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Polling systems with Markovian server routing

R.D. van der Mei

Abstract

In this paper we study the performance of polling systems in which the server is routed
along the queues according to some probabilistic routing mechanism. It is shown how
the performance of the system can be analyzed by means of the so-called power-series
algorithm (PSA), a tool for the numerical analysis of a broad class of multiple-queue
models. We compare the performauce of polling systems with probabilistic server routing
with the performance of identical systems in which the server visits the queues in a
fixed order. Numerical experiinents with the PSA suggest that the mean amount of
work in the system is structurally smaller in the case of fixed visit orders. In addition,
it is shown that a similar dominance relation is not generally valid for the individual
mean waiting times at the queues. Subsequently, we consider the problem of finding
optimal combinations of server routing probabilities. We observe a tendency of the optimal
probabilistic routing towards deterministic routing. The influence of system parameters
on the optimal matrices of routing probabilities is examined. These investigations point
out that the optimal routing matrices can be classified into a limited number of types
of solutions, each having specific characteristics that can be interpreted rather easily.
Finally, we give some guidelines for constructing optimal routing matrices.

1 Introduction

A polling system basically consists of a number of queues attended to by a single server. The
server visits the queues in some order to render service to the customers present at the queues,
typically incurring a non-negligible switch-over time while moving froin one queue to another.
Polling models are widely applicable for the modeling of systems in which several types of user
compete for access to a common service facility. Applications of polling models can be found
in the areas of communication systems, computer networks, maintenance, manufacturing and
production environments (cf. Levy and Sidi [19] and Takagi [26] for extensive surveys on the
applicability of polling models).

In many cases the server has no global information about the queue lengths. Therefore, in
most polling models it is assumed that the server visits the queues in a cyclic order. However,
in some cases it is desirable to visit particular queucs more frequently than others, e.g. when
the queues are not equally loaded. Therefore, a number of generalizations of the cyclic visit
order has been considered in the literature. The most common generalization of purely cyclic
polling is periodic polling, in which the server visits the queues periodically according to a
fixed service order table (cf. [17], [2]). In this way, queues can be given higher priority by list-
ing them more often on the (polling) table. Alternatively, the server can be routed along the
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queues according to some probabilistic routing mechanism. In this paper, we investigate the
performance of polling models with so-called Markovian server routing. Under this routing
mechanism, with routing probability p; ; the server is routed to queue j after a departure from
queue i, independent of the actual state of the system. In this way, the customers at the differ-
ent queues can be assigned relative priorities by varying specific routing probabilities. In this
perspective, Markovian polling can be viewed as the stochastic counterpart of periodic polling.

Motivation

This study is motivated by a number of reasons. First, there is a number of specific ap-
plications of polling systems with probabilistic server routing. Evidently, for these systems
performance analysis and optimization is very useful. Second, only very little is known about
the performance of polling systems under probabilistic server routing, whereas polling models
with periodic server routing have received much attention in the literature. For this reason,
we believe it to be interesting to provide an insight into the performance of polling models
with probabilistic server routing, and to investigate how the performance of polling models
under periodic and probabilistic server routing is related. Third, we believe it to be inter-
esting to see how the PSA can be applied to determine detailed performance measures of
the model, and how the specific structure of the present model can be explored to make the
implementation of the PSA more efficient.

Applications

Polling models with probabilistic server routing find a number of specific applications. For
instance, they may be used to model distributed systems, such as a shared broadcast channel
where from time to time a decision has to be made as to who gets the right for transmis-
sion. These decisions are usually based on some probabilistic algorithms, rather than on a
fixed order (cf. [15]). Alternatively, polling models with Markovian server routing may also
be used to predict the expected delay in an exhaustive slotted ALOIIA system. In such a
system, a station is granted the exclusive right to transmit during some time period. When
a transmitting station no longer reserves the channel, some or all stations start contending
to seize the channel. Both the length of the contention period and the next station that will
seize the channel are random (cf. [18]). Markovian polling is also useful for the modeling of
the so-called Orwell slotted-ring protocol. In this protocol, a number of unit-buffer slots of
equal length rotate around a ring, and a packet in a slot filled by a station is addressed to
some other station with a certain probability, where it is emptied and passed on empty to the
next downstream station (cf. [21], [28]). This is a major difference from other slotted-ring
protocols, where a slot can be released only by the station that filled it. As another alterna-
tive, polling models with Markovian server routing can be used to model material handling
systems such as an Automated Guided Vehicle (AGV) system in which a single vehicle serves
a manufacturing cell by moving loads from one machining center to another. When the AGV
delivers a load to the center, it inspects the output buffer of that center to determine if there
are any loads waiting to be transported. 1M s0, the AGV takes some amount of time to pick up
load from this output buffer, and a certain amount of time to transport the load and deliver
it at its destination, and the AGV polls the output buffer of the center which receives the
load. Otherwise, the AGV switches to poll the next center in some order (cf. [9])-
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probabilistic server routing, and detailed results are restricted to special cases. Kleinrock and
Levy [15] analyze the behavior of so-called random polling models in which after a departure
from an arbitrary queue, the server is routed to queue j with some given probability p;, irre-
spective of the queue it has just departed from. It should be noted that random polling occurs
as a special case of Markovian polling by taking the routing probabilities p; ; = p; for all i.
For infinite-buffer models in which either all queues are served according to the gated service
discipline or in which all queues are served exhaustively, Kleinrock and Levy give the mean
waiting times at the queues as the solution of a system of linear equations. For symmetrical
models with 1-limited service, they determine a closed-form expression for the mean waiting
time. For polling models with Markovian server routing with mixtures of exhaustive, gated
and 1-limited service, Boxma and Weststrate [8] derive a pseudo-conservation law (PCL), i.e.
an exact expression for a specific weighted sum of the mean waiting times at the queues. For
models in which either all queues are served exhaustively or all queues are served according
to the gated service discipline, Weststrate [31] derives a set of linear equations to obtain the
mean waiting times at the queues. However, the number of linear equations increases cubi-
cally in the number of queues, so that this approach is restricted to rather small systems.
Srinivasan [24] derives a PCL for polling models with Markovian server routing, in which
the routing probabilities may depend on whether customers have been served during the last
visit of the server to a queue. Chung et al. [11] analyze Markovian polling models with unit
buffers. They derive exact expressions for the generating function of the joint queue length
at polling instants, the Laplace-Sticltjes Transforms (LSTs) of the waiting times and the LST
of the cycle-time distribution of each queue.

In addition, they derive a set of linear equations to determine the mean waiting times. The
number of equations however increases exponentially in the number of queues.

For polling models with probabilistic server routing that are not covered in these references,
to the best of the author’s knowledge, no alternative algorithms are available to compute
performance measures concerning queue-length and waiting-time distributions.

The power-series algorithm

The power-series algorithm (PSA) is a device for the numerical analysis for a broad class of
multiple-queue models, requiring a continuous-time Markov chain representation of the pro-
cess. The basic idea of the PSA is the transformation of the non-recursively (infinite) set of
global balance equations into, an principle, recursively solvable set of equations by adding one
dimension to the state space. This transformation is realized by expressing the state prob-
abilities as power series in the offered load to the system in light traflic. The basic idea of
the PSA stems from Tlooghicmstra ot al. [13], who applied the PSA to the coupled-processor
model. The algorithm has been further developed by Biane, which has led to more efficient
implementations of the algorithm. The PSA has been applied to a number of models, such
as the shortest-quene model, a variety of polling models, models with correlated arrivals and
Markovian queucing networks (cf. [4] for a survey on the applicability of the PSA). Blanc and
Van der Mei [5] have extended the PSA to the computation of derivatives of the performance
measures with respect to a broad class of system parameters. This extension is very useful
for performing sensitivity analysis and for optimization purposes. Recently, Koole [16] has
shown that the PSA is, formally, applicable to general Markov processes.

The PSA can be used to compute numerical values for general performance measures which
are functions of the state probabilities. We emphasize that the PSA can not only be applied
to determine global performance measures like mean waiting times and queue lengths, but



can also be used to compute more detailed performance measures like tail probabilities and
individual state probabilities.

The main limitations of the PSA are the available amounts of storage capacity and computa-
tion time, restricting the use to fairly small and moderately-sized models. We refer to [4] for
a fairly complete survey of various aspects of the PSA, including useful ideas about efficient
memory management and improvements of the convergence of the power series, which have
strongly improved the performance and the applicability of the PSA.

Overview of the results

Section 2 contains a detailed model description. In section 3 we show how the PSA can
be applied to analyze polling models with Markovian server routing. It is also shown how
derivatives of the performance measures with respect to the routing probabilities can be de-
termined by means of the PSA, opening the possibility of performing sensitivity analysis and
optimization of performance measures with respect to the routing probabilities.

In section 4, the PSA is used for comparing the performance of polling models with proba-
bilistic and periodic server routing. Numerical experiments with the PSA indicate that the
mean total amount of work in the system is structurally larger under probabilistic polling.
However, it is shown that a similar dominance relation is not generally valid for the individual
mean waiting times at the queucs. We give an intuitive argument for these observations in
terms of the spacing of the visits in time.

In section 5 we consider the problem of characterizing combinations of routing probabilities
that minimize the mean amount of waiting work in the system. However, the dimension of
this optimization problem grows quadratically in the number of queues, making numerical
procedures based on standard techniques for non-linear optimization very time consuming
when the number of queues becomes large. Therefore, we focus on finding qualitative, instead
of quantitative, properties of optimal routing matrices. For symmetrical models, Liu et al.
[20] have shown that each cyclic server routing (which occurs as a special case of Markovian
server routing by taking p;; = 1 if j = i+ | and 0 otherwise) is optimal. Numerical exper-
iments with the PSA suggest that the cyclic service order is a stable optimum in the sense
that it remains optimal for slight perturbations of the system parameters. The validity of this
statement is confirmed by a number of numerical examples. When the model becomes even
more asymmetrical, the cyclic visit order may become suboptimal. We observe the tendency
of the optimal probabilistic server routing towards (partially) deterministic routing. That is,
for surprisingly many queues i there exists a specific queue k; such that the optimal routing
probabilities are equal to p;; = 1 if j = ki and 0 otherwise. In addition, we examine the
influence of system parameters on optimal routing matrices. These investigations point out
that the optimal routing matrices can be roughly classified into a limited number of types
of solutions, each having specific characteristics that can be interpreted fairly easily. On the
basis of the insights obtained from numerical experience, we propose a number of rough guide-
lines for constructing optimal routing matrices. The validity of these guidelines is illustrated
by a number of examples.

