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Aóslrnct: Approximate solutions for optimization problems become of in-

terest if the "true" optimum can not be found: this may happen for the

simple reason that an optimum does not exist or because of the "bounded

rationalityn ( or accuracy) of the optimizer. In this paper we characterize

several approximate solutions by means of consistency and invariance prop-

erties. In particular, we prove that, besides the trivial ones, there are no

consistent solutions satisfying non-emptiness, translation and multiplication

invariance.
Key-raords: Approximate optimization, consistency, invariance properties.

1 Introduction

In this paper we shall try to give an answer to an apparently silly question:

is the concept of napproximate solutionr in optimization meaningíul? We

will show that, moving from exact to approximate optimization, some seri-

ous problems may arise.
One reason to (ocus on approximate optimization can be derived from the

incteasing interest for the issues related with "bounded rationalityn in game

'The authors wiah to thank CNR-Italy, the GNAFA group o[ CNR-ltaly and Tilburg

University tor financial support and A. Ruetichini, P. Wakker and T. Zolezzi tor helptul

euggentiona tor this paper.
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theory: it turns out that more and more the emphasis is shifted from max-
imization to approximate maximization. On this point, we only refer to
f~Ldenberg and 'I'irole (1991), Myerson (1991) and Radner (1980). '1'he lat-
ter paper is interesting both, to understand the kind of results that can be
achieved adong this path and for the remarks about the problems that arise
when approximate maximization enters the scene.
The interest for approximate optimization arising from game theory is only
one particular case of a general issue. In many cases, given an optimization
problem, one does not look for thc maximum: this can happen for the obvi-
ous reason that a maximum does not exist or for the difBculty of finding it.
In both cases, one should have some "rule" that says when the search for a
maximum could stop.
Clearly, many di(ferent kinds of rules can be devised, from some "rule of
thumb" to a sophisticated analysis that compares the computational costs
for improving the degree of approximation and the benefits that result.
The approach that will be used in this paper is usually referred to as "ax-
iomatic". '1'hat is, we shall state somc desirable properties of an "approx-
imate solution concept" and will analyse their consequences and mutual
compatibility.
To be more specific, we shall investigate a special issue related with these
rules: how they should be if one wants to behave in a consistent way across
different approximation problems and, at the same time, onc has to take
into account some invariance properties.
The invariance requirement is due to the fact that, in many cases, the func-
tion to be maximized is only a representative of a class of equivalent functions
(let us recall at least utility theory, and the fact that in hard sciences the
origin or the scale of mcasurement quite often can be freely chosen). The
remarkable result that we get is a kind of "impossibility theorem", which
asserts that there are no consistent rules for choosing truly approximate
solutions if one wants to take into account translation and multiplication
invariance (as one should do, e.g., when dealing with expected utilities). We
also investigate the cases in which one takes into account separately these

invariance requirements.
Special emphasis is given to rules that take into account a reasonable mono-
tonicity condition, that can be considered as an instance of the IIA (inde-
pendence of irrelevant alternatives) principle: the main reason to consider

this point of view is that we try to consider classes of optimization prob-
lems which contain both bounded and unbounded functions. 'I'his interest

is an outgrowth ot previous research done by the authors in the context of
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semi-infinite bimatrix games (see Jurg and Tijs (1993), Lucchetti, Patrone

and Tijs (1986) and Norde and Potters (1995)). We get, under appropriate

assumptions, a class of approximate solutions to which belong the (e,k)-

solutions investigated in the papers quoted above. We also like to empha-

size that some examples show that careless specification of the domain of

the rule can give quite strange results.
'I'he two previous paragraphs are an approximate description of the contents

of sections 3 and 4 respectively, while section 2 is devoted to the setting of

the problem. In section 6 we investigate rules, which make use of sequences.

As it could be expected, reasonable conditions restrict the attention to max-

imizing sequences. So that, in some sense, the "impossibility result" is some-

how circumvented: results that guarantee the existence of e-Nash equilibria

for every e 1 0 do have a meaning in this setting ("I'ijs (1981)); the same

can be said, in optimization, about Tykhonov well-posedness (Dontchev-

Zolezzi (1993)); see Patrone (1987) for remarks about the invariance ot this

property). We want to add, however, some warning about sequences. First,

(or practical reasons one has eventually to give one solution: so, even if

sequences can be considered interesting for theoretical reasons, they do not

solve the problem of finding an approximate solution for an optimization

problem. Secondly, sometimes one is interested in solving (approximately)

problems which are an approximate version of the "truen one: in this case,

tricks like those of considering asymptotically minimizing sequences (in the

terminology of Dontchev-Zolezzi), fall outside the scope of our investigation.

