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Abstract

This paper studies the relationships between learning about rules of thumb (rep-

resented by classi�er systems) and dynamic programming. Building on a result about

Markovian stochastic approximation algorithms, we characterize all decision functions

that can be asymptotically obtained through classi�er system learning, provided the

asymptotic ordering of the classi�ers is strict. We demonstrate in a robust example

that the learnable decision function is in general not unique, not characterized by a

strict ordering of the classi�ers, and may not coincide with the decision function de-

livered by the solution to the dynamic programming problem even if that function is

attainable. As an illustration we consider the puzzle of excess sensitivity of consump-

tion to transitory income: classi�er systems can generate such behavior even if one of

the available rules of thumb is the decision function solving the dynamic programming

problem, since bad decisions in good times can \feel better" than good decisions in

bad times.

JEL Classi�cation: E00, C63, C61, E21
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1 Introduction

Agents faced with an intertemporal optimization problem are usually assumed to use dy-

namic programming methods to derive their optimal decisions. However, observed data is

often hard to reconcile with intertemporal optimization. As an alternative approach, Camp-

bell and Mankiw (1989, 1991), DeLong and Summers (1986) and Ingram (1990) have demon-

strated that observed behavior is often more consistent with agents following some simple ad

hoc rules of thumb. Typically these models postulate a single rule of thumb and demonstrate

its implications. In this paper we study systematically how agents learn to choose between

many di�erent rules of thumb in general dynamic choice problems. We represent a collection

of rules of thumb as a classi�er system following Holland (1986). Learning about these com-

peting rules of thumb takes place via a simple accounting schmes which nonetheless enables

the learning agent to deal with the dynamic structure of the model. Modelling boundedly

rational agents in this way is appealing because it relies only on simple calculations rather

than complex and forward-looking reasoning. Using stochastic approximation methods we

characterize analytically all possible asymptotic learning outcomes and compare them to

the dynamic programming solution. We show that certain aspects of the classi�er system

are closely related to the value function in dynamic programming. However, in general the

learnable decision function is not unique and may not coincide with the optimal decision

function even if that function is attainable. As an illustration we consider the puzzle of

excess sensitivity of consumption to transitory income as documented by Flavin (1981), Hall

and Mishkin (1982), Zeldes (1989) and Carroll and Summers (1991) among others. DeLong

and Summers (1986) and Campbell and Mankiw (1989, 1991) explain this puzzle by allowing

for irrational consumers who always consume their current income. We show analytically

that this speci�c rule of thumb can be the asymptotic outcome of classi�er system learning

despite the fact that the optimal decision function is part of the system.

Intuitively, classi�er system learning works as follows. A classi�er system is motivated by

a model of the brain as a collection of competing \if .. then .." statements. These condition

- action pairs are called classi�ers or, in our words, rules of thumb. 1 They compete via a

single number attached to each of the classi�ers, which is called its strength. At any given

date t, the precondition of several classi�ers (the if-part) might be satis�ed. The brain will

then have to choose among these applicable classi�ers. It will do so by selecting the classi�er

with the highest strength. Learning takes place by adjusting the strength over time in the

following manner. First, the strength is reduced by a certain percentage, thus penalizing the

1See Edelman (1992) for a useful reference on how a biologist/psychologist relates the functioning of the
human brain to classi�er system like structures.
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classi�er for being chosen. Second, the classi�er is rewarded by adding the instantaneous

utility generated at that date as well as a certain percentage of the strength of classi�er chosen

at the next date t+ 1 to its strength. This updating scheme accomplishes several things. It

is simple and thus compatible with modelling boundedly rational behaviour. If a classi�er

does not generate any immediate or future bene�ts, it will quickly drop out of competition

due to the penalty of loosing some of its strength when chosen. If a classi�er generates very

little instantaneous utility, but helps to improve conditions in the future, it can be rewarded

via the percentage of the strength of the classi�er chosen at date t + 1. Clearly, this is a

crucial feature in any scheme which attempts to solve dynamic decision problems reasonably

well. The strength updating scheme has been called the \bucket brigade algorithm" since

one can think of the classi�er chosen at date t + 1 as handing part of its strength down

to the classi�er chosen at date t like a bucket of water. One can also think of this as an

auction, where classi�ers o�er a payment proportional to their strength for the privilege

of determining the choice at the present date, which is paid to the classi�er chosen at the

previous date.

Classi�er systems belong to the class of arti�cial intelligencemethods. Some recent appli-

cations of arti�cially intelligent learning in economic models include Marimon, McGrattan,

and Sargent (1990) who use classi�er system learning in Kiyotaki and Wright's (1989) model

of money as a method to compute equilibria. They demonstrate that classi�er system learn-

ing o�ers an addition to the toolkit of numerically solving dynamic optimization problems

surveyed in Taylor and Uhlig (1990). Arthur et.al. (1994) simulate a complete stock market

with many agents, each endowed with a classi�er system. Lettau (1994) has shown that

arti�cially intelligent learning can explain observed inows and outows of mutual funds.

Arthur (1993) derives some theoretical results, which are also based on stochastic approx-

imation results, for a simpli�ed version of classi�er system learning in a stationary model

where there is no dynamic link between periods. He also compares classi�er system learning

to behavior observed by human subjects in economic experiments and concludes that this

learning method matches many features of human behavior in experiments very well.

The rest of the paper is organized as follows. In the second section, we de�ne a general

discrete dynamic choice problem and solve it using standard dynamic programming. In the

third section, we introduce classi�er systems and and explain how they learn. In section four,

we analyze what classi�er systems learn asymptotically. To this end we recast the bucket

brigade algorithm for updating the strengths of the classi�ers as a stochastic approximation

algorithm. Building on a result about Markovian stochastic approximation procedures by

Metivier and Priouret (1984) (see Appendix B) we completely characterize all possible strict

orderings of the asymptotic strengths, i.e. all decision functions which a given classi�er
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system can learn, provided the classi�ers are strictly ordered by their strength asymptotically.

Using these results we are able to compare the asymptotic outcome of classi�er system

learning to the solution obtained by dynamic programming. We show that the strength

measure is closely related to the value function in dynamic programming, and that, in fact,

they coincide in some special situations (see Proposition 5). The �fth section demonstrates in

a simple but revealing example that the learnable decision function is in general not unique,

not characterized by a strict ordering of the classi�er strengths, and may not coincide with

the optimal decision function even if that function is attainable. As an illustration we

consider in section six the puzzle of excess sensitivity of consumption to transitory income

as documented by Flavin (1981), Hall and Mishkin (1982), Zeldes (1989) and Carroll and

Summers (1991) among others. DeLong and Summers (1986) and Campbell and Mankiw

(1989, 1991) explain this puzzle by allowing for irrational consumers who always consume

their current income. We show analytically that this speci�c rule of thumb can be the

asymptotic outcome of classi�er system learning despite the fact that the optimal decision

function is part of the system. The basic intuition is the following. Spending more in good

times may simply \feel better" on average than following the optimal decision function at

all times. The last section concludes.

