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Polling systenis with Markovi~,n server routing

R.D. van der Mei

ALstract

In this paper we study the performance of polling systems in which the server is routed

along the ytteuea accorcling to some proLabilistic routing mechanism. IL ia shown how

the pcrformance of the system can bc analyacd by means of Lhe so-called power-series

algorithrn (PSA), a tool for thv uumeriacl an:dysis of a bro.ul clasa of multiple-queue

moclels. We compare the per(orruaure of polliug systelns with probabilistic server routing

with the perfonnancé of iJenticnl systenw in which the server VLSIEs lhe queues in a

fixed orcler. Numrrical experilncuts wit.h the PSA suggest that the mean amount of

work in the system is 5tructurally snudhr iu the casr of fixed visit orders. In addition,

it is shown that a similar claninauce rclation is not gcncrally valid for the individual

mean waiting times ítt tI1P. cpleocs. SubseyuenUy, we consicler the prohlem of finding

optimal combinatibns of servrr roul.ing probabilitics. We observe a tenclency of the optimal

prOhaI1111RtIr routing towards del.crrnínistic ronting. The inOuence of system parametere

on the optirnnl matrires of routiug probabilitíes ix exaolined. Thcse investigations point

out that the optimal routing matriccri can be classifiad into a limiteel mm~ber of types

of solutions, each haviug spccilic characteristics that can be interpreted rather easily.

Finally, we give some guidelines for constructíng optimal ronting matrices.

1 Introduction

A polling system hasically consists of a numbcr nf qucnes attended to by a single server. The

server visits the qoeues in some ordcr to rr'nder scrvice to the cnstomers present at the queues,

typical]y incurriug a non-negligihle switch-ovcr timc while moving from one yueue to another.

Polling models are widcly applicable for the modeling of systems in which several types of user

compete for access to a cotumon service f..LCility. Applications of polling models can be found

in the areas of comtuunicatinu systems, comptrter uetworks, maintenance, manufacturing and

production environments ( cf. Levy and Sidi [19] and 'fakagi [2fi] for extensive surveys on the

applic.lbility of pollinF modols).
In mauy cascs thc server h:u: no glob.d iuformatiou ahout the yucue lengths. Therefore, in

most polling models it is ~ssmucd that thc scrver visits the queues in a cyclic order. However,

in some cases it is desirable to visit particul:u queucs more freyuently than others, e.g. when

the queues are not eqnally loadecL Therefore, a nrunber of generalizations of the cycGc visit

order has heen considered in the literature. The tuost common generalization of purely cyclic

polling is Ixrirxfic polling, in whirh the server visits the queues periodically according to a

fixed service order table ( cf. [l ï], [2]). fn this way, queues can be given higher priority by list-

ing them morc oftcn ou thc (polling) table. Altornatively, the scrver can be routed along the
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queues according to soure probriGiliaic routing ntechanism. In this paper, we investigate the
performance of polling models with so-called Markovian server routing. Under this routing

mechanism, with routing probability p;,i the server is routed to yueue j after a depatture from
queue i, independent of the actual state of the system. In this way, the customers at the differ-

ent queues can be assigned relative priorities by varying specific routing probabilities. In this
petspective, Markovian polling can bc vicwed as the stochastic cotuttcrpart of periodic polling.

Motivation

This study is motivated by a uumber of reasons. First, there is a number of specific ap-

plications of polling systems with probabilistic server routing. Evidently, for these systems

perfonnance analysis aud optimization is very useful. Second, only very IitUe is known about

the perfonuance of polling systems tutdcr probabilistic server routing, whereas polling models

with periodic server routing have received much attention in the literature. For this reasun,

we believe it to be intcresting to provicle an insight into the performance of polling models

with probabilistic server routing, ancl to investigate how the performance o( polling models

nnder periodic ancl probabilistic server routing is related. Thircl, we believe it to be inter-

esting to see huw the PSA can be appliecl to cletermine detailecl perfonnance measures of

the model, and how the specific stntcture of the present model can be explored to make the

implementation of the PSA morP etficient.

Applications
Polling models with probabilistic servcr routiug fiud a ntnnber of specific applications. For

instance, they may be used to tn~d~d distribnted s,ysteais, such as a sbared broadcast channel

wherc írow timc tu tiwe a dcrisiuu h:Gti tu bo wadc :4ti tu whu gets thr right for transmis-

sion. These decisions are usually based on some probabilistic algorithms, rather than ou a

fixed ordcr (cf. [1.'i]). Alternatively, polling tundols with Markovian scrver routing may also

be used to predict the exportecl delay in au exhauslive slottecl ALO11A system. In such a

system, a station is granted the exclusive right to trausmit during some time period. When

a transtnitting station no longer reserves the channel, some or al1 stations start contending

to seize the channel. Both the length o( the coutention period and the next station that will

seize the channel are ranclom (cf. [1R]). Markovian polling is also useful for the modeling of

the so-called Orwell slotted-riug protocol. In tbis protucol, a number of unit-buffer slots o(

eyual length rotate arouncl a riug, and a parket in a slot Plled by a station is addressed to

some other station with a certain probability, where it is ewptied and passed on empty to the

next downstream station (cL [21], ['lH]). This is a major difference from other slotted-ring

protocols, where a slot cau bo rolea..od only by t.hc statiuu that filled it. As another alterna-

tive, polliug moclcls with Markoviau scrver runtiug cau be uscd to modcl m:~terial handling

systems such as an Antomated (~uiclccl Vohicle (AGV) system in which a single vehicle serves

a manuGu~turing cell b,y moving loacls from one machiniug center to auothar. When the AGV

dclivers a load tu thr conti~r, il iuspect, tho uulput bulfrr of that rontcr to dctermine if there

arn any Iuacls waitiug tu bo trarr.purlyd. If sn, the A(:V lakc~s souir amuunt of titne to pick up

load from this oulput bulfcr, and a cc,rtain amuunt uf timc to transport Lhe load and deliver

it at its destination, aud the AGV polls the output buffer of the center which receives the

load. Otherwise, the AGV switches to poll the next center in some order (cL [9J).

Litcrnture
In the litcraturc, only a few papers ha.ve becn devoted to the analysis of polling models with



probabilistic server ronting, ancl detailecl results are restricted to specia] cases. Kleinrock and

Levy (15] analyze the behavior of so-callecl random polling models in which after a departure

from an arbitrary yueue, the server is routed to queue j with some given probability p~, irre-

spective of the queue it has just clepartecl frotn. It should be noted that random polling occurs

as a special case of Markovian polling Uy taking the routing probabilities p,,~ - p~ for all i.

For infinite-bufïer moclels iu which either all queues are served according to the gated service

cliscipline or in which all queues are served exhaustively, Kleinrock and Levy give the mean

waiting times at the queues as the solution of a system of lineaz equations. For symmetrical

models with 1-limited service, they detennine a closed-form expression for the mean waitíng

time. For polling tuodels with Markovian server routing with mixtures of exhaustive, gated

and 1-linuted service, Boxma ancl Weststrate [S] derive a pseudo-conservation law (PCL), i.e.

an exact expression for a specific weighted sum of the mean waiting times at the queues. For

models in which either all queuPS are servod exhaustively or all queucs are servecl according

to the gated service cliscipline, Weststrate [:31] clcrives a set o( linear equations to obtain the

mean waiting titues at the qucuc.s. Ilowever, the number of linear equations increases cubi-

cally in the number of queues, so that this approach is restricted to rather small systems.

Srinivasan [24] clerives a PCL for polliug moclols with Markovian server routing, in which

the routing probabilities may clepeud on whether customers have been served during the last

visit of the server to a queue. Chunl; et aL [11] analyze Markovian polling models with unit

buffers. They derive exact expressions for the gonerating function of the joint queue length

at polling instants, the Laplace-Stioltjes Transforms (LS'I's) of the waiting times and the LST

of the cycle-time clistribution of each queue.
In addition, they clerive a set of linear equations to determine the tnean waiting times. The

number of equations however incrcases exponentially in the number of yueues.

For polling models with probabilistir server routing Lhat are not coverec] in these references,

to the best of the author's kuowleclgc, no altcrnative algorithms are available to computc

perforruance measures concerning qneue-length and waiting-time distributions.

The power-serics nlgm-ithnt
The powcr-series algorithm (PSA) is a clevire fur thP nurnerical analysis for a broad class of

tnultiple-qneue moclels, requiriug a contiuuous-timc Mukov chain representation of the pro-

cess. The basic iclea of the PSA is the transformation of the non-recursive.ly (infinite) set of

global Ualance eqnatious into, an priuciple, recursively solvable set of equations by adding one

dimension to the state space. This transformation is realized by expressing the state prob-

abilities as power series in the olFered lo:ul to the system in light tralfic. The basic idea of

the I'tiA stc~ms frnin lloo};hioiusl.ra ot :t.l. [Ia], whu applicd lltr PSA to tho coupled-processor

modci. '1 ito all;orithw h:u b~~ou fnrthor drv~~lo~u~ci b,y ilianc, wiiirit h:~~ iod to more eflicient

itnplemcntations o( the :J}torithm. "1'hr I'SA h:ce boon applicd to a mnnbc~r of ntodels, such

a~ the shurtnsLqnou~~ modol, :t v:rrioly of pulliug tuucl~~ls, models with cormlatecl arrivals ancl

Markovi:t.n yucucing uetwurks (rL [4] for a survc,y ou lhe applicability of thc I'SA). Blanc and

Van der Mei [5] have extencled the 1'SA to the cotnputation of clerivatives of the performance

measures with resport to a hroad cla.es of systew parameters. This extension is very useful

for performing sensitivity aualysis aucl for oplimizatiou purposes. R.ecently, Koole [16] has

shown that the PSA is, forntally, applicable to general Markov processes.

The PSA can Ue used to compute ntnnerical values for general performance measures which

are functions of the state probabilities. We emphasize that the PSA can not only be applied

to detenuine global perfonnance mo:zsures like movt waiting times ancl qucue lengths, but
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can also be used to compute tnore detailed performance measures like tail probabilities and

indivichial statc probabilitics.

The main limitations of the PSA are tlie available amounts o( storage capacity and computa-
tion time, restricting thc use to fairly small and moderately-sized modcls. We refer to [4] for
a fairly contplete survey o( various aspects of the PSA, including useful ideas about efficient
memory management and improvcments of the convergence of the power series, which have
strongly improvecl the performanre ancl the applirability of the PSA.

Overview oj the rr::nlt,
Section 2 contains a detailecl moclel description. In section 3 we show how the PSA can
be applied to analyze polling moclels with Markovian server routing. It is also ahown how
derivatives of the performance measares witL rospcet co the routing probabilities can be de-

tenninecl by means of thr PSA, op~uiug tlie possibility of pcr(onuing sansitivity analysis and
optinlization of performance me:~sures with respert to the routing probabilities.
In section 4, the PSA is asecl for comparinq the performance of pollinq models with proba-
bilistic ancl periodic server rontinq. Ninnerical expcriments with the I'SA indicate that the
mean tota] amount of work in the systew is ntructurally lcn~cr under probabilistic polling.
However, it is shown thaó a similar domiuauce relation is not ge nerally valid for the individual
mean waiting times at thP queuos. Wa qive an intuitive argument for these observations in

terms of th~ spariug o( the visits in time.
[n section .'i we consicler the problem of characterizing combinations of routing probabilities

that minimize the mean amouut of waitinq work in the system. However, the dimension of
this optimization problem qrows yuadratically in the number of queues, making numerical

procedures based on stanclard techuiques for non-linear optimization very time consutning

when the number of qneuos becoin~~n lar{;~. Themfore, we focus on finding qnnlitative, instead

o( yuautitativc, proporties of upt.iiu:J routiug matrices. Far symmetrical modcls, Liu et al.