Actually, we have completely skipped any reference to "continuity" proper-

ties of our solution maps. In our opinion, this is a topic that deserves to be

thoroughly studied.

Notation Throughout this paper we denote the set IR U{}oo} by IR'

and the set lft U{-oo, }oo} by IR.

2 Optimization problems

An optimization proólem is a pait (A, u) where A is a non-empty set oï

alternatives and u is a real-valued function with domain A. Let ~ be a

non-empty collection of optimization problems. A solution (3 on ~ is a map

which assigns to every optimization problem (A, u) E P a subset of A.
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Example 2.1 For the following examples no special restriction is imposed

upon ~.

a) The solution (icoi is defined by

A~ot(A,u) :- A.

b) 'I'hi~ solution ~f,,,„x is de(ined by

(3,,,ar(A,u) :- {a E A : u(a) ~ u(á)(or every á E A}.

c) For e 1 0 the solution (ie is defined by

~ie(A,u) :- {a E A : u(a) ? u(á)- E for evety á E A}.

d) I'or k E Ift the solution ~k is defined by

(~k(A,u) -{a E A: u(a) 1 k}.

e) For e ~ O,k E ~i the solution QE,~ is defined by

~max(A,u) rf pmaz(A,u) ~ 0

pe,k(A,u) :- pe(A,u) if Q,,,e.(A,u) - 0 and (3~(A,u) ~ Q .

~3k(A,u) otherwise

Notice that (~,,,~(A, u), pE(A, u) and Qk(A, u) can be empty; on the contrary,

(3rot(A,u) ~ 0 and (~E,k(A,u) ~ 0 for every (A,u) E~.

Twooptimization problems (A,u) and (B,v) are sup-equivalent if

sup u(x) - sup v(x).
rEA rEB

A solution (i on ~ is approzimation consistent if for every pair of sup-

equivalent problems (A,u),(B,v) E ~ the following statement is true:

if 6 E A(B, v) and a E A is such that u(a) 1 v(b) then a E p(A, u).

So, if a solution p is approximation consistent, selection by p of an alter-

native 6 E B in some problem (B, v) E ~, induces selection by (3 of all

'non-worsc' alternatives in sup-equivalent problems. Cleatly, the solution-

s a)-d) in example 2.1 are approximation consistent. For approximation

consistent solutions we have the following ptoposition.
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Proposition 2.1 Let A 6e an approximation consistent solution on D and

let (A,u), (B,v) E D 6e such that u(A) - v(B). Then there is a subset T

of u(A)(- v(B)) such that p(A,u) - u-~(T) and p(B,v) - v r(T).

Proof Take T:- u(p(A, u)).
If a E u-~(T) then u(a) - u(á ) for some a' E(~(A,u) and hence, by ap-

proximation consistency, a E p(A,u). So, u-~(T) C p(A,u). The inclusion

,0(A,u) C u-1(T) is obvious.
If 6 E ~i-~(T) then v(b) - u(a') for some a' E p(A, u). Since (A, u) and (B, v)

are sup-equivalent we get, by approximation consistency, 6 E J3(B,v). So,

v-~(T) C p(B,v). If b E p(B,v) then, since u(A) - v(B), there is an a E A

such that u(a) - v(b) and hence, by approximation consistency, a E Q(A, u).

Therefore, v(b) - u(a) E T and hence 6 E v-1('l). So, p(B,v) C v-~(T). ~

The above proposition shows that, if p is approximation consistent, the

set p(A,u) only depends on the range u(A) of u. So, if we are interested

in approximation consistent solutions only, we may identify an optimization

problem (A,u) with u(A), the range of u, which is a subset of 1(Z. In the

next sections we focus on this approach.

3 Axioms and examples

Let S be a non-empty collection of non-empty subsets of IR. A solution o

on S is a map which assigns to every S E S a subset o(S) of S.