2 Dynamic Programming

Many recursive stochastic dynamic optimization problems can be discretized at least ap-

proximately, and written as a dynamic program in the following form:

v(s) = max
a2A

n
u(s; a) + �E�s;av(s

0)
o
; (1)

where A = fa1; : : : ; amg is the set of actions an agent can take, S = fs1; : : : ; sng is the set

of possible states, u(s; a) 2 IR is the instantaneous utility derived from choosing action a in

state s, 0 < � < 1 is a discount factor and �s;a is a probability distribution on S , which is

allowed to depend on s and a. We assume throughout that �s;a(s
0) > 0 for all s0 2 S . De�ne

a decision function to be a function h : S ! A and let H be the set of all decision functions.

A standard contraction mapping argument as in Stokey and Lucas, with Prescott (1989),

section 3.2, shows that there is a unique v� solving the dynamic programming problem in (1).

The solution is characterized by some (not necessarily unique) decision function h� : S ! A

which prescribes some action h�(s) in state s.

For any decision function h de�ne the associated value function vh as the solution to the

equation

vh(s) = u(s; h(s)) + �E�s;h(s)vh(s
0) (2)



6

or as

vh = (I � ��h)
�1
uh; (3)

where vh is understood as the vector [vh(s1); : : : ; vh(sn)]
0 in IRn, �h is the n�n-matrix de�ned

by

�h;i;j = �si;h(si)(sj)

and uh is the vector [u(s1; h(s1)); : : : ; u(sn; h(sn))]
0 in IRn. Clearly, v� = vh�. The next propo-

sition tells us that no randomization is needed to achieve the optimum (This will contrast

with some classi�er systems in the example in section 5 below, which require randomizing

among classi�ers even in the limit).

Proposition 1 For all s 2 S ,

v�(s) = max
h2H

vh(s):

Proof: De�ne �v via �v(s) = max
h2H vh(s). We have to show that v�(s) � �v(s) for all

states s (the reverse inequality is trivial). De�ne an operator T : IRn ! IRn as follows: for

any v 2 IRn, let Tv be the right-hand side of (1). Since �v � vh for any decision function h, we

have (T �v)(s) � (Tvh)(s) � vh(s) for any decision function h. In particular, (T �v)(s) � �v(s)

for all states s. Iterating this argument, we �nd that T j�v(s) � �v(s) for all states s. By the

usual contraction mapping argument, T j�v ! v�. It therefore follows that v�(s) � �v(s) for

all states s. �

For future reference, let u = mins;a u(s; a) and �u = maxs;a u(s; a) be the minimumand the

maximum one-period utility attainable. Furthermore, de�ne �h to be the unique invariant

probability distribution on S for the transition law �h, i.e. �h is the solution to �h = �T
h�h

with
P

s �h(s) = 1. The uniqueness of �h follows with standard results about Markov chains

from the strict positivity of all �s;a(s
0) .

3 Classi�er System Learning

Let A0 = a0 [ A, where a0 is meant to stand for \no action speci�ed". A rule of thumb is

a function r : S ! A0 with r(S) 6= fa0g. A classi�er c is a pair (r; z) consisting of a rule

of thumb r and a strength z 2 IR. A classi�er c = (r; z) is called applicable in state s, if

r(s) 6= a0.
2 A classi�er system is a list C = (c1; : : : ; cK) of classi�ers, so that for every

2Note that Holland (1986) proposed a binary decoding of the state space. The two formualtions are
equivalent since one can always appropriately rede�ne the state space.
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state s, there is at least one applicable classi�er. Given a classi�er system C and a state

s, let k(s; C) denote the index of the classi�er with the highest strength of all applicable

classi�ers in C, i.e. in state s classi�er k(s; C) is activated and action rk(s;C)(s) is carried

out. Use randomization with some arbitrarily chosen probabilities to break ties. A classi�er

system C thus gives rise to a decision function h(s; C ) � rk(s;C)(s) by selecting the strongest

among all possible classi�ers at each state.3

Classi�er system learning is a stochastic sequence of states (st)
1
t=1, indices (kt)

1
t=1 of

activated classi�ers and classi�er systems (Ct)
1
t=1. Choose a decreasing cooling sequence

(t)t�0 of positive numbers satisfying

1X
t=1


p
t < 1 for some p � 2; (4)

1X
t=1

t = 1 (5)

an initial classi�er system C 1 and an initial state s1. We assume throughout that all initial

strengths zc for the classi�ers in C1 are bounded below by u=(1 � �).

Before updating the strengths at date t, the current state st and the current classi�er

system Ct are known. Choosing an action takes place at the end of date t, whereas the

updating step for the strength of the active classifer in period t takes place at the beginning

of date t+ 1. In detail:

1. (in date t) The classi�er in Ct with highest strength subject to being applicable in state

st is selected. Denote the index of the winning classifer by kt = k(st; Ct).

2. (in date t) The action rkt(st) is carried out.

3. (in date t) The instantaneous utility u(st; rkt(st)) is generated.

4. (in date t+1) The state transits from st to st+1 according to the probability distribution

�st;r(st) on S .

5. (in date t + 1) Determine the index k(st+1; Ct+1) of the strongest classi�er Ct Denote

its strength by z0. Update the strength of classi�er with index kt to

~z = z � t+1 (z � ut � �z0) :4 (6)

3Another method to determine the decision function is to randomize among applicable classi�ers according
to their relative strengths, see e.g. Arthur (1993).

4Marimon, McGrattan and Sargent (1990) introduce an adjustment factor in the bidding to account for
di�erences in the \generality" of classi�ers. We will consider this extension in section (5.1).
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The classi�er system Ct+1 is then de�ned to be the classi�er system Ct with c replaced

by ~c = (r; ~z).

The updating of the strength of the classi�er activated in period t occurs at stage 5 when

ut and st+1 are known. Note, that the updating equation (6) uses the period t strenghts to

determine z0 which is added to the strength of classi�er which is active in period t. After

�nishing with stage 5, we go on to stage 1 in time t + 1. The classi�er chosen at stage 1

in period t + 1 might di�er from the \hypothetical" one which was used to complete the

updating in stage 5. The updating algorithm is formulated in such a way that the updating

does not require calculating the strengths at t + 1 �rst, which would otherwise give rise to

complications in cases where the activated classi�ers at date t and t+1 have the same index.

This is an attractive way to model boundedly rational learning since it relies only on simple

calculations and avoids complex forward-looking reasoning like forming expectations.

The strength updating equation (6) is often referred to as a bucket brigade, since each

activated classi�er has to pay or give away part of its strength z in order to get activated, but

in turn receives not only the instantaneous reward ut for his action, but also the \payment" by

the next activated classi�er �z0, discounted with �. Note the formal similarity to equation (1)

which hints at the intuition why the bucket brigade is able to deal with the dynamic structure

of the maximization problem. Numerical procedures to calculate the value function in (1)

are often based on iterations of approximation of the value function. A guess is plugged

into the right hand side of (1) which yields a new guess. The new guess is in turn plugged

into the right hand side, and so on. The contration mapping theorem ensures that this

process converges to the true value function. The bucket brigade algorithm accomplishes a

similar approximation for the strengths of the classi�ers instead of the state dependent value

function.