[20] have shown that each cyclic server routinq (whicL occurs as a special case of Markovian
server routinq Uy taking p;,~ - l if j- i f 1 aud 0 otherwise) is optiwal. Numerical exper-

iments with the PSA sup,gest that the cyclic service orcler is a stnblc opticmim in the sense
that it remains optimal for slight perturbations of the system parameters. The validity of this

statement is confirmecl by a number of numerical examples. When the tuodel becomes even
more asymmetrical, the cyclic visit order may become suboptimal. We observe the tertdency

of the optimal probabilistic server routing towards (partially) dcterministic routing. That is,

for surprisinqly many queues i there exists a specific qneue k; such that the optimal routing

probabilities are equal to p;,~ - 1 if j- k; ancl 0 otherwise. In addition, we examine the

influence of system parameters ou optimal routing matrices. These investigations point out

lhat tLc~ optinrLl routinq matriros cau bo roughly cl:~sific~d iuto a limitcd number of types

of solutiuns, c~a.ch havinl; spocilir char:ccte,ristics that can b~~ intorprotod f:urly easily. On the

basis of the iusiqLts obt:uncd from ncnucrical cxpcrieucc, we propose a uumber of rough guide-

lines for constn~cting optimal routiug matrices. The validity of these guidelines is illustrated

by a mnnber of examples.
Finally, in Scction G wc cliscuss so~ne topics for further rescarch.



2 Model description

Consider a polling moclcl with R infinite-bu(fer queues Q~,...,Q,. Custotners arrive at Q;
according to Poisson arrival process with rate a;, i - 1, ... , s. The total arrival rate is denoted
by A:- E;-~ 1;. Thc service times of customers at Q; are Coxian distributed with parameters
x~ ~, p~ ~, ~Y; , f- 1, ...,~Y; ; that is, with probability a~'( a service at Q; is composed of

subseyuentphases f,f-1,...,1, f- 1,...,cY;, i- 1,...,s. Denoteby~3~c1 -(Qikl,...,Ji;kl)
the vector of k-th moiueuts of the service times at the various queues, k- 1,2. Denote
by (3k :- (l~A)E;-ca;J3;A1 the k-th moment of an arbitrary service time, k- 1,2. Let

p:- E;-~a;(i~~l denote Lhe total otfered load to the system. Because the offered load p will
be used as a variable in the PSA, we define

a; :- ~;~P, (1)

referred to as the relative arrival ratc to Q;, i-],...,s. Let a :- (at,...,n,). Note that it
follows fram the definitiou of tlie rolativc arrival ratrs ( cf. (1)) that E;-cn; - l~~t.
The service discipline at Q; is the so-called LSernoulli service strategy with parameter q; (0 C
q; C 1), whicb works as follows. Wh[~n the scrver arrivcs at Q; finding that yueue non-empty,
at least one u~stomer at Q; is sorved; otherwise, the scrver moves to the next yueue. Moreover,
if after a service couipletion at Q; Lhe qneue is still non-e~npty, with probability q; another
customer at Q; is servecl; otherwise, the server proceeds to the next yueue. It should be noted
that the class of Bernoulli service disciplines contains the classical 1-limited and exhaustive
service strategies at spee.ial cases for q; - 0 and q; - 1,respectively. The vector of Bernoulli
parameters q-(ryc,...,q,) is rcferred to as a licntoulli schedule.
The server visits Lhe yucues aceorcling to a Markoviau polling scheroe with routing matrix
P-(p;,i); that is, after a departure of thc scrver from Q; the server starts to tnove to Qi with
probability p;,i, i, j- 1,...,s. In this way, the process of successive visits of the server to
the various yueues can be described as a discrete-time Markov chain D-{dk, k - 0, 1,...}

with state space {I,...,s}, where {rh - i} clenotes the event that the k-th visited queue
is Q;, i- 1,...,s, k- 0,1,... . Throughout it is assumcd that D is irreducible. The

titnes neecled by the scrver to move from Q; to Qi arc Coxian distributed with paraaneters

~oá~p0i~~0~i~ f- l~" ~~o,i~ i,7 - 1,...,s, which are used in a similar way as for the

service times. Denote by o~~l the k-th moment of the switch-over times to move `rom Q; to
Qi, i,j- 1, ...,s, k- 1,'l. Because D is an irreclucible Markov chain on a finite state space,

it possesses a stationary clistributiou {w;, i - 1,...,s}, which is uniyuely detemtined by the
following set of eyuations (cf. ['2:3]):

s a

w; - ~w;nj,; ( i - 1,.. ,sl; ~wi - 1. (2)
i-t i-1

Necessary and sufticient conditions for the stability o( the system have been derived in [12].

For the present rooclcl with Markovian scrvcr routiug these conditions read:

p Il t u;~(1 - 9;)1 ~ l, (3)
l w; J

where
a n

~ ( )rr: - ~w; ~, p;,ia~,~l. 4
;-t i-i
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i.e. the mean of au arbitrary switrh-over limo. '1'hroughout, it is assmned that these condi-

tions are satis(ied ancl that the system is in sleady slate.
Finally, we introduce some national conventions. For an event E, the expreasion !{E} will

stand for the indicator function on E. The vector e~ E W' will stand for the j-th unit vector,

i.e. the vector for which the j-tb component is equal to 1 and all other components are 0.

For a vector v E 1N', tlu' syml,nl w~ will stand for nt ~.. - t v,. For a set ~1, the. symbol IAI
will stancl for the cardinality of ~.

3 Tlie power-series algorithm

In this section we show how the present model can be analyzed by means of the PSA. To apply

the PSA, we first describe the pres~nt model as a continuous-time Markov chain representation

of the model. Therefore, we first We clefine the state probabilities and formulate the global

balance equations. Then the state probabilities, and their derivatives with respect to the

routing probabilities, are expressocl as power serics in the offered load to the system. Finally,

we derive a computational scheme to compute the coeflicients of these power series.

3.1 Balance equations

Let {N(t) -(Nt(t),..., N,(t)),t ~ 0} be thc joint qucue-length process. Evidently, this pro-

cess is not a Markov process, e.l;. because thc departure rate clepends on whether the server

is switching or serving. To trans(orm lhe process {N(l),t ~ 0} into a Markov process, we

introduce a triple (11(l),C(t),~(t)) of supplemeutary variahles. Let {!I(t) - h; C(t) -

1; ~(t) -~} clenote thc. event that at timc t the scrver is serving at Ql, and that ~ is

the current phuse numbcr of this service, h- I,...,s, ~- 1,...,tV~„ t~ 0. Moreover,

let the event {11(t) - le; C(1.) --y; ~(t) -~} indicale that at time t the server is

switching from Q9 towards Q1„ ancl that ~ is the currr,nt phase number of this switch-over,

g, h- 1, ..., s, {- 1,.. .,~Yo h, f. 1 0. For ease o( tlte cliscussion, it is assumed that the

supplementary space is the same for all n E IN', and is given by

S:- {],...,s} x{-k,...,-I,1} x{I,...,IC}, whcrc lí -max{tVo~,~Y;}. (5)
~J

Denote by (N, 11,1.',~) ranclom variablFS with as joint distribution the stationary distribu-

tion of (N(t),FI(t),C.,'(t),-(t)).

DC(Ílte the fitatP prOhalllllU('F as follows: for (n,h,-q,l;) E IN' x S,

1,(n,lt,-~,~):- rr{(N, rl.c.~) - (n,r~,-~,E)}. (6)

Because of the stability of thc. yystem the rate into each stato is cryu:J lo tha rate out of that

state. Tbe state probabilitics s:~tisfy lhe following balancc equatious for the states in which

the servcr is switching (from Qs to Q1,): for n E IN', g,h - 1,...,s, ~- I,..., cYD.h,

I p~ ai } 118;nJ p(n,li,-9,~) - Ica,nttlt(n,h,-9,~ f 1)I L{ ~~g.ti1
l ~-t (7)
fP ~ niP(n - ei,h,-9,f)1 {rai ~ 0} f xÁhPs,h ~ rrlap(n,9,-h I)I {ny - 0}

i-t 1-t

~,rit.~7r~,i,.,,nte c,(l,l 1- I{n ~0}].
9 ,4~hÍ411( B~.i )~ lt7 v



The first tenn at the right-hand side inclicates a phase transition in a switch-over time from
Q9 to Q~. The second term corresponds to an azrival while the server is switching from Qg to
Qh. The third term clescribes that the server fincls Qg empty upon arrival and immediately
starts to move to Qi,. Finally, thc fourth term inclicates that the server departs from Qy after
service completion of a customer at that queue and proceeds to Qn.

The global balance equations for the states in whicó the server is serving ( at Qh) read as

follows: for n E IN', h- 1,...,s, ~- 1,...,tYh, nh ~ 0,

~P ,~ ai f Ith{J P(n,lt,l,f) - FléfttP(n,lt, l,~ f 1)I {~ C tYh}
~-t

-EP ~ niP(n - ei,h, l,f)I {ui ~ 0} f ah'{ ~{rs.hP(n,lt,-9, 1) (8)
i-1 g-t

~-9AWé t~h~P(n f ec„ la, 1, 1).

The first term indicates a phase transition in a service of a customer at Qi,. The second term
corresponds to an arrival chtring the service of a customer at Qh. The third term describes

that the server arrives at Q~, ancl immecliately starts to serve a customer at that queue. The

fourth term iudicates that after a service complc,tion aL Q~, the server iwmediately starts to

serve the next customer at that queue.

Because the scrver can not be serving at art empty queue, we have: for n E IN', h-

p(n,h, 1,~) - 0 if np - 0, (9)

and accorcling to the law of total probability, we have

yo ,y,
n

~ ~ ~ ~ P(n~ll,-r,f)f ~n(n,ri, l,~) - l. (lo)
nEN'h-1 g-1{-1 {-1

The set of balance equations ( 7), (R), togcther with the law of total probability ( 10), fonns an

infinite set of linear equations between the state probabilities. llowever, this set of equations

is not recursively solvable. In the next section we will show how the PSA can be used to

transfonn this set of equations into a(tuaiuly) recursively solvable set of equations.

3.2 Computational scheme

`1'be basic iclc~a of the PSA is to transfonn a non-reeursivcly solvable set of balance equations

into a rruirsivel,y solvahle set uf ecpiations by oxprensing the statc probabilitics ( 6) as power

serics iu thc olferecl lu:ul tu the n,ystow iu light trallic. Ily substituting theso expressions into

the bal:wce cquations, ouo may obtaiu a cuwpleti~ rceursive computational scheme to calculate

the coetTcients of these power scrics. fu this section we will show how such a computational

scheme can he obtained for the present model.

