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Perforrnance of Delta: hed~ing strategies in Interval
~Iodels - A robustness study

F3erencl Roorda' Jacob Eugwerdat ffans Schumacherl

Abstrnct

In this paper we study the pricing o[ financial derivatives in a risky discrete-time world.

We assume that price changes ot the underlying a.aet may take any value in an interval,
rather than just two values as in the binary tree model. Arbitrage arguments are used
to derive an upper and lower bound [or the option price, and the well-known Stop-loss
and Delta-hedging strategies are given particular interpretations in this context. A
robustness study is per[ormed to analyze the effect o( a misspecification o[ the interval
bounds on the worst-case costs that may arise.

lCeyu~ords: Option Pricing; Limited VolatiGty; Detta-hedging; Binary tree; 1lartingale

measure.

JEl. Clasatfiration: G11;G13.

1 Introduction

Arbitrage pricing of financial derivatives is based on the Cact that, within a given tnodel rep-

resenting a complete market, all risk can be eliminated by the selection of a suitable hedging

strategy. Risk, however, returns through doubts on the model assumptions thernselves. This

motivates robustness sledies, in whích the sensitivity of results with respect to changes in
the model assumptions is analyzed. In partícular the effects of alternative assmnptions on

the volatility have beett investigated extensively [e.g. Dufïie and Skiadas (1994), Karoui aud

Quenez (1995), n4cEneaney (1997)].

In this paper we take the well-known binary tree model [Cox et aL (1979)] as our starting

point. We represent possibly time-varying uncertainty about volatility by means of intert~al

models, in which the proportional price changes ot the w)derlying asset are allowed to take

any value in an inten'al, rather than just two values as in the binary tree model. Of course

the resulting model is not complete and so there is no uniquely detennined option price;

we will show, howecer, that arbitrage arguments still imply an upper and lower bound for

the option price. Interval models have been used before in a sequence of papers [Ilowe et

al. (1994, 1996, 1997)] in which optimal'minimax' algorithms have been derived. In these

papers the optimization takes place however ovet just one or two time steps; here we refrain

from optimization but rather derive minimax bounds for profits and costs Lhat are valid over

the full life time of the derivative.
In this way we translate uncertainty about the E31ack-Scholes model assumptions, which

underlie a binary tree model, to a single interval model Ihat contains a substantially wider

'Uept. of Econnmics. Tilburg University, F'O Box 90153, SWO LE Tilburg, the Netherlands. F'hone:
}3I1.3-d6fi2U61. Fax: }3113466328U. ~mail: roorda~Akuó.nl. This research is supported by the Economics
Fiesearch Cluster (ESR, nr. 510-01-00251, which is part o( the Netherlands Organization (or Scientific

Hesearch (NR'O).
tDept. u( Economics, "Filburg Unirersity.
t C W I, Kruislaan 4I3, 1098 SJ Amsterdam, the Netherlands, and Dept. o( Economics, Tilburg University.
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variety of price paths. This is im m~trast with the more usual approach of parameter

variation, in which also the lypes of price paths is extended, but not their numóer in a single

model.
Part o[ our motivation Cor considering interval models comes from control theory. In recent

years an extensive theory of robust control has been developed (see for instance [Doyle et

al. (1989), Vidyasagar and Kimura (1986), Zhou et aL (1996)], and [Caravani (199~)] for an

application in etonomics), which addresses the problem of finding feedback strategies that

have acceptable performance over a range of possible models. In this mntext, disturbances

and perturbations are often modeled as unknown but bounded. Although the robustness

analysis in the present paper is restricted to the Delta-hedging strategies that are standard

in the financial industry, on a longer term the authors aim at designing robust hedging

strategies on the basis of inethods that take inspiration (rom the robust control theory.

The results of this paper can be summarized as follows. For a given interval model, we

compute the arbitrage-free interval of option prices. The well-known Stop-loss and Delta-

hedging strategies are given partitular interpretations within the interval model. ~Ye then

proceed to a robustness investigation of Delta-hedging strategies, by comparing the perfor-

mance of such strategies on a range ofinterval models. Delta-hedging as in a binary model

with jumps Lhat are at least as large as those in the interval model is found to lead to a

safe position and to a rather high option price quote. Lower price quotes are obtained from

Delta-hedging based on a binary model whose jumps ate included in the interval allowed

by the interval model; however, the position now has risk. It turns out that the risk of

such undet-hedging strategies as measured in an interval model can be substantially higher

than would be in(erred from a tree model corresponding to the interval end points. [n other

words, not always are the extreme jumps Che ones that hurt the most.

