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1. Introduction

Myerson (1981), building on the work of Vickrey (1961) and Harsanyi (1967/68),

studied auctions as noncooperative games with incomplete information. Viewing the

auction problem in this way, Myerson reduced the seller's problem to one of designing a

revelation game, to be played by the potential buyers, having an equilibrium that maximized

the seller's expected payoff. In his model, Myerson assumed that buyers and the seller

were risk neutral and that the private information of buyers was independently distributed.

In this paper, we develop a general auction model in which buyers and seller are risk averse

and private information is multidimensional and correlated, and in this setting we examine

the problem of optimal auction design. In particular, we consider the problem faced by

someone who has an object to sell but who does not know how much prospective buyers

might be willing to pay, and allowing for risk aversion and correlated information on the

part of buyers, we demonstrate the existence of an auction procedure that yields the risk

averse seller the highest expected utility among all the auction procedures that are rational

and Bayesian incentive compatible.

Auctions in which the seller and the buyers are risk neutral and private information

is independently distributed have been intensely studied in the literature (in addition to

Myerson (1981), see for example Riley and Samuelson (1991) and Harris and Raviv

(1981)). Two main conclusions emerge from this work. First, the four most common

forms of auctions (Dutch, first-price, second-price, and English)1 generate the same

expected revenue for the seller. Second, for many common distributions of private

information (including the normal, exponential, and uniform distributions) the four

standard auction forms with suitably chosen reserve prices or entry fees are optimal from

the perspective of the seller. These conclusions, however, are not robust with respect to

changes in the assumption that the seller or the buyers are risk neutral or with respect to a

change in the assumption that private information is independently distributed. For

example, Maskin and Riley (1984) show that if the private information of buyers is

independently distributed but buyers are risk averse, then from the seller's viewpoint first-

price and English auctions are not revenue equivalent - nor are they optimal. Alternatively,

Milgrom and Weber (1982) show that if buyers and the seller are risk neutral but private

information is dependent - and in particular affiliated - then English auctions generate the

1The Dutch auction is conducted by an auctioneer who initially calls for a high price and then continuously
lowers the price until some buyer stops the auction and claims the object at that price. In an English
auction, the auctioneer begins by soliciting bids at a low price and then gradually raises the price until only
one willing buyer remains. A first-price auction is a sealed-bid auction in which the buyer making the
highest bid wins and pays the amount of his bid for the object. A second-price auction is also a sealed-bid
auction in which the buyer making the highest bid wins and pays the amount of the second highest bid.
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highest expected revenue to the seller, followed by the second-price auction, and finally the

Dutch and first-price auctions. These studies indicate the importance of analyzing auction

environments in which both risk aversion and correlated private information are present.

While such auction environments are common in practice, they have not been examined in

the existing literature. They are, however, the focus of this paper.

We formulate the seller's problem as one of designing a revelation game, to be

played by risk-averse buyers, having an equilibrium that maximizes the risk-averse seller's

expected utility.2 As in Myerson (1981) each buyer's private information is represented by

his type, and the seller's incomplete information problem arises due to his lack of

knowledge concerning each buyer's type. The auction model we develop covers as special

cases many of the auction environments analyzed in the existing literature - including the

Milgrom-Weber (1982) model with affiliated private information and the Maskin-Riley

(1984) model with risk-averse buyers. In contrast to much of the existing literature, our

auction model allows multidimensional buyer type descriptions (i.e., each buyers private

information is allowed to be multi-dimensional) and vector-valued payoffs. Thus, our

model as well as our results can be applied to multidimensional bidding situations in which

the participants are risk averse and information is correlated. These types of auctions are

common in government procurement contracting (e.g., a defense contractor may bid on

price and quality in the production of a weapons system - see Che (1993) and Johnson

(1994)). Moreover, in our model we assume that each buyer's utility depends not only

upon his own type (i.e., private information) but also upon the types of the other buyers.

Thus, our model allows for informational externalities. Finally, in addition to assuming that

auction payoffs are vector-valued, we assume that each buyer's utility depends not only

upon his own auction payoff but upon the payoffs of others. Thus, our model allows for

payoff externalities.

For the seller, the problem of game design reduces to one of mechanism choice. In

particular, given the seller's probability beliefs concerning buyer types, the seller's problem

is to choose a function, defined on the set of buyer types taking values in the set of

probability measures defined over winner-payoff vector pairs, that maximizes the seller's

expected utility. In choosing this function, or mechanism, the seller faces two constraints:

(1) the mechanism must be such that no buyer has an incentive to report his type

dishonestly (i.e., the mechanism must be Bayesian incentive compatible or BIC)3, and (2)

the mechanism must be such that each buyer has an incentive to participate in the auction in

2Thus, the auction problem can be viewed as a Stackelberg game in which the seller moves first, designing
a revelation game to be played by the potential buyers who act as the followers.
3Here we follow Myerson (1981) in assuming that unless a buyer is given an incentive to misreport his
type, he will report honestly. In a one-shot game such as an auction, this assumption is sensible.
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the first place (i.e., the mechanism must be individually rational for each buyer). Besides

being rational and BIC, the only other requirement we impose is that the mechanism be

measurable. Thus, in our model the selection of an auction mechanism is governed by

economic considerations rather than exogenous technical restrictions such as continuity and

differentiability.

Because the existence problem is infinite dimensional, novel existence arguments

are required. We base our resolution of the existence problem upon the notion of K-

convergence almost everywhere and a result due to Balder (1990) on sequential

compactness (with respect to K-convergence) in spaces of transition probabilities.

Essentially, K-compactness provides a subsequence extraction principle that is analytically

similar to sequential compactness for the topology of pointwise convergence. Given the

pointwise nature (i.e., the type-dependent nature) of the rationality and Bayesian incentive

compatibility constraints, this subsequence principle is precisely what is needed in order to

begin to establish the existence of an optimal BIC auction mechanism. K-compactness,

however, takes us only part of the way there. In order to finally establish existence, we

must show that the set of rational, BIC auction mechanisms is K-closed. In particular, we

must show that any equivalence class of auction mechanisms determined by the K-limit of a

K-convergent sequence of rational, BIC auction mechanisms contains at least one rational,

BIC auction mechanism.4 In general, not all the mechanisms contained in the equivalence

class determined by the K-limit of a K-convergent sequence of rational, BIC auction

mechanisms are BIC. Moreover, in an auction model where private information is

correlated and several buyers hold heterogeneous probability beliefs conditioned on private

information, showing that such an equivalence class contains a BIC mechanism is a delicate

matter. Here, we accomplish this by simply going through the task of constructing a BIC

mechanism contained in such an equivalence class.