The I'SA relies on thc following light-tra(lic property: for (n,h,-g,{) E IN' x S,

P(n,rt,-~,,;) - ~(Pln~), P 10. (11)



Here, the limits are taken in such a way that the relative arrival rates remain fixed (cf. (1)).
We refer to Van den llout and I31anc ['l9J for couditions under which this property is valid.
For the present modcl these proportics are satisficd. [Sased on property ( il), we express the
state probabilities as power series in p as follows: for (n,h,-g,~) E IN' x S,

~
P(n,h,-g,E)-Plnl ~Pkho(k;n,h,-g,f).

k-0

(12)

We refer to Vaai den flout and Blanc [29J, [30J for conditions on the convergence of the power-
series expansions.

1'here arc v:uiuus ways to drlin~~ t.óc derivativ~~s uf the runting probabilities with respcct
to other routing probabilitics, '.'~. Oue way tu du so is to consider routiug probability ps,~,
as function of underlyiug v.iriables t4,~, ~ 0 as follows: for g,h - 1,...,s,

Ps.h - ,ts.n (13)

~ t9,kk-1

evaluated at ~A-~ts,k - 1. We define thc derivatives of the routing probabilities as follows:
ior g,h,i,j - 1,...,s,

aN4.h : aP.4.,, (14)
8p, ~ - [ ~t,~ ~ ~y A-t '

k~l

It is readily verified by applying standard rules for di(lèrentíation that: for g, h, i, j- 1,..., s,

aPs.h - I{i - g} [I{j - Ir} - Ps,hJ. (15)áp;,7

Using this dcfinitiou (l4), the derivatives of thc statc probabilities with respect to the rout-

ing probabilities are wcll-defiuod. I~ilr notational c-ouveni~~ncr, we definr the following linoar
ordering of the derivatives: for r- 1,..., c~, (n,h,-g,~) E 1N' x S,

p.(n,h,-g,~):- ~a~P(n,h,-g,f), (is)

where i, j and r are related through

r-(i - I).v } 7, i,7 - 1,...,.~. (17)

'hhe dcrivativos of Lltt' ntatc prubabiliti~~s ( Ifi) can bo expressed as power series in p as follows:

for r - I,..., s~, (n, h, -g, ~) E W' x S,

~

p.(n,lb,-g,~)-P~nI ~PAhr(R;n.li.-g,~). (ig)
k-0

llecause p docs not depend un the rouling probabilities, the coefticients 6,(k;n,h,-g,{) can

be obtained by tenuwise ditferentiation of the coc(i'icients 6e(k; n, h, -g,~): for r- 1, ... ,s~,

(k;n,h,-9,~) E IN1~Fs x S,



s

b.(k;n,lj,-9,E):- ap~~,(k'n,h,-9,E), (19)

where i,j and r are relatecl through (17). Substituting the power-series expansions (12)
into the balance equations (7) aud ( R), and equating corresponding powers of p leads to the
following sets of linear relations between the coe(Ficients of the power series in ( 12) and (16):
for r- O,l,...,s~, n E IN', le,g - 1,...,s, ~- 1,...,~YDr„ k- 0,1,... ,

Icg~~ 6r (k; n, h, -9, ~)- IcR h} ~ b. ( k; n,1h -g,~ t 1 ) I{~ G rYá,~ }
~ ~ a~ [b,.(k; n - e„h,-g,{)! {nl ~ 0} - b,(k - 1; n,h, -g,~)I {k 1 0}]

~-t

}xs.hpa.r.,~r Iclobr(k; n,9, -h 1)I {ny - 0}
(20)

~rrg,h[a,~, ~IcJ.yLe(k;n,9,-f,l)I{r~0}I{ny-0}
~-r

t~c~t Aa~ns.ebr(k; n f e9,9,1,1) [1 - 9g! {ng ~ 0}] I{k ~ 0}

~~gta9;~ [`~~]bo(k;nte9,g,1,1)[1-q9!{n910}]!{k10}1{r~0};

and for tbe coefficients corresponding to tbe states in which the server is serving: for r-

O,l,...,sz, n E IN', h- 1,...,.,, f- 1,...,W}„ k- 0,1,... ,

Ia~Fb.(k;n,la, l, f) - Ici~ftrbr(k;n,h, l,~ f 1)! {~ G cV~}

t~ a~[Lr(k; n - e},h,l,~)I {ni 1 0} - br(k - l;n,h,1,~)1 {k ~ 0}]
~-t (21)

-~ar.f ' e~'6 (k;n,h,-c,l t r,l`i;rxi~~{b,. k-l;n}eh,h,l,l ! k10n ~ Fc,,,n . J ) 9 ( ) { } .
g-t

For convenience, we rewrite the set of equations ('l0) as follows: for r- 0, 1,...,s~, n E

IN', h,9- 1,...,s, ~- 1,...,We,r~, k-0,1,...,

,
~y~b~(k;n,h,-g,f) - As,iPy.r, ~ l~l.nL~(k;rt,g,-Í,1)I {ng - 0}

(22)!-t
i-J. ( k; n, Ic, -g, E),

where

Y.(k; n, li, -g, f)- - Fc4itr br(k; n, Ic,.-g, f f 1)! l{ G wg~h ~

f~ ai [Gr(k; n- ei,h, -g,~)I {n~ ~ 0} - b.(k - 1; n, h, -9,{)I {k , 0}]
~-t

~rr9 h 1a~1 !~t Ic fsbv(k' n' g, - j,1)I {r 1 0} I{ng - 0} (23)

flc9 r xy.l Pn,~~b.(k - I; n t e.~,.?. I, I)[1 - 941 {n4 ~ 0}] I{k ~ 0}

flcg~r xa,h ~~~,; ~ be(k - l; n} ey,g, I,1) (1 - ryAl {ne 1 0}] I{k 7 0} I{r ~ 0} .

To derive a computatiou order for the coe(licieuts b.(k;n,h,-g,~), we neecl to explore the

structure of the set of equatious (22). To this encl, we assign to each n E IN' the null-sei

corresponcling to n as follows: for n E IN',

IV~uI,-{1GgCS~ng-O}, (24)
n-
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i.e. the set of empty queues wben thB ~Olnt (~llenl'-IP.IIgth vector is n. lu acldition, we define:

for (k;n) E IN3}s, 9 E N~nl, r- 0, 1,...,s~,

c.(k;n,g):- ~I~j~L,(k;n,g,-I,1)- (25)
~-,

Then, by summing both sides of the eryuations ( 22) over g - 1,...,s, a; - 1,...,~g~„ we

obtain the following set of equations: for r- O,1,...,s~, ( k;n) E IN~t', h E lV~ril,

c.(k;n,ri)- ~ c.(k;n,g)Y,,hty,(k;n,ll), (26)
seNcnt

where
0s ~v.~

ll,(k; n, h): - ~~ rr(k; n, li, -g,F)- (27)
e-i f-i

Once for given triple (r,k;n) the qnantities C,(k;n,g), g E JV1.~1, are known, the coef-
ficients G,(k;n,h,-g,~), (h,-g,~) E S, can be obtainecl from the following relation: for
r- 0,1,...,R2, (k;n) E INcta, h,g - 1,..., 4, f- 1,..., ~y,k,

)aognb.(k; n,11, -g, f)-~s,i l~.v,~,~'.(k; n, g) f Y.(k; n, li, -g, ~), (28)

with thr convcntion that C,(k; n,9) :- 0 fur ,ry Q Nn,~~l.

We aze now ready to clefine an orclering of the coefficients 6,(k;n,h,-g,~) snch that they can
be detennined recursively. Let us first clefine an ordering for the states with r- 0. To this

end, we define the following ordering ~ over the ( k; n)-combinations: for (k; n, h, -g, {) E
INtt' x S,

(k;n,h,-g,f) ~ (k;n,h,-J,f) (29)
if ~kf~n~Gkf~n~J V ~kf~n~-k}~n~ n kGk~.

For given ( k;n) nnd h, we define the following ordering over the couples (-g,{), g-
1,...,a, ~ - f,...,~y.h, ~ - 1,...,cY~„

(k; n, la, -g, ~) ~ (k; n, h,1, f ); (3fi)

thus, for givcn ( k;n,la), the co~!(icicnts corresponcliug to the states in which the server is

serving are of highcr order than thos~ corresponding to states in which the server is switching.

In additiun, for giw~n (k;n,h), t.hr sl:~toz iu which lhc scrver is switching are (partiallY)

orclcred :rs follows:

(k;n,li,-y,f) ~ (k;n,ll,-J,~)if ~9~JV(ril N yEJV1n1J; (31)

thus, the coe(Ticients corresponding to states in which the server is switching after a departure

from a non-empty queue are of lower order thau those for the states in which the server is

moving just after a departure from au empty ryueue. For given ( k;n,h) nrid g- 1,...,s,

the states ( k;n,h,-g,f) are orclcrecl as follows: for (k;n) E 1N~t', h,g - 1,...,s, ~,~ -

1,.. ,~Vó~,
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(k; ra, h, -g, F) ~ (k; n, h, -g, f) if f 1 f; (32)

thus, for the states in which the server is moving from a given queue Qy towards Qh aze
ranked in increasing order with respect to the component f as ~Yy h, (YD h- 1, ... ,1. We
emphasize that this ordering, defined by ( 29)-(32) is only paztial, so that not all couples of
vectors ( k;n,h,-g,~) E INlt' x S are mutually ordered.

Thus far, we have only considered the coefficients 6,(k;n,h,-g,~) with r- 0. To derive
an ordering for the coefficients Lr(k;n,h,-g,~), r- O,l,...,a~, we extend the partial or-
dering ~, defined in (29)-(3'l), to the states (r,k;n,h,-g,~) as follows: for (r,k;n,h,-g,~),
(T,k,ii;h,-y, f) E{0,1,...,8~} X 1N1}s X S,

(r,k;n,h,-g,~) 1 (T,k;n,ll,-9,f)
if (r-0 n r~0] V[r-r A(k;n,h,-!l,f) [(k,n;la,-9,f)].

(:33)

One may verify that under the partial ordering ~ all coefFicients in (2a) are of lower order
than b~(k; n, h, -g,~), aud that all tenus at the right-hand side of (21) are of lower order with
respect to [ than b,(k; n, h, 1, ~).

lfence, it remains to consider tLe solvability of the set of equations (22) for given (r,k;n).

To this eud, note that for givcn (r,k;n) tIIC Set Of (`(Illatlons ('l2) is uniryuely solvable if and

only if the ,et ('lti) is uniquoLY ~~~Ivable. 'I'o cuusider the solvability of ('2(i), a distinction hv

to be tnade betw(ru Lhe empty :~nd uou-culpty states.