We should stress that an agent who is equipped with a classi�er system only performs

very simple computations. She does not have to deal with a complex dynamic programming

problem but learns via the simple bucket brigade algorithm for updating the strenghts.

Moreover, she only has to memorize K numbers, the strength for each classi�er, which for

large state spaces might be much smaller than the number of states n. The dimension of

the value function in the dynamic program is of course equal to n. Note, however, that the

number of classifers can in general be larger than the number of states.
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4 Asymptotic Behavior

Classi�er system learning leads to a stochastic sequence of decision functions (ht)
1
t=1 given by

ht = h(st; Ct). We are interested in determining the asymptotic behavior of this sequence, i.e.

which decision functions are eventually learned, and whether they coincide with an optimal

decision function for (1).

It is convenient for the further analysis to rewrite the accounting scheme (6) as a stochas-

tic approximation algorithm in the following way (for a general overview and introduction to

stochastic approximation algorithms, see Sargent (1992) and Ljung, Pug and Walk (1992)). 5

Let �t be the K-dimensional vector of all strengths at date t. Let Yt = [st�1; kt�1; st; kt] be the

vector of the past and present state and the indices kt�1 and kt of the activated classi�ers.

Given Yt and �t, the updating procedure as laid out above generates Yt+1. The vector �t+1

is computed via

�t+1 = �t � t+1f(�t; Yt+1) (7)

with

f(�t; Yt+1) = ekt g(�t; Yt+1); (8)

where ekt is the K-dimensional unit vector with a one in entry kt and zeros elsewhere, and

where

g(�t; Yt+1) = �t;kt � u(st; rkt(st))� ��t;kt+1: (9)

Note that f is linear in �t. Furthermore, if u=(1 � �) � �t;k � �u=(1 � �) + �� for all k and

some �� � 0, then u=(1 � �) � �t+1;k � �u=(1 � �) + ��� for all k. Thus, the elements of �t

will be bounded below and above by u=(1 � �) and �u=(1 � �) in the limit as t ! 1. The

sequences (�t;k)t are in general not monotonically decreasing, even if the starting strengths

zk of the �rst classi�er system C1 are bounded below by �u=(1 � �), but they are typically

close to being monotonically decreasing in numerical applications.

Consider a vector of strengths �1 so that, conditional on some strength �t0 and some

value for Yt0 at some date t0, we have �t ! �1 with positive probability. If all elements

of �1 are distinct, we call �1 a limit strength vector. We aim at characterizing all limit

strength vectors. To do that, we �rst consider a special situation and formulate necessary

conditions for a vector to be a limit strength vector in that situation, see Proposition 2 and

the consistency condition below. We then show in Theorem 1, that these conditions are a

complete characterization in general.

5Marimon et. al. (1990, sec. 5) already suggest to use stochastic approximation results to study the limit
behavior of classi�er system.
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Consider the special situation where convergence to �1 is almost sure for any value of

Yt0, and where the ordering of the elements in �t coincides with the ordering of the entries

in �1 almost surely for all t � t0. Using the list of rules from the classi�er system C1

and attaching strengths according to a strength vector � 2 IRK allows one to identify a

strength vector � with a classi�er system C�. Given a limit strength vector �1, �nd the

associated classi�er system C1. Find the index k(s) = k(s; Ct) of the strongest classi�er for

each state s, the resulting decision function h(s) = h(s; Ct), the associated transition matrix

�h and thus the invariant distribution �h on S . Note that k(s) coincides with k(st; Ct) for

all t � t0 almost surely by our special assumption. Thus, the transition law for the state

vector Yt to Yt+1 can be restated as drawing st+1 according to the transition law �h and

setting the index kt+1 to be the index k(st+1): denote this transition law with �̂. Since

�h is the unique invariant distribution for �h, it follows that there is a unique invariant

distribution � for �̂. The marginal distribution of � with respect to the index kt in Yt+1

yields an invariant distribution � on the set f1; : : : ;Kg of classi�er indices. This distribution

can alternatively be computed directly via �(k) = Prob(k = k(s)) =
P
fsjk=k(s)g �h(s). Call

classi�ers asymptotically active if they are a winning classi�er for at least one state, i.e. if

�(k) > 0. Call all other classi�ers asymptotically inactive. De�ne

�(�) � E� [f(�; Y )] ;

where the expectation is calculated with respect to the invariant distribution �.

Proposition 2 In the special situation where convergence to �1 is almost sure for any

value of Yt0, and where the ordering of the entries in �t coincides with the ordering of the

entries in �1 almost surely for all t � t0, a necessary condition for a limit strength vector is

�(�1) = 0: (10)

Proof: Take expectations with respect to the invariant distribution � over the initial

state Yt0 in equation (7) and sum from t = t0 to some T . Since � is the invariant distribution,

this amounts to taking expectations with respect to the invariant distribution over each future

Yt as well. Exploiting almost sure convergence yields

�1 = �t0 �
1X
t=t0

t+1�(�t): (11)

Assume now that (10) does not hold and that instead, say, �(�1) > � > 0. Since �(�t) !

�(�1) and hence �(�t) > �=2 for t � T , some T , a contradiction follows from (11), (5) and

the �niteness of �1. �
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The necessary condition (10) can be studied a bit further. It is easy to see that

�(�) = � � (� � ~u� �B�) ; (12)

where � denotes element-by-element multiplication of two vectors of equal dimension, where

~u =

2
66664

...

E�h [u(s; rk(s)) j k(s) = k]
...

3
77775 (13)

(and arbitrary entries, whenever the conditional expectation is not well de�ned, i.e. whenever

�(k) = 0) and where B is a matrix with

Bk;l = Prob(fs0 j k(s0) = lg j k(s) = k)

=

P
fijk=k(si)g

P
fjjl=k(sj)g �h(si)�h;i;j

�(ck)
(14)

for all indices k indexing classi�ers with �(k) 6= 0 (choose some arbitrary number between 0

and 1 otherwise).

Suppose one were given only the ordering of the classi�ers according to �1 rather than

the strength vector itself. Given the ordering, one can recover the index of the winning

classi�er k(s) as well as the decision function h, the utilities u(s; rk(s)) and the probabilities

�h;i;j, �h(s) and �(k). Equation (10) can thus be used to solve for �1 by solving a system

of K linear equations in K unknowns. For the asymptotically active classi�ers, a simple

contraction mapping argument shows that their strengths is uniquely given by

�1 = (I � �B)�1~u; (15)

where (in slight abuse of notation) the rows and columns corresponding to asymptotically

inactive classi�ers are meant to be eliminated in that equation. Equation (10) does not

impose any restrictions on the strength of asymptotically inactive classi�ers. However their

value can be bound by inspecting the construction of k(s) from the ordering implied by �1:

the strength of any classi�er, including asymptotically inactive classi�ers, is bound above

by the strengths of the asymptotically active classi�ers which are applicable in states where

the given classi�er is applicable as well. In other words, the following consistency condition

applies.

consistency condition:

for all s 2 S and all classi�ers ck in C� with k 6= k(s) and c(s) 6= a0, we have

�1;k < �1;k(s).
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We call a vector �1 2 IRK a candidate limit strength vector, if �1 satis�es equation (10)

as well as the consistency condition. Note that the calculations leading up to and following

(10) essentially only require knowledge of the ordering of the classi�ers resulting from �1.