A solution o on S satisfies (AC) (approximation cansistency) iï for every

Sl, Sz E S with sup St - sup Sz the following statement is true:

if sz E o(S2) and st E S~ is such that si ~ s2 then s~ E ~(St)-

The reason for introducing (AC) is given by ptoposition 2.1: it is immediate

to see that, if a solution {3 on P is approximation consistent, as defined in

the previous section, then the induced solution o on the family S of ranges

u(A) ((A, u) E D), satisfies (AC). Conversely, a solution o on S, satiafying

(AC), induces, for every D with ranges in S, an approximation consistent

solution ~i.
The (AC) condition is not entirely satisfactory: one expects that o(S) can

be described as {s E S: s~ ry} or {s E S: s~ ry} for some ry(depending on

S). However, we can have strict or weak inequality, depending on the value

of sup S, as can be seen in the next example.
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Example 3.1 Let S be the collection of all non-ernpty subsets of !R. 'Ihe
solution a,,,;, on S, defined by

- ( {sE.S':s~sup.S'-1} ifsrpSGO

a~,;x(.S) : Jll {s E.S :.4 ~ sup .S - I} if sup S E(0, t~) ,
{sE.S:s722} ifsupS-too

satisfir,, (AC).

In order to pet rid of thesc~ kind of approximate solutions one would like to
add the royuirerm~nt t.hat o(.5') is a clused subset of S. 1[owevcr, the next
exampln shows us that this addition dois not "forrd' the parcntheses to be
closed.

Example 3.2 ('unsider S- {{0, I}} U{[rt, 1] :~r E(0, I)} and Irt a be the
solutiou on S, di~fined by a({0, l}) :- {1} and a([a, l]) :- [rr, I] for every
~x E ((1. I). 'l'he aulntion o satisfics (A(') and a(S) is a closed subset o( S for
evcry .S E S, but therc is no ry E IIZ surh that a(.S) - {s E.5' : s 1 ry} for

every .5' E S.

So, wc~ shall introduce the following axiom, an appropriate stron~htening of

(A(~)-
A solution o on S satisfics (SAC) (stmny npprnxirnotion cortsisten~y) if for

every 5',Sr,Sl,... E S with sup.5' - supS; for evcry i E~ the (ollowinp

staternent is true:

if s, E rr(S; ) for every i E~ and s E.S is such that s~ lirn inf;~~, s;

thr~n .ti E a(S).

One easily verifies that (SA(') induces (A('). Mun~crver, (SAC) implies that
o(S) is a closed subset of .5' for every .S' E S. In fact, if S is a collection of
intervals, then o satisfies (SAC) if and only if o satisfies (AC) and o(S) is
a closed subset of S for every S E S.
In the seyuel we also make use of thc following axioms.
A solution a on S satisfies ( NEM) (non-emptiness) if for every S E S we

have
o(S) ~ 0.

The collection S is closed under trnnslation (CLt) if for every S E S and

l E IN wc~ have t t S:- {l f s :.v E.S} E S. A solution o on S, obeyinR

(Cl,t), satisfies (" I'I) (tronslation invariance) if for every S E S and t E IIZ

we have
o(t } S) - t t o(S).

fi



'[he collection S is closed under multiplirntion (CLi ) if for every S E S and

~~ 0 we have aS :- {as : s E S} E S. A solution o on S, obeying (CL~),

satisfies (MI) (multiplication inuariance) if for every S E S and a~ 0 we

have
Q(J~S) - ao(S).

A solution a on S satisfics ([IA) (independenrx oj irmlevant alternalives) it

for every S,T E S with S C T one has

o(T) f1 S C o(S).

So, if o satisfies (IIA), selection by o of an element s E T, implies selection

by o of s in any subset S of T with s E.S. This notion of (IIA) is weaker

than thc one used in Kaneko ( 1980) and Yeters (1992).

Example 3.3 For the following examples suppou~ that S is the collection

of all non-empty subsets of ~.

a) The solution o,,,;x, defined in example 3.1, satisfies (AC) and (NEM).

b) The solution a~a~, defined by

o,~(S) :- {s E S : s is rational },

only satisfies (IIA).

c) 'fhe solution ai„~, defined by

Obl(S)'- S~

satisfies (SAC), (NEM), (TI), (MI) and (IIA).

d) The solution a,,,~, defined by

o,,,,,~(S) :- {s E S: s~ s for every s' E S},

satisfies (SAC), (TI), (MI) and (IIA).

e) The solution oE (where e~ 0), defined by

o~(S) :- {s E S: s~ sup S - e},

satisfies (SAC), (TI) and (IIA).
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O The solution ak (where k E ~R), defined by

ok(S) :- {s E S: s 1 k},

satisfies (SAC;) and (IIA).

g) The solution a~,k (where s~ 0, k E 1!t), defined by

amau(S) Íf ama~(S) ~ ~
o~.k(S) :- a~(S) if a,,,e,(S) - 0 and aE(S) ~ 0 ,

ak(S) OtheiWise

only satisfies (NEM).