For n~ 0, the rednced routiug matrix P-(p;~), i,j E JVlnl is sahstochastic (cf. ['23]),

which guarantees that the set (2G) IIl(Irr,(1 pOSSPSSes a uniryue solution C,(k;n,g), g E Nnl.
To consider the solvability of the set of equations (2fi) for the states with n- 0, one may

verify, hy swnmiug both sides over h E~ol - {I,...,R}, that for given (r,k;n) relations
(26) foriu a dr.lx ndcnt set of equations. One may verify Ulat this set of equations is not con-
tra(lictive beeause of a neressary bal:Lnce betw(rn the ewpty states and states with exactly
one customer in the systelu, implyiug: for r- 0, I,... ,,v2, k- 0, 1,... ,

0s s wv.h
~ Y.(k;O,Jt) - ~ ~ ~ J.(k;0,h,-9,~) - 0. (34)

hcl ,9-1h-1f-1

An additional equation follows directly from thc law of total prohability ( 10), which implies:
for r- O,l,...,a~, k- 0,1,...,

0
s yv.n

~ ~ ~ br(k;0.1~,-g,f) - 1'.(k), (35)
p-1h-~(-1

wllere for r - 0,1,..., v~, T;(0):- I{r - 0} all(I for k - 1,2,... ,

Y.(k): -

- E E S E yEhb.(k-In~;n,h,-g,~)f E b,(k-~n~;n,Jl,l,E) ~.
(36)

o~lnl~kn-t l s-1 E-1 f-1

Equation ( 35) can be rewritteu in terms of the variables C,(k;0,g) in the following way: for

r-0,1,...,v~, k-0,1,...,
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i ~ yi.~ ~9.n
~~E E yát E xy,n C.(k;~,9)-
y-t A-t f-1 ~v~ti ~-f

~ I Wp.h Wy,A

(371

Y.(k)- ~ ~ ~ ~T ~ J.(k;~,h,-9,~).
y-t A-t f-t ~p~~ 4~-f

Now, it suffices to show that the set of eyuations ( 26), (37) or equivalently, the aet ( 22), (35)

is uniyuely solvable. To this end, it should be noted that the ccefficients at the left-hand side

of these sets of equations are independent of r and k, so that it is sufficient to consider the

solvability of these sets of equations for r- 0 and k- 0. Then the solvability is readily estab-

lished Uy observing that the continuous-time Markov process {(N(t),11(t),G(t),~(t)), t~ 0},

conditioned m~ the event N(t) - 0, is irredncible on the state space {0} x S. Alternatively,

it is rather tedious, but straifilitforward, to verify that the determinant of all but one of the
0

eyuations (22), togrthcr with (afi), is cqual to 0- oll'y-tflh-tllf!~ pyh 1 0, implying that

this set of eyuations iudeed prnsassi~s a uuique solution.

In practice, one is usually only iuterested in a limited number, say L, of perfonnance measures,

instead of in all individual statc probabilities. Let g(~)(n,h,-g, f) be a real-valued function

of the state space. Then gencra] perfonnance mc.~uures of the form E{g(~)(N, H,G,~)}, !-

1,... , L, can be expressed in terms o( the coeflicicnts o( the power series as: for t- I, ... , L,

a
E{g(r)(N, FI,C.',-)} - ~ pkj(t)(k),

k-u
(3R)

where for k - 0, 1,... ,

Ic')(k) .- ~ ~ g(t)(n, r~, -9, ~)~t,(k - Inl; n, h, -9, f)- (3~)
o~ln~~k(h,-s,f)es

We assume that the functiou g(~)(n, h, -g, t) does not depend on the routing probabilities and

that the performance measures in (:3R) are ( partially) differentiable with respect with respect

to the routing probabilities. Then the perfonnance meuures ( 3R) and their derivatives (40)

can be expressed ~s power scries in p as follows: for i, j- 1,...,a, r-],...,s~, 1- 1,..., L,

z

~p~JE{g(i)(N,f1,G,`)} - ~Pkl~t)(k), (40)

where for k - 0, I,...,

JU)(k):- ~ ~ g(~)(n,h,-g,f)5.(k-~n~;n,li,-9,f), (41)
OGInIGk ( h,-g.f)E~

and where i, j and r are rclated through ( l7).

Because of limitations on the available amotutts of computation time and storage capac-

ity, only a limited numb~r of coefFiei~~uts cau be computed. Let M be the number of terms

that onr wants or h;~.v to c,nnpnto. '1'hi~ fullowin); cnmputational scheme shows how the per-

forniauce mcasuri~x E{qtt)(N,11,1:,-)}, l- I,...,L, and their derivatives with respect to

the routiug probabilities, c:w br Cowputcd:
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step I: ~n: - 0; for I- 1, ... , L, f (~l(0) :- 0 anc) j~~l(0) :- 0, r- 1, ... , a~;

atept: forall(k;n)withn~0andk}~n~-rn,
(1) for g ~ IVlnl, detcrmiue 6,(k;n,h,-9,~), h- 1,...,s, f- 1,...,cYQ~, from

(22), r- O,l,...,a7; update J~~l(rn) and j~~l(m),! - 1,...,L, r- 1,...,a~,
according to (39) ancl (41), respectively;

(2) determine G',(k;n,g), g E Nnl, by solving the set of equations (26) and
deteruLine 6,(k;n,h,-g,~), h- 1,.. ,s, g E Nlnl, ~- 1,.. ,Wgh, from
(28), in increasing order with respect to [(33), r- O,1,...,a~;
update f~~l(m) and J~~l(m), !- 1,...,L, r- 1,...,a~, according to (39) and
(41), respectivelY;

(3) detennine 6,(k;n,h, 1,~), h- I,...,s, ~- I,...,cYh, according to (21),
r- 0,1, ... , a~; update j~~l(m) and J~cl(ni), (- 1, ... , L, r- 1, .. ., s~, according
to (39) ancl (41), respectively;

atep 8: determine C,(na;0,g), g- 1,...,s, according to (26), (37), and determine
6,(ra;0,h,-g,~), g,l: - I,...,a, f- 1,...,cYeh, according to (28), r- O,l,...,s2;

update j~~l(na) and f~~l(m), l- 1,...,L, r- 1,...,s~, according to (39) and (41),
respectively;

step ~ : m: - rn } 1; if m G M then return to atcp w; otherwise STOP.

The mean queue lengths ( including the customer in service) can be obtained by taking
ghl(n,h,-g,~) :- nc, l- 1,...,s. The mean waiting times can then be obtained by Little's
formula.

The reacler is referred to (5] for a dotailed discussion of practical aspects of the implementa-

tion of derivatives into the YSA.

The PSA is most e(iective when the coeffirieuts b,(k;n,h,-g,~) can be computed recursively.
Therefore, Coxían distributed are generally prefcrred to general phase-type distributions for
the service times and switclrover times. It shoulcl be noted that the class of Coxian distri-
butions lies dense iu the class of gen~ral probability distributions with non-negative support
(cf. [1]).

The present moclal is conlainod iu lhe clac.5s of scrc:Jlod quasi birUi-and-dcath (QBD) pro-
cesses, in which state lran,itiuu. fruni st,cte (n,~p) :- (n,h,-g,~) E W' x S cau only occur
to states of the fonn (n,~) or (n ~ e„~) or (n - e~,~i) E W' x S). We refer to Blanc [3]
for an extensive discussion of tbe use of the PSA for roodels with a general QBD structure
and to Blanc and Van der Mei (SJ for the extension of this general model to the computation
of derivatives. In this general setting, for cach triple (r, k; n) a set of ~S~ linear equations has

to be solved to determine LLe co~fficients br(k;n,cp), cp E S.
llowever, by introducing the yuantitics C,(k; n,g) in ('l.5), for a given triple (r,k; n) the set of

~S~ lineaz eyuations for computing the coetticients 6~(k;n,~p), cp -(h,-g,~) E S, has been

r~cdua:d to the set of only ~Nnl~ lincar equations for thc yuantities C,.(k;n,g), g E J~nl (cf.

(26)). Apparently, the spccifir strnctnm of the pr~scnted model has been explored to obtain

a morP efiectivr i~uplc~mentation of thr PSA.
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To characterize whether or not, for given (r,k;n), the ccef~icients br(k;n,h,-g,~), h-
1,...,s, g- - l,l,...,a, ~- I,...,~Yy h, are fully recursively solvable,let us reconsider the
set of equations (2Y). The states (r, k; n, h, -g, f) for which the first terw at the right-hand
side does not vanish are exactly those for which the server has just skipped Qy which was
empty (i.e. ny - 0) upon arrivaJ of the server at that queue. Thus, jor gíven (r,k;n), the

set of states (r,k;n,h,-g,l:) which can not be completely ordered are those in which the
server is switching between thc empty queues. lience, as long as no arrivals occur at one of

the empty queues, the scrver can keep on switching between these empty queues, provided
the routing probabilities corresponding to tbese switches are strictly positive. For the states

(r,k;n,h,-g,~) with ng - 0, the indicator function in (2'l) does not vanish, so that the
coefficients b,(k; n, h, -g, f) ran uot be snlved recursivcly according to (22).
This also explains why in the special c:~re of cyclic server routing thc states can be computed
fully recursively for n~ 0. To see Uiis, for n~ 0, there exists some index i such that n; ~ 0,

so that the server can not skip Q; aud hence, can not be moving around as long as no arrivals
occur. F'rom (2Y) it follows that wider cyclic polling with p~s}i - 1, g-],...,e, the coe(fi-

cients b,(k;n,gf 1,-g,~) can bo determined recursively in theorder i,i} 1,...,s,l,...,i- 1

with respect to g.

For the case in which some or all switch-ovcr times are 0 a.s., some straightforward mod-

ifications o( the balance equations and of the computational scheme have to be made.

It is not easy to give bounds for the arcuracy of Uie computations with the PSA. Now-

ever, for the preseut polling model with Markoviau scrver routing a rough indication of the
accuracy can be obtaiuad frum tho PCL, i.e. au ex:ul rxpression for a specifir weighted sum

of the mean waiting times :~.t the qu~~ues. "I'he arcuracy of the computatious witb the PSA can

be rougly estimated by comin~ting this specific weighted sum on the basis of the computed

mean waiting times and compariug tliis valuc to thc exact value of the right-hand side of the

PCL. For polling models with Markovian scrver routiug with mixtures of 1-limited (q; - 0}
and exhanstive (y; - 1) (and gated) service a PCL hax been derived in [8~. This PCL can be

readily extended to Markovian polling models with [lernoulli service with general paruneters

q; (0 C q; C 1) at Q;, i- 1,..., 4, leading to the following expression:

.z
~ P:EW; - z t-o ~ n;lj;~) f z ~~; ~ p;,ia(a)
i-1 ,-1 ,-1 i-1 (42)~ a a (~) ~

t; ~ W; ~ l~;,iR;,i ~ PAETt,; f~ GM;,
;-i i-i ~:~; ;-i

where T;a is defined as tbe timc elapsed between a departure of the server írom Qi and its

last previous departure from Q;, i, j- 1,..., K, and where M; stands for the amount of work

at Q; at a dopartnre epurh of the ,ervor from Q;. One may vcrify that EM; is related to EW;

by the folluwing relatiou (rL [Y7]): fur i- I,...,.x,

I a ~ I ~ (43)f,M; - (1 - q;) [P;A;--I:IV; } p; --
~;I-p w;l-P '

so that tho I'(a, for thc~ pr~.~~~nt uwdel with ISrnioulli scuvicc disciplines rc:uls as follows:
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, z , . ~
~P:~1-''r-' ~~EW: -~c-o ~u:l~; ltz ~~t~P:,io:~l
.-t ~-t ~-r i-i

. , ~
t,r-, ~ ~: ~ P:áoi~l ~.PkETk,:

.-i ~-i k~,
(44)

~ ~ v,'(c-a.l
t~-v:-r , .