Finally, in Section 6 we discuss some topics for further research.
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2 Model description

Consider a polling model with s infinite-buffer queues Q,,. ..,Q;s. Customers arrive at Q;
according to Poisson arrival process with rate A;, i = 1,..., 8. The total arrival rate is denoted
by A := E2_, Ai. The service times of customers at Q; are Coxmn distributed with parameters

,u"e \P' £ = 1,...,¥}; that is, with probability 1r a service at @; is composed of
subsequent phases £,6—1,...,1,6 =1,...,¥}, i=1,...,s. Denote by B(‘) = (ﬂ{k),...,ﬂ.(k))
the vector of k-th moments of the service times at the various queues, k = 1,2. Denote
by Bi = (1/A)Zi; A /i(k) the k-th moment of an arbitrary service time, k = 1,2. Let
pi=Xi A ﬂ( ) denote the total offered load to the system. Because the offered load p will
be used as a variable in the PSA, we define

a; := Ai/p, (1)
referred to as the relative arrival rate to Q;, i = 1,...,s. Let @ := (@1,...,a,). Note that it
follows from the definition of the relative arrival rates (cf. (1)) that T a; = 1/6;.

The service discipline at Q; is the so-called Bernoulli service strategy with parameter ¢; (0 <
g¢i < 1), which works as follows. When the server arrives at Q; finding that queue non-empty,
at least one customer at Q; is served; otherwise, the server moves to the next queue. Moreover,
if after a service completion at (); the queue is still non-empty, with probability ¢; another
customer at Q; is served; otherwise, the server proceeds to the next queue. It should be noted
that the class of Bernoulli service disciplines contains the classical 1-limited and exhaustive
service strategies at special cases for ¢; = 0 and ¢; = 1, respectively. The vector of Bernoulli
parameters ¢ = (q1,...,qs) is referred to as a Bernoulli schedule.

The server visits the queues according to a Markovian polling scheme with routing matrix
P = (pi,;); that is, after a departure of the server from @Q; the server starts to move to Q; with
probability p;;, i,j = 1,...,s. In this way, the process of successive visits of the server to
the various queues can be described as a discrete-time Markov chain D = {dx, k = 0,1,.. o}
with state space {1,...,s}, where {d; = i} denotes the event that the k-th visited queue
is Qi, i = 1,...,8, k = 0,1,... . Throughout it is assumed that D is irreducible. The
times needed by the server to move from Q; to @; are Coxian distributed with parameters

w,yw,\ll?f, €= 1 ‘l’-.r i,j = 1,...,s, which are used in a similar way as for the
service times. Denote by rr( ) the k-th moment of the switch-over times to move from Q; to
Qjyh,i=1,...,8 k=1, 2 Becmne D is an irreducible Markov chain on a finite state space,
it possesses a sta.tlona.ry distribution {w;, i = 1,...,s}, which is uniquely determined by the

following set of equations (cf. [23]):
w;:ijpj,,- (i=1,...:8) ijzl. (2)
i=1 i=1

Necessary and sufficient conditions for the stability of the system have been derived in [12).
For the present model with Markovian server routing these conditions read:

. [1 + “_-"_(“_"')] 21, ®3)
wy
where

a:= Z“"L”'-J”- J), (€]

=1



i.e. the mean of an arbitrary switch-over time. Throughout, it is assumed that these condi-
tions are satisfied and that the system is in steady state.

Finally, we introduce some national conventions. For an event E, the expression I{E} will
stand for the indicator function on E. The vector ej € IN® will stand for the j-th unit vector,
i.e. the vector for which the j-th component is equal to 1 and all other components are 0.
For a vector v € IN?, the symbal |v| will stand for v, + -+ + v,. For a set A, the symbol |A|
will stand for the cardinality of A.

3 The power-series algorithm

In this section we show how the present model can be analyzed by means of the PSA. To apply
the PSA, we first describe the present model as a continuous-time Markov chain representation
of the model. Therefore, we first We define the state probabilities and formulate the global
balance equations. Then the state probabilities, and their derivatives with respect to the
routing probabilities, are expressed as power serics in the offered load to the system. Finally,
we derive a computational scheme to compute the coeflicients of these power series.

3.1 Balance equations

Let {N(t) = (Ni(t),..., Ns(t)),t > 0} be the joint qucue-length process. Evidently, this pro-
cess is not a Markov process, e.g. because the departure rate depends on whether the server
is switching or serving. To transform the process {IN(t),t > 0} into a Markov process, we
introduce a triple (/I(t),G/(t),=(t)) of supplementary variables. Let {II(t) = h; G(t) =
1; E(t) = £} denote the event that at time t the server is serving at Q) and that £ is
the current phase number of this service, h = 1,...,s8, £ = 1,...,¥}, t > 0. Moreover,
let the event {H(#) = h; G(t) = —g; E(t) = £} indicate that at time ¢ the server is
switching from Q, towards @y, and that £ is the current phase number of this switch-over,
gh =198 &= l,..‘,\llg‘h, t > 0. For ease of the discussion, it is assumed that the
supplementary space is the same for all » € IN®, and is given by

S:={1,...,s} x {=s,...,—1, 1} x {1,..., K}, where K = n}gx{W?J.‘P}}- (5)
Denote by (N, H,G,Z) random variables with as joint distribution the stationary distribu-
tion of (N (1), H(t),G(t),=(1)).

Define the state probabilities as follows: for (n,h,—g¢,§) € IN* x S,
pn,hy—g, €)= Pr{(N,II,G,Z) = (n,h, -9,6)}). (6)

Because of the stability of the system the rate into each state is equal to the rate out of that
state. The state probabilitics satisfy the following balance equations for the states in which
the server is switching (from Q, to Q4): for n € IN?, Gl = Vel € =il ..,‘l'""h,

s
[P z:, a; + l"‘y’:i] p(n,h,—g,§) = l“,’j‘+lp("vl‘9_gy£ + DI {E < Wg,h}
=
s < 7
+p Y ajp(n — ej,h,—g,) {n; >0} + L%y ;21 wiap(n,g,—f, 1)1 {ng = 0} ™
=1 =

+;4}-'1r;:f;pg',,p(n +e4,0,0,1)[1 = g1 {ny, > 0}].



The first term at the right-hand side indicates a phase transition in a switch-over time from
Qg to Q4. The second term corresponds to an arrival while the server is switching from Q, to
Q- The third term describes that the server finds Q, empty upon arrival and immediately
starts to move to Q. Finally, the fourth term indicates that the server departs from Qg after
service completion of a customer at that queue and proceeds to Q.

The global balance equations for the states in which the server is serving (at Q) read as
follows: forn € N, h=1,...,s, £ =1,..., ¥}, n; > 0,

8
[p 2 4+ u:f] p(n,h,1,6) = upH p(n, b, 1,6 + 1)I (€ < ¥}}
=

2 1.6 & 01 (8)
+p z‘ ajp(n —ej, h,1,6)I {nj >0} +m, 5_':‘ Hgnp(n,h,—g,1)
i= 9=
+th‘;;'11rll;'€p(n +en, b, 1, l)'

The first term indicates a phase transition in a service of a customer at Q. The second term
corresponds to an arrival during the service of a customer at Q. The third term describes
that the server arrives at @, and immediately starts to serve a customer at that queue. The
fourth term indicates that after a service completion at Qj the server immediately starts to
serve the next customer at that queue.

Because the server can not be serving at an empty queue, we have: for n € IN’, h =
l,000,8, E=1,...,),

p(ﬂy’l, I‘E) =0 if n, = 0, (9)
and according to the law of total probability, we have

0
s s Vo

vy
T 3 p(n,h,—g,6) + Y p(n,h,1,6) 4 = 1. (10)
=1

neN’ h=1 | g=1 ¢{=1

The set of balance equations (7), (8), together with the law of total probability (10), forms an
infinite set of linear equations between the state probabilities. However, this set of equations
is mot recursively solvable. In the next section we will show how the PSA can be used to
transform this set of equations into a (mainly) recursively solvable set of equations.

3.2 Computational scheme

The basic idea of the PSA is to transform a non-recursively solvable set of balance equations
into a recursively solvable set of equations by expressing the state probabilities (6) as power
series in the offered load to the system in light traffic. By substituting these expressions into
the balance equations, one may obtain a complete recursive computational scheme to calculate
the coefficients of these power series. In this section we will show how such a computational
scheme can be obtained for the present model.

The PSA relies on the following light-traflic property: for (n,h,—g,£) € IN* x S,
p(n,h,—g,6) = 0(p™), pLO0. (1)



Here, the limits are taken in such a way that the relative arrival rates remain fixed (cf. (1)).
We refer to Van den Ilout and Blanc [29] for conditions under which this property is valid.
For the present model these proporties are satisfied. Based on property (11), we express the
state probabilities as power series in p as follows: for (n,h,—g,€) € N* x S,

p(nh,~g,€) = p'"'zp"bo(k n,h,=g,€). (12)
=0
We refer to Van den Hout and Blanc [29], [30] for conditions on the convergence of the power-

series expansions.