As a result of the discussion above we thus have

Proposition 3 1. Under the conditions of proposition 2, every limit strength vector is

a candidate limit strength vector.

2. For each of the K! possible strict orderings of the K classi�ers, there is a vector �1 2

IRK satisfying (10). �1 is unique up to the assignment of strengths to asymptotically

inactive classi�ers. �1 is a candidate limit strength vector, if it satis�es the consistency

condition.

It is important when interpreting the second part of this proposition, that the given

ordering of the classi�ers is used to calculate k(s), not the solved-for strength vector �1, and

the resulting decision function and probabilities. The vector �1 may give rise to a di�erent

index ~k(s) of the winning classi�er and it is the task of the consistency condition to check

for the equality of k(s) with ~k(s).

For two special cases, the candidate limit strength vectors are easy to construct and are

directly related to the dynamic programming calculations in section 2.

Proposition 4 Suppose there is only one rule r 2 R . Then there is a unique candidate

limit strength vector �1 2 IR and it satis�es � = E�rvr. In particular, if r = h�, then

�1 = E�h�v
�.

Proof: In this case (15) reduces to

�1 = (I � �)�1E�h[uh]: (16)

We therefore need to show that

E�h[vh] = (1� �)�1E�h[uh] (17)

or

(1� �)�Tvh = �huh: (18)

But this follows immeadiately from (3) and from the fact that

�T = �T�h; (19)
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which completes the proof. �

However, in general

zk 6= E�h [vh(s)jk(s) = k] : (20)

Proposition 5 Let h� be a decision function with v� = vh� and suppose that h� is unique.

Suppose, furthermore, that all K rules are applicable in at most one state and that for each

s 2 S , there is exactly one rule with r(s) = h�(s); denote its index with k�(s). De�ne �

by assigning for each state s strength v�(s) to the classi�er with index k�(s). For all other

classi�ers c applicable in some state s, assign some strength strictly strictly below v�(s).

Then �1 is a candidate limit strength vector which implements the dynamic programming

solution.

Proof: Compare equation (15) to equation (3) and note that B = �h and ~u = uh. �

Theorem 1 shows that our characterization is general.

Theorem 1 Every candidate limit strength vector is a limit strength vector and vice versa.

The proof of this theorem can be found in Appendix A. It draws on a result by Metivier

and Priouret (1984) about Markov stochastic approximation procedures, restated in Ap-

pendix B for convenience. The theorem indicates how classi�er system learning happens

over time. For some initial periods, the orderings of the classi�ers may change due to chance

events. Eventually, however, the system has cooled down enough and a particular ordering

of the strengths is �xed for all following periods. As a result, the asymptotically inactive

classi�ers will no longer be activated, and the system converges to the limit strength vector

as if the transition from states to states was exogenously given: the classi�er system has

learned the �nal decision rule. Alternatively, one can train a classi�er system to learn a

particular decision rule corresponding to some candidate limit strength vector by forcing the

probabilistic transitions from one state to the next to coincide with those generated by the

desired decision rule: after some initial training periods, the strengths will remain in the

desired ordering and will not change the imprinted pattern. The number of initial training

periods and the number of the cooling periods is path-dependent; however, given a particular

history, the theorem and its proof do not rule out that the strengths break free once more

to steer towards a di�erent limit. In fact, this will typically happen with some probability
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due to (5). If there is a su�ciently long string of \unusual events", these events can have a

large e�ect on the updating of the strengths in (6) and thus change an existing ordering.

It should be noted that the characterization only applies to limit strength vectors with

a strict ordering of the strengths. As we will see in the next section, this is not just ruling

out knife-edge cases. A robust example will be constructed, where equality of the strengths

of two classi�ers is necessary asymptotically.

5 Examples

We provide an example which demonstrates the similarities and the di�erences between

classi�er systems and the dynamic programming approach. It also demonstrates why the

case of several asymptotically active classi�ers for one state cannot be ruled out. The example

is abstract and meant for illustration only; it has therefore been kept as simple as possible.

Suppose S = f1; 2; 3g, A = f1; 2g and that the transition to the next state is determined

by the choice of the action only, regardless of the current state s:

s0 = 1 s0 = 2 s0 = 3

a = 1 : �s;1(1) = 1=3 �s;1(2) = 1=3 �s;1(3) = 1=3

a = 2 : �s;2(1) = 0 �s;2(2) = 1 �s;2(3) = 0

Note, that some probabilities are zero, in contrast to our general assumption. This is done

to simplify the algebra for this example. We further have a discount factor 0 < � < 1 and

utilities u(s; a); s = 1; 2; 3; a = 1; 2. We assume without loss of generality that u(2; 1) = 0.

We impose the restriction that u(3; a) = u(1; a) for a = 1; 2, so that state s = 3 is essentially

just a \copy" of state s = 1. Thus, there are three free parameters, u(1; 1), u(1; 2) and

u(2; 2).

The di�erence between state s = 1 and state s = 3 is in how they are treated by the

available rules. Assume that there are two rules, r1 and r2, described by

r1 r2

s = 1 : r1(1) = 1 r2(1) = 2

s = 2 : r1(2) = 0 r2(2) = 1

s = 3 : r1(1) = 1 r2(1) = 0

with \0" denoting the action a0, i.e. non-applicability. Note that rule 2 is applicable in state

s = 1 but not in state s = 3.

We aim at calculating all candidate limit strength vectors. Since there are only two

rules, there can be only two strict rankings of the corresponding classi�er strengths, namely
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z1 > z2 (Case I) and z2 > z1 (Case II). We will also have reason to consider the case z1 = z2

with nontrivial randomization between the classi�ers (Case III), a situation not covered by

our theoretical analysis above. Each of these cases are analyzed below. Note that the two

given rules never lead to action a = 2 in state s = 2: the value of u(2; 2) is thus irrelevant

for the comparison of the classi�ers. Each of the cases below will thus be valid only under

some restrictions on the values for the remaining two free parameters u(1; 1) and u(1; 2).

The results are summarized in Table 1 and Figure 1.

Case I: z1 > z2: In this case, classi�er 1 is activated in states s = 1 and s = 3 and classi�er

2 is activated in state s = 2. Thus, action a = 1 is taken in all three states: h(s) � 1.