The unknown quantities ETk,; can be obtained by solving a set of linear equations. Thus,

the PCL for Markovian polling is nut a closed-fonn expression, and can only be evaluated by
solving a set of linear equations, as opposed to the case of cyclic polling, in which the PCL
gives a closed-torrn expression for a wcighted sum of the mean waiting times at the queues.
Still, the PCL (44) is very useful for getting an indication of the accuracy of the calculations

with the PSA.

4 Markovian versus periodic polling

In this section we make a cofnpru~ixon betwcen the perfonnance of polling models under pe-

riodic and probabilistic sPrver ronting. To this end, we have implemented the PSA for both

polling models with Markovian server routing and for polling models with periodic server

routing, along the lines discussed iu the previous section in Illanc [3], respectively.

Due to the considcrable ncnnbrr of degrcrs of frrrdom in specifying the relative arrival rates,

the service times, the system load, the switch-over times, the service disciplines and the visit

orders, we have restricted ourselves to the analysis of a number of specific models, which
we believe cover the main characteristics of the variety of tnodels. Moreover, because of the

computational complexity of the PSA we have restriccd ourselves to models with a rather

small nuwbc~r of qnrucs. 'I'hr~ charccteristics ubserved for tI18S(1 modcds contribute to the

understanding of the bchavior of polliug systems. We bclieve that these insights are also use-

ful for understanding the behavior of models with a large number of queues. The following

models have been taken wider considcration, covering fully sytntnetrical models, tnodels with
asymmetrical arrival rates and models with asymmetrical switch-over times. For each of these

models the offemd load óas been varied to cover roodels under light and heavy traffic, and the

service discipline haa been varied to cover 1-limited and exhaustive service, and moreover, the

asymmetry in the arrival rates and switch-over times has been varied to cover a fairly broad

class of modcls.

Model I rcpresonts .~nunrtrira! modols, and is specified by the following set of system

parameters: s- a; plrl-(I.OO,l.00,1A0); o;~1-U.Ofi, i,j - 1,...,s; all service times and

switch-over times arc expouentially distributed; a-(1.00,1.00,1.00); q -(q,q,q). The quan-

tities p and q am still variablc.

Model II represents models in which the nrrirxd mtcs are avynunelr~ical, and is specified

by the following set of parameters: e- 3; ~ilc1-(I.00,1.00,1.00); a~á1-0.05, i,j- 1,...,a; al]

service times and switch-over timPS are expouentially distributed; q-(q,q,q); the relative

arrival rates are given by a-(a~(n t 2), I~(cr t l),1~(a t 2)), so that the ratios between the

arrival rates are a:l:l. The quantitios ~r, rr aud q are still variable.
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Model III represents models in which the awitch-ovcr times between the queues aze asym-
metrioal, and the system parameters are: s- 3; ~3~11-(I.00,1.00,1.00); all service times

and switch-over times are exponentially distributed; a-(1~3,1~3,1~3); q-(q,q,q); the mean

switch-over tinles aregiven by o~1~-ez1~-a~~~-0.005; 0~~3-o~1z-0.25~ o~ll o~tl-olll -v~ll-
i 1,1- S,l - 1,3 - 3,1 -

a, so that a(for values a~ 0.125) can be viewed as the mean `distance' between Q1 on the

one hand and Qz and Q3 on the other hand. The yuantities p, a and q are still variable.

To make a re:~sonable comparison betwecn tbe performance of Markovian and periodic polling

models, we associate with each periodic service orcler table a-(x(1),...,a(L)) a unique
Markovian counterpart in which the matrix of routing probabilities P-(p;~) is defined by:

for i,j- 1,.. , s,

L
~ ~{xk - t ; A~k lllod L) t 1- 7}

k-1
Pr~: - - L

~!{]rk-i}k-,
(45)

i.e. the fraction of times the servcr movcs to Q~ after a departure from Q; under polling

table a. For instance, if the periodic scrvice orclcr table is given by a-(1,2,1,3), then the

probabilistic version has ronting probabilitics pis - p1,3 - 0.50, pz,~ - Irs,] - 1.00. Through-

out, the Markovian polling moclel that is related to a perioclic polling moclel through (45) is

referred to as the Mnrkouinn emnderlxcrt of the perioclic polling model.

In the remainder of this sectiou we show some o( Lhe numerical results that we have gath-

ered to compare the perfonuance of polling systems in which the service orcler is guided by a

polling table a ancl their Markovian counterpart. For given routing matrix P, the performulce

tneasure considered here is
.

C(P):- ~ p;FW;,
~-1

(46)

i.e. the mean total anwunt of waiting work in thc system.
In the nwnerical examplcs cousiderrd hrre, the offered loacl to the system is either p- 0.3

(representing lightly-loaclecl moclcls) or p- 0.8 (roprescnting heavily-loaclecl models). The

number of terms of the power series that has bcen conlputed is eyual to M- 40, and the

estimated error in the computations is typically less than 0.001.

Let us first rousiclor symuictrir:~.l ni~~dc~ls uuJcr ~ymmctrical visit orclers, i.e. in which the

ronting is statistically the same for all qucucs. To this end, wc have computed the system

perfornlauce (4fi) for modcl I uucler a nuwbor of symmetrical routing orders with periodic

polliug (inclicateel by 1') and with thoir Markuvian eounterp:uts (inclicated by M). Table 1

below ,hows the rosulLs for q - 0.00 (1-limitod service) and q- 1.00 (exhaustive service),

aud fur p- 0.3 and p- O.x.
Table 1 suggests that in synnuctrical modcls thc tncan total amount of w:uting work in the

system and hence, thc mcan waiting timcs (which atr the same for all yueues), are smaller

in the case of periodic polliug than uncler the corresponcling Markovian server routing in all

considerecl cases. Ilowever, oue ]uay :Jso observc lhat the cli(ferences are rather small.

A comparison of the system performance for the varioas routing orclers considered here shows
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p - 0.3 p - 0.8
routing P~M q- 0.00 q- 1.00 q - 0.00 q- 1.00
123 P, M 0.18 0.17 4.50 3.44
I1'2233 P

M
0.19
0.20

0.18
0.19

4.55
4.75

3.62
3.64

1112'l'1333 P
M

0.20
0.22

0.20
0.21

4.63
5.00

3.80
3.84

111122223333 P
M

0.2'l
0.24

0.21
0.23

4.74
5.25

3.99
4.04

Table 1: Performance cmder symmetrical routing mechanisms; Model I.

that the performance of the system is closely rclated to the spncing of the visits. When the

visits are `better spaced' in time, thn system per(ormance seems to be improved and vice

versa. This observation is supporLed by the following intuitive argmnents. Under a periodic

visit order the visits seem to be more homogeueously spaced than ander the corresponding

Markovian visit order. As a conserynence, the cycle times C; of Q;, defined as the time

interval betwecn tW0 SUCCefiSlve d('partures of the sorver from Q;, seem to be more `regular'

under periodic polliug than undcr Marknvi:rn s,~rver rouliug. Under Ilernoulli service EW;

(approximately) relates to the first two moments of C; according to the relation (cL [27]): for

1 - 1,...,8,

(1 -PtP;)-9;P;(2-P) ~~:EW;~
1-PI1~aa;(I -q;)~c~;J2EC;,

(47)

whete EC; - o~(~;(1 - p)), i- 1,...,s, so that for a given set of system parameters and
relative visit freryuencies, thP u,ean waiting time at Q; increases with increasing `irregularity'
of the cycle times, represented by EC.;~. 1'hese iutuitive arguntents support the observation in
Table 4.1 that the system performance under pcriodic polliug is better thau under Markoviau
server routing.

To investigate whether a similar clominance relation also holds for synunetrical models under
asymmetrical server routing, we have computed the tnean waiting times for model 1 for a
number of asymmetrical service orders, specified by a-(1,2, 1,3), commonly referred to as
star-polling, and ~rr - ( 1,2,3,1,3,2). Table 2 shows the results for q- 0.00 and q- 1.00 and
for p- 0.land p- 0.8.
Table 2 sugl;osts that in the c;utir uf pc,riudic pulling thc mcau amount of work is still smaller
than under Markovian polling. Yet, a similar stochastic dominance relation is rwt generally
valid for the individun! mean waiting timcs. This observation is supported by the following
iutuitiva argumonts. Lct us reconsidcr thc mndcl with a -(1,2,3, 1,3,2) with p- 0.8 in
Tablc 2. In that c.tir.e the polling order suggests that the visits to Qr are more homogeneously
spaced thau the visits to Q1 and Q~. Accordingly, EWr can be expected to be smaller than

EWz and EW~, which indcod turns uut to bc tl,c case. Moreover, one may observe that

the stochastic counterpart of this model, Laving routing probabilities pr,~ - pi,a - pz,i -

pj,3 - p3,r - p~,~ - 0.50, is symmetric, le.uling to the same mean waiting times at the queues.

One would expect EWr to be smaller under periodic polling here, because the visits to Qr
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p - 0.3 p - 0.8
routing q P~M (EWr,EWz,EW~) C(P) (EWt,EW~,EW3) C(P)
1213 0.00 P (0.48,0.66,O.6G) 0.18 (2.35,7.92,7.92) 4.85

0.00 M (0.48,0.74,0.74) 0.20 (2.31,8.29,8.29) 5.04
1.00 P (0.48,O.G0,0.60) 0.17 (3.03,4.98,4.98) 3.46
1.00 M (0.48,0.67,O.G7) 0.18 (3.09,5.20,5.20) 3.60

123132 0.00 P (0.58,O.GO,O.GO) 0.18 (5.60,5.66,5.66) 4.51
0.00 M (0.61,O.G1,0.61) 0.18 (5.73,5.73,5.73) 4.58
1.00 P (0.54,0.57,0.57) 0.17 (3.92,4.55,4.55) 3.47
1.00 M (0.57,0.57,0.57) 0.17 (4.38,4.38,4.38) 3.50

Table 2: Performance under asynunetrical routing mechanisms; Model I.

seem to Le better spaceel than under Markovian polling, in which the uncertainty leads to

less well-spaced visits to Qt. As fur the mcan waitiug times at fa2 and Q~, there is a trade-

off between the irregularity iu Uic cyclo Limes cansed by Lhc use o( probabilistic polling on
the one hand, and the irregularity of tbe cycle times caused by a rather bad spacing of the
visits under periodic polling. Apparently, the formcr irregtilarity is dominated by the latter

one. This intuitive arl,ntment supports the observation that in this exatuple EWz and EW3
are larger under periodic polling than under the corresponcling Markovian polling enechanism.