There are various ways to defline the derivatives of the routing probabilities with respect
to other routing probabilitics, s}f—'l Oune way to do so is to consider routing probability pg »

as function of underlying vm-mble:, ty.n > 0 as follows: for g,h =1,...,s,
to.n
Pg,h = = (13)
E tok

evaluated at £f_,t,x = 1. We define the derivatives of the routing probabilities as follows:
for g, B, 8,7 = Nyues®,

aPy.h = [al’q Il]

opi; ot 2 Ly k=1

(14)

It is readily verified by applying standard rules for differentiation that: for g,h,#,j = 1,...,s,

%% = Hi=g}I{j =1} —ponl- o

Using this definition (14), the derivatives of the state probabilities with respect to the rout-
ing probabilities are well-defined. For notational convenience, we define the following linecar
ordering of the derivatives: for r = I,... 8%, (n,h,—g,6) € IN* x S,

7]
Pr(nyh, -!I'f)== r’p(nahv_y'f)o (16)
Pi;
where i,j and r are related through

r=(-1s+j, 6,j=1,...,8 (17)

The derivatives of the state probabilities (16) can be expressed as power series in p as follows:
forr=1,...,8% (n,h,—9,) EIN*X S

00
pr(n,h,—g,6) = p™ " b, (kin, by —g,8). (18)
k=0
Because p does not depend on the routing probabilities, the coefficients b,(k;n,h, -—g,f) can
be obtained by termwise differentiation of the coefficients bo(k;n,h,—g,6): forr =1,. ., 82,
(klnlhl gY{) E Nl+‘ S



bR —gefle= b%""(k;"’h' o (19)

where ,j and r are related through (17). Substituting the power-series expansions (12)
into the balance equations (7) and (8), and equating corresponding powers of p leads to the
following sets of linear relations between the coefficients of the power series in (12) and (16):
forr=0,1,...,8%, n €N*, hyg=1,...,8 E=1,...,90,, k=0,1,...,
HOEb, (kim, b, —g,€) = W05+ b (kim, by g, €+ DI {E < ¥5,0}
3
+ 21 a; [b,(kin — ej,h,—g,6)] {nj > 0} — b.(k — 1;n,h,—g,)] {k > 0}]
i=

+7%p 0 5 19 b, (king,— f,1) {ny = 0
!.hpy-h/z_:ll‘j'_,, r(ksn,g,—f,1) {ns_' }

5
4% [B0a] 2 gtk mag, = £, DI > 0} 1 (g = 0)

+p;"1r::f.p,',.b,.(k;n +eg,9,1,1)[1 = oI {ng > 0}] I {k > 0}
+ud 708 (3282 bo(kin + €g,0,1,1) [1 = gy1 {ng > O})I {k > O}/ {r > 0};

(20)

and for the coefficients corresponding to the states in which the server is serving: for r =
0,5 005 ;805 T EIN%, B = 1y ceyy €2 Lvoes Vs & =015 0004
uhSo,(kin, b, 1,6) = 10, (ks by 1,6 + 1) {E < VL)
s
+ 3 a;[b(k;n — e, h, 1,6)] {n; > 0} = be(k — s, h, 1,E) {k > 0}] @1)
=1
1€ §~ 01y (4. e W TR
+m, 21 yy‘,lb,.(k,n,h,—g,l) + qupy 7 be(k — 15 + en, b, 1,1)1 {k > 0}.
9=
For convenience, we rewrite the set of equations (20) as follows: for r = 0,1,. ..,8%, ne€
IN’, h,g=1,...,8, €= l,.‘.,\lfgv,,, ks 00000
3
B8 (kim b, —g,6) = Tpipen P 10 (kim,g,— £, 1)1 {ny = 0}
+yr(k;n,h, -9,§),

(22)

where
Yo(kimyhy—g,€):= k050 (ks by —g, 6 + DI {€ < 98, )
+ tl a; [br(k;n — ej, by —g, )] {n; > 0} = be(k = Lin, by —g,8)] {k > 0}]
1=
408 (8] £ agiho(kinag,= £, DI {r > 0}1 (ny = 0} (23)
+;L;"r::ﬁp_,,.;.b:(k —Lin+egg 1, D)1 =gl {ng > O}] I {k > 0}
b a0 ;';;m’a] bo(k = 1;n + €g,0, 1,1) [ = qg {ng > 0}) 1 {k > 0} I {r > O}.

To derive a computation order for the coeflicients br(k;n, h, —g,£), we need to explore the
structure of the set of equations (22). To this end, we assign to each n € IN® the null-set
corresponding to n as follows: for n € IN%,

NO.={1<g<s|n =0}, (24)
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i.e. the set of empty queues when the joint quene-length vector is n. In addition, we define:
for (k;n) € N'** g€ N,(f), r=0,1,...,82,

L
Cr(k;nsg):= zﬂl}ibr(k;nsﬂ;_.’yl)' (25)
=1
Then, by summing both sides of the equations (22) over g = 1,...,s, £ = l,...,\llg'h, we
obtain the following set of equations: for r = 0,1,...,5%, (k;n) € IN't* he N,(f),

Crlksn,h) = 3 Co(kin,g)pgn + #r(ksn,h), (26)
nEN(.,,:)
where
s Vo
Fr(ksn,h):= 3 S ye(kin, b, —g,6). (27)
g=1 ¢é=1

Once for given triple (r,k;n) the quantities C\(k;n,g), g € N,(f), are known, the coef-
ficients b,(k;m,h,—g,£), (h,—9,€) € S, can be obtained from the following relation: for
r=0,1,...,8%, (kn)e Nt hg=1,...,s £= 1,...,\72',‘,

”:ibt(k;n‘ hv _gvf) = “::f,l’y,h("r(ki n, 9) + yr(k;n!hv _yvf), (28)

with the convention that C'r(k;n,g) := 0 for g ¢Nv(:l)-

We are now ready to define an ordering of the coeflicients b,(k;n, h,—g,£) such that they can
be determined recursively. Let us first define an ordering for the states with r = 0. To this
end, we define the following ordering < over the (k;n)-combinations: for (k;n,h,—g,§) €
INH-- X S,

(k;ﬂwh’_gaf) Y (l};ﬁyil»_!‘/yé) 29)
it [k+Inl < k+[al] v [k+Inl=k+ 13l A k<] (
For given (k;n) and h, we define the following ordering over the couples (—g,€), g =
Voo & = Tsz s W0 456 = Lapaaa Wiy

(k;n,h,—g,f) =< (k;n’hvlvé); (30)

thus, for given (k;m,h), the coefficients corresponding to the states in which the server is
serving are of higher order than those corresponding to states in which the server is switching.
In addition, for given (k;m,h), the states in which the server is switching are (partially)
ordered as [ollows:

(kinhy=g,6) < (kim,h,—3,6)if [s ¢ N A 5 €MD) (31)

thus, the coeflicients corresponding to states in which the server is switching after a departure
from a non-empty queue are of lower order than those for the states in which the server is
moving just after a departure from an empty queue. For given (k;nm,h) and g = 1,...,s,
the states (k;n,h,—g,§) are ordered as follows: for (k;n) € IN'** h,g=1,...,8 &€=
T \llg o
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(kin,h,—g,6) < (k;n,h,—g,€) if £€>6 (32)

thus, for the states in which the server is moving from a given queue Q, towards Q, are
ranked in increasing order with respect to the component £ as \Pg'h,\llg',. -1,...,1. We
emphasize that this ordering, defined by (29)-(32) is only partial, so that not all couples of
vectors (k;n, h,—g,€) € IN'** x § are mutually ordered.

Thus far, we have only considered the coefficients b,(k;n,h,—g,£) with r = 0. To derive
an ordering for the coefficients b,(k;n,k,—g,£), r = 0,1,...,s%, we extend the partial or-
dering <, defined in (29)-(32), to the states (r,k;n,h, —g,f) as follows: for (r,k;n,h,—g,£),
(7, k, b, —3,6) €{0,1,...,8%) x N'** x §,

(r,lc;n,h, _gaf) < (f,k;ﬁ,h., _jaf) 33
if r=0A+>0]V [r =7 A (ksn,h,—g,6) < (i‘,ﬁ;il,—ﬁ,é)] s ()
One may verify that under the partial ordering < all coefficients in (23) are of lower order
than b,(k;n,h,—g,£), and that all terms at the right-hand side of (21) are of lower order with
respect to < than b,(k;n,h,1,§).

Hence, it remains to consider the solvability of the set of equations (22) for given (r,k;n).
To this end, note that for given (r,k;») the set of equations (22) is uniquely solvable if and
only if the set (26) is uniquely solvable. To consider the solvability of (26), a distinction has
to be made between the empty and non-empty states.

For n # 0, the reduced routing matrix P = (p;;), i,j € N is substochastic (cf. [23]),
which guarantees that the set (26) indeed possesses a unique solution C,(k;n,g9), g € 0).
To consider the solvability of the set of equations (26) for the states with n = 0, one may
verify, by summing both sides over h € Néo) = {1,...,s}, that for given (r,k;n) relations
(26) form a dependent set of equations. One may verify that this set of equations is not con-
tradictive because of a necessary halance between the empty states and states with exactly
one customer in the system, implying: forr=0,1,...,8%, k=0,1,...,

Zy,(k 0,h) = Zj > 2 yr(k;0,h,—g,6) = 0. (34)

g=1h=1§=1

An additional equation follows directly from the law of total probability (10), which implies:
forr=0,1,...,8%, k=0,1,...,

i Ve
Z Z Z by (k;0,h, —g,8) = Yy (K), (35)

g=1h=1 £=1
where for r = 0,1,...,8%, Y,(0):= I{r = 0} and for k = 1,2,.
Yo (k): =
- B BiL bk~ il —0,6) + bk — i, 1) } .
o<inligkh=1 | g=1€=1 =

Equation (35) can be rewritten in terms of the variables C,(k;0,g) in the following way: for
r=0,1,...,8%, k=0,1,.
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wo wo
2 5 e & 0w
X X i 2 w0 )| Ce(k0,9) =
g=1 \A=1£=1 Poh vt "

(37)

s s wo.h ‘.:,h
V()= & 3 3 A7 3 0 (ki0h—g,9).
g=1h=1¢=1 Hoh ¥=¢
Now, it suffices to show that the set of equations (26), (37) or equivalently, the set (22), (35)
is uniquely solvable. To this end, it should be noted that the coefficients at the left-hand side
of these sets of equations are independent of r and k, so that it is sufficient to consider the
solvability of these sets of equations for r = 0 and k = 0. Then the solvability is readily estab-
lished by observing that the continuous-time Markov process {(N(t), H(t),G(t),Z(t)), t > 0},
conditioned on the event N (1) = 0, is irreducible on the state space {0} x S. Alternatively,
it is rather tedious, but straightforward, to verify that the determionant of all but one of the
equations (22), together with (35), is equal to A = nﬂ;=,ﬂ;=,ﬂ:="|"p:5, > 0, implying that
this set of equations indeed possesses a unique solution.