In previous work by the author (e.g., Page (1989, 1994)) the problem of existence

of optimal dominant strategy incentive compatible (DSIC) mechanisms has been analyzed

in various principal-agent settings with adverse selection and moral hazard. Besides

fundamental differences in the settings (i.e., the auction setting versus the principal-agent

setting), there are also fundamental differences in the nature of the existence problems that

arise in analyzing DSIC mechanisms versus BIC mechanisms - most notably with regard to

the nature and resolution of the K-closure problem. As in the BIC case, in order to

establish the existence of an optimal DSIC mechanism it must be shown that any

equivalence class of mechanisms determined by the K-limit of a K-convergent sequence of

rational, DSIC mechanisms contains at least one rational, DSIC mechanism. However, in

4Equivalence classes are identified with respect to a particular dominating measure.
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the case of DSIC mechanisms this can be accomplished via a relatively straightforward

application of measurable selection techniques. These techniques, however, cannot be used

in the BIC case to resolve the K-closure problem.

The analysis here also continues an analysis of BIC mechanisms begun in Page

(1992). There, Stackelberg games with incomplete information are considered in which

each follower's payoff depends only upon his own type, his own action, and the leader's

action (i.e., values are private and there is moral hazard as well as adverse selection).

Besides focusing on the auction problem (i.e., a screening problem with adverse selection

only), here we examine a screening problem with informational externalities: each buyer's

payoff depends not only on his own type but on the types of the other buyers.

In Section 2, we present the basic ingredients of the auction model. In Section 3,

we define what is meant by an auction mechanism, we define K-compactness, and we

present our basic results on K-compactness in the set of auction mechanisms. In section 4,

we define what is meant by a rational, BIC auction mechanism for an auction model with

risk aversion and correlated types. In Section 5, we state our main results. Proofs are given

in Section 6.
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2. The Model

2.1 Basic Elements

[A-1]: We will assume that the basic elements of the auction are known to the seller as well

as the buyers.

[A-2]:

I = {0,1,2, . . . , h}. The elements of I, denoted by i or j, will index the players

in the auction, with 0 denoting the seller and i  = 1,2, . . . h, denoting the 

buyers. Equip I with the metric ρ, defined as follows:

ρ(i, i') = 1 if i i≠ ' . (I, ρ) is a compact metric space.

X = a compact subset of Rh with elements denoted by x x x xh= ( , ,..., )1 2 . Each

x is a vector of payments. If xi > 0, then the seller makes a payment of xi to

the ith buyer, and if xi < 0 then the ith buyer makes a payment of xi to the 

seller.

Ti = the set of ith buyer types with elements denoted by ti , equipped with the 

σ-field Σi.

T = T T Th1 2× × ⋅ ⋅ ⋅ × , with elements denoted by t t t th= ( , ,..., )1 2 , equipped 

with the product σ-field   Σ Σ Σ Σ= × × ×1 2 L h .

T i− = T Ti Ti Th1 1 1× ⋅ ⋅ ⋅ × − × + × ⋅ ⋅ ⋅ × , with elements denoted by

t i t ti ti th− = − +( ,..., , ,..., )1 1 1 , equipped with the product σ-field

Σ−i  = Σ Σ Σ Σ1 1 1× ⋅ ⋅ ⋅ × − × + × ⋅ ⋅ ⋅ ×i i h .

( , )ti t i− = ( ,..., , , ,..., )t ti ti ti th1 1 1− +  = t.

pi = for i = 0,1,2, . . . ,h, a probability measure defined on ( , )T Σ  representing 

the ith player's prior probability beliefs concerning buyer types.

2.2 Conditional Probability Beliefs
[A-3]: (1) For i = 1,2, . . . ,h, we will assume that qi( | )⋅ ⋅  is a version of the regular 

conditional probability of pi with respect to the marginal mi of pi defined on

( , )Ti iΣ .

Thus, under [A-3] (1), for each E i qi E∈ − ⋅Σ , ( | ) is a real-valued, Σi-measurable function

defined on Ti specifying for each of the ith buyer's types, the probability weight the ith

buyer assigns to the subset E, and for any S i∈Σ , pi S E qi E tiS
mi dti( ) ( | ) ( )× = ∫ . If the

sets, Ti, are Borel spaces and the σ-fields, Σi, Borel σ-fields, then by Dellacherie and
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Meyer (1975, III, pp. 69-73), for each probability measure pi defined on T, there exists

regular conditional probabilities.

We will also assume that there is a product measure   µ µ µ= × ×1 L h  defined on

(T,Σ), with each µi  σ-finite on Σi, such that

[A-3]: (2) the ith buyer's probability measure pi defined on the set T of buyer types is 

absolutely continuous with respect to µ  (denoted pi << µ ), and

(3) for each i and ti T∈ , the ith buyer's conditional probability measure 

qi ti( | )⋅  defined on the set T i−  of other buyer types is absolutely 

continuous with respect to µ−i  (denoted qi ti( | )⋅ << µ−i ), where µ−i  is 

the product measure   µ µ µ µ1 1 1× × − × + × ×L Li i h .

We will refer to µ  as the dominating measure.

Remarks 1

(1) [A-3] is satisfied in any auction model in which each participant's probability

distribution over types has a density function (i.e., Lebesgue measure serves as the

dominating measure). Thus, in most auction models in the literature [A-3] is satisfied (see

for example Riley and Samuelson (1981), Myerson (1981), Milgrom and Weber (1982),

Maskin and Riley (1984), and Che (1993)).

