.... Since y G P' -

[Q'~12], y3~P2, y',('3, ... -~ 0 as F-~ oo. Hence

log~ D~ 3yZ~2, or D~ exp(3y~~P). (A.12)
e e

Substituting (A.11) and (A.12) to (A.10), we obtain

C ~ ~ x ex 3y~
e 2nP p (-2

1 1 1 6y~

- 2~ x 2a(Q~g)
x exp 2 x P

Since (P - 2,y)~P -. 1 as P~ oo, we have

2

t(y) ~ 1 x 1 x exp
-1 x 6y

e 2~ 2n P~6 2 P

Let h- 1~( P~6) and zy - y~( P~6). Then

t(0, e~) -~ t(y) ~ 2 ln2 ~ h0(zY)
y-o y-o
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1 2
where 0(z) - exp -'

2a 2

Recalling 2' - [C~~~~], we have

z~. - ~ ~ oo as Q~ oo.
Q~6

Further zo - 0. Thus we obtain

~~o'P~) ~ 2 lne(1-~(0~)~

Thus together with (A.3) and Claim A.1 the proof of Proposition 5.2 is completed.
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