In practice, one is usually only interested in a limited number, say L, of performance measures,
instead of in all individual state probabilities. Let gV (n,h,—g,€) be a real-valued function
of the state space. Then general performance measures of the form E{¢"(N,H,G,E)}, ! =
1,...,L, can be expressed in terms of the coeflicients of the power series as: for I =1,..., L,

E{s"(N,H,G,Z)} = i p* fO(k), 9

k=0

where for k = 0,1,...,

PRy = 3 X ¢nh-g,6bk - |nl;n,h—g,§) (39)

o<inl<k (h—-g.£)€S

We assume that the function g()(n, h, —g,£) does not depend on the routing probabilities and
that the performance measures in (38) are (partially) differentiable with respect with respect
to the routing probabilities. Then the performance measures (38) and their derivatives (40)
can be expressed as power series in p as follows: fori,j = 1,...,8, 7 = (R 111 T—

SO E{g (N, H,G, ) = > P 1O), (40)
pl‘J

k=0
where for k = 0,1,...,

Mry= 3 X dmh,-g,0b(k - |nlin,h,—g,6), (a1)

0<Ini<k (h—g.£)€S

and where i,j and r are related through (17).

Because of limitations on the available amounts of computation time and storage capac-
ity, only a limited number of coefficients can be computed. Let M be the number of terms
that one wants or has to compute. The following computational scheme shows how the per-
formance measures E(y(”(N,II,(.'.E)}, I =1,...,L, and their derivatives with respect to
the routing probabilities, can be computed:
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step 1+ m:=0;ford=1,...,L, fO0):=0and fO0):=0, r=1,...,8%

step 2 : for all (k;n) withn #0 and k+ |n| =
(1) for g ¢ Af,(f), determine b.(k;n,h,-g,€), h = 1,...,s, £ = 1,...,Wg'h, from
(22), r = 0,1,...,s% update f()(m) and f!')(m), Il=1,....,L,r=1,...,82,
according to (39) and (41), respectively;

(2) determine C,(k;n,g), g € )V,(f), by solving the set of equations (26) and
determine b,(k;n,h,—g,€), h = 1,...,s, g € )V,(,o), & = . ..,ll'g'h, from
(28), in increasing order with respect to < (33), r = 0,1,...,8%
update f()(m) and j,f')(m), (ETL (R T [ accordmg to (39) and
(41), respectively;

(3) determine b, (k;n,l,1,€), h=1,...,s, £ =1,...,¥9, according to (21),
r=0,1,...,8% update f()(m) and f.@')(m),l =1,...,L,r=1,...,8%, according
to (39) and (41), respectively;

step 3 : determine C,(m;0,9), g=1,...,8, according to (26), (37), and determine
b.(m;0,h,—g,€), g,h=1,...,8 E=1,. Wgh. accordmg to(28), r =0,1,...,8%;
update fO(m) and f(m), 1 =1,...,L, r = 1,...,s% according to (39) and (41),
respectively;

step 4 : m:=m+ 1;if m < M then return to step 2; otherwise STOP.

The mean queue lengths (including the customer in service) can be obtained by taking
g(‘)(n, h,—g,€) := ny, | = 1,...,s. The mean waiting times can then be obtained by Little’s
formula.

The reader is referred to [5] for a detailed discussion of practical aspects of the implementa-
tion of derivatives into the PSA.

The PSA is most effective when the coefficients b.(k;n,h, —g,€) can be computed recursively.
Therefore, Coxian distributed are generally preferred to general phase-type distributions for
the service times and switch-over times. It should be noted that the class of Coxian distri-
butions lies dense in the class of general probability distributions with non-negative support

(cf. [1]).

The present model is contained in the class of so-called quasi birth-and-death (QBD) pro-
cesses, in which state transitions from state (n,¢) := (n,h,—g,£) € IN* X S can only occur
to states of the form (n,9) or (n + e;,%) or (n — e;,%) € IN* x §). We refer to Blanc [3]
for an extensive discussion of the use of the PSA for models with a general QBD structure
and to Blanc and Van der Mei [5] for the extension of this general model to the computation
of derivatives. In this general setting, for each triple (r,k;n) a set of |S| linear equations has
to be solved to determine the coefficients b.(k;n,p), @ € S.

However, by introducing the quantities C,(k;n,g) in (25), for a given triple (r, k;n) the set of
|S| linear equations for computmg the coefficients b,(k;n,®), @ = (h,—g,£) € S, has been
reduced to the set of only M, | lincar equations for the quantities C,(k;n,g9), g € JV;. (cf.
(26)). Apparently, the specific structure of the presented model has been explored to obtain
a more effective implementation of the PSA.



To characterize whether or not, for given (r,k;n), the coefficients b.(k;n,h,—g,§), h =
Lyeingily i = =11550 . 585 & = Yo s Wg.h, are fully recursively solvable, let us reconsider the
set of equations (22). The states (r,k;n,k,—g,£) for which the first term at the right-hand
side does not vanish are exactly those for which the server has just skipped Q, which was
empty (i.e. ny = 0) upon arrival of the server at that queue. Thus, for given (r,k;n), the
set of states (r,k;n,h,—g,€) which can not be completely ordered are those in which the
server is switching between the empty queues. Hence, as long as no arrivals occur at one of
the empty queues, the server can keep on switching between these empty queues, provided
the routing probabilities corresponding to these switches are strictly positive. For the states
(r,k;n,h,—g,€) with n;, = 0, the indicator function in (22) does not vanish, so that the
coefficients b,(k;n, h, —g,£) can not be solved recursively according to (22).

This also explains why in the special case of cyclic server routing the states can be computed
fully recursively for n # 0. To see this, for n # 0, there exists some index i such that n; > 0,
so that the server can not skip (; and hence, can not be moving around as long as no arrivals
occur. From (22) it follows that under cyclic polling with py 41 = 1,9 =1,...,s, the coeffi-
cients b,(k;n,g+1,—g,£) can be determined recursively in the order 4,1 +1,...,8,1,..., i—1
with respect to g.

For the case in which some or all switch-over times are 0 a.s., some straightforward mod-
ifications of the balance equations and of the computational scheme have to be made.

It is not easy to give bounds for the accuracy of the computations with the PSA. How-
ever, for the present polling model with Markovian server routing a rough indication of the
accuracy can be obtained from the PCL, i.e. an exact expression for a specific weighted sum
of the mean waiting times at the queues. The accuracy of the computations with the PSA can
be rougly estimated by computing this specific weighted sum on the basis of the computed
mean waiting times and comparing this value to the exact value of the right-hand side of the
PCL. For polling models with Markovian server routing with mixtures of 1-limited (gi =0)
and exhaustive (¢; = 1) (and gated) service a PCL has been derived in [8]. This PCL can be
readily extended to Markovian polling models with Bernoulli service with general parameters
i (0< ¢ <1)atQ;, i=1,...,s, leading to the following expression:
= 2 < (2) : S ()

2 pEW; = f(ff;j Z “l‘ﬂ,‘ + ‘2% _Eui E Pii%;

=1 . |=: =1 =1 . (42)

+1yw y I)e.jﬂf,? Y pETii+ 3 EM;,
=1 =1 k#i i=1

where T; ; is defined as the time elapsed between a departure of the server from Q; and its
last previous departure from Q;, 4,7 =1,...,8, and where M; stands for the amount of work
at Q; at a departure epoch of the server from Q. One may verify that EM; is related to EW;
by the following relation (¢f. [27]): fori=1,...,%,

1 o 31 @
‘M: = = s i s VA M 43
EM; = (1 - 4) [/),A, 1 pLW' + p; 1 p] s (43)

so that the PCL for the present model with Bernoulli service disciplines reads as follows:
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2 - 2 s 3 s
S 1 - 2l B = oty Rl + £ Lo 2 pigel]

¥ 1=1
Ll 3
trrwil P-‘.jf’.(:,') Y peETy; (44)
=1 =1 k#i
S z‘: FHURD)
= wy =

1=

The unknown quantities ET}; can be obtained by solving a set of linear equations. Thus,
the PCL for Markovian polling is not a closed-form expression, and can only be evaluated by
solving a set of linear equations, as opposed to the case of cyclic polling, in which the PCL
gives a closed-forin expression for a weighted sum of the mean waiting times at the queues.
Still, the PCL (44) is very useful for getting an indication of the accuracy of the calculations
with the PSA.

4 Markovian versus periodic polling

In this section we make a comparison between the performance of polling models under pe-
riodic and probabilistic server routing. To this end, we have implemented the PSA for both
polling models with Markovian server routing and for polling models with periodic server
routing, along the lines discussed in the previous section in Blanc [3], respectively.

Due to the considerable number of degrees of freedom in specifying the relative arrival rates,
the service times, the system load, the switch-over times, the service disciplines and the visit
orders, we have restricted ourselves to the analysis of a number of specific models, which
we believe cover the main characteristics of the variety of models. Moreover, because of the
computational complexity of the PSA we have restriced ourselves to models with a rather
small number of queucs. The characteristics observed for these models contribute to the
understanding of the behavior of polling systems. We believe that these insights are also use-
ful for understanding the behavior of models with a large number of queues. The following
models have been taken under consideration, covering fully symmetrical models, models with
asymmetrical arrival rates and models with asymmetrical switch-over times. For each of these
models the offered load has been varied to cover models under light and heavy traffic, and the
service discipline has been varied to cover 1-limited and exhaustive service, and moreover, the
asymmetry in the arrival rates and switch-over times has been varied to cover a fairly broad
class of models.

Model I represents symmetrical models, and is specified by the following set of system
parameters: s = 3; B =(1.00,1.00,1.00); af_?:0.0.'i, i,j = 1,...,s; all service times and
switch-over times are exponentially distributed; a=(1.00,1.00,1.00); ¢ = (4,9,9)- The quan-
tities p and ¢ are still variable.