(2) In the analysis to follow, we will use the dominating measure µ  to define

equivalence classes of auction mechanisms and to identify and keep track of the relevant

sets of measure zero. Given that buyers hold heterogeneous probability beliefs conditioned

on private information, it would be a difficult task to keep track of the sets of measure zero

without such a dominating measure. We will also use µ  to construct a method of detecting

dishonest reporting by buyers (this is done in the proof of Theorem 5.1). In order to see

that [A-3] is a mild assumption, consider the following example:

Example

The following example satisfies all the conditions given in [A-3]. Suppose there are two
buyers, i = 1,2, such that for each i, Ti = [0, ∞), so that T = ∞ × ∞[ , ) [ , )0 0 , and let Σ be

the Borel product σ-field, B B[ , ) [ , )0 0∞ × ∞ , in T. Equip (T,Σ) with the Lebesgue product

measure µ µ µ= ×1 2 . Suppose now that the ith buyer's probability beliefs are given via a

joint density function hi( )⋅ , defined on T, so that for any E ∈Σ ,
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pi E hiE
t dt( ) ( ) ( )= ∫ µ .

Thus, pi << µ . Now let ri ti( | )⋅  denote the conditional density corresponding to the joint

density hi( )⋅ , so that for any S i∈ −Σ ,

qi S ti r iS
t i ti i dt i( | ) ( | ) ( )= − − −∫ µ .

Thus, qi ti( | )⋅ << µ−i  for all ti Ti∈ .

2.3 Payoffs
vi( , , )⋅ ⋅ ⋅ = for i = 1,2,...,h, the ith buyer's  real-valued payoff function defined on 

T I X× × . Thus, vi t j x( , , )  is the payoff to the ith buyer if player

j = 0,1,2,...,h wins the auction and the type and payment h-tuples are t and

x respectively. We will assume that vi t( , , )⋅ ⋅  is continuous on I X×  for 

each t T∈ , that vi j x( , , )⋅  is Σ -measurable on T for each ( , )j x I X∈ × , and

that vi( , , )⋅ ⋅ ⋅  is pi - integrably bounded on T I X× ×  (i.e., 

| ( , , ) | ( )vi t j x i t≤ ξ  on T I X× × , where ξi ( )⋅  is a pi - integrable function 

on T).

u( , , )⋅ ⋅ ⋅ = the seller's real-valued payoff function defined on T I X× × . Thus, 

u t j x( , , ) is the payoff to the seller if player j = 0,1,2,...,h wins the auction 

and the type and payment h-tuples are t and x respectively. We will assume 

that u t( , , )⋅ ⋅  is upper-semicontinuous on I X×  for each t T∈ , that u( , , )⋅ ⋅ ⋅  

is Σ × ×B I X( ) - measurable on T I X× × , and that u( , , )⋅ ⋅ ⋅  is p0-

integrably bounded from above on T I X× ×  (i.e., u t j x t( , , ) ( )≤ ζ  on 

T I X× × , where ζ( )⋅  is a p0- integrable function on T ). Here B I X( )×  

denotes the Borel σ-field in I X× .

Note that if j = 0 "wins" (i.e., if the seller wins), then the seller keeps the object

(i.e., the object is not sold).

3. Auction Mechanisms and K-compactness
Let P I X( )×  denote the set of all probability measures defined on the Borel σ-field

B I X( )×  in I X× , and equip P I X( )×  with the topology of weak convergence of

probability measures. Since I X×  is a compact metric space, P I X( )×  is compact and

metrizable for the topology of weak convergence of measures (Parthasarathy (1967),
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Theorem 6.4). Elements of P I X( )×  will be denoted by ϕ' s, and we will write ϕ ϕn ⇒
whenever the sequence { } ( )ϕn n P I X⊂ ×  converges weakly to ϕ ∈ ×P I X( ).

We shall restrict attention to direct auction mechanisms. In a direct mechanism, the

buyers simultaneously and confidentially make reports to the seller concerning their types

and the seller then selects a winner and a vector of payments based on these reports (recall
that if xi > 0, then the seller makes a payment to the ith buyer; and if xi < 0 then the ith

buyer makes a payment to the seller). Thus, a direct mechanism is a function,

ϕ( ): ( )⋅ → ×T P I X  defined as follows: if t t t th= ( , ,..., )1 2  is the h-tuple of reported types,

then the winner-payment pair, ( , )i x I X∈ × , is selected according to the probability

measure ϕ( ) ( )t P I X∈ × . By the Revelation Principle, we can restrict attention to direct

mechanisms without loss of generality, as long as the mechanisms are incentive compatible

(i.e., induce truthful reporting).

Now let B P I X( ( ))×  denote the Borel σ-field in P I X( )×  generated by the

(metrizable) topology of weak convergence. A function ϕ( ): ( )⋅ → ×T P I X  is said to be

measurable if for any subset of probability measures E B P I X∈ ×( ( )) 

ϕ ϕ− = ∈ ∈ ∈1( ) { : ( ) }E t T t E Σ .

Let M T P I X( , ( ))×  denote the set of all measurable functions defined on T taking values in

P I X( )× . We shall assume throughout that the feasible set of auction mechanisms is given

by M T P I X( , ( ))× . Elements of M T P I X( , ( ))×  will be denoted by ϕ( | )⋅ ⋅  and by ϕ( )⋅
(i.e., ϕ( ( , ) | )d j x t  is the element in P I X( )×  selected by the auction mechanism given

reports t).

The notion of compactness we shall use in analyzing the seller's auction design

problem is based on the notion of K-convergence almost everywhere.

3.1 Definition (K-convergence):

A sequence of mechanisms { ( )} ( , ( ))ϕn n M T P I X⋅ ⊂ ×  is said to K-converge [µ] to a K-

limit ϕ( ) ( , ( ))⋅ ∈ ×M T P I X , if for each subsequence, { ( )}ϕnk k⋅ , there is a µ-null set

N ∈Σ  (i.e., µ(N) = 0) such that for the sequence of averaged mechanisms, { ( )}ϕ k k⋅ ,

where

  
ϕ

ϕ ϕ
k n nk

k
( )

( ) ( )
⋅ =

⋅ + + ⋅1 L
,

ϕ ϕk t t( ) ( )⇒  for all t T N∈ \ .