It follows that �h(1) = �h(2) = �h(3) = 1=3. For the strengths, one needs to solve the

equations

z1 = u(1; 1) +
�

3
(2z1 + z2)

z2 =
�

3
(2z1 + z2):

This case can thus be obtained if and only if

u(1; 1) > 0: (21)

Case II: z2 > z1: In this case, rule 2 is applied in states s = 1 and s = 2 whereas rule

1 is applied in state s = 3. Hence, h(1) = 2; h(2) = 1; h(3) = 1 and consequently

�h(1) = �h(3) = 1=4 and �h(2) = 1=2. The strengths are calculated from

z1 = u(1; 1) +
�

3
(z1 + 2z2)

z2 =
1

3
(u(1; 2) + �z2) +

2�

9
(z1 + 2z2):

It is easily checked that this case can be obtained if and only if

u(1; 2) > 3u(1; 1): (22)

Case III: z1 = z2 = z: . We provide a \solution" for this case, even though our theory above

does not cover cases without strict ranking of the classi�ers. The reasoning employed

here should be rather intuitive, however. Given state s = 1, we guess that classi�er c1

is activated with some probability p, whereas classi�er c2 is activated with probability 1

- p, i.e. there is randomization between the classi�ers. The resulting decision function

is random. Given s = 1, states s0 = 1 and s0 = 3 will be reached with probability
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p=3 each. The invariant distribution �h is therefore �h(1) = �h(3) = 1=(4 � p),

�h(2) = (2 � p)=(4 � p). Let �h(s; k) be the joint probability that state s occurs

and classi�er k is activated. We have

c1 c2

s = 1 : �h(1; 1) = p=(4 � p) �h(1; 2) = (1� p)=(4 � p)

s = 2 : �h(2; 1) = 0 �h(2; 2) = (2� p)=(4 � p)

s = 3 : �h(3; 1) = 1=(4 � p) �h(3; 2) = 0:

The common strength z should satisfy both equations arising from (10), one for clas-

si�er c1 and one for classi�er c2 yielding

1

1 � �
u(1; 1) = z =

1

1 � �

1 � p

3� 2p
u(1; 2); (23)

which can be solved for p. Note that p is a viable probability if and only if 0 � p � 1.

Thus, case III is valid, if and only if one of the following two inequality restrictions is

satis�ed:

� u(1; 2) � 3u(1; 1) � 0 or

� u(1; 2) � 3u(1; 1) � 0.

The calculated strengths and probabilities calculated in this case are unique except if

u(1; 1) = u(1; 2) = 0. The inequalities have to be strict in order for p to be nontrivial:

otherwise, the decision rule obtained coincides with the one derived from case I or case

II.

Table 1 shows that for any given values of u(s; a) there is at least one applicable case.

However, the only case available may be Case III and thus the solution prescribed by the

classi�er system involves randomizing between the classi�ers.

It is interesting to compare these possibilities with the solution to the dynamic program-

ming problem. If u(2; 2) is large enough, the optimal decision function will always prescribe

action a = 2 in state s = 2, which cannot be done with the classi�ers above. Any classi�er

system with the rules given above will result in a suboptimal solution simply because the

correct solution is not within reach.

Assume instead that u(2; 2) is small enough, so that the decision function h� solving

the dynamic programming problem takes action h�(2) = 1 in state s = 2. By symmetry,

h�(1) = h�(3) and v�(1) = v�(3). Furthermore, h�(1) = h�(3) = 1 if and only if

u(1; 1) + �=2 (v�(1) + v�(2)) � u(1; 2) + �v�(2) (24)
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and h�(1) = 2 otherwise.6 Directly calculating v� = vh� with equation (3) for the two choices

yields

� h�(1) = 1, if u(1; 2) �
�
1 + 2

3
�
�
u(1; 1),

� h�(1) = 2, if u(1; 2) �
�
1 + 2

3
�
�
u(1; 1).

A summary of all possible situation is found in Table 1 and Figure 1. The learnable

decision function may not be unique (area C2). The learnable decision function may involve

asymptotic randomization between the available rules (area C1). The learnable decision

function can also be di�erent from the solution to the dynamic programming problem, even

if that solution is attainable by ranking the classi�ers appropriately: this is the case in area

B1. The intuitive reason for this last observation is quickly found: since u(2; 1) has been

normalized to zero, u(1; 1) measures how much classi�er c1 gains against classi�er c2 by being

applicable in state 2 rather than state s = 1. If u(1; 1) is positive, state s = 3 corresponds

to \good times" and state s = 2 corresponds to \bad times". Since the accounting system

for calculating the strength of classi�ers does not distinguish between rewards generated

from the right decision and rewards generated from being in good times, a classi�er that is

applicable only in good times \feels better" to the arti�cially intelligent agent than it should.

Thus, if u(1; 1) > 0, classi�er c1 may be used \too often" and if u(1; 1) < 0, classi�er c1 may

be used \too little". This is what happens in regions B and C.

5.1 Adjusting for Generality

In the bidding and accounting scheme as laid out in section (3) each classi�er is treated

equally independent of their generality. The example above shows that rules which are

applicable only in a small number of states, ie. speci�c rules, can dominate \better" general

rules even if their are inferior. This raises the immediate question whether it is possible

to adjust the scheme so that this drawback can be eliminated. Marimon, McGrattan and

Sargent (1990) adjust the payment of the classi�ers with a proportional factor that depends

on the number of states in which the classi�er is active. We will allow for the more general

case where there is a general correction factor for each classi�er.

Consider the above example with only two classi�ers. Let �1; �2 be the adjustment factor

for the classi�er 1 and 2, respectively and let xi = �izi be the adjusted strength for classi�er

i. The �rst obvious change in the scheme is as follows. The strongest classi�er is found

by comparing the values of �z instead of just z and the strength is updated according to

6If equation (24) holds with equality, both choices for h�(1) are optimal.
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~z = z � t+1 (�z � ut � ��0z0) : However, the di�erence to the accounting system presented

above is small and immaterial asymptotically. To see that rewrite the equation as ~x =

x � �t+1 (x� ut � �x0) and therefore di�ers from (6) only by a classi�er-individual scalar

adjustment for the updating step size. Asymptotically, only the expression in brackets

matters, and there is no di�erence. This shows that for the adjustment to work in the limit,

one has to distinguish between the bidding and the payment between the classi�ers. Thus

we propose the following adjustment.

The bid of each applicable classi�er is still equal to its strength. Thus the strongest

classi�er still wins the bidding. However, the winning classi�er only pays back x = �z

instead of z. Hence, the adjustment factors � determine how much of its strength the winning

classi�er has to give away. A classi�er with a low � has thus an advantage over a classi�er

with a high �. Next we check whether it is possible to �nd a set of �'s which guarantee

that the classi�er learning solution is identical to the dynamic programming solution. We

normalize �2 to unity thus leaving �1 as free parameter. Assume for the moment that the

dynamic programming solution prescribes h�(1) = 1 (the condition for this case is given in

the preceeding section). Thus, we have to �nd �1 so that classi�er 1 is stronger than classi�er

2 in the limit, ie. z1 > z2. Note that since the payments are now x1 and x2, equation (10) x2.