h) The solution óe,k (where E~ O,k E~), defined by

r a~(S) if sup S ~ k t F
ae'k(S) -- Sl ok(.S) if sup.S 1 k~ e ,

satisfies (SAC), (NEM) and (IIA). Notice that àE,k(S) - a~(S)Uak(S).

i) The solution aP~o(a,pl(S) (where o 1 1,Q G 1), defined by

aa'(S) if sup(S) - s E(-00,0)
S if sup(S) - 0

aPw(o.p)(S)'- o~'(S) if suP(S) - s E(0,}00) ,

S if sup(S) - -Foo

satisfies (SAC), ( NEM) and (MI).
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The following table summarizes the statements above.

(AC) (SAC) (NF,M) (TI) (MI) (IIA)

~mns

Qe

~k

}

}

} } } } } -~

} } - } } }

} } - } - }

} } - - - ~-

Uc k - - } - -

Oc~k } } } - -

npm(o~i~) } } } - }

}

4 Characterizations for translation and multipli-

cation invaziant solutions

Let S be a collection of non-empty subsets of IR. We write S- UkEH~Sk

where Sk :- {S E S : sup S- k} for every k E 1R". For a function

a: IR' -, ÍR we define the solution o0 on S by

oa(S) :- {s E S: s? a(sup(S))}.

So, aa selects, for every S E Sk, the elements s E S with s 1 a(k). Clearly,

oa satisfies (SAC). The following proposition shows that the solutions o,

are completely characterized by (SAC). Note that the solutions, defined in

example 3.3 c)-f),h),i) , satisfy (SAC) and are, in fact, oa for some suitably

chosen a-

Proposition 4.1 Let S be a collection oj non-empty suósets of IR and let

o be a solution on S. The solution o satisjies (SAC) if and only if a- oa

for some junction a.
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Proof We only prove the only-if-part. So, assume that o satisfies (SAC).

First we define the function a: Qt" -~ !R. Let k E!R'. Define

arbitrarily if Sk - 0 1
a(k) .- inf(USESko(S)) otherwise ( )

(with the convention that inf ~- too). Now we have to prove that o- o„

i.e. we have to prove that o(S) - oa(.S) for every S E S. So, let S E S and

let k:- supS (which trivially induces that Sk ~ 0). For every s E o(S)

we have s 1 n(k) by definition of a(k). Thcrefore o(.S) C oa(S). Note that

the couvorse~ inelusion o„(.S) C a(S) is trivial when aa(S) - A. So, assume

oa(S) ~ 0 and let s E oa(S). "fhen s 1 a(k) which írnplies a(k) ~ ~-oo.

Therefore, USESko(S) ~ 0, and hence, by definition of a(k), there is a se-

quence Si,Sz,... E Sk and, for every i E ~, an s; E o(S;) such that

a(k) - lim;~~s;. By (SAC) we get s E o(S). Therefore oa(S) C o(S),

which finishes the proof. ~

If we impose some feasibility condition upon the function a we get solu-

tions which are characterized by (SAC) and (NEM).

proposition 4.2 Let S 6e a collection oj non-empty suósets oJ IR and tel

a be a sotution on S. The solution a satisJies (SACJ and (NEM) iJ and

only iJ o- o, jor some function a: IR" --~ lR satisfying a(k) G k for every

k E 1R', with strict inequality for every k E 1(Z" jor which there is an S E Sk

with k ~ S.

Prooí Let a:!R' -~ Ifi be such that a(k) G k for every k E lR', with strict

inequality for every k E 1R' for which there is an S E Sk with k~ S and

let o- oa. Clearly, a, satisfies (SAC). Let S E S and let k:- supS. If

k E S then k E o,(S). If k~ S(which is, e.g., the case if k- foo) then

a(k) G k and we may choose an s E S with s~ a(k) and, as a consequence,

s E oa(S). So, o, also satisfies (NEM).

In order to prove the only-if-part assume that o satisfies (SAC) and (NEM).

By (SAC) and the proof of proposition (4.1) we know that o- aa, where a

is defined by (1). Now we have to prove that a has the desired properties.

So let k E~'. Ií Sk - 0 we choose a(k) G k. If Sk ~ 0 there is an S E S,t

and we may, by (NEM), take some element s E a(S) - oo(S). We get

a(k) G s C k, where the last inequality is strict if k~ S. ~

The next theorem describes the clasa of solutions, which aze characterized by
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(SAC), (NEM) and ('I'I). It turns out that these solutions coincide with the

collection of 'e-optimal' solutions for some e E[0, foo], if S only contains

upper bounded sets.