2 Preliminaries

2.1 Binary ~ee Models

Our starting point is the well-known binary tree model for option pricing [Cox et aL (1979),

Hull (1993)]. We take discrete time points t~ - j Tti.where T denotes the time to expiry. N'e

consider a single underlying asset 5; the price of this asset at time t~ will be denoted by S~.

An asset price patA is a sequente

(1) S- {.So,...,SN}.

The initial price So will be fixed throughout the discussion. The binary tree model postulates

the following structure in price paths:
S~ f ~ - uSj

S~ ~ t - dS~

Here u and d are the proportional jump factors. The set of all price paths in a binary tree

are denoted by

(2) 18v~d -{S~S~tt E{dS„uSi} tor j-0,...,N- 1},

where it is understood that all paths start at one and the same initial price So.

Under the assumption of frictionless markets and constant interest rates, the binary tree

model gives sufficient information for option pricing by a no-arbitrage argument. Through-

out the paper we shall consider the pricing of European call options; this is just to be specific,

and the analysis could be carried out Cor other European-style derivatives.
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"The binary tree model shares many parameters with the standard Black-Scholes rnodel

based on the continuous time geometric Brownian motion (GBD1) model [e.g. Hull (1993)].

Common parameters include the initial price Sa, the time to expiry T, the exercise price X

and the interest rate r. However, the role of volatility parameter a in the GB~1 model is

assumed in the binary tree model by the jump factors u and d, togethcr with the number
oC time steps N. In the discussion below we shall keep N fixed, and enforce a one-to-one

relationship between jump (actors and option price by imposing the constraint d- l~u.
Moreover, we prefer to parametrize tree models in lerms of implied volatility o rather than

directly in terms of the jump factors. Therefore we define

(3)

Igo denotes the symmetric binary tree model that yields exattly the same
arbitrage-free price fot a European call option as is produced by the continuous

time Black-Scholes model with volatility o. This price is denoted by fo. The

corresponding up- and downward jump factors in the binary tree model are
denoted by resp. uo and do :- l~uo. In particular, vo - I and fo -[Sp-X]t.

We remark that tor small time step h, uo is approximately given by the well-known formula

uo ti e'~.
We take the interest rate r equal to zero for simplifying the presentation; with some increase
of complexity of notation, the development below can be carried out also for nonzero (but

tonstant) interest rate.

2.2 Interval Models

The interval model is a modification of the binary tree model in which the telative price
change in one step is restritted to an interval rather than to just two values. In other words,

for a given asset S, with some given initial price So, the model restricts its price paths to

(4) Il"'e :- {S~Sitt E[dSi, uSi] for j - 0, ..., N- 1}.

This is depicted below.

Si .----~~

uSi

Sitr-vSj,dGvGu

1 dSi

The model parameters u and d denote respectively the maximal and minimal growth factor

over one time step. Again we focus on symmetric models, with d - l~u, and in analogy
with (3) we define Il' as the interval model with parameters uo, lwo, i.e.,

(5) po - Il~s.t~n.

Here o can be interpreted as the maximal volatility. Notite that an interval model contains

all price paths of a binary tree with the same parameters, and in addition all interior paths.

'These interior paths contain all binary tree paths corresponding to smaller vt, but also paths

with time varying jumps.
We would like to stress that interval models have a much more convincing intrinsic motiva-

tion than binary trees, which are oíten viewed as mere computational tools in the continuous

time Black-Scholes theory. The hypothesis that tomorrow's prites are in some (well-thosen)

interval can be taken seriously on its own, unlike the claim that there are just two possible

r It ia obvious and emily proved that uo s a strictly increasing function o( o.
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outcomes as iu hinary trees. "fherefore there is no strict need to 'let the stepsize go to zero'

(which is anyway not straightforward in interval models), and we will even consider 'one

step' interval tnodels.