Model II represents models in which the arrival rates are asymmetrical, and is specified
by the following set of parameters: s = 3; B1=(1.00,1.00,1.00); o,!:,-)=0.05, 6,7 = bys.048; all
service times and switch-over times are exponentially distributed; g = (g,9,9); the relative
arrival rates are given by a=(a/(a +2),1/(a +2),1/(a +2)), so that the ratios between the
arrival rates are a:1:1. The quantities p, @ and g are still variable.
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Model III represents models in which the switch-over times between the queues are asym-

metrical, and the system parameters are: s = 3; B1"=(1.00,1.00,1.00); all service times

and switch-over times are exponentially distributed; a=(1/3,1/3,1/3); ¢ = (¢,¢,q); the mean
: . : 1 1 1 1 1 1 1

switch-over times are given by a”:agﬂ) =a§_§=0.005; ag J=a§_2)=0.25; a1 =a;'|) =6$2 =a:(,t,)=

a, so that a (for values a > 0.125) can be viewed as the mean ‘distance’ between Q1 on the
one hand and Q; and Q3 on the other hand. The quantities p, a and g are still variable.

To make a reasonable comparison between the performance of Markovian and periodic polling
models, we associate with each periodic service order table x = («(1),...,7(L)) a unique

Markovian counterpart in which the matrix of routing probabilities P = (p; ;) is defined by:
for 8,9 = 1y.v048,

L . .
E] l{"" =85 Tkmod L) +1 = J}

L
Y I {m =i}
k=1

piji= 2 (45)

i.e. the fraction of times the server moves to Q; after a departure from @Q; under polling
table . For instance, if the periodic service order table is given by m =(1,2,1,3), then the
probabilistic version has routing probabilities py2 = p13 = 0.50, p21 = psx = 1.00. Through-
out, the Markovian polling model that is related to a periodic polling model through (45) is
referred to as the Markovian counterpart of the periodic polling model.

In the remainder of this section we show some of the numerical results that we have gath-
ered to compare the performance of polling systems in which the service order is guided by a
polling table  and their Markovian counterpart. For given routing matrix P, the performance
measure considered here is

s
C(P):=Y_ pEW;, (46)
=1
i.e. the mean total amount of waiting work in the system.
In the numerical examples considered here, the offered load to the system is either p = 0.3
(representing lightly-loaded models) or p = 0.8 (representing heavily-loaded models). The
number of terms of the power series that has been computed is equal to M = 40, and the
estimated error in the computations is typically less than 0.001.

Let us first consider symmetrical models under symmetrical visit orders, i.e. in which the
routing is statistically the same for all queues. To this end, we have computed the system
performance (46) for model 1 under a number of symmetrical routing orders with periodic
polling (indicated by 1°) and with their Markovian counterparts (indicated by M). Table 1
below shows the results for ¢ = 0.00 (1-limited service) and g = 1.00 (exhaustive service),
and for p = 0.3 and p = 0.8

Table 1 suggests that in symmetrical models the mean total amount of waiting work in the
system and hence, the mean waiting times (which are the same for all queues), are smaller
in the case of periodic polling than under the corresponding Markovian server routing in all
considered cases. However, one may also observe that the differences are rather small.

A comparison of the system performance for the various routing orders considered here shows
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p=03 p=0.38

routing P/M | q=0.00 | ¢g=1.00 | ¢ =0.00 | ¢ =1.00
123 PM 0.18 0.17 4.50 3.44
112233 P 0.19 0.18 4.55 3.62

M 0.20 0.19 4.75 3.64
111222333 P 0.20 0.20 4.63 3.80

M 0.22 0.21 5.00 3.84
111122223333 P 0.22 0.21 4.74 3.99

M 0.24 0.23 5.25 4.04

Table 1: Performance under symmetrical routing mechanisms; Model I.

that the performance of the system is closely related to the spacing of the visits. When the
visits are ‘better spaced’ in time, the system performance seems to be improved and vice
versa. This observation is supported by the following intuitive arguments. Under a periodic
visit order the visits seem to be more homogenecously spaced than under the corresponding
Markovian visit order. As a consequence, the cycle times C; of Q;, defined as the time
interval between two successive departures of the server from Q;, seem to be more ‘regular’
under periodic polling than under Markovian server routing. Under Bernoulli service EW;
(approximately) relates to the first two moments of C; according to the relation (cf. [27]): for

3= Vyneesy 85

EW, (=Pt pi) — aipi(2 - p) EC?
YT 1= p[l + 0ai(1 — i) /wi) 2EC;’

where EC; = o/(wi(1 — p)), i = 1,...,s, so that for a given set of system parameters and
relative visit frequencies, the mean waiting time at Q; increases with increasing ‘irregularity’
of the cycle times, represented by EC?. These intuitive arguments support the observation in
Table 4.1 that the system performance under periodic polling is better than under Markovian
server routing.

(47)

To investigate whether a similar dominance relation also holds for symmetrical models under
asymmetrical server routing, we have computed the mean waiting times for model I for a
number of asymmetrical service orders, specified by = = (1,2,1,3), commonly referred to as
star-polling, and & = (1,2,3,1,3,2). Table 2 shows the results for ¢ = 0.00 and ¢ = 1.00 and
for p=0.3 and p=0.8.

Table 2 suggests that in the case of periodic polling the mean amount of work is still smaller
than under Markovian polling. Yet, a similar stochastic dominance relation is not generally
valid for the individual mean waiting times. This observation is supported by the following
intuitive arguments. Let us reconsider the model with « = (1,2,3,1,3,2) with p = 0.8 in
Table 2. In that case the polling order suggests that the visits to Q; are more homogeneously
spaced than the visits to Q2 and Q3. Accordingly, EW; can be expected to be smaller than
EW, and EWs, which indeed turns out to be the case. Moreover, one may observe that
the stochastic counterpart of this model, having routing probabilities p12 = p13 = P21 =
P23 = pag = pa2 = 0.50, is symmetric, leading to the same mean waiting times at the queues.
One would expect EW; to be smaller under periodic polling here, because the visits to Q1



p=03 p=0.8
routing | g | P/M | (EWy,EW,,EW;) | C(P) | (EWh,EW,, EW3) | C(P)
1213 0.00 P (0.48,0.66,0.66) 0.18 (2.35,7.92,7.92) 4.85
000| M (0.48,0.74,0.74) 0.20 (2.31,8.29,8.29) 5.04
1.00 P (0.48,0.60,0.60) 0.17 (3.03,4.98,4.98) 3.46
1.00| M (0.48,0.67,0.67) 0.18 (3.09,5.20,5.20) 3.60
123132 | 0.00 P (0.58,0.60,0.60) 0.18 (5.60,5.66,5.66) 4.51
000 M (0.61,0.61,0.61) 0.18 (5.73,5.73,5.73) 4.58
1.00( P (0.54,0.57,0.57) 0.17 (3.92,4.55,4.55) 3.47
1.00| M (0.57,0.57,0.57) 0.17 (4.38,4.38,4.38) 3.50

Table 2: Performance under asymmetrical routing mechanisms; Model 1.

seem to be better spaced than under Markovian polling, in which the uncertainty leads to
less well-spaced visits to Q. As for the mean waiting times at Q2 and Q3, there is a trade-
off between the irregularity in the cycle times caused by the use of probabilistic polling on
the one hand, and the irregularity of the cycle times caused by a rather bad spacing of the
visits under periodic polling. Apparently, the former irregularity is dominated by the latter
one. This intuitive argument supports the observation that in this example EW; and EW3
are larger under periodic polling than under the corresponding Markovian polling mechanism.

To investigate whether the observations made for symmetrical models also persist for asym-
metrical models, we consider the performance of the system for both periodic and Markovian
service order for a mnodel with varying asymmetry in the arrival rates. We have computed the
mean waiting times in model 11 for a number of values of relative arrival rates. Table 3 shows
the results where the ratios between the arrival rates are 1:10:10 and 10:1:1, for ¢ = 1.00 and
p=03and p=08.

p= 0.3 p= 0.8

routing | ratios | P/M | (EW;,EW,,EW;) | C(P) | (EW), EW;, EW3) | C(P)
1213 1:10:10 P (0.51,0.58,0.58) 0.17 (4.02,4.35,4.35) 3.39
1:10:10 M (0.52,0.65,0.65) 0.18 (4.14,4.59,4.59) 3.55

10:1:1 P (0.48,0.72,0.72) 0.19 | (2.85,10.78,10.78) | 6.51

10:1:1 M (0.48,0.79,0.79) 0.21 | (2.86,11.00,11.00) | 6.63

123132 [ 1:10:10 | P | (0.50,0.56,0.56) | 0.17 | (4.66,4.37,4.37) | 3.57
1:10:10 M (0.66,0.56,0.56) 0.18 (7.59,4.17,4.17) 4.25

10:1:1 P (0.51,0.68,0.68) 0.19 (3.14,9.43,9.43) 5.87

10:1:1 M (0.53,0.70,0.70) 0.19 (3.08,10.01,10.01) 6.16

Table 3: Mean waiting times for asymmetrical routing mechanisms; Model 1L

The results in Table 3 confirm the observation that the mean amount of work in the system
is smaller for periodic polling in all considered cases, but that in a number of cases some of
the individual mean waiting times are smaller under Markovian polling.
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5 Optimization
In this section we consider the following optimization problem:

in C(P), (48)

where C(P)-is defined in (46) and M, is defined as the set of irreducible stochastic s x s ma-
trices. In words, the problem is to find combinations of routing probabilities which minimize
the mean amount of waiting work in the system. Optimal routing matrices are denoted by
P*.

In a general parameter setting no explicit expressions for the cost function are available and
hence, the optimization problem is not exactly solvable.

Boxma et al. [7] consider a similar problem of heuristically obtaining periodic polling ta-
bles which minimize the mean amount of work in the system. They propose to combine
explicit square-root formulas for optimal relative visit frequencies in random polling models
with the Golden Ratio procedure (cf. [14]) for the spacing of the visits. However, this ap-
proach relies on the assumption that the switch-over times depend only on the queue which is
being switched to, and is independent of the queue that has just been visited. This assumption
is quite restrictive, e.g. when switch-over times represent physical movement from one place
to another. Yet, when this assumption is dropped, the problem of finding an optimal visit
order for given relative visit frequencies can be formulated as a Travelling Salesman Problem
(TSP), which is known to be NP-hard.