Proposition 4.3 l,et S 6e a r.ollection oj non-empty subsets oj !R uihich

satisfics (CLf) and Icl a 6c a solution on S. Thc solution o satisfics (SAC),

(NEM) and (TI) ij and anly if there is an e~ 0(e 1 0 in case there is an

upper á~unded S E S whích has no maximum) such that o - oa, mhere

a: ItZ' -a ÍR is defined by

j a(k) :- k- e jor every k E IfZ
Sl a(}oo) - -oo

(21

Proof Clearly, a- o„ satisfics (SAC), (NEM) and (TI) if a is defined

by (2). In order to prove the only-if-part suppose that o satisfies (SAC),

(NEM) and (TI). Again, by (SAC) and the proof of propositiou 4.1, we know

that o- oa, where a is defined by (1). Notice that, by (Ct.t), we have for

evcry k E 1R
Sk-{kfS:SESo}.

So, if Sk - 0 for some k E ~2, then Sk - 0 for every k E 1IZ and we choose

a(k) - k- 37 for evcry k E~. It Sk ~ 0 for some k E III, then Sk ~ 0 for

every k E IR. Mormvcr, we get by (TI),

a(k) - inf(Uses,o(S)) - inf(usesoo(k t S)) -
- inf(USeso(k f o(S))) - k} inf(UgE~o(S)) -
- k f a(0).

By (NEM) we get a(0) C 0. Moreover, if there is an upper bounded S E S

which has no maximum, then, by (CLt), there is an S E So which has no

maximum and we have a(0) G 0. So, take s--a(0).

If S~~ - 0 we choose a(}oo) --oo. Otherwise there is an S E S~,o

and, by (NEM), an s E o(S). Since, by (CLf), i f S E St~ and, by (TI),

t} s E o(t t S) for every t E 1R we get a(}oo) G t t s for every t E 1R.

Hence, a(too) - -oo. ~

The solution à~,k of example 3.3 satisfies (SAC) and (NEM) but not (TI),

the solution o~ satisfies (SAC) and (TI) but not (NF.M) and one easily con-

structs a solution satistying (NEM) and (TI) but not (SAC) (simply by

defining the solution for S with sup S E{O,i-oo} in an arbitrary but not

approximation consistent way and extending this solutíon by translation

11



invariance). Therefore the axioms (SAC), (NEM) and ( TI) are logically in-

dependent.
In the tollowing proposition we characterize the 'proportional' solutions by

(SAC), (NEM) and (MI).

Proposition 4.4 Let S be a collection of non-empty subsets nf IR whích

satisJies (CLf) and let o be a solution on S. The solution o satisfies (SAC~,

(NEM) and (MI) iJ and only if there am a 7 1 and I3 G 1 such that o - o„

whem a :~` y IR is defined by - -

a(k) ;- ak for cvery k G 0
a(0) E {-00,0} (3)
a(k);- (ik jar every k E(O,oo)
a(~oo) E {-00,0}

(where a 1 1 if there is a k G 0 and an S E Sk wilh k~ S, p G 1 ij there
isak70andan5'ESkwithk~Sanda(0)--ooifthereisanSESo

with 0 ~ .S).

Proof Clcarly, n- a„ satisfies (SAC), (NI:M) and ( MI) if a is defined

by (3). In order to prove the only-if-part suppose that o satisfies (SAC),

(NEM) and (MI). Again, by (SAC) and the proof oí proposition 4.1, we

know that o- oa, where a is defined by (1). Notice that, by (CL~), we

have for every k E(0, too)

S~-{kS:.SES~}.

So, if Sk - 0 for some k E(0, }oo), then Sk - 0 for every k E(0, }oo) and

we choose a(k) -;7k for every k E 1R. If Sk ~ 0 for some k E(O, too),

then Sk ~ 0 for every k E(0,-~00). Moreover, we get by (MI),

a(k) - inf(USes.Q(S)) - inf(USes,o(kS)) -

- inf(UsES,ka(S)) - kinf(USES,o(S)) -

- ka(1).

By (NEM) we get a(1) G 1. Moreover, if there is a k E(O,foo) and an

S E Sk with k~ S, then, by (CL~), there is an S E Sl with 1~ S and we

have a(1) G 1. So, take (3 - a(1).