Using x1 = �1z1 and x2 = z2 we can get the consistency condition in terms of the strengths.

We get

z1 � z2 = u(1; 1)

"
3��

�
� 2�

3(1� �)

#
: (25)

Hence, if u(1; 1) > 0 any � satisfying

� <
3� �

2�
(26)

will give the desired result that classi�er 1 is stronger than classi�er 2. If u(1; 1) < 0 the

inequality is reverses. The analysis for the other case z2 > z1 is analogous. This shows

that we always can �nd appropriate payment adjustments that can lead the classi�er system

solution to coincide with the dynamic programming solution if it is attainable. Note however,

that this is only possible after having solved the dynamic program. In other words, it is not

possible to select the correct payment adjustment factors without knowing the dynamic

programming solution.7

Furthermore, it is not clear whether letting the adjustment parameters depend on the

generality of the classi�ers is optimal in every case. It might solve the problem of selecting

7Marimon, McGrattan and Sargent's \bids" correspond to our payment �z. The winning classi�er in
their paper is, as in ours, determined by the strength and not by the as bid, as one might be led to believe
from their teerminology. From this it follows that more general rules bene�t from their adjustment scheme
and not speci�c ones as they say on p. 338.
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inferior speci�c rules in some cases. But one also could imagine cases where a speci�c but

superior rule which is only applicable in bad states s dominated by an general but inferior

rule which is applicable in good and bad states. Instead one could de�ne adjustment schemes

which depend on whether a classi�er is applicable in \good" or in \bad" states. In general,

the above analysis shows that rules that are applicable in \good" states should receive a

high � thus penalizing them for being applicable in these good times. On the contrary,

classi�ers which are mostly applicable in bad states should receive a low �. Of course, in

some problems it is ex ante not clear to determine which state is \good" and which one is

\bad". In these cases it is hard to �nd suitible adjustment parameters.

6 Generating Excess Sensitivity of Consumption to

Transitory Income

Consider the puzzle of excess sensitivity of consumption to transitory income as documented

by Hall and Mishkin (1982), Zeldes (1989) and Carroll and Summers (1991) among others.

DeLong and Summers (1986) and Campbell and Mankiw (1989, 1991) propose ad hoc rule

of thumb consumers to explain this feature of aggregate consumption. Their rule of thumb

consumers are not as sophisticated as our learning agents. They estimate models which allow

for a �xed proportion of consumers who just consume their current income and �nd that the

speci�cation including rule of thumb consumers is capable of producing excess sensitivity. In

an alternative approach Laibson (1993) explains the puzzle as stemming from the inability

to precommit future selves not to spend too much out of transitory income.

We will construct an example to show that classi�er system learning can generate such

behavior even if the optimal decision function is part of the system since bad decisions in

good times can \feel better" than good decisions in bad times. Speci�cally we show that the

ad-hoc rule of thumb \consume current income" can be the asymptotic outcome of classi�er

system learning. In order to get analytical results we make some simplifying assumptions,

but the general avor of the results should be intuitive even in more complex models.

There is an in�nitely lived agent who derives utility u(ct) from consuming in period t

and who discounts future utility at the rate 0 < � < 1. The agent receives random income

yt each period. Suppose there are two income levels, y > y > 0 and that income follows a

Markov process with transition probabilities py y = Prob(yt = y j yt�1 = y), etc.. The agent

enters period t with some wealth wt. Next periods wealth is given by wt+1 = wt + yt � ct.

A borrowing constraint is imposed so that ct � wt + yt. Furthermore, we assume that the

agent is born with zero wealth: w0 = 0.
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To cast this model into our framework, we discretize the model and assume that all

variables take only integers values: w 2 f0; 1; 2; : : : ; �wg, etc.. The state of the system is

given by st = (wt; y), where y is the present income level, y 2 fy; yg. Note that the implied

transition probabilities �ij from state i to state j are not strictly positive, in contrast to our

assumption in section 2. This assumption is for simpli�cation of the algebra only. 8

The dynamic programming problem is given by

v(w; y) = max
c2f0;1;:::;w+yg

0
B@u(c) + �

X
y02fy;yg

pyy0 [v(w+ y � c; y0)]

1
CA : (27)

Given particular choices for the (increasing) utility function and the parameters of this

model, this dynamic programming problem can be solved with the techniques in section 2.

Let h�(s) = c�(w; x) be the decision function solving this dynamic program. Note that

c�(0; yl) = y. Hence when the agent has zero wealth and current income is low, she spends

all her income.

Now consider two rules, r1 and r2 with strengths z1 and z2 respectively. Rule r1 is

applicable in all states and coincides with the optimal decision function h�. Rule r2 is

applicable only in states when the income is high, i.e. in \good" states. We assume that

r2(w; y) = w + y; (28)

so that rule r2 prescribes consumption of the maximal amount when income is high.

Will the suboptimal rule r2 be asymptotically active when it is applicable despite the

fact that the optimal rule r1 is always applicable? This coincides with the ranking z2 > z1.

Note that in this regime the agent always spends her total current income and never saves

This is the ad-hoc rule of thumb consumer considered by DeLong and Summers (1986) and

Campbell and Mankiw (1989, 1991). Thus the invariant distribution over states �h has

zero weight on all states st = (w; y) with w > 0; y 2 fy; yg. This makes the equation for

calculating the strengths very simple:

z1 = u(yl) + �(py yz1 + (1� py y)z2) (29)

z2 = u(yh) + �(py yz1 + (1� py y)z2): (30)

Solving these two equations for z1 and z2 gives the limit strengths. To see whether this

8We could modify the model in the following way so that �ij > 0 8i; j. Let p > 0 be the probability that
next periods wealth is given by wt+1 = wt+ yt� ct whereas with probability 1� p, an arbitrary wealth level
wt+1 is drawn next period uniformly from 0; 1; :::; �w. While all the results are valid for p close to unity, the
algebra is much more cumbersome. For simplicity we choose p = 1.
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ranking is feasible we have to check if z2 > z1 since

z2 � z1 =
u(y)� u(y)

1� �(py y � py y)
> 0; 0 < py y; py y; � < 1; (31)

rule r1 (r2) will be active when income is low (high). The resulting consumption decision

is h(s) = c(w; y) = y. The intuition behind this suboptimal behavior is as in the preceding

example: rule r2 may be asymptotically stronger than rule r1 since it only applies in \good

times" and thus \feels better" on average than rule r2. Thus we have demonstrated that rule

of thumb consumption behavior can be the outcome of learning behavior and thus should

not be dismissed as completely ad-hoc.

This example is only intended as an illustration. We should stress that the choice of

classi�ers is ad hoc. However, the resulting behavior should be fairly robust in more complex

problems.