To investigate whether the observatious macle for symmetrical models also persist for asym-

metrical tnodels, we consicler the pcrformance of the system for both periodic and Markovian
service order for a model with varying asymmetry in the arrival rates. We have computed the

mean wtiting times in modcl 11 for a ntnnber of valucs of relative arrival rates. Table 3 shows
the results where the ratios betwcen the arrival rates are 1:10:10 and 10:1:1, for q- 1.00 and

p-0.3andp-0.8.

P - 0.:3 P - 0.8
routing ratios P~M (EWt,EW2,EW3) C(P) (EWt,EW~,EW3) C(P)
1213 1:10:10 P (0.51,0.58,0.5R) O.17 (4.0'1,4.35,4.35) 3.39

1:10:10 M (O.~i2,0.G~i,O.fii) 0.18 (4.14,4.~i9,4.59) 3.5.5
I0:1:1 P (0.48,0.72,0.72) 0.19 ('2.8~i,10.7R,10.78) G.51
10:1:1 M (0.48,0.79,0.79) 0.'ll (2.R6,11.00,1 L00) 6.63

123132 1:10:10 P (O.~i9,0.!i6,0.(iG) 0.17 (4.GG,4.37,4.37) 3.57
1:10:10 A1 (0.(ifi,0.~ifi,0..'ifi) 0.18 (7.59,4.17,4.17) 4.25

10:1:1 P (O.~i1,0.G8,0.G8) 0.19 (3.14,9.43,9.43) 5.87
]0:1:1 A4 (0..'i:3,0.70,0.70) 0.19 (3.08,10.01,10.01) 6.16

Table 3: Mean waiting times for asymmetrical routing mechanisms; Model II.

The rosults in 'I'ablc a crntlirm thc ob,crvation that thc mean amount of work in the system

is amaller for periodic polling iu all considorcd c~.w,s, but that in a number of cases some of

the individual mean waiting times are swallcr uncler Markovian polling.
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5 Optimization

In this section we consider the following optimization problem:

min C(P),
PEM,

(48)

where C(P) is defined in (46) and M, is defined as the set of irreducible stochastic s x e ma-
trices. In words, the problem is to find combinations of routing probabilities which minimize
the mean amount of waiting work in the system. Optímal routing matrices are denoted by
P'.
In a general parameter setting no expGcit expressions for the cost function aze available and
hence, the optimization problem is not exactly solvable.

Boxma et al. [7] consider a similar problem of heuristically obtaining periodic polling ta-
bles which minimize the mean amount of work in the system. They propose to combine
explicit square-root formtdas for optimal relative visit frequencies in random polling models
with the Golden Ratio procednre (cL [14]) for the spacing of the visits. liowever, this ap-
proach relies on the assumption that the switch-over times depend only on the queue which is
being switched to, and is independent of the queue that has just been visited. This assumption
is quite restrictive, e.g. whe~ switch-over times represent physical movement from one place
to another. Yet, when this a.tisumption is dropped, the problem of finding an optimal visit
order for given relative visit frequencies can be fonnulated as a ~}avelling Salesman Problem
(TSP), which is known to be NP-hard.

The optimization problem (4R) can, in principle, be solved munerically by combining a numer-
ical algorithm for the evaluation oi the cost fimction (46) with some standard procedure for
non-linear (constrained) optimization. Ilowever, the dimension of the optimization problem
grows quadratically in the muuber of queues, so that in practice this approach is restricted to
models with a rather small number of queues. [t should Ue noted that in the special case in

which all queues are served exhaustively, the cost tunction (46) c:m be directly obtained via
the PCL (44), requiring the solution of a relatively small set of linear equations. However, in
case at least one queue is served non-exhanstively, the PCL is no longer applicable to evalu-

ate the cost function (46). Morcrover, the PCL can not Ue used to determine more detailed
performance measures like the individual mean waiting times at the queues. In those situ-
ations, the computations may bo based ou the use of the PSA, requiring considerably more
computationaJ eífort. To find optitna] routing matrices, we have computed the cost function

(46), plus its derivatives with respect to the routiug probabilities, in combination with the

conjugate gradient method for non-linear optiutization with linear constraints (cf. [22]).
We reemphasize the enonuous complexity of the TSP-like optimization problem in a general

pazameter setting. Therefore, we restrict oursclves to obtain some yualitative, instead of
quaotitative, properties of optimal combinatious of routing probabilities. The results pre-

sented here should be viewed in this perspectivc.

The remainder of this section is organized as follows. In section 5.1 we discuss properties

of optimal routiug matrims iu the r.u;e of fnlly symmetrical models, and in section 5.2 we

investigate optimal combinations of routiug probabilities in the case of some asymmetrical

models.
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5.1 Symmetrical systerns

For fully symmetriral modcls it is shown in [20] that each cyclic service order, which is
coatained in the class of Markovian service orders, solves the optimization problem (48).
Thus, for such models with (symmetrical) Bernoul!i schedule q-(q,...,q), 0 G q C 1,

P' - P, (4`3)

where P-(p;,~) E~1, with p;á E{0,1}, i,j - 1,...,a. Note that there are (e - 1)! alter-
native (ocal optima, each of which uniyuely corresponds to a specific cycGc visit order.

Let us consider the yuestion whether these optima are stab!e, i.e. whether the optimal cyclic
server routing orders remain optimal when the system parameters are slightly perturbed. To
this end, it should be noted that the derivativcs o( the cost function (48) with respect to each
of the routing probabilities may provide useful information about the character of the optimal
routing probabilities. Namely, when all dcrivatives are equal to 0 in the optimum, the optimal
schedule will be an `iuterior optiun~m' which may become suboptimal for slight changes in one

of the system paratueters. On the other hand, `boundary optima' with non-zero derivatives
at the optinnun remain (locally) optima) for slight modifications o( the parameters. To study
the character of the optima, we Lave applied the PSA to compute the cost ftmction (46) and
the derivatives with respect to the roating probahilities for a set of syuttuetrical models, each
of which giving similar oatcoines. For a Lypical cxample, consider Model 1(introduced in
section 4). Table 4 shows the derivatives of the cost fiutction (48) with respect to the routing

probabilities at P' -(p;á) , witli p~ Z- pj;~ - pg t- 1.00, for p- 0.3 and 0.8 and for

q- 0.00, 0.50 and 1.00.

q-0.0 y-0.5 q-1.0
p- 0.3 0.007 0.000 0.007 0.007 0.000 0.007 0.007 0.000 0.007

0.007 0.007 0.000 0.007 0.007 0.000 0.007 0.007 0.000
0.000 0.007 0.007 0.000 0.007 0.007 0.000 0.007 0.007

p- 0.8 0.030 0.000 0.030 0.028 0.000 0.028 0.025 0.000 0.025
0.0:30 0.0:30 0.000 0.028 0.028 0.000 0.0'l5 0.025 0.000
0.000 0.030 0.0:30 O.OOU 0.028 0.028 0.000 0.025 0.025

Table 4: Derivatives UC(P)~r7p;,~ at P- P' in a symmetrical model.

Table 4 suggests that the optimal cyclic visit orders are atable optinia. To illustrate this, con-

sider the case q-0.5, p - 0.8, and consider the routing probabilities after departing trom Qt,

which are under the present cyt-.lir srhedulc equal to p~ z- 1.00, p~,t - p~,s - 0.00. To obtain

an alternative triple of ronting probabilities, either pt,t or pt,3, or both, must be increased,

and pt,~ will have to be decre:wtial. Now, because the derivatives of the cost function with

respect to pt,t, pi,l and pi,;~ at P" strr giv~n by 0.02R, 0.000 and O.OYB, respectively, a(small)

increase in either p~,t or p~,~ together with a(swall) decrease of pt,z will lead to an increase of

the cost function. Uuder the assumption that the derivatives of the cost function with respect

to contimtous system parameters at the cyclic optintttm are continuous, slight modifications

of these system parauteters do not cause the cyclic optimum to becotne suboptimal. The

fact that in Table 4 the derivatives with respect to pt,z, pi 3 and p~,t are 0.000 is due to the
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definition of the derivatives of the routing probabilities in (1:3)-(15), which even implies that
these derivatives are ezactly equal to zero.

The observation that the cyclic optimum is stable suggests the existence of a attroction re-
gion `around' the cyclic optimum for nearly-symmetrical models. That is, there is a set of
`nearly-symmetrical' models for which the optimal Markovian server routing is cyclic. In the
next subsection we will present soute numerical experitnents which support this observation.
Yet, exact expressions for this region are unknown, so that the observation is only useful
for providing a qualitative, rather than a quantitative, insight into optimal combinations of
routing probabilities.

5.2 Asymmetrical systems

When the model is asymwetrical, it is clcar that the cyclic server routing is no longer generally
optimal within the claas of Markovian server routings. llowever, for asynunetrical models the
optimization problan is not ex:u~tly solvable, and nutnerical procedores are needed to find
optimal combinations of routing probabilities. In a nmuber of examples discussed here, it
is assumed that all queues are served exhaustively. This assumption is based on results ob-
tained by Liu et al. (20], wlto have shown that in order to minimize the cost function (46),
all yueues should Ue served exhaustively. Itecall that in those cases the cost function (46),

and the optimal routing matrices, can be obtainecl relatively quickly via (44). Yet, in some
applicatious exhaustiv~ scrvico may uot be impll~nrented or technically infeasible. ln those
situations, the cost functiou (4G), aucl the optimal routing matrices, have been obtained on

the basis of the PSA.

As for the accuracy of tbe cumputatious, iu the ca.~e of exhaustive service at all queues
the cost fnnction (46) has bmn :ucuratcly calculatcd from thc PCI. (44), with typical crrors
less than 10-t~. In the c~ses with non-exhaustive service disciplines the cost function has been

evaluated by means of the PSA, whe~rr typicsaly 40 or .'i0 ti rms of the power scries have been
computed and the estimated ermrs am typicauy l~ss than 0.001. 'fhe optimization procedure
is based on a gricl size 0.001.

Numerica] experience has taught us that the cost firnction (46) as function of the routing

matrices generally has a mrmber of lcxnl oplima, sintilar to the case of fully symmetrical mod-

els. This difficulty, whicb is very cowtuon in non-lincar optimization, is tackled by running

the optimizatioo procedure with a nnmber of diBerent initial routing matrices.