Thus, { ( )}ϕn n⋅  K-converges a.e.[µ] to K-limit ϕ( )⋅ , if for each subsequence,

{ ( )}ϕnk k⋅ , there is a set of h-tuples of buyer types N ∈Σ  of µ-measure zero such that for
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every t T N∈ \ , the sequence of probability measures, { ( )} ( )ϕ k t k P I X⊂ × , converges

weakly to ϕ( ) ( )t P I X∈ × . Thus, for each t T N∈ \ ,

lim ( , ) ( ( , ) | ) ( , ) ( ( , ) | )k g j x k d j x t g j x d j x t
I XI X

ϕ ϕ=
×× ∫∫ ,

for each real-valued continuous function g defined on the compact metric space I X× .

3.2 Definition (K-compactness):

A subset Ψ of M T P I X( , ( ))×  is said to be relatively K-compact [µ] if every sequence in Ψ
contains a subsequence K-converging [µ] to some ϕ( ) ( , ( ))⋅ ∈ ×M T P I X . Ψ is said to be

K-compact [µ] if every sequence in Ψ contains a subsequence K-converging to some

ϕ( )⋅ ∈ Ψ.

The feasible set of auction mechanisms, M T P I X( , ( ))× , can be viewed as a set of

transition probabilities. In Balder (1990), the classical notion of tightness of probability

measures (e.g., see Parthasarathy (1967)) has been generalized to cover the case of

transition probabilities. This generalized notion of tightness is important for our purposes

because it guarantees the K-compactness of the feasible set of auction mechanisms. For the

moment assume that I X×  is a complete, separable metric space (rather than a compact

metric space as we have assumed here).

3.3 Definition (µ-tightness):

A subset Ψ of M T P I X( , ( ))×  is said to be µ -tight if there exists a function

h T I X: [ , ]× × → +∞0   such that

(i) h( , , )⋅ ⋅ ⋅  is Σ × ×B I X( ) -measurable,

(ii) h t( , , )⋅ ⋅  is inf-compact on I X×  for each t (i.e., {( , ) : ( , , ) }j x I X h t j x∈ × ≤ γ  

is compact for each t T∈  and γ ∈R), and

(iii) sup ( | ) ( , , ) ( ( , ) | ) ( )ϕ ϕ µ⋅ ⋅ ∈ ×
< +∞∫∫Ψ h t j x d j x t dt

I XT
.

The importance of µ-tightness is made clear by the following Theorem due to

Balder (1990).5 This result represents an extension of Komlos' Theorem (1967) to the

function space M T P I X( , ( ))× .

5In Balder (1990) a more general version of this result is given.
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3.4 Theorem:

Let Ψ  be a subset of M T P I X( , ( ))× . Then the following are equivalent:

(i) Ψ  is µ -tight.

(ii) Ψ  is K-compact [µ ].

Observe that since I X×  is a compact metric space, any subset of auction

mechanisms, Ψ ⊂ ×M T P I X( , ( )) , is automatically µ -tight (consider h( , , )⋅ ⋅ ⋅  identically

equal to zero). This observation leads immediately to the following:

3.5 Corollary: For I X×  a compact metric space and ( , , )T Σ µ  a σ-finite measure space,

any subset of M T P I X( , ( ))×  is relatively K-compact [µ], and M T P I X( , ( ))×  is K-

compact [µ].

4. Rational and Bayesian Incentive Compatible Auction Mechanisms
For each ϕ ∈ ×P I X( ), let

Vi t vi t j x d j x
I X

( , ) ( , , ) ( ( , ))ϕ ϕ=
×∫ . 

It follows from the continuity of vi t( , , )⋅ ⋅  on I X×  for each t T∈  that Vi t( , )⋅  is

continuous on P I X( )×  (with respect to the topology of weak convergence) for each t.

Moreover, since vi j x( , , )⋅  is Σ-measurable on T for each ( , )j x I X∈ × , Vi( , )⋅ ϕ  is Σ-

measurable on T for each ϕ ∈ ×P I X( ). Thus, Vi( , )⋅ ⋅  is Σ × ×B P I X( ( ))-measurable on

T P I X× ×( ) (Castaing and Valadier (1977), III.14), and thus, for any auction mechanism

ϕ( ) ( , ( ))⋅ ∈ ×M T P I X , Vi t t( , ( ))ϕ  is Σ-measurable.

Under the mechanism ϕ( ) ( , ( ))⋅ ∈ ×M T P I X , if the h-tuple of reported types is

t t t th= ( , ,..., )1 2 , then the winner-payment pair (j,x) is selected according to the probability

measure ϕ( ) ( )t P I X∈ × . In designing the auction mechanism, the seller faces two

constraints: (1) the mechanism must be such that no buyer is given incentives to report his

type dishonestly (i.e., the mechanism must be Bayesian incentive compatible or BIC), and

(2) the mechanism must provide incentives for each buyer to participate in the auction in the

first place (i.e., the mechanism must be individually rational for each buyer). Formally,

these constraints can be stated as follows:
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ϕ( ) ( , ( ))⋅ ∈ ×M T P I X  is rational and BIC if and only if for each i = 1,2,...,h,

vi ti t i j x d j x
I XT i

ti t i qi dt i ti( , , , ) ( ( , ) | , ) ( | )−×−
− −∫∫ ϕ

≥ −×−
′ − −∫∫ vi ti t i j x d j x

I XT i
ti t i qi dt i ti( , , , ) ( ( , ) | , ) ( | )ϕ , (1)

for all ti Ti Ci∈ \  and all ′ ∈ti Ti , where Ci i∈Σ  and mi Ci( ) = 0 ; and

vi ti t i j x d j x
I XT i

ti t i qi dt i ti( , , , ) ( ( , ) | , ) ( | )−×−
− − ≥∫∫ ϕ 0 , (2)

for all ti Ti Qi∈ \ , where Qi i∈Σ  and mi Qi( ) = 0 .