7 Conclusion

In this paper we have discussed the asymptotic behavior of rules of thumb learning repre-

sented by Holland's (1986) classi�er system. We have shown how a bucket brigade algorithm

enables classi�er systems to deal with general discrete recursive stochastic dynamic optimiza-

tion problems. We reformulated the evolution of the strengths as a stochastic approximation

algorithm. Using a theorem by Metevier and Priouret (1984) we are able to obtain a gen-

eral characterization of all possible limit outcomes provided that the classi�ers are strictly

ordered in the limit. A simple example shows that the attainable decision function is neither

necessarily unique nor characterized by a strict ordering of classi�ers. With these results

we are also able to compare classi�er learning to the dynamic programming solution of the

dynamic optimization problem. Due to the bucket brigade payment scheme, the classi�er

strengths are in close relationship to the value function of the dynamic problem, in fact, in

certain situations they coincide.

The example also shows in what circumstances classi�er system learning may lead to

suboptimal behavior even when the optimal decision rule is an element of the classi�er

system. Since the optimal classi�er is applicable in all possible states of nature, a suboptimal

classi�er might dominate the optimal one if is applicable only in \good" states of the world.

Bad decisions in good times can \feel better" than good decision in bad times. We also show

that this e�ect might lead a consumer in an intertemporal consumption problem to consume

too much in periods of high income generating excess sensitivity to transitory income.
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Appendix

A Proof of Theorem 1

Proof: We �rst show that a given candidate limit strength vector is a limit strength

vector. To that end, we analyze �rst an alteration of the stochastic approximation scheme

above and characterize its limits in the claim below. We then show that the limit to this

altered scheme corresponds to a limit strength vector in the original scheme.

Claim: Consider a candidate limit strength vector �1a and its associated decision

function h. Fix the transition probabilities �h. Consider the following altered updating

system: let the classi�er system consist only of the asymptotically active classi�ers according

to �1. Fix some starting date t0, initial strength vector �t0 with �t0;l � u=(1 � �) for all l

and an initial state Yt0 . Let ~�t be the vector of strengths of this reduced classi�er system

at date t � t0 and let ~�1 be the corresponding subvector of �1 of strengths of only the

asymptotically active classi�ers. Furthermore, let the transition from state st to st+1 always

be determined by the transition probabilities �h. Then ~�t ! ~�1 almost surely. Furthermore,

for almost every sample path, the transition probabilities �st;rkt coincide with the transition

probabilities given by �h for all but �nitely many t.

Proof of the Claim: The updating scheme is still given by (7), (8) and (9). The

transition law for Yt is given by �̂, where �̂ was de�ned in section 4. In particular, �̂ does

not depend on ~�t due to our alteration of the updating process. The random variables Y lie

in a �nite, discrete set. Note that ~�t always remains in the compact set � = [u=(1� �); �z]d,

where d is the number of asymptotically active classi�ers and �z is the maximum of all initial

starting strengths in ~�t0 and �u=(1 � �). With our remarks after theorem 2 in Appendix B,

this theorem thus applies if we can verify assumptions (F), (M1), (M5c) and the additional

assumptions listed in the theorem itself.

Assumption (F) is trivial, since f is continuous. Assumption (M1), the uniqueness of �,

follows from the uniqueness of �h. For (M5c), note that I � �̂ is continuously invertible on

its range and that f(~�; Y ) is linear and thus Lipschitz continuous in ~�. For the additional

assumptions of the theorem, note �rst that p =1 in (M2) is allowed according to our remarks

following the theorem in Appendix B, so that the restriction
P

n 
1+(p=2)
n <1 is simply the

restriction that the sequence (n) is bounded. For the conditions on the di�erential equation,

consider � as given in equation (12) and ~u and B given in equations (13) and (14) restricted

to entries of asymptotically active classi�ers. Note that the di�erential equation
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d~�(t)

dt
= ��(~�(t))

= � �
�
~�1 � ~u� �B~�1

�

is linear with the unique stable point ~� given by (15). The di�erential equation is globally

stable since the matrix �� � (I � �B) has only negative eigenvalues (note that 0 < � < 1

and that Bk;l is a stochastic matrix). Theorem 2 thus applies with A = � and we have

lim
t!1

~�t = ~�1 a.s.,

as claimed.

The claim that the transition probabilities �st;rkt coincide with the transition probabil-

ities given by �h follows from the almost sure convergence to the limit. Given almost any

sample path, all deviations ~�t;k� ~�1;k will be smaller than some given � > 0 for all t � T for

some su�ciently large T, where T depends in general on the given sample path and on �.

Make � less than half the minimal di�erence between the limit strengths of any two di�erent

classi�ers j ~�1;k � ~�1;l j. We then have that the ranking of the classi�ers by strength will

not change from date T onwards. But that means that the transition probabilities �st;rkt
coincide with the transition probabilities given by �h, concluding the proof of the claim. �

Given a candidate limit strength vector �1, �nd � > 0 such that 4� is strictly smaller

than the smallest distance between any two entries of �1. Denote the underlying probability

space by (
;�;P) and states of nature by ! 2 
. Consider the altered updating scheme as

described in the claim above with t0 = 1 and the given initial state. Find the subvector ~�1

of �1, corresponding to the asymptotically active classi�ers according to �1. We can thus

�nd a date t1, a state Y and a strength vector �� for only the asymptotically active classi�ers

so that given some event 
0 � 
 of positive probability, sample paths satisfy Yt1 = Y ,

j ~�t1;l �
��l j< � for all l, j ~�t;l� ~�1;l j< � for all l and all t and ~�t ! ~�1. For any sample path

(~�t)t�t1 (i.e. not just those obtained for states of nature in 
0) , �nd the \shifted" sample

path (�̂t)t�t1 obtained by starting from �̂t1 =
�� instead of ~�t1, but otherwise using the same

realizations ut and states Yt for updating. This resets the initial conditions and shifts the

starting date to t1, but leaves the probabilistic structure otherwise intact: the claim thus

applies and we have again �̂t ! ~�a.s.. Furthermore, given 
0, an induction argument applied

to (6) yields j �̂t;l� ~�t;l j�j �̂t1;l�
~�t1;l j< � for all t � t1 and all l. As a result, j �̂t;l� ~�1;l j< 2�

for all t � t1 and all l, given 
0. Extend �̂t to a strength vector ��t for all classi�ers by

assigning the strengths given by �1 to inactive classi�ers. By our assumption about �, the
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ordering of the strengths given by any ��t, t � t1 coincides with the ordering of the strengths

given by �1. Thus starting the classi�er system learning at t1, strength vector �t1 =
��t1 and

state Yt1 = Y at t1, the evolution of the strengths �t is described by �t = ��t for all ! 2 
0

and we therefore have that �t ! �1 with positive probability. This shows that �1 is a limit

strength vector, completing the �rst part of the proof.