To study characteristics of optimal routing matrices for a Uroad class of Markovian polling

modcls, wc havc~ eoutputod thr` optim:~ routiug probabilitics for a wide variety of the pazam-

eter setlings fur models II and I11 (urudel I occnrriug as a special case), covering a diversity

of tnodels. ln this section we preseut some of the numerical results. We emphasize that this

numrrical sNrdy duos not :um lo givr a full charactorization of optimal schedules, but is meant

to give sonu~ useful insights, which coutribute~ to thc understanding of the charaeteristics of

optitnal routing matrices.

htJlurnrc oj aYynauchlt in thf !lI7~TI(ll iTttt'A

To investigate the intluence of the asynnuctry in tlte arrival process on P', we have cotnputed
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an optimal routing matrix for moclel ll (cf. sectiou 4) for q- 1.00 and in which the ratios be-

tween the arrival rates aze given by a:l:l. Tables 5 and 6 show an optimal routing matrix P'
for various values of a for the system uncler light traffic (p - 0.3) and heavy traffic (p - 0.8),
respectively. It should be notecl that because in this model Q~ and Q~ are stochastically
identical, the corresponding routiug probabilities are exchangeable.

a-0.001 a-0.01 a-0.10 a-0.25 a-0.50
P' 0.00 0.00 1.00 0.00 0.00 t.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00

0.04 0.00 0.96 0.14 0.00 0.86 0.48 0.00 0.52 0.81 0.00 0.19 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00 I.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

C(P') 0.155 0.157 0.1G2 0.164 0.165

a- 1.00 ce - 4.00 a- 10.00 a- 100.00 a- 1000.00
P' 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.44 0.5G 0.00 0.50 0.50 0.92 0.04 0.04

1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.80 0.20 0.00 1.00 0.00 0.00 1.00 0.00 0.00

C(P') O.IG5 O.1G3 0.1G0 0.152 0.146

TaUle 5: Optimal ronting probabilitics for model II; p- 0.3.

a-0.001 a-0.01 a-0.10 a-0.'2.5 a-0.50

P' 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00

0.05 0.00 0.95 0.17 0.00 0.83 0.58 0.00 0.42 0.94 0.00 0.06 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

C(P') 3.347 3.3G:3 3.402 3.422 3.434

a- 1.00 a - 10.00 a - 25.00 a - 50.00 a- 100.00
P' 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.40 0.60 0.00 0.50 0.50 0.22 0.39 0.39

1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 O.GG 0.34 0.00 1.00 0.00 0.00 1.00 0.00 0.00

C P') 3.440 3.350 3.311 3.287 3.274

Table 6: Optimal routing probabilities for moclel II; p- 0.8.

The restilts displayed in Tables 5 ancl 6 reveal some characteristics of optimal routing ma-

trices. First, we observe the surprisingly large fraction of the routing probabilities that are

equa] to 0.00 or 1.00, indicating that the optin~nl routing dcci.vions have a tendency towards

dctennini.Ktic routing. TLis observatiou is supported by the observation in section 4 that the

cycle times under delcnniuislir rnuting are more rcgnlar than under probabilistic routing

decisions, generally leading to a bettcr systmn perfonnance (cf. (47)).

Second, for lightly- ancl he:rvily-loadecl systems the results suggest that the optimal matrices

for di(ferent values o( a cvt be divided into a small number of classes, each of which has

specific characteristics that can be interpreted easily, providing an insight into the behavior
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of optitnal routing watrices. Gcch class corresponds to a specific interval of values of a. We
will now discuss characteristics of these classes, letting a increase from 0 to infinity.
Let us first considet the limiting case a j 0. In that case the arrival rate at Qt is negligible
compazed with the arrival rates at Qz and Qy, so that in the optimum Qt will be visited
only very seldom. The results in Tables 5 and 6 suggest that P' tends to a limiting routing
matrix with p~~ - p23 - Y3,z - 1.00. Under this routing matrix, atate 1(corresponding to
visits to Qt) is only a transient state, and the statPS 2 and 3 fortn an absorbing set of states.
When a is somewhat increased, starting from 0.00, Qt will be visited more frequently, but
still less frequendy than Qz and Q~. This sihtation appears to give optimal routing matrices
of the form p~~ - p~,z - 1.00, p~,t - r, and pz~ - 1- r, 0 G r G 1, where the value of r
increases with increasing value of a. That is, after a cleparture from Qt the server always
moves to Q3 and subseyuently, to Qz. The only random routing decisions are made after
departures from Qp. So, the server visits the quenes in cyclic order, typically interceded by
a number of switches bark ancl fnrth bc~tween Qz and Q3. When a is further increased to
approach 1.00 the arrival rates become of thc satue order of magnitude. For a- 1.00 the
system is symmetric, and it is known that in that case the optimal routing is cycGc (cf. [20]).
Moreover, Tables 5 and 6 suggest that the cyclic routing is still optimal when a is varied
within some interval around a- 1.00. This observation supports the conjecture that there
is some region `around' the cyclic optinuim P' in which P' is still optimal (cf. section 5.1).

When the value of a is further increasecl, Qt becomes considerably more heavily loaded than
the other yueues, so that above some threshold value for a the cyclic visit order is no longer

optimal. We then typically observe optimal routing matrices P' of the form pz.t - 1.00,
p~ z- rt, p~ 3- 1- rt, p;~ t- rz, pz;j - l- rz (0 G rt,rz G 1), and zeros elsewhere. Under

this type of service orders, Qt is implicitly given higher priority than the other queues. This
is because after most visits to either Qz or Qa the next queue to be served is Qt. The only
exception is when Qz is visited after a visit to Q;t. In those cases Qt will be immediately
visited afterwards. This type of routiug matrix may be seen as an inlenncdiate between the
cyclic server routing (for smaller values of a) aud auother type of polling order which occurs

when a is increased fnrther. In the latter case Qt dominates the system in such a strong way
that Qt is always visited iuuucdiately after a visit to one of the other yueues, so that the

optimum P' is typically of the form pj,z - p~a - 0.50, p2,t - p3,t - 1.00. This type of rout-

ing matrix may be seen as a stochastic counterpart of the periodic star-type polling. Finally,
when a is increased eveu furtber Q~ becomes so relatively heavily loadecl that switches from

Qt to itself (throughout referred to as 4clf trnrLCitiuus) become optimal, while Qt is always
visited itnmediately after a visit to one of the other yueues. When a approaches infinity, the

optimal routing matrix tends to the routiug nuttrix P' with p~,i - pz,t - p3 t- 1.00 and
zeros elsewhere.

luflucncc uj the cw.yvunclr7~ in tác~ .~tnitrloavcr timcx

To investigate the in0ucnce of th~ switch-ovcr times on the optimal routing matrix, we have

cotnputed optiutal probabilities for a variety of models which arn contained in the class de-

scribed in tnodel 1II (cf. section 4). ~or these models the ratios between the arrival rates

are eyaal, and wean switch-over tim~s are given by a~~~ - ai~2 - a~~3 - 0.005; o~lz - a~~~-

Ri~~ - ~i~i-c'~ nt~:i - nt~é-0.2'i. Nnlo that, fur n~ 0.1'1.5, the parameter a can basically

be vii~wcd :u tlio weau `di~taucr' bc,twcY,u Qi uu lhc oue hand aud Qz and Q3 on the other

hatul. Tables 7 aud 8 show the resalts for various values of a, q- 1, and for p-0.3 and 0.8,
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respectively.

a-0.001 a-0.01 a-0.10 a-0.25
P' 0.00 0.50 0.!i0 0.00 0.50 0.50 0.00 0.50 0.50 0.00 0.00 1.00

1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

G'(P') 0.130 0.139 0.236 0.311

a-0.50 a-1.00 a-2.50 a-10.00
P' 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
0.9~i O.O~i 0.00 O.fi4 0.46 0.00 0.2~i 0.75 0.00 0.07 0.93 0.00

C(P') 0.437 0.08G 1.412 5.019

Table 7: Optunal routing probabilities for model IIi; p- 0.3.

a-0.001 a-0.01 a-0.10 a-0.25
P' 0.00 0..50 0.50 0.00 0.50 0.50 0.00 0.00 1.00 0.00 0.00 I.00

1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 I.00 0.00 0.00
1.00 0.00 0.00 1.00 0.00 0.00 O.OU 1.00 0.00 0.00 1.00 0.00

G'(P') 3.20tt 3.2tS0 3.933 4.400

a-O.SO a- 1.00 a-2.50 a- 10.00

P` 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 I.00
1.00 0.00 0.00 0.70 0.30 0.00 0.41 0.59 0.00 0.19 0.81 0.00

G'(P') 5.213 6.805 11.231 32.129

Table 8: Optiroal routinq pmbabilitics for modcl III; p- 0.8.

The results in Tables 7 and 8 reveal sorue properties of the chazacter of optimal routing ma-

trices. Similar to the case of varyiug the relative arrival rates discnssed above, we observe

again that the optimal routing decisions have a lcnrlency tornarda deternrinistic routing (cf.

the discussion of the resrdts in Tables 5 and fi).
Moreover, Tables 7 and 8 inclicate that the optimal routing matrices for vazying values of

a can be divided into a number of types of ronting matrices. We will briefly discuss char-

acteristirs o( each of thosr, cl:~ses. Wlien rr is stuall the optimal routing matrix routes the

server to Q~ (witL probability 1.OU) aftcr a visit to one of the other cpicues. In this way, the

relatively long `journey' between Q.2 ancl Q~ is avoicled, and Q~ serves as a`bridge' between

these queues. Wheu a approubes O.2~i the system becomes symmetrical and the cyclic visit

order becomes optimal. Again it is obscrveel that this cyclic optimum remains optimal for

slight perturbatious in thc switch-ovcr tímes. When a becomes considerably larger than the

switcb-over tiwes betweeu QZ anrl Q:~, Q~ b:~cically Uecomes relatively `isolated' from Qz and
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Q3i or equivalently, Q~ and Qs uuty be viewed as relatively `clustered'. The optimal routing
matrices P' appear to have a specific structure of the form p~ z- p~,3 - 1.00, and p3,1 - r,
p~ ~- 1- r(0 G r G 1), where r decreases with increasing a. This specific structure can
be interpreted as follows. After Laving emptied Q) the server always moves towazds Qy
and after a visit to Q3 the server moves to Q~ with probability 1.00. Then the server keeps
on alternating between Q~ and Q3 before making the relatively long trip to Q). The latter
implies that in tl)is way one avoicls tnaking two successive relatively long journeys without
having visited both yueues iu the cluster of Q~ and Q3.

Injfuence oj the aervice discipli~ies
In the cases considered so far it is assumed that t~e queues are served exhaustively. We will
now study the influence of the service disciphne on optimal routing matricea. To this end,
consider the case a- 1.00 for Model If1 (cL also Tables 7 and 8). Recall that in this case
Q) is relatively `isolated' from Q.i and Q:). We study the in0uence of the service discipline
at Q) on the optimal routing matrices. To this end, we have computed the optimal routing
matrices tor various Bernoulli servico policies witL parameter qi - q(O C q G 1). The service
discipline at Qz and Q3 is assumed to be exhaustive. Tables 9 az~d ]0 below show optin)al
routing matrices for q-0A0, 0.50 and 1.00, and for p- 0.3 and p-0.8, respectively.

q-0.00 q-0.50 q- 1.00
P' O.Ofi 0.04 0.00 0.95 O.Ofi 0.00 0.00 1.00 0.00

0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
O.5t; O.~l~i O.t)0 0.)5 O.~i5 1).OO o.s~ o.ns o.oo

c(P') asor, o.ssz o.sss

Table 9: Optimal routing prohabilities for different service disciplines; p- 0.3.

q-0.00 q-0.50 q-1.00
P' 0.97 0.0:3 0.00 0.95 0.0!i 0.00 0.00 1.00 0.00

0.00 0.00 1.00 0.00 0.00 l.00 0.00 0.00 1.00
0.77 O.Ya OAO 0.70 0:24 0.00 0.70 0.30 0.00

G'(P`) 7.301 7.163 6.805

Table 10: Optimal routinR probabilities (or clific~rcut service disciplines; p- 0.8.