Let B denote the subset of auction mechanisms in M T P I X( , ( ))×  satisfying the

BIC constraints (constraints (1)), and let Γ denote the subset of mechanisms satisfying the

individual rationality constraints (constraints (2)). Thus, B ∩ Γ  denotes the set of rational

BIC auction mechanisms in M T P I X( , ( ))× .

We shall assume that,

[A-4]: the set B ∩ Γ  of all individually rational and Bayesian incentive compatible 

mechanisms is nonempty.

We shall also assume that

[A-5]: the set P I X( )×  contains a probability measure ′ϕ  such that

for each buyer i = 1,2,...,h,

vi ti t i j
I XT i

x d j x qi t i ti( , , , ) ( ( , )) ( | )−×−
′ − ≤∫∫ ϕ 0  for all ti Ti∈ .

Remarks 2

(1) [A-4] is nontriviality assumption: without [A-4] the auction design problem is

uninteresting. [A-4] will be satisfied if, for example, the set X Rh⊂  of potential auction

payoffs contains a vector ′′x  such that for each buyer i = 1,2,...,h,
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vi t j x( , , )′′ ≥ 0  for all ( , )t j T I∈ × .

To see that this implies that B ∩ Γ  is nonempty let ′′ ∈ ×ϕ P I X( )  be a probability measure

such that ′′ × ′′ =ϕ ( { })I x 1 and consider the auction mechanism that selects the probability

measure ′′ϕ  for all h-tuples, t, of reported types. Such a mechanism is individually rational

and Bayesian incentive compatible for each buyer. One candidate for the vector ′′x  is the

zero vector. Note that if X does not contain the zero vector, then the zero vector can be

attached to X, via union, without destroying the compactness of X, the upper

semicontinuity of u t( , , )⋅ ⋅ , or the continuity of vi t( , , )⋅ ⋅  for   i h= 1 2, , ,K  and t T∈ .

(2) [A-5] guarantees that the seller has available a "penalty" mechanism. [A-5] will be

satisfied if, for example, the set X Rh⊂  of potential auction payoffs contains a vector ′x

such that for each buyer i = 1,2,...,h,

vi t j x( , , )′ ≤ 0  for all ( , )t j T I∈ × .

Given the "penalty" vector ′x , any probability measure ′ ∈ ×ϕ P I X( ) such that

′ × ′ =ϕ ( { })I x 1 satisfies [A-5]. Some possible candidates for "penalty" vectors are vectors

with large negative components (i.e., payoff vectors that call for each buyer to make a large

payments to the seller). Note that if X does not contain such a penalty vector, then such a

penalty vector can be attached to X (via union) without destroying the compactness of X,

the upper semicontinuity of u t( , , )⋅ ⋅ , or the continuity of vi j x( , , )⋅  for   i h= 1 2, , ,K  and

t T∈ .

5. Main Results

5.1 Theorem (On the K-compactness of the set of rational, BIC auction mechanisms):

Suppose [A-1]-[A-5] hold. B ∩ Γ  is nonempty, convex, and K-compact.

5.2 Corollary (On the K-closure of the set of rational, BIC auction mechanisms):

The µ -equivalence class of auction mechanisms determined by a K-limit,
ˆ ( ) ( , ( ))ϕ ⋅ ∈ ×M T P I X , of a K-convergent sequence of rational, BIC auction mechanisms

contains at least one rational, BIC auction mechanism.



13

5.3 Theorem (On existence):

Suppose [A-1]-[A-5] hold. The seller's auction design problem

max ( | ) ( , , ) ( ( , ) | ) ( )ϕ ϕ⋅ ⋅ ∈ ∩ ×∫∫B u t j x d j x t p
I XT

dtΓ 0 , (3)

has a solution.

6. Proofs

Proof of 5.1

From [A-4] we have that B∩Γ  is nonempty. Convexity follows from the affinity

of Vi t( , )⋅  on P I X( )×  for each i and t.

Consider a sequence of mechanisms { ( )}ϕn n B⋅ ⊂ ∩ Γ . Since M T P I X( , ( ))×  is

K-compact [µ], we can assume without loss of generality that { ( )}ϕn n⋅  K-converges to a

K-limit ˆ ( ) ( , ( ))ϕ ⋅ ∈ ×M T P I X . Thus, for some µ-null set N ∈Σ , ϕ ϕn t t( ) ˆ ( )⇒  for all

t T N∈ \ , where

  
ϕ

ϕ ϕ
n n

n
( )

( ) ( )
⋅ =

⋅ + + ⋅1 L
.

Let

N ti t i T i ti t i N( ) { :( , ) }= − ∈ − − ∈ . (4)

For each i, we have (see Ash (1972), section 2.6)

µ µ µ( ) ( ( )) ( )N iTi
N ti i dti= − =∫ 0 , (5)

so that for some Ni i∈Σ  with µi Ni( ) = 0 ,

µ− =i N ti( ( )) 0  for all ti Ti Ni∈ \ . (6)

Since for each i, µ µ µi Ni i T i Ni T i( ) ( ) ( )⋅ − − = × − = 0  and pi i i<< = × −µ µ µ ,

pi Ni T i( )× − = 0 , for each i = 0,1,2,...,h.

Now define
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h t
if for some i i N ti

otherwise
( )

, ( ( )) ,

,
= − >




1 0

0

µ
(7)

and consider the auction mechanism

ϕ ϕ ϕ( ) ˆ ( ) ( ( )) ( )t t h t h t= ⋅ − + ′ ⋅1 , (8)

where ′ ∈ ×ϕ P I X( ) is the "penalty" measure given in [A-5]. Since ti i N ti→ −µ ( ( )) is

Σi-measurable, h( )⋅  is Σ -measurable, and thus ϕ( ) ( , ( ))⋅ ∈ ×M T P I X . Note that since

ϕ ϕ( ) ˆ ( )t t=  for all t T i Ni T i∈ ∪ × −\ ( ), where the sets Ni  are those given via (5) and (6),

and since µ( )∪ × − =i Ni T i 0 , ϕ( )⋅  and ˆ ( )ϕ ⋅  are in the same µ-equivalence class. Thus,

ϕ( )⋅  is also a K-limit (with respect to the dominating measure µ) of the sequence

{ ( )}ϕn n⋅ . Note also that since pi << µ for each i = 0,1,2,...,h, ϕ( )⋅  and ˆ ( )ϕ ⋅  are in the

same pi-equivalence class for each i.