Consider in reverse any limit strength vector �1: we have to show that �1 satis�es (10),

since the consistencyconsistencyconsistencyconsistency condition is trivially satis�ed by def-

inition of k(s). Find � > 0 so that 4� is strictly smaller than the smallest distance between

any two entries of �1. Find a date t1 � t0 so that on a set 
0 of positive probability, we have

j �t;l��1;l j< � for all t � t1 and all l, and �t ! �1. Given the strict ordering of the strengths

in �1, there is a candidate limit strength vector �01 which is unique up to the assignment of

strength to asymptotically inactive classi�ers, see proposition 3. Given any particular state

of nature �! 2 
0 and thus values for �t1 and Yt1 at date t1, consider the altered updating

scheme as outlined in the claim with that starting value (and t0 � t1 for the notation in the

claim). Via the claim, ~�t ! ~�1 a.s., where ~�01 is the subvector of the candidate limit strength

vector �01 corresponding to the asymptotically active classi�ers. Thus, the strengths in ~�(!)

coincide with the strengths of the asymptotically active classi�ers in �t(�!) for almost all !

and it is now easy to see that therefore the strengths of the asymptotically active classi�ers

in �1 has to coincide with the strength of the asymptotically active classi�ers in �01, �nishing

the proof of the second part. To make the last argument precise, observe that ~�t(!) ! ~�1

except on a measurable nullset ! 2 ��! 2 �. Note that the exceptional set is the same

whenever the initial conditions �t1 and Yt1 are the same. Since there are only �nitely many

such initial conditions that can be reached, given the discrete nature of our problem and

the �xed initial conditions at date t0, the exceptional set � = f(�!; !) j �! 2 
0; ! 2 ��!g is a

measurable subset of zero probability of 
0 � 
 in the product probability space on 
 � 
.

It follows that the strengths of the asymptotically active classi�ers in �1 and �01 coincide

for all (�!; !) 2 
0�
=�, which is a set of positive probability. Since these strengths are not

random, we must have equality with certainty. �
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B A Theorem about Markov Stochastic Approxima-

tion Algorithms

In this section, we use the notation of Metivier and Priouret (1984). For a general overview

and introduction to stochastic approximation algorithms, see Sargent (1992) and Ljung,

Pug and Walk (1992).

For each � 2 IRd consider a transition probability �̂�(y; dx) on IRk. This transition

probability de�nes a controlled Markov chain on IRd.

De�ne a stochastic algorithm by the following equations:9

�n+1 = �n � n+1f(�n; Yn+1) (32)

where f(�; y) is a function f : IRd � IRk ! IRd,

P [Yn+1 2 B j Fn] = �̂�n(Yn;B) (33)

where P [Yn+1 2 B j Fn] is the conditional probability of the event fYn+1 2 Bg given �0; : : : ; �n,

Y0; : : : ; Yn.

We call  ! �̂� the operator �̂� (x) �
R
 (y)�̂�(x; dy). Assume the following:

(F) For every R > 0 there exists a constant MR such that

sup
j�j�R

sup
x
j f(�; x) j�MR:

(M1) For every �, the Markov chain �̂� has a unique invariant probability ��.

(M2) There exist p � 2 and positive constants �R < 1, KR for which supj�j�R
R
j y jp

�̂�(x; dy) � �R j x j
p +KR.

(M3) For every function10 v with the property j v(x) j� K(1+ j x j) and every �; �0,

j � j� R, j �0 j� R,

sup
x
j �̂�v(x)� �̂�0v(x) j� ~KR j � � �0 j sup

x6=x0

j v(x)� v(x0) j

j x� x0 j
:

(M4) For every � the Poisson equation

(1� �̂�)v� = f(�; �)�

Z
f(�; y)��(dy) (34)

has a solution v� with the following properties of (M5).

9The algorithm here is subscripted with n rather than t.
10The functions v here and in the next two assumptions have no (or at least no apparent) connection with

the value functions in the main body of the paper.
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(M5) For all R there exist constants MR and CR so that

a) supj�j�R j v�(x)� v�(x
0) j�MR j x� x0 j;

b) supj�j�R j v�(x) j� CR(1+ j x j);

c) j v�(x)� v�0(x) j� CR j � � �0 j (1+ j x j) for j � j� R, j �0 j� R.

Let

�(�) �
Z
f(�; y)��(dy) = E�� [f(�; y)]:

Metivier and Priouret (1984) have shown the following theorem.

Theorem 2 Consider the algorithm de�ned by (32) and (33) and assume that (F) and

(M1) through (M5) are satis�ed. Suppose that (n) is decreasing with
P

n n = +1 andP
n 

1+(p=2)
n < 1, where p � 2 is the constant entering (M2). Let 
1 � fsupn j �n j<1g.

Then there is a set ~
1 � 
1 such that P (
1n~
1) = 0 and with the following property: for

every �� that is a locally asymptotically stable point of the equation

d�(t)

dt
= ��(�(t))

with domain of attraction D(��) and for every ! 2 ~
1 such that for some compact A � D(��),

�n(!) 2 A for in�nitely many n, the following holds:

lim
n
�n(!) = ��

Remarks:

1. Suppose Y is always a member of some �nite set fy1; : : : ; yqg and assume that (M1)

is satis�ed. The operator �̂� can then simply be understood as a matrix operating

on IRq via �̂�vi =
P

j(�̂�)ijvj, where vi � v(yi) for any given function v : IRk ! IR.

In particular, the q-dimensional vector corresponding to the function v� in (M4) can

always be found by inverting the matrix (I � �̂�) on its range and applying it to the

q-dimensional vector corresponding to the right hand side of equation (34), noting that

the right hand side of that equation is indeed in the range of I��̂�, since it is orthogonal

to the q-dimensional vector representing the unique invariant probability ��.

2. Suppose � is always in some compact subset of IRd and Y is always a member of some

discrete, �nite subset of IRk. Then assumptions (M2), (M4) and (M5a) and (M5b) are

trivially satis�ed and p in (M2) can be chosen to be p =1.

3. Suppose, �̂� is independent of �. Then assumption (M3) is trivially satis�ed.
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u(1,2)

u(1,1)

u(1,2) = (1 + 2/3 β) u(1,1)

u(1,2) = 3 u(1,1)

Figure 1

C2
B1

B2C1

A2

A1
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Area Restriction Case I Case II Case III h?(1) Dyn. Prog.

z1 > z2 z1 < z2 z1 = z2 = CS ?

u(1; 1) > 0

A1 u(1; 2) � 3u(1; 1) Yes No No 1 yes

u(1; 2) � (1 + 2=3 �)u(1; 1)

u(1; 1) > 0

B2 u(1; 2) � 3u(1; 1) Yes No No 2 no

u(1; 2) � (1 + 2=3 �)u(1; 1)

u(1; 1) � 0

A2 u(1; 2) > 3u(1; 1) No Yes No 2 cannot

u(1; 2) � (1 + 2=3 �)u(1; 1)

u(1; 1) � 0

B1 u(1; 2) > 3u(1; 1) No Yes No 1 no, but could

u(1; 2) � (1 + 2=3 �)u(1; 1)

u(1; 1) � 0

C1 u(1; 2) � 3u(1; 1) No No Yes random cannot

u(1; 2) � (1 + 2=3 �)u(1; 1)

u(1; 1) > 0

C2 u(1; 2) > 3u(1; 1) Yes Yes Yes not unique maybe

u(1; 2) � (1 + 2=3 �)u(1; 1)

Table 1: Summary of Cases I, II, III