The results in Table ~ indicato that lhe scrvice discipline may have a considerable impact on

the optimal routing matriccs. lu particular, we observe a striking ditl'erence in the optima!

routing probabilities betwc~en exhaustive service on the one hand and non-exhaustive service

on the other hand. We observe that in the case of non-exhaustive service (i.e. q G 1) self

transitions occur frequently herc, whcreas for exhaustive service sitnilar self transitions occur

with probability 0. To give an intuitive argument for this observation, recall that it is shown

in (20~ that all qaeucs shuuld be servc,d exhaastively to minimize the cost fimction (46). Con-

sider the c:~.o y G I, i.r. Qi is .orw,d uun-oxh:custivoly, tin that after a visit of the server at

Q~ therc n)ay be customerx prosont at (j). Notc lhat lhe swilch-over times needed by the
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server for a self transition (witli mean 0.005) are negligible compazed with the switch-over
times between different queues (with means 0.25 or 1.00). Hence, the server can almost im-
mediately return to Qt to check whether there is another customer waiting at that queue. If
so, the next customer at Q~ will be~ served, and if uot so, the `cost' of this `unnecessary' travel
from Q~ to itself is very small. "fhis argument intuitivcly explains why for non-exhaustive
service at Qt self transitions occur witL large probability (typically ~ 0.9). ln this way, Qr is
served `nearly exhaustively'. Obviously, in the case ot exhaustive service, self transition from
QL would probably not make much sense, because no customers are present at a departure
instant of the server at Qt.

The aboveanentioned considerations indicate that when self transitions can be made instanta-
neously (i.e. a; ;) - 0, i- 1, ..., s), then under exhaustive service at Q;, the cost function does

not depend on p;,;, providecl p;,; G I. Moreover, for systems with o; ~) - 0, q; - 0, i- 1, ..., s,
the service discipline at Q; can basically be viewed as a 13ernoulli service discipline with pa-
rameter q; - p;,;, i- 1,...,a (cf. also (8]). ht this way, the problem of finding optimal
Bernoulli parameters q -(cji,...,ry",) in cyclic polling models occurs as a special case by
putting the additioual mstrirtion p;,; -F p;,;ti - 1(cL [GJ). The only dificrence here is that q;
should be strictly smaller than 1(to guarantec the irreducibility of the Markov chain D, cf.
section 2), while q; - 1 is also allowed in the optimization problem disaissed in [6].

Guidelincs for corl,structing optimal rriulirtg matric~.4
Based on thc restdts presented in Tablos fi to 10, wo will now give some general ideas that
may be useful for heuristically roustructing rouling watrices for larger systems. We reem-
phasize that these ideas only aim to give some insight into the yualitative, rather than the
quantitative, behavior of optimal routing matrices, and should be viewed in that perspective.

Suppose the distance structure is such that the queues Q~,...,Q, can somehow be parti-
tioned into a relatively small number of clusicrs of queues, Ct, .. ., C,,,, m G s, in such a way
that the mean switch-over times between yueues within the same cluster are considerably
smaller than the distances betweeu queues in different clusters. In this perspective, each of
these clusters can be viewed aa xupcr qucues. The numerical results in Tables 7 and 8 sug-
gest that in each cluster Ck there is a`front door' queue CÁ such that the server can `enter'

cluster G'k only through a visit at queue Ck and not through a visit at another queue in
Ck. This suggestion implies that for (nearly) optimal routing matrices we have p; i - 0 if
Q; ~ Ck, Qi E Ck and Qi ~ Ck , k- 1,...,m. Similarly, each cluster Ck seems to have
a`back door' yueue CA such that the server ran only depart from cluster C.k through CB,
k- I,...,m, i.e. pj,i - 0 if Q; E C;,, Qi ~ G'k aud Q; ~ CH, k- I,...,m. Moreover, one

may export that the optimal routing probabilities within each chistcr C,~ will be such that
after lhe server ha.c eutered ('A (U~rough an arrival at Ck ) nll yueuos within that cluster are

certainly visited at Ieast once during the visit of the server to that cluster. The problem of

determining optimal routing probabilities betwocn the different clusters ( super queues), i.e.

p~a, Q; - Ck , Qi - CÁ~, k- 1,...,m, is roughly similar to the problem of determining

optimal routing matrices for systems with m G s(super) qaeues Qt,...,Q,,,, where the pa-

rameters of super queuc Ct can be detcrmined by ng~rcgalin~ over the parameters of the

qucues in C~ in a strtightforward manner. ` Chis observation suggests a hicrnrchical procedure

for obtaining optimal routing matrices for larger systems.
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As an illustration of the validity of the above-mentioned guidelines, we consider t6e model
with the following combination of system parameters: a- 4; a -( 1.00, 1.00,1.00,1.00);
(j~rl -(1.00,1.00,1.00,1.00); all service times and switch-over times are exponentially dis-

tributed; q- (1.00,1.00,1.00, I.00); a~á - o~~~l - a, for j - 2,3,4; o~ál - 0.05 iri all other
cases. Note that for values of a large enough, the queues can be basically paztitioned into
clusters Cr -{Q~} and Cz -{Q~,Q3,Q4}. Table 11 shows optimal routing matrices tor
a-0.10, 0.25 aiul 5.00, aud for p-0.3, and Table 12 shows the results for p- 0.8.

a - 0.10 a-0.25 a-5.00
P' 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.32 0.00 0.68
1.00 0.00 O.OU 0.00 0.1:1 0.87 0.00 0.00 0.04 0.96 0.00 0.00

G'(P') 0.201 O.G08 2.404

Table 11: Optimal rontiuR probabilities; p- 0.3.

a-0.10 a-0.'l.5 a-5.00
P' 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 0.24 0.7fi 0.00 0.00 O.10 O.cJO 0.00 0.00

G'(P') :1.71a f,.'l'22 16.347

Table 1'L: Optimal routiug probabilities; p- 0.8.

The results in Tables I1 and 12 confirm the characteristics discussed above. Obviously, the

queues can be clustered as Ci -{Q~} and G'z -{QZ,Q3,Q4}. We observe that Cs is only

entered through Qy (i.e. Gi - Q.1) and is only departed from at Q~ ( i.e. CB - Q~). In all

cases considered here the servcr movcs to (,'i after departing from Q~, and visits the queues

in C~ a number of times ( geometrically distributed with parameter 1- pi,4) before returning

to Q~. We also observe that ouco thc server Las entered Cz through a visit at Q~, all queues

in C~ are served at least once during that visit.

As an alternative, considcr tbe tnode) with the same system parameters as the above-discussed

model, but with the following mean switch-over times: o;;l - 0.05, i- 1,...,4; o;á1-1.00 if

i,j E{1,2} or i,j E{3,4}; o;ál - a in all othcr cases. Note that for a~ 1.00, the queues

can basically be clustered into clust~rs Ci -{Qi,Q~} and C~ -{Q3,Q4}. Table 13 shows

the optimal routing matrices for a-L00, l0.00 and ~i0.00 for p- 0.3, and Table 14 shows the

resulta for p - 0.8.
Tables 13 ancl 14 support the characteristics of the optimal routing matrices discussed in this

section. In all cases considcrrd here we have C~ - Qt, C~ - Qz, C~ - Q~ and CB - Q4.
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Table 13: Optimal routing probabilities; p- 0.3.

Table 14: Opticual routing probabilities; p- 0.8.

The server typically moves from one cluster to the other, interceded by a number of switches
back and forth betwec n the queues within the respective clusters.

6 Topics for further research -

The guidelines for constructing optiroal routing matrices in the previous section are based
on the insights obtained by tbe numcriral stndy presented in sections 4 ancl 5. However, the
guideGnes are qualitative, aud do not yield a heuristic approach to obtain optimal routing ma-
trices. The following iclea may be worlhwlcile to consider for obtaining a yuantitative heuristic
approach. For a given planar distauce structure between the queues ( dne to the switch-over
times), there are various algorithms available for partitioning the set of yueues ( `points') into
a number of subsets ( `clusters') of quones ( e.g. siuglo-link clustering, complete-link clustering,
furthest ncighbor method, cf. c.g. (10~). Each of tbcsc algorithms provides a means to define
a clustering structure depmiding on whether the planar distances between certain combina-
tions of qncucs excced some throsliolcl valuc d. For a givcn clustering algorithm, one may

build a trce structurr. of clusters by surcessively derrcasing the thresholcl distance d, starting
with d - oo (in which all queues funn one clustcr) until d - 0(in which eacL forms a cluster

by itselO. Such a tree structure suggests an iterrilivc approach for heuristically obtaining
optimal routing tnatrices for large systems, witL drereasing thresholcl value d.
By definition of `iteration', at cach step of the iteration at least one couple of clusters, say

Ct and Cz is united to oue cluster Ci2 :- Ci U Cy. In this way, one should construct (i) a

simple heuristic approach to clefine the `front cloor' G'1~ and the `back door' G'e of cluster Ciz

(defined in section 5), and ( ii) a simple heuristic to `~uerge' the `local' routing probabilities

for C~ and Cy to routiug probabilitics for Ci.:. As for the first problem, one should probably

select C,~ citó~r CH or (.'2 , and a similar approach may be used to determine C~~. The

a-1.00 a-10.00 a-50.00
P' 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00 0.4R 0.00 0.52 0.00 0.84 0.00 O.1G 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 0.52 0.00 0.48 0.00 O.1G 0.00 0.84 0.00

G'(P') 1.071 5.753 2G.144

a-1.00 a-10.00 a-50.00
P` 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00 0.:36 0.00 O.G4 0.00 0.72 0.00 0.28 0.00
0.00 0.00 0.00 I.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 O.G4 U.00 0.:3G 0.00 0.28 0.00 0.72 0.00

C. (P' ) 10.000 41.OcJ0 164.522
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second problew ~nay be handled by :ulopting tho intra-cluster ( `local') routing probabilities.

As for the iuter-cluster routing probabilities, one may set p;a - 0, i E C,'i, j E C~, uraless

Q; - Ce aurl Q~ - Cz . The routiug probabilitics bMwecn CB, C~ , C.'.d, Cz~ can be deter-

mined nutnerically by considering the optimization problem discussed in section 5 for small

(two-queue) pollinR models with Markovian server routing, which can be solved in a sitnilar

way as was done in section 5. Notc that the obscrvecl tcnclency towards cleterministic routing

(cf. section 5) may be used here to set certain routing probabilities equal to 1.00.

This iterative algoritluu couvcrges when e..1ch qucue forms a cluster by itself (for small values
of the threshold disctance d). It should Ue noted that the algorithm converges after at most
a iterations, because ( by definition) at each stage at least two queues aze united.

We reemph~size the enormous mathcmatical ancl numerical complexity of the optimization
problem considered here and tho iclea should be viewecl in that perspective. Although the
idea of hierarchical clustering is rather intuitive and may hide some unforseen complications,
we believe it is interesting to pursuP this idea further in the future.
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