Let Cin Qin i∪ ∈Σ  denote the subset of ith buyer types (i = 1,2,...,h) such that

pi Cin Qin T i(( ) )∪ × − = 0  and such that for ith buyer types ti Cin Qin∈ ∪  rationality

and/or incentive compatibility may fail to hold under the mechanism ϕn( )⋅  (see (1) and

(2)), and let

Fi n Cin Qin Ni∞ = ∪ ∪ ∪[ ( )] , (9)

where the sets Ni are given via (5) and (6). Since pi Fi T i( )∞ × − = 0,

pi i Fi T i( ( ))∪ ∞ × − = 0 .

For each i and ti Ti Fi∈ ∞\ , we have the following observations:

(a) ϕ ϕ( , ) ˆ ( , )ti t i ti t i− = −  for all t i T i j j i N j T i j N ti− ∈ − ∪ ≠ × − ∪\[( , , ) ( )], where

  
T i j T Ti Ti Tj Tj Th− = × × − × + × × − × + × ×, 1 1 1 1 1L L L .

Moreover, given [A-3], since µ− ∪ ≠ × − ∪ =i j j i N j T i j N ti(( , , ) ( )) 0 ,

qi j j i N j T i j N ti ti(( , , ) ( )| )∪ ≠ × − ∪ = 0 .

(b) Since vi ti t i j x n d j x
I XT i

ti t i qi dt i ti( , , , ) ( ( , ) | , ) ( | )−×−
− − ≥∫∫ ϕ 0  for all n, and 

since ϕ ϕn ti t i ti t i( , ) ˆ ( , )− ⇒ −  for t i T i j j i N j T i j N ti− ∈ − ∪ ≠ × − ∪\[( , , ) ( )], it 
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follows from observation (a), the continuity of Vi t( , )⋅  on P I X( )×  for each i and 

t, and the Dominated Convergence Theorem (see Ash (1972)) that

lim ( , , , ) ( ( , )| , ) ( | )n vi ti t i j
I XT i

x n d j x ti t i qi t i ti−×−
− −∫∫ ϕ

= −×−
− −∫∫ vi ti t i j

I XT i
x d j x ti t i qi t i ti( , , , ) ˆ ( ( , )| , ) ( | )ϕ

= −×−
− −∫∫ vi ti t i j

I XT i
x d j x ti t i qi t i ti( , , , ) ( ( , )| , ) ( | )ϕ

≥ 0.

Thus, by observations (a) and (b), ϕ( )⋅ ∈Γ .

In order to show that ϕ( )⋅ ∈B, we will show that for each i and ti Ti Fi∈ ∞\

vi ti t i j x d j x
I XT i

ti t i qi dt i ti( , , , ) ( ( , ) | , ) ( | )−×−
− −∫∫ ϕ

≥ −×−
′ − −∫∫ vi ti t i j x d j x

I XT i
ti t i qi dt i ti( , , , ) ( ( , ) | , ) ( | )ϕ

for all ′ti  in Ti. (10)

There are two cases to consider.

Case 1: µ− ′ >i Ni ti( ( )) 0 .
Under case 1, ϕ ϕ ϕ( , ) ( , ) ( )′ − = ′ ⋅ ′ − = ′ ∈ ×ti t i h ti t i P I X  for all t i T i− ∈ −  (recall that

h ti t i( , )′ − = 1 in this case -- see (7) and (8) above). Thus, on the RHS of (10) we have

vi ti t i j x d j x
I XT i

ti t i qi dt i ti( , , , ) ( ( , ) | , ) ( | )−×−
′ − −∫∫ ϕ

= vi ti t i j
I XT i

x d j x qi t i ti( , , , ) ( ( , )) ( | )−×−
′ − ≤∫∫ ϕ 0 ,

and since ti Ti Fi∈ ∞\ , by observation (b), we have on the LHS of (10)

vi ti t i j x d j x
I XT i

ti t i qi dt i ti( , , , ) ( ( , ) | , ) ( | )−×−
− − ≥∫∫ ϕ 0.

Thus, (10) holds for case 1.

Case 2: µ− ′ =i Ni ti( ( )) 0.
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Under case 2, ϕ ϕ( , ) ˆ ( , )′ − = ′ −ti t i ti t i  for all t i T i j j i N j T i j N ti− ∈ − ∪ ≠ × − ∪ ′\[( , , ) ( )], and

since µ− ∪ ≠ × − ∪ ′ =i j j i N j T i j N ti(( , , ) ( )) 0 , qi j j i N j T i j N ti ti(( , , ) ( )| )∪ ≠ × − ∪ ′ = 0 .

Also, since ϕ ϕn ti t i ti t i( , ) ˆ ( , )′ − ⇒ ′ −  for all t i T i j j i N j T i j N ti− ∈ − ∪ ≠ × − ∪ ′\[( , , ) ( )], it

follows from the continuity of Vi t( , )⋅  on P I X( )×  for each i and t, and the Dominated

Convergence Theorem that

lim ( , , , ) ( ( , )| , ) ( | )n vi ti t i j
I XT i

x n d j x ti t i qi t i ti−×−
′ − −∫∫ ϕ

= −×−
′ − −∫∫ vi ti t i j

I XT i
x d j x ti t i qi t i ti( , , , ) ˆ ( ( , )| , ) ( | )ϕ

= −×−
′ − −∫∫ vi ti t i j

I XT i
x d j x ti t i qi t i ti( , , , ) ( ( , )| , ) ( | )ϕ .

By observations (a) and (b), since ti Ti Fi∈ ∞\ ,

lim ( , , , ) ( ( , )| , ) ( | )n vi ti t i j
I XT i

x n d j x ti t i qi t i ti−×−
− −∫∫ ϕ

= −×−
− −∫∫ vi ti t i j

I XT i
x d j x ti t i qi t i ti( , , , ) ˆ ( ( , )| , ) ( | )ϕ

= −×−
− −∫∫ vi ti t i j

I XT i
x d j x ti t i qi t i ti( , , , ) ( ( , )| , ) ( | )ϕ .