The optimization problem (48) can, in principle, be solved numerically by combining a numer-
ical algorithm for the evaluation of the cost function (46) with some standard procedure for
non-linear (constrained) optimization. However, the dimension of the optimization problem
grows quadratically in the number of queues, so that in practice this approach is restricted to
models with a rather small number of queues. It should be noted that in the special case in
which all queues are served exhaustively, the cost function (46) can be directly obtained via
the PCL (44), requiring the solution of a relatively small set of linear equations. However, in
case at least one queue is served non-exhaustively, the PCL is no longer applicable to evalu-
ate the cost function (46). Moreover, the PCL can not be used to determine more detailed
performance measures like the individual mean waiting times at the queues. In those situ-
ations, the computations may be based on the use of the PSA, requiring considerably more
computational effort. To find optimal routing matrices, we have computed the cost function
(46), plus its derivatives with respect to the routing probabilities, in combination with the
conjugate gradient method for non-linear optimization with linear constraints (cf. [22]).

We reemphasize the enormous complexity of the TSP-like optimization problem in a general
parameter setting. Therefore, we restrict oursclves to obtain some qualitative, instead of
quantitative, properties of optimal combinations of routing probabilities. The results pre-
sented here should be viewed in this perspective.

The remainder of this section is organized as follows. In section 5.1 we discuss properties
of optimal routing matrices in the case of fully symmetrical models, and in section 5.2 we
investigate optimal combinations of routing probabilities in the case of some asymmetrical
models.
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5.1 Symmetrical systems

For fully symmetrical models it is shown in [20] that each cyclic service order, which is
contained in the class of Markovian service orders, solves the optimization problem (48).
Thus, for such models with (symmetrical) Bernoulli schedule ¢ = (g,...,9),0<¢< 1,
P =P, (49)
where P = (pi ;) € M, with p;; € {0,1}, i,j = 1,...,s. Note that there are (s — 1)! alter-
native local optima, each of which uniquely corresponds to a specific cyclic visit order.

Let us consider the question whether these optima are stable, i.e. whether the optimal cyclic
server routing orders remain optimal when the system parameters are slightly perturbed. To
this end, it should be noted that the derivatives of the cost function (48) with respect to each
of the routing probabilities may provide useful information about the character of the optimal
routing probabilities. Namely, when all derivatives are equal to 0 in the optimum, the optimal
schedule will be an ‘interior optimum’ which may become suboptimal for slight changes in one
of the system parameters. On the other hand, ‘boundary optima’ with non-zero derivatives
at the optimum remain (locally) optimal for slight modifications of the parameters. To study
the character of the optima, we have applied the PSA to compute the cost function (46) and
the derivatives with respect to the routing probabilities for a set of symmetrical models, each
of which giving similar outcomes. For a typical example, consider Model I (introduced in
section 4). Table 4 shows the derivatives of the cost function (48) with respect to the routing
probabilities at P* = (P:J) y
g = 0.00, 0.50 and 1.00.

with pj, = p33 = p3; = 1.00, for p = 0.3 and 0.8 and for

q=0.0 ¢=0.5 q=1.0
p = 0.3 [ 0.007 0.000 0.007 | 0.007 0.000 0.007 | 0.007 0.000 0.007
0.007 0.007 0.000 | 0.007 0.007 0.000 | 0.007 0.007 0.000
0.000 0.007 0.007 | 0.000 0.007 0.007 | 0.000 0.007 0.007
p = 0.8 [ 0.030 0.000 0.030 | 0.028 0.000 0.028 | 0.025 0.000 0.025
0.030 0.030 0.000 | 0.028 0.028 0.000 | 0.025 0.025 0.000
0.000 0.030 0.030 | 0.000 0.028 0.028 | 0.000 0.025 0.025

Table 4: Derivatives dC(P)/dp;; at P = P* in a symmetrical model.

Table 4 suggests that the optimal cyclic visit orders are stable optima. To illustrate this, con-
sider the case ¢=0.5, p = 0.8, and consider the routing probabilities after departing from @,
which are under the present cyclic schedule equal to pj ; = 1.00, pj; = pj 3 = 0.00. To obtain
an alternative triple of routing probabilities, either p; ; or p13, or both, must be increased,
and p; 2 will have to be decrcased. Now, because the derivatives of the cost function with
respect to py,1,p1,2 and pyy at P* are given by 0.028, 0.000 and 0.028, respectively, a (small)
increase in either p;  or p; 3 together with a (small) decrease of p; 2 will lead to an increase of
the cost function. Under the assumption that the derivatives of the cost function with respect
to continuous system parameters at the cyclic optimum are continuous, slight modifications
of these system parameters do not cause the cyclic optimum to become suboptimal. The
fact that in Table 4 the derivatives with respect to py 2, p2;3 and pa;; are 0.000 is due to the



21

definition of the derivatives of the routing probabilities in (13)-(15), which even implies that
these derivatives are ezactly equal to zero.

The observation that the cyclic optimum is stable suggests the existence of a attraction re-
gion ‘around’ the cyclic optimum for nearly-symmetrical models. That is, there is a set of
‘nearly-symmetrical’ models for which the optimal Markovian server routing is cyclic. In the
next subsection we will present some numerical experiments which support this observation.
Yet, exact expressions for this region are unknown, so that the observation is only useful
for providing a qualitative, rather than a quantitative, insight into optimal combinations of
routing probabilities.

5.2 Asymmetrical systems

When the model is asymmetrical, it is clear that the cyclic server routing is no longer generally
optimal within the class of Markovian server routings. However, for asymmetrical models the
optimization problem is not exactly solvable, and numerical procedures are needed to find
optimal combinations of routing probabilities. In a number of examples discussed here, it
is assumed that all queues are served exhaustively. This assumption is based on results ob-
tained by Liu et al. [20], who have shown that in order to minimize the cost function (46),
all queues should be served exhaustively. Recall that in those cases the cost function (46),
and the optimal routing matrices, can be obtained relatively quickly via (44). Yet, in some
applications exhaustive service may not be implemented or technically infeasible. In those
situations, the cost function (46G), and the optimal routing matrices, have been obtained on
the basis of the PSA.

As for the accuracy of the computations, in the case of exhaustive service at all queues
the cost function (46) has been accurately calculated from the PCL (44), with typical errors
less than 10~2. In the cases with non-exhaustive service disciplines the cost function has been
evaluated by means of the PSA, where typically 40 or 50 terms of the power series have been
computed and the estimated errors are typically less than 0.001. The optimization procedure
is based on a grid size 0.001.

Numerical experience has taught us that the cost function (46) as function of the routing
matrices generally has a number of local optima, similar to the case of fully symmetrical mod-
els. This difficulty, which is very common in non-linear optimization, is tackled by running
the optimization procedure with a number of different initial routing matrices.

To study characteristics of optimal routing matrices for a broad class of Markovian polling
models, we have computed the optimal routing probabilitics for a wide variety of the param-
eter settings for models I1 and 111 (model 1 occurring as a special case), covering a diversity
of models. In this section we present some of the numerical results. We emphasize that this
numerical study does not aim to give a full characterization of optimal schedules, but is meant
to give some uscful insights, which contribute to the understanding of the characteristics of
optimal routing matrices.

Influcnce of asymmelry in the arrival rates
To investigate the influence of the asymmetry in the arrival process on P*, we have computed
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an optimal routing matrix for model II (cf. section 4) for ¢ = 1.00 and in which the ratios be-
tween the arrival rates are given by a:1:1. Tables 5 and 6 show an optimal routing matrix P*
for various values of a for the system under light traffic (p = 0.3) and heavy traffic (p = 0.8),
respectively. It should be noted that because in this model Q; and Q3 are stochastically

identical, the corresponding routing probabilities are exchangeable.

a = 0.001

a=0.01

a=0.10

a=0.25

a = 0.50

P*

0.00 0.00 1.00
0.04 0.00 0.96
0.00 1.00 0.00

0.00 0.00 1.00
0.14 0.00 0.86
0.00 1.00 0.00

0.00 0.00 1.00
0.48 0.00 0.52
0.00 1.00 0.00

0.00 0.00 1.00
0.81 0.00 0.19
0.00 1.00 0.00

0.00 0.00 1.00
1.00 0.00 0.00
0.00 1.00 0.00

i)

0.155

0.157

0.162

0.164

0.165

a = 1.00

«a = 4.00

a = 10.00

a = 100.00

a = 1000.00

P*

0.00 0.00 1.00
1.00 0.00 0.00
0.00 1.00 0.00

0.00 0.00 1.00
1.00 0.00 0.00
0.00 1.00 0.00

0.00 0.44 0.56
1.00 0.00 0.00
0.80 0.20 0.00

0.00 0.50 0.50
1.00 0.00 0.00
1.00 0.00 0.00

0.92 0.04 0.04
1.00 0.00 0.00
1.00 0.00 0.00

C(P*)

0.165

0.163

0.160

0.152

0.146

Table 5: Optimal routing probabilities for model II; p = 0.3.

a = 0.001

a=0.01

a=0.10

a=0.25

a = 0.50

P*

0.00 0.00 1.00
0.05 0.00 0.95
0.00 1.00 0.00

0.00 0.00 1.00
0.17 0.00 0.83
0.00 1.00 0.00

0.00 0.00 1.00
0.58 0.00 0.42
0.00 1.00 0.00

0.00 0.00 1.00
0.94 0.00 0.06
0.00 1.00 0.00

0.00 0.00 1.00
1.00 0.00 0.00
0.00 1.00 0.00

C(P*)

3.347

3.363

3.402

3.422

3.434

a = 1.00

a = 10.00

a = 25.00

a = 50.00

a = 100.00

P*

0.00 0.00 1.00
1.00 0.00 0.00
0.00 1.00 0.00

0.00 0.00 1.00
1.00 0.00 0.00
0.00 1.00 0.00

0.00 0.40 0.60
1.00 0.00 0.00
0.66 0.34 0.00

0.00 0.50 0.50
1.00 0.00 0.00
1.00 0.00 0.00

0.22 0.39 0.39
1.00 0.00 0.00
1.00 0.00 0.00

C(P*)

3.440

3.350

3.311

3.287

3.274

Table 6: Optimal routing probabilities for model II; p = 0.8.