In an analogous way we prove, in case Sk ~ 0 for every k E (-00,0),

that a(k) - k(-a(-l)), for every k E(-~,0), where a(-1) C-1 and

a(-1) G-1 if there is an S E S-~ with -1 ~ S(or equivalently, there is a

12



kGOandanSESkwithk~.S).
Suppose So ~ 0 and a(0) G 0. Then there is an S E S and an s E o(S) with

s G 0. Since, by (CL~), aS E So and, by (MI), as E a(aS) fot every a 1 0

we get a(0) C as for every a 1 0. Hence a(0) --oo. In an analogous way

one proves that a(foo) E{-00,0}. ~

The solution ir~,k of example :3.:3 satisfies (SAC) and (NEM) but not (MI),

the solution o,,,~ satisfies (SAC) and (MI) but not (NEM) and one easily

constructs a solution satisfying (NEM) and (MI) but not (SAC) (simply

by defining the solution ïor S with sup.S E{-1,O,l,t~o} in an arbitrary

but not approximation consistent way and extending this solution by mul-

tiplication invariance). 'Cherefore the axioms (SAC), (NEM) and (MI) are

logically intlependent.
Clearly, t.he trivial solution a~ai satisfies (SAC), (NEM), ('CI) and (MI).

Moreover, if the collection S is such that every upper bounded S E S has a

maximuru, then the solution, selecting the maximum for every upper bound-

ed S E S and selecting S for every S E S which is not upper bounded, does

either. In the following proposition wc show the impossibility of finding

another solution, satisfying these four properties.

Proposition 4.5 Iwt S be a colleclion oJ non-emply subsets oj 12, which

satisfies (C'Lt) and (CL~). Suppose, moreover, that lhere is at least one

upper óounded S E S which has no maximum. Let v be a solution on

S. The solution o satisfies (SAC), (NEM), (TI) and (MI) if and only ij

o- o„ where a: IR' -a IR is deJined 6y a(k) :- -oo jor every k E 1(Z' (i.e.

Qa - ~lot).

Proof Again we only prove the only-if-part. Suppose o satisfies (SAC),

(NEM), (TI) and (MI). By (SAC) we may conclude that o- aa where

a: 1R' -a ÍR is defined by (1). Let S E S be un upper bounded set without

maximum and let k:- sup S. Since o satisfies (NEM) there is an s E o(S).

Clearly s c k. For every n E 1N we have, by (CLt) and (TI),

-(I - n-r)k ~ S E S

and
-(1 - n-r)k } s E o(-(1 - n-t)k i~ S).

Moreover, by (CL~) and (MI), we get

-(n - 1)k t nS - n(-(1 - n-t)k } S) E S
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and
-(n - 1)k } ns - n(-(1 - n-r)k } s) E o(-(n - 1)k } n.S).

Since sup(-(n - 1)k } nS) - k and lim„-.~(-(n - 1)k } ns) --oo we get

a(k) --~o. By (TI) we infer that a(!) --oo for every 1 E IR. We know

already, trom proposition 4.3, that a(}~) --~- ~

het us notice that, in the context ot decision making under risk, u and v

are von Neumann-Morgenstern utility functions representing the same pref-

erences iff v- cu } d, with c 1 0 and d E ~N. So, if nne wants to stress the

point of view that only preferences havc a truc meaning, one should use a

"solution rule" for uptimization problerns that takes into account this fact.

But propusition 4.~i just shows that it is itnpossible to do this in x non-

trivial way. Otherwise stated: tor von Neumann-Morgenstern preferences

there is no sensible concept of approximate optimum! If one wants to talk

in a meaningful way of approximate optírnization, an escape route could

be the addition of further details that allow for sorne "absoluter reference

point (e.g.: how do we decide whether the oscillations of last week at the

New York Stock Exchange were wild or not"? Maybe we refer to the previous

history as a benchmark). The interesting question is whether it can be done

in a consistent way, without resorting to an "absolute" utility function.

5 Characterizations under IIA

Proposition 4.3 provides a nice characterization ofsolutions o on collections

of upper bounded subsets of IR: either o selects the maximum of S E S (if all

upper bounded S E S have a maximum) or there is an e E(0, }oo] such that

o selects all 'e-optimal' elements. In order to get a nice characterization,

which takes also the unbounded subsets ofS into account, we have to replace

(TI) by (IIA). Since (IIA) deals with inclusions, an appropriate condition

upon S would be either to be closed under taking subsets (CLC ) or to be

closed under taking supersets (CL~). The following example shows that a

nice characterization with (IIA), is not possible if S satisfies (CLC).