Finally, since for all n, ϕn B( )⋅ ∈ ,

vi ti t i j
I XT i

x n d j x ti t i qi t i ti( , , , ) ( ( , )| , ) ( | )−×−
− −∫∫ ϕ

≥ −×−
′ − −∫∫ vi ti t i j

I XT i
x n d j x ti t i qi t i ti( , , , ) ( ( , )| , ) ( | )ϕ ,

for all n. Taking limits on both sides of the inequality above,

vi ti t i j
I XT i

x d j x ti t i qi t i ti( , , , ) ( ( , )| , ) ( | )−×−
− −∫∫ ϕ

≥ −×−
′ − −∫∫ vi ti t i j

I XT i
x d j x ti t i qi t i ti( , , , ) ( ( , )| , ) ( | )ϕ .

Thus, (10) holds for case 2. Q.E.D.

Remarks 3
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The mechanism, ϕ( )⋅ , defined in (8) above imposes a penalty, ′ ∈ ×ϕ P I X( ), on all the

buyers if any one buyer tells a mathematically inconvenient lie concerning his type.

Assumption [A-5] guarantees that such a penalty is available, and assumptions [A-3] (2)

and (3) (i.e., the assumptions concerning the dominating measure µ) guarantee that these

mathematically inconvenient lies can be detected under the conditions of incomplete

information prevailing in the auction.

Proof of 5.3

Let

U B u t j x d j x t p
I XT

dt= ⋅ ⋅ ∈ ∩ ×∫∫sup ( | ) ( , , ) ( ( , ) | ) ( )ϕ ϕΓ 0 .

Since the seller's payoff function, u( , , )⋅ ⋅ ⋅ , is p0-integrably bounded, U  is finite. Let

{ ( )}ϕn n B⋅ ⊂ ∩ Γ  be a sequence of auction mechanisms such that

u t j x n d j x t p
I XT

dt U( , , ) ( ( , ) | ) ( )ϕ 0×
→∫∫ .

Since B∩Γ  is K-compact [µ], we can assume without loss of generality that { ( )}ϕn n⋅
K-converges to a K-limit ϕ( )⋅ ∈ ∩B Γ , and since p0  << µ , we can conclude that

ϕ ϕn( ) ( )⋅ ⇒ ⋅  a.e. [ p0 ], where

  
ϕ

ϕ ϕ
n n

n
( )

( ) ( )
⋅ =

⋅ + + ⋅1 L
.

Also, since

u t j x n d j x t p
I XT

dt U( , , ) ( ( , ) | ) ( )ϕ 0×
→∫∫ ,

1
0

1
n

u t j x k d j x t p
I XT

dt
k

n
U( , , ) ( ( , ) | ) ( )ϕ

×
=

→∫∫∑ .

Thus, u t j x n d j x t p
I XT

dt U( , , ) ( ( , ) | ) ( )ϕ 0×
→∫∫ .

For each t T∈  and ϕ ∈ ×P I X( ), let

U t u t j x d j x
I X

( , ) ( , , ) ( ( , ))ϕ ϕ=
×∫ . (11)
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By Lemma 1.5 of Nowak (1984), U t( , )⋅  is upper semicontinuous on P I X( )×  with

respect to the (metrizable) topology of weak convergence of measures for each t, and by

Lemma 1.6 of Nowak, U( , )⋅ ⋅  is Σ × ×B P I X( ( ))-measurable (see also chapter III in

Dellacherie and Meyer (1975)). Thus, for any mechanism ϕ( ) ( , ( ))⋅ ∈ ×M T P I X , the

function t U t t→ ( , ( ))ϕ  is Σ-measurable, where

U t t u t j x d j x
I X

t( , ( )) ( , , ) ( ( , )| )ϕ ϕ=
×∫ . (12)

Next, ϕ ϕn( ) ( )⋅ ⇒ ⋅  a.e. [ p0 ] implies via the upper semicontinuity of U t( , )⋅  on

P I X( )×  that limsup ( , ( )) ( , ( ))n U t n t U t tϕ ϕ≤  a.e. [ p0 ]. Since the seller's payoff

function, u( , , )⋅ ⋅ ⋅ , is p0-integrably bounded from above, it follows from Fatou's Lemma

(see Ash (1972)) that

limsup ( , ( )) ( ) limsup ( , ( )) ( )n U t n t
T

p dt n U t n t
T

p dtϕ ϕ∫ ∫≤0 0 .

Thus,

limsup ( , ( )) ( ) ( , ( )) ( )n U t n t
T

p dt U U t t
T

p dtϕ ϕ∫ ∫= ≤0 0 ,

and since ϕ( )⋅ ∈ ∩B Γ ,

U t t
T

p dt u t j x d j x t p
I XT

dt U( , ( )) ( ) ( , , ) ( ( , ) | ) ( )ϕ ϕ∫ ∫∫=
×

=0 0 . Q.E.D.

Remarks 4

(1) The seller will hold the auction if and only if it is rational for him to do so. This can

be formally expressed as follows. Suppose ϕ( )⋅ ∈ ∩B Γ  solves the seller's auction design

problem given in expression (3) above. Then the seller will hold the auction if and only if

the optimal mechanism ϕ( )⋅  is such that,

u t j x d j x t p
I XT

dt( , , ) ( ( , ) | ) ( )ϕ 0 0
×

≥∫∫ .
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(2) In the introduction we stated that ... not all the mechanisms contained in the

equivalence class determined by the K-limit of a K-convergent sequence of rational, BIC

auction mechanisms are BIC. In order to see why this is the case, consider the following:

Let { ( )}ϕn n B⋅ ⊂ ∩ Γ  be any sequence of mechanisms. Since M T P I X( , ( ))×  is K-

compact [µ], we can assume without loss of generality that { ( )}ϕn n⋅  K-converges to a K-

limit ˆ ( ) ( , ( ))ϕ ⋅ ∈ ×M T P I X . Thus, for some µ-null set N ∈Σ , ϕ ϕn t t( ) ˆ ( )⇒  for all

t T N∈ \ , where

  
ϕ

ϕ ϕ
n n

n
( )

( ) ( )
⋅ =

⋅ + + ⋅1 L
.