The results displayed in Tables 5 and 6 reveal some characteristics of optimal routing ma-
trices. First, we observe the surprisingly large fraction of the routing probabilities that are
equal to 0.00 or 1.00, indicating that the optimal routing decisions have a tendency towards
deterministic routing. This observation is supported by the observation in section 4 that the
cycle times under deterministic routing are more regular than under probabilistic routing
decisions, generally leading to a better system performance (cf. (47)).

Second, for lightly- and heavily-loaded systems the results suggest that the optimal matrices
for different values of a can be divided into a small number of classes, each of which has
specific characteristics that can be interpreted easily, providing an insight into the behavior
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of optimal routing matrices. Each class corresponds to a specific interval of values of a. We
will now discuss characteristics of these classes, letting a increase from 0 to infinity.

Let us first consider the limiting case a | 0. In that case the arrival rate at Q, is negligible
compared with the arrival rates at Q, and Q3, so that in the optimum Q; will be visited
only very seldom. The results in Tables 5 and 6 suggest that P* tends to a limiting routing
matrix with pj 3 = pj3 = p3; = 1.00. Under this routing matrix, state 1 (corresponding to
visits to Q) is only a transient state, and the states 2 and 3 form an absorbing set of states.
When a is somewhat increased, starting from 0.00, Q; will be visited more frequently, but
still less frequently than Q and Q3. This situation appears to give optimal routing matrices
of the form pj 5 = p3, = 1.00, p3;, = r,and p33=1-r,0<r <1, where the value of r
increases with increasing value of a. That is, after a departure from Q; the server always
moves to Q3 and subsequently, to Q2. The only random routing decisions are made after
departures from Q2. So, the server visits the queues in cyclic order, typically interceded by
a number of switches back and forth between @ and Q3. When « is further increased to
approach 1.00 the arrival rates become of the same order of magnitude. For a = 1.00 the
system is symmetric, and it is known that in that case the optimal routing is cyclic (cf. [20]).
Moreover, Tables 5 and 6 suggest that the cyclic routing is still optimal when « is varied
within some interval around a = 1.00. This observation supports the conjecture that there
is some region ‘around’ the cyclic optimum P* in which P* is still optimal (cf. section 5.1).
When the value of a is further increased, Q; becomes considerably more heavily loaded than
the other queues, so that above some threshold value for a the cyclic visit order is no longer
optimal. We then typically observe optimal routing matrices P* of the form p3; = 1.00,
Pla=mu Pia=1-n,p5, = p3;=1-m (0 < 71,72 < 1), and zeros elsewhere. Under
this type of service orders, Q, is implicitly given higher priority than the other queues. This
is because after most visits to either Q, or Q3 the next queue to be served is Q1. The only
exception is when Q3 is visited after a visit to Q3. In those cases Q; will be immediately
visited afterwards. This type of routing matrix may be seen as an intermediate between the
cyclic server routing (for smaller values of ) and another type of polling order which occurs
when « is increased further. In the latter case (J; dominates the system in such a strong way
that Q; is always visited immediately after a visit to one of the other queues, so that the
optimum P* is typically of the form pj, = pj3 = 0.50, p3; = p3; = 1.00. This type of rout-
ing matrix may be seen as a stochastic counterpart of the periodic star-type polling. Finally,
when « is increased even further Q; becomes so relatively heavily loaded that switches from
Q1 to itself (throughout referred to as self trunsitions) become optimal, while Q, is always
visited immediately after a visit to one of the other queues. When a approaches infinity, the
optimal routing matrix tends to the routing matrix P* with pj, = p3, = p3, = 1.00 and
zeros elsewhere.

Influcnce of the asymmelry in the switch-over times

To investigate the influence of the switch-over times on the optimal routing matrix, we have
computed optimal probabilities for a variety of models which are contained in the class de-
scribed in model III (cf. section 4). For these models the ratios between the arrival rates
are equal, and mean switch-over times are given by :rs‘,) = og‘; = n.(,lg = 0.005; “92) = aQ,’:
a§3 = n_!,f,’:u; n(llz = n:(,!.2)=0.25. Note that, for a > 0.125, the parameter a can basically
be viewed as the mean ‘distance’ between @ on the one hand and @ and Q3 on the other
hand. Tables 7 and 8 show the results for various values of @, ¢ = 1, and for p=0.3 and 0.8,
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a = 0.001

a = 0.01

a=0.10

a = 0.25

P*

0.00 0.50 0.50
1.00 0.00 0.00
1.00 0.00 0.00

0.00 0.50 0.50
1.00 0.00 0.00
1.00 0.00 0.00

0.00 0.50 0.50
1.00 0.00 0.00
1.00 0.00 0.00

0.00 0.00 1.00
1.00 0.00 0.00
0.00 1.00 0.00

i)

0.130

0.139

0.236

0.311

a = 0.50

a = 1.00

a=2.50

a = 10.00

P*

0.00 1.00 0.00
0.00 0.00 1.00
0.95 0.05 0.00

0.00 1.00 0.00
0.00 0.00 1.00
0.54 0.46 0.00

0.00 1.00 0.00
0.00 0.00 1.00
0.25 0.75 0.00

0.00 1.00 0.00
0.00 0.00 1.00
0.07 0.93 0.00

i)

0.437

0.686

1.412

5.019

Table 7: Optimal routing probabilities for model III; p = 0.3.

a = 0.001

a=0.01

a = 0.10

a=0.25

P*

0.00 0.50 0.50
1.00 0.00 0.00
1.00 0.00 0.00

0.00 0.50 0.50
1.00 0.00 0.00
1.00 0.00 0.00

0.00 0.00 1.00
1.00 0.00 0.00
0.00 1.00 0.00

0.00 0.00 1.00
1.00 0.00 0.00
0.00 1.00 0.00

C(P*)

3.208

3.280

3.933

4.400

a = 0.50

a = 1.00

a = 2.50

a = 10.00

P*

0.00 1.00 0.00
0.00 0.00 1.00
1.00 0.00 0.00

0.00 1.00 0.00
0.00 0.00 1.00
0.70 0.30 0.00

0.00 1.00 0.00
0.00 0.00 1.00
0.41 0.59 0.00

0.00 1.00 0.00
0.00 0.00 1.00
0.19 0.81 0.00

Cc(P*)

5.213

6.805

11.231

32.129

Table 8: Optimal routing probabilities for model III; p = 0.8.

The results in Tables 7 and 8 reveal some properties of the character of optimal routing ma-
trices. Similar to the case of varying the relative arrival rates discussed above, we observe
again that the optimal routing decisions have a tendency towards deterministic routing (cf.
the discussion of the results in Tables 5 and 6).

Moreover, Tables 7 and 8 indicate that the optimal routing matrices for varying values of
a can be divided into a number of types of routing matrices. We will briefly discuss char-
acteristics of cach of these classes. When « is small the optimal routing matrix routes the
server to Q; (with probability 1.00) after a visit to one of the other queues. In this way, the
relatively long ‘journey’ between Q2 and Q3 is avoided, and Q, serves as a ‘bridge’ between
these queues. When a approaches 0.25 the system becomes syminetrical and the cyclic visit
order becomes optimal. Again it is observed that this cyclic optimum remains optimal for
slight perturbations in the switch-over times. When a becomes considerably larger than the
switch-over times between Q; and Q3, @ basically becomes relatively ‘isolated’ from Q3 and
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Qa, or equivalently, Q2 and Q3 may be viewed as relatively ‘clustered’. The optimal routing
matrices P* appear to have a specific structure of the form pj,; = p33 = 1.00, and p3, =,
Pia=1-r (0 < r < 1), where r decreases with increasing a. This specific structure can
be interpreted as follows. After having emptied Q; the server always moves towards Qs,
and after a visit to Q3 the server moves to @, with probability 1.00. Then the server keeps
on alternating between Q; and Q3 before making the relatively long trip to @1. The latter
implies that in this way one avoids making two successive relatively long journeys without
having visited both queues in the cluster of Q; and Q3.

Influence of the service disciplines

In the cases considered so far it is assumed that the queues are served exhaustively. We will
now study the influence of the service discipline on optimal routing matrices. To this end,
consider the case @ = 1.00 for Model III (cf. also Tables 7 and 8). Recall that in this case
Q, is relatively ‘isolated’ from Q; and Q3. We study the influence of the service discipline
at Q; on the optimal routing matrices. To this end, we have computed the optimal routing
matrices for various Bernoulli service policies with parameter ¢; = ¢ (0 < ¢ < 1). The service
discipline at Q2 and Q3 is assumed to be exhaustive. Tables 9 and 10 below show optimal
routing matrices for ¢=0.00, 0.50 and 1.00, and for p = 0.3 and p=0.8, respectively.

¢ = 0.00 ¢ = 0.50 =1.00
P* | 0.96 0.04 0.00 | 0.95 0.05 0.00 | 0.00 1.00 0.00
0.00 0.00 1.00 | 0.00 0.00 1.00 | 0.00 0.00 1.00
0.56 0.44 0.00 | 0.55 0.45 0.00 | 0.54 0.46 0.00
c(P) 0.696 0.692 0.636

Table 9: Optimal routing probabilities for different service disciplines; p = 0.3.

q = 0.00 q = 0.50 q = 1.00
P 0.97 0.03 0.00 | 0.95 0.05 0.00 | 0.00 1.00 0.00
0.00 0.00 1.00 | 0.00 0.00 1.00 | 0.00 0.00 1.00
0.77 0.23 0.00 | 0.76 0.24 0.00 | 0.70 0.30 0.00
C(P*) 7.301 7.163 6.805

Table 10: Optimal routing probabilities for different service disciplines; p = 0.8.