Example 5.1 Consider the class S of all non-empty and upper bounded

subsets S which satisfy the condition that there exists a t E[0, I) such that

S C t} Z. Define the solution o, by

- a(k) .- r k- 22 if k E Z
l k - 37 otherwise
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Clearly oa satisfies (SAC) and (NEM). It also satisfies (IIA): this is due

to the fact that for S,T E S with S C T both are contained in the same

t t Z for some t E[0,1). In fact, one can prove that any o„ with a feasible

function a which is non-decreasing on t t Z for every t E[0,1), satisfies

(SAC), (NF,M) and (IIA).

'I'he reason for strange examples as above lies in the fact that the collection

S is too poor: S can be partitioned into several subcollections such that

sets belonging to different subcollections are not related by inclusion. These

problems do not occur if S satisfies (CL~).

Proposition 5.1 Let S be a collection of non-empty subsets of IR which

satisfies (CL~) and let o be a solutíon on S. The sotution o satisfies (SAC),
(NF,M) nnd (IlA) if and only ij o - rra for some non-decneasing Junction

a: IIZ' - IR sati.cfyiny n(k) G k far evcr,y k E II~', with strict inequality jor

every k E Illj for whirá lhen is nn S E Sk wílh k~ S.

Proof Again we only prove the only-if-part. Suppose o satisfies (SAC),

(NF,M) and (lIA). FIy (SAC) we may conclude that a- oa, where a is

defined by (1). "The only thing left to prove is that a is non-decreasing.

Choose a(k) --oo if Sk - 0. Notice that, if Sk - 0 for some k E 12',

(CL~) implies that S~ - 0 for every 1 G k. So let k,l E~' with k G l and

suppose that Sk ~ 0 and S~ ~ 0. By (CL~) we get S:- (-oo,k] E Sk and

T:- (-oo,l] E Si. Therefore o(S) -(a(k),k] and o(T) -[a(1),l]. As a

consequence we get, by (IIA),

[a(1),k] - o(T) n S c a(S) -[a(k),k].

Therefore a(k) G a([) which finishes the proof. ~

An example of a solution, satistying the requirements above, is given by

óE,k, described in h) of example 3.3. The proposition above is not complete-

ly satisfactory, due to the fact that (CL~) is a very strong requirement on

the class S. However, example 5.1 showed that it is not easy to get rid of it.

Another approach is that one asks for some strengthening of (SAC), instead

of looking tor too special classes S.
A solution o on S satisfies (SMAC) (strong monotonic approximation con-

sistency) ií for every S, S~, Ss, ... E S with sup S C sup S; for every i E IN

the following statement is true:

if s; E a(S;) for every i E~ and s E S is such that s~ lim inf;-.~ s;

then s E a(S).
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It is obvious from the definitions that (SMAC) implies (SAC). Conversely,

if S~ - 0, we have that (SAC) and (TI) imply (SMAC).
With respect to what has been said at the beginning of this section, about

an unsatisfactory characterization of solutions for unbounded subsets, we

want to point out the following: if we replace (SAC) and (TI) by (SMAC),

which is a weaker condition on bounded subsets, it is possible to give a nice

characterization which takes also unbounded sets into account.

Proposition b.2 Let S 6e a rollection of non-empty suósets oJlfl and let o

6e a solulion on S. The solution o satisJies (SMAG'J and (NEM) iJ and only

ija - aa Jor .some non-decreasing junction a: ll{' -~ IR satisjying a(k) G k

Jor every k E~`, with strict inequality for every k E 1:Z' jor which there is

an S E Sk with k~ S.

Proof F'irst we prove the if-part: suppose o- oa (or some a as mentioned

above. By proposition 4.2 we infer that a satisfies ((SAC) and) (NEM).

Suppose S,S~,.S2,... E S with supS c supS; for every i E W and let

s E S, s; E o(S;) for every i E LN, be such that s 1 liminf;~~s;. Since

s; ~ a(sup S;) ~ a(sup S) for every i E W, we get s~ a(sup S). Hence

s E o(S). So, o satisfies (SMAC).
For the proof of the only-if-part suppose that o satisfies (SMAC) and ( NEM).

Since (SMAC) induces (SAC) we get o- oa, where a is defined by (1).