As in the proof of Theorem 5.1, let

N ti t i T i ti t i N( ) { :( , ) }= − ∈ − − ∈ . 

For each i, we have

µ µ µ( ) ( ( )) ( )N iTi
N ti i dti= − =∫ 0 , 

so that for some Ni i∈Σ  with µi Ni( ) = 0 ,

µ− =i N ti( ( )) 0  for all ti Ti Ni∈ \ . 

Since for each i, µ µ µi Ni i T i Ni T i( ) ( ) ( )⋅ − − = × − = 0  and pi i i<< = × −µ µ µ ,

pi Ni T i( )× − = 0 , for each i = 0,1,2,...,h.

Now let Cin Qin i∪ ∈Σ  denote the subset of ith buyer types (i = 1,2,...,h) such

that pi Cin Qin T i(( ) )∪ × − = 0  and such that for ith buyer types ti Cin Qin∈ ∪
rationality and/or incentive compatibility may fail to hold under the mechanism ϕn( )⋅  (see

(1) and (2)), and let

Fi n Cin Qin Ni∞ = ∪ ∪ ∪[ ( )] , 

where the sets Ni are given via (5) and (6). Since pi Fi T i( )∞ × − = 0,
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pi i Fi T i( ( ))∪ ∞ × − = 0 .

In determining whether or not the K-limit ˆ ( )ϕ ⋅  is Bayesian incentive compatible, a

problem arises if for the ith buyer with true type ti Ti Fi∈ ∞\ , there is a type, ′ti  in Ti, that

the ith buyer can report such that qi Ni ti ti( ( ) | )′ > 0. To see why there is a problem

consider the following:

Since { ( )}ϕn
n B⋅ ⊂ ∩ Γ , we have for each n,

vi ti t i j
I XT i

x n d j x ti t i qi t i ti( , , , ) ( ( , )| , ) ( | )−×−
− −∫∫ ϕ

≥ −×−
′ − −∫∫ vi ti t i j

I XT i
x n d j x ti t i qi t i ti( , , , ) ( ( , )| , ) ( | )ϕ .

(*)

Moreover, since ti Ti Fi∈ ∞\  taking the limit on the left hand side (LHS) of (*) we obtain

lim ( , , , ) ( ( , )| , ) ( | )n vi ti t i j
I XT i

x n d j x ti t i qi t i ti−×−
− −∫∫ ϕ

= −×−
− −∫∫ vi ti t i j

I XT i
x d j x ti t i qi t i ti( , , , ) ˆ ( ( , )| , ) ( | )ϕ .

However, because qi Ni ti ti( ( ) | )′ > 0  and because K-convergence may fail to hold for

types t i−  in Ni ti T i( )′ ⊂ − , the limit on the RHS of (*),

lim ( , , , ) ( ( , )| , ) ( | )n vi ti t i j
I XT i

x n d j x ti t i qi t i ti−×−
′ − −∫∫ ϕ ,

may not equal

vi ti t i j
I XT i

x d j x ti t i qi t i ti( , , , ) ˆ ( ( , )| , ) ( | )−×−
′ − −∫∫ ϕ .

Thus, we cannot conclude that

vi ti t i j
I XT i

x d j x ti t i qi t i ti( , , , ) ˆ ( ( , )| , ) ( | )−×−
− −∫∫ ϕ

≥ −×−
′ − −∫∫ vi ti t i j

I XT i
x d j x ti t i qi t i ti( , , , ) ˆ ( ( , )| , ) ( | )ϕ ,
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and thus we cannot conclude that the K-limit mechanism ˆ ( )ϕ ⋅  is Bayesian incentive

compatible. Note that if qi Ni ti ti( ( ) | )′ = 0 , there is no problem - we have

lim ( , , , ) ( ( , )| , ) ( | )n vi ti t i j
I XT i

x n d j x ti t i qi t i ti−×−
′ − −∫∫ ϕ

= −×−
′ − −∫∫ vi ti t i j

I XT i
x d j x ti t i qi t i ti( , , , ) ˆ ( ( , )| , ) ( | )ϕ .

Thus, taking limits on both sides of (*), we obtain

vi ti t i j
I XT i

x d j x ti t i qi t i ti( , , , ) ˆ ( ( , )| , ) ( | )−×−
− −∫∫ ϕ

≥ −×−
′ − −∫∫ vi ti t i j

I XT i
x d j x ti t i qi t i ti( , , , ) ˆ ( ( , )| , ) ( | )ϕ ,

and we can easily conclude that ˆ ( )ϕ ⋅  is Bayesian incentive compatible.

Note that if we use the K-limit mechanism ˆ ( )ϕ ⋅  and the penalty measure ′ϕ  to

construct a new mechanism ϕ( )⋅  given by

ϕ ϕ ϕ( ) ˆ ( ) ( ( )) ( )t t h t h t= ⋅ − + ′ ⋅1

where

h t
if for some i i N ti

otherwise
( )

, ( ( )) ,

,
= − >




1 0

0

µ

(as we did in the proof of Theorem 5.1) then the resulting mechanism is contained in the

µ -equivalence class determined by the K-limit ˆ ( )ϕ ⋅  and is rational and Bayesian incentive

compatible. Thus, by constructing the mechanism ϕ( )⋅  we avoid altogether the problem

caused by the possibility that for some buyer i with true type ti Ti Fi∈ ∞\  there is a type ′ti
such that qi Ni ti ti( ( ) | )′ > 0 .

(3) The auction model and the existence result presented here can easily be extended to

other auction settings. For example, by replacing X Rh⊂  with a compact metric space of

state-contingent contracts, we can conclude from our existence result that there exists an

optimal Bayesian mechanism for contract auctions with risk averse participants. We can
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also modify our model so as to treat auctions in which payoffs are awarded to coalitions.

Finally, we can use our model to extend to an incomplete information setting the basic

theory of all-pay auction (e.g., Baye, Kovenock, and De Vries (1993)).  
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