The results in Table 9 indicate that the service discipline may have a considerable impact on
the optimal routing matrices. In particular, we observe a striking difference in the optimal
routing probabilities between exhaustive service on the one hand and non-exhaustive service
on the other hand. We observe that in the case of non-exhaustive service (i.e. g < 1) self
transitions occur frequently here, whereas for exhaustive service similar self transitions occur
with probability 0. To give an intuitive argument for this observation, recall that it is shown
in [20] that all quenes should be served exhaustively to minimize the cost function (46). Con-
sider the case ¢ < 1, i.c. @y is served non-exhaustively, so that after a visit of the server at
Q) there may be customers present at (. Note that the switch-over times needed by the
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server for a self transition (with mean 0.005) are negligible compared with the switch-over
times between different queues (with means 0.25 or 1.00). Hence, the server can almost im-
mediately return to Q; to check whether there is another customer waiting at that queue. If
s0, the next customer at Q; will be served, and if not so, the ‘cost’ of this ‘unnecessary’ travel
from Q; to itself is very small. This argument intuitively explains why for non-exhaustive
service at Q; self transitions occur with large probability (typically > 0.9). In this way, Q; is
served ‘nearly exhaustively’. Obviously, in the case of exhaustive service, self transition from
Q1 would probably not make much sense, because no customers are present at a departure
instant of the server at Q.

The above-mentioned considerations indicate that when self transitions can be made instanta-
neously (i.e. a““ =0,1i=1,...,s), then under exhaustive service at Q;, the cost function does
not depend on p; i, provided p; ; < 1. Moreover, for systems with a}"‘) =0: = 1058 = Ligsss ¥
the service discipline at Q; can basically be viewed as a Bernoulli service discipline with pa-
rameter §; = pii, ¢ = 1,...,s (cf. also [8]). In this way, the problem of finding optimal
Bernoulli parameters § = (¢1,...,4,) in cyclic polling models occurs as a special case by
putting the additional restriction p;; 4+ pii41 = 1 (cf. [6]). The only difference here is that g
should be strictly smaller than 1 (to guarantee the irreducibility of the Markov chain D, cf.
section 2), while ¢; = 1 is also allowed in the optimization problem discussed in [6].

Guidelines for constructing optimal routing matrices

Based on the results presented in Tables 5 to 10, we will now give some general ideas that
may be useful for heuristically constructing routing matrices for larger systems. We reem-
phasize that these ideas only aim to give some insight into the qualitative, rather than the
quantitative, behavior of optimal routing matrices, and should be viewed in that perspective.

Suppose the distance structure is such that the queues Q;,...,Q, can somehow be parti-
tioned into a relatively small number of clusters of queues, Cj,...,Cm, m < s, in such a way
that the mean switch-over times between queues within the same cluster are considerably
smaller than the distances between queues in different clusters. In this perspective, each of
these clusters can be viewed as super queues. The numerical results in Tables 7 and 8 sug-
gest that in each cluster C}, there is a ‘front door’ queue Cf such that the server can ‘enter’
cluster Ci only through a visit at queue Cf and not through a visit at another queue in
Ci. This suggestion implies that for (nearly) optimal routing matrices we have p}; = 0 if
Qi € Ck, Qj € Cr and Q; # CF, k = 1,...,m. Similarly, each cluster C} seems to have
a ‘back door’ queue ('8 such that the server can only depart from cluster C through ef,
k=1,...,m,ie p;; =0if Qi€ Cr, Qj € Crand Q; # C,‘B, k = 1,...,m. Moreover, one
may expect that the optimal routing probabilities within each cluster Cy will be such that
after the server has entered C (through an arrival at CF) all queues within that cluster are
certainly visited at least once during the visit of the server to that cluster. The problem of
determining optimal routing probabilities between the different clusters (super queues), i.e.
Pl Qi = CE, Q;= CF, k = 1,...,m, is roughly similar to the proble;m of determining
optimal routing matrices for systems with m < s (super) queues Q1,.--,Qm, where the pa-
rameters of super queue 'y can be determined by aggregating over the parameters of the
queues in C in a straightforward manner. This observation suggests a hierarchical procedure
for obtaining optimal routing matrices for larger systems.
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As an illustration of the validity of the above-mentioned guidelines, we consider the model
with the following combination of system parameters: s = 4; a = (1.00,1.00,1.00,1.00);
A1 = (1.00,1.00,1.00,1.00); all service times and switch-over times are exponentially dis-
tributed; ¢ = (1.00,1.00,1.00,1.00); o{") = o) = a, for j = 2,3,4; o)) = 0.05 in all other
cases. Note that for values of a large enough, the queues can be basically partitioned into
clusters C; = {Q:} and C; = {Q2,Q3,Q4}. Table 11 shows optimal routing matrices for
a=0.10, 0.25 and 5.00, and for p=0.3, and Table 12 shows the results for p = 0.8.

a=0.10 a=0.25 =5.00
P* 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00 | 0.00 0.00 1.00 0.00 | 0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00 | 0.00 0.00 0.00 1.00 | 0.00 0.32 0.00 0.68
1.00 0.00 0.00 0.00 | 0.13 0.87 0.00 0.00 | 0.04 0.96 0.00 0.00
C(P*) 0.201 0.608 2.404
Table 11: Optimal routing probabilities; p = 0.3.
a=0.10 «=0.25 a = 5.00
P* 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00 | 0.00 0.00 1.00 0.00 | 0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00 | 0.00 0.00 0.00 1.00 | 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 | 0.24 0.76 0.00 0.00 | 0.10 0.90 0.00 0.00
C(P") 3713 6.222 16.347

Table 12: Optimal routing probabilities; p = 0.8.

The results in Tables 11 and 12 confirm the characteristics discussed above. Obviously, the
queues can be clustered as C7 = {Q1} and C3 = {Q2,Q3,Q4}. We observe that C; is only
entered through Q3 (i.e. (,',F = (),) and is only departed from at Q4 (i.e. Cf = Q4). In all
cases considered here the server moves to C; after departing from @y, and visits the queues
in C, a number of times (geometrically distributed with parameter 1 — pj ;) before returning
to Q;. We also observe that once the server has entered C through a visit at Q2, all queues
in Cj are served at least once during that visit.

As an alternative, consider the model with the same system parameters as the above-discussed
model, but with the following mean switch-over times: u‘!",-) = 0.05; t= 15.cand; a,(b):l.OO if
i,j € {1,2} or i,j € {3,4}; n}"} = a in all other cases. Note that for a > 1.00, the queues
can basically be clustered into clusters ¢y = {Q1,Q2} and C3 = {Q3,Q4}. Table 13 shows
the optimal routing matrices for a=1.00, 10.00 and 50.00 for p = 0.3, and Table 14 shows the
results for p = 0.8.

Tables 13 and 14 support the characteristics of the optimal routing matrices discussed in this
section. In all cases considered here we have (,F =Qy, CB =Q,, Cf = Q3 and C,B = Q4
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a=1.00 a = 10.00 a = 50.00
P 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00 | 0.48 0.00 0.52 0.00 | 0.84 0.00 0.16 0.00
0.00 0.00 0.00 1.00 | 0.00 0.00 0.00 1.00 | 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 | 0.52 0.00 0.48 0.00 | 0.16 0.00 0.84 0.00
Cc(P*) 1.071 5.753 26.144
Table 13: Optimal routing probabilities; p = 0.3.
a = 1.00 a = 10.00 a = 50.00
P* 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00 | 0.36 0.00 0.64 0.00 | 0.72 0.00 0.28 0.00
0.00 0.00 0.00 1.00 | 0.00 0.00 0.00 1.00 | 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 | 0.64 0.00 0.36 0.00 | 0.28 0.00 0.72 0.00
C(PY) 10.000 41.090 164.522

Table 14: Optimal routing probabilities; p = 0.8.

The server typically moves from one cluster to the other, interceded by a number of switches
back and forth between the queues within the respective clusters.

6 Topics for further research

The guidelines for constructing optimal routing matrices in the previous section are based
on the insights obtained by the numecrical study presented in sections 4 and 5. However, the
guidelines are qualitative, and do not yield a heuristic approach to obtain optimal routing ma-
trices. The following idea may be worthwhile to consider for obtaining a quantitative heuristic
approach. For a given planar distance structure between the queues (due to the switch-over
times), there are various algorithms available for partitioning the set of queues (‘points’) into
a number of subsets (‘clusters’) of qucues (e.g. single-link clustering, complete-link clustering,
furthest neighbor method, cf. e.g. [10]). Each of these algorithins provides a means to define
a clustering structure depending on whether the planar distances between certain combina-
tions of queues exceed some threshold value d. For a given clustering algorithm, one may
build a tree structure of clusters by successively decreasing the threshold distance d, starting
with d = oo (in which all queues form one cluster) until d = 0 (in which each forms a cluster
by itself). Such a tree structure suggests an iterative approach for heuristically obtaining
optimal routing matrices for large systems, with decreasing threshold value d.

By definition of ‘iteration’, at each step of the iteration at least one couple of clusters, say
C; and C; is united to one cluster C'y2 := €y U C3. In this way, one should construct (i) a
simple heuristic approach to define the ‘front door’ CF, and the ‘back door’ CE of cluster Cy,
(defined in section 5), and (ii) a simple heuristic to ‘merge’ the ‘local’ routing probabilities
for C; and Cy to routing probabilitics for Cya. As for the first problem, one should probably
select CB cither CF or CF, and a similar approach may be used to determine cl;. The
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second problem may be handled by adopting the intra-cluster (‘local’) routing probabilities.
As for the inter-cluster routing probabilities, one may set p;; = 0, i € Cy, j € Cy, unless
Qi=CP andQ; = CF. The routing probabilities between ¢z, C,P, CB, CF can be deter-
mined numerically by considering the optimization problem discussed in section 5 for small
(two-queue) polling models with Markovian server routing, which can be solved in a similar
way as was done in section 5. Note that the observed tendency towards deterministic routing
(cf. section 5) may be used here to set certain routing probabilities equal to 1.00.

This iterative algorithm converges when each queue forms a cluster by itself (for small values
of the threshold disctance d). It should be noted that the algorithm converges after at most
s iterations, because (by definition) at each stage at least two queues are united.

We reemphasize the enormous mathematical and numerical complexity of the optimization
problem considered here and the idea should be viewed in that perspective. Although the
idea of hierarchical clustering is rather intuitive and may hide some unforseen complications,
we believe it is interesting to pursue this idea further in the future.
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