Notice however, that a needs not be non-decreasing. Now define á: IR' --~ IR

by
à(k) - inf{a(l) : 1 is such that S~ ~ 0 and l 1 k}

(with the usual convention that inf 0- too). Clearly, a is non-decreasing.

We prove that oa - oa. So, let S E S and k:- supS(which induces Sk ~ 0).

Since à(k) G a(k) we have oa(S) C o;(S). Now let s E a;(S). By definition

of á(k) there is a sequence 1~,12,13,... with S~, ~ 0 and 1; 1 k for every

i E IN and à(k) - lim;~~ a(l;). For every i E~ there is, by definition of

a(l;), an S; E SL, and s; E o(S;) such that lim;-.~a(l;) - lim;~~s;. Since

s~ à(k) - lim;~~ a(l;) - lim;~~ s; we get by (SMAC): s E a(S) - o,(S).

So, o;(S) C oa(S). ~
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6 Approximation with sequences

A remarkable result of section 4 was that there was no solution, besides the

trivial ai„i, satisfying (SAC), ( NEM), (TI) and ( M[), in case S contains at

least one upper bounded set without maximum. In this section we will get

a positive result by considering generalized solutions. In order to do so we

need sotne definitions.

Let S be a non-empty collection of non-empty subsets of IR. A genenalized

solution E on S is a map which assigns t.o every S E S a subset E(S) of SM,

the collection of non-decreasing sequences in S. A sequence 9- 9~,s2i...

in S;~ can be interpreted as a sequence of approximate optimal elements,

where the degree of approximation gets better when indices are increasing.

F'or generalized solutions we use the following axioms.
A solution E on S satisfies ( AC) (approzimalion consistency) if for every

S~, SZ E S with sup S~ - sup Sz the following statement is true:

if s2 E E(S2) and s~ E S~ is such that lim s~ ~ lírn s2 then s~ E Z(Si ).

The definitions of (NEM), (TI) and ( MI) for generalized solutions are obvi-

ous.

Example 8.1 The following two generalized solutions, defined on a collec-

tion S obeyíng (CLf) and (CL~), all satisfy (AC), (NEM), (TI) and (MI).

a) Definc Eoyi by Eoyi(S) :- {.s E S~ : lim s- sup S}.

b) Define Eioi bY Eeoe(S) :- S;n -

The Íollowing proposition shows that all generalized solutions, satisfying

(AC), (NEM), (TI) and ( MI), are mixtures of the solutions in example 6.1.

Proposition 8.1 Let S be a oollection oj non-empty subsets oJ IR and let

E be a generalized solution on S. The solution E satisfies (AC), (NEM),

( TI) and (MI) if and only ij 2~ coincides with one oj the solutions E~t or

E~oe on the collection of upper óounded subsets in S and ij E coincides urith

one oj these two solutions (but not necessarily the same) on St~.

Proof The if-part of the proof is left to the reader. For the only-ií-part

assume that E satisfies (AC), (NEM), (TI) and (MI). We only prove that

E coincides with one of the solutions Eopi or E~ot on the collection of upper

bounded subsets. The proof for St~ is similar. We distinguish between two
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cases.
Case 1: ~.,'(S) C E~pt(S) for every upper bounded 5 E S.

I,et S E S be upper bounded. By (NEM), there is a sequence s E ~.(S). By

(AC), comparison of every sequence s' E Zoyt(S) with s, impGes Eoyt(S) C

E(S). Therefore, E(S) - Eopt(S).
Case 2: there is an upper bounded S' E S with E(.S') ~ Eopt(S').

Let S' E S and x' E 2~(.5") bc such thaL .r' ~ 2~~yt(S'), let k' :- supS' and

k" :- liw.~'. Since s~ 2~opt(S') we have k" G k'. Moreover, we have for

every n E tN bY (CL~-) and (1'I),

-(1-n-~)k'tS'ES

and
-( ~- n-t )k' t s' E 2~(-(1 - n-t )k~ f S~)-

Moreover, by (CL~) and (MI), we get

-(n - 1)k' } rt.S' - n(-( I- n-~ )k' ~- .S') E S

and

-(n - I)k' } ras' - n(-( l- n-t )k' t 4') E 2r(-(ra - 1)k' } nS').

Now let s E Etat(S') and let l :- lim s. Choose n E IN such that -(n -

1)k'f nk" G l. By (AC), comparison of the sequences s and -(n- })k'tns'

yields s E E(.5"). Therefore, ~(S') - Etot(S'). BY (TI) one infers that

E(S) -`.~toe(S) for every upper bounded .S E S. ~
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