3 Hedging and Arbitrage in Interval Models

3.1 Hedging Strategies

Lincertainty about the future asset prices induces risk for the writer of an option. In com-

plete markets this uncertainty can be squeezed out by hedging strategies,leading to a fixed
arbitrage-(ree option price. In this section we analyze the effect of hedging in incomplete

interval models.
Since we consider ( European) call options C with exercise price ,l' at time T, the final value

of the option will be

(6) [S,v - ~~t

~~'e consider portfolios consisting of one call option and a certain ( in fact negative) fraction
of assets, P- C- ryS. A stmtegy is a rule for determining these Gactions for future time
instants on the basis oí asset price levels. Formally we define a strategy g as a sequence of
functions {gn,...,gN-t} that are causal2 in S, assigning to each price path a sequence of
portfolios Pi - C- y~ S, with yi :- gi (So, .--, Si ) for j- 0, ...,.N - 1. Causality is quite
essential for the theory, and an obvious restriction in practice.
Trivial examples of strategies are taking a'naked' or 'covered' position, which amounts to

taking respectively gi - 0 and gi - 1 during the complete contract period. The correspond-

ing costs are given by [Sw -,l')f and [S.v --N)} -(S~,v - So), which is in most situations

tonsidered as an unacceptable risk.
Much better results can be obtained by smarter strategies thaL depend on prices and time.

Two strategies will play a tentral role in the sequeL The first is the so-called Stop-loss

strategy gSL, which takes

9j~(Si)-OifSjG,~'

(~) gi ~(Si) - 1 iCS, ~ X,

which amounts to a covered position as soon as the option is in the money. Notice that this

simple strategy does not depend on the model parameters.
The second strategy is the Delta-hedging strategy, which has already been mentioned in
the context oC binary trees and GB!VI's. It is designed in such a way that it yields certain
outcomes for all price paths in binary trees. The strategy is most easily expressed in terms
of backward recursions. For easy reference we use the symbol ~ for the strategy function.

~.v-t(Sn~-t)- ( u-d),gN t
~i(Si) - a~ift(uSi) t (1 - a)Ditt(d5i)

[uS,v-t - t~]t - [dSN-t - t]f

with a:- u 1-d t. It is a matter of straightforward calculation that this strategy indeed

yields the same outtome of costs along all paths in the binary tree llro" d.

Notice that on the trivial range of prices that cannot cross the exercise level anymore,

(1O) SN-7 G.,~u~ or SN-j J t,df,

Delta-hedging coincides with the Stop-loss strategy, while within these boundaries the out-
come of Delta-hedging is in between 0 and 1.

zSo g~ may only depend on information that is available a[ time t~, such as the realized aaset pricen
So,..., S~, the time to maturíty T- t~, and the exercise price .X. It is independent of S~;t,. ., SN.
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Delta-hedging for the bínary tree ~ is denoted as .1', so

~' is defined as in (9), with parameters u, d eyual to vo, l~ue

3.2 Cost Intervals

A strategy determines for each asset price path S- {So, .. ., Sw} a sequence of portfolios

P~ - C- ry~ S. Notice that }~ is the outcome of the strategy for an outcome of price paths,

hence tomparable to a yet unknown realization of a stochastic variable. The corresponding
(also unknown) cost is the final pay-off plus the cost of trading. For a fixed strategy g this

is given by

(1~) Qr(5) :- ~Srv - r~~ - Ejolryi(Sitl - Si)

The first term denotes the cost of the call option ( without compensating premium, which is

still to be determined), and the latter term is due to hedging.

Now the cost range of a strategy is simply the set o( all possible outcomes of the costs for a

given initial price,

(13) la .- sÉr..:19(S)

It turns out that the cost range is always an interval, no matter which strategy is chosen.

PRONOSITION 3.1

The cost range I9 is a(not necessarily closed) interval tor all interval models under all

strategies. For strategies that are continuous (in price paths) the cost interval is closed.

For a proof we refer to the Appendix.
A worst~best case price path is a price path for which the maximum~ minimum costs are

achieved. Discontinuous strategies may have no such price paths, but in numerical simula-

tions this does not matter too much as there still exist worst and best cases for every desired

level of finite precision.
Notice that if (i) no other information is available on asset prices than the intervat model

restrictions, and (ii) costs are the only criterion, then the cost of worst and best cases give

full information on the perlorrnance of a strategy.
This means a substantial simplification with respect to binary tree models, which have in
general a cost range consisting of N isolated points.

3.3 Arbitrage Intervals

Once a modelfor underlying asset prices has been adopted, arbitrage arguments put hard

bounds on option prices. The assumption that prices follow a GBD(, or follow paths in a
binary tree, even pins down the price to just one value fo, with o the volatility in the GBM

and fo defined as in (3).
For interval models the arbitrage argument is eyually convincing, but less power(ul, and turns
out to leave room for an interua! of arbitrage-Cree prices. In this section we describe this
aróitrage interr~al and the corresponding strategies. In Section 3.4 we give an interpretation
in terms of martingale measures, as they have become standard in arbitrage theory.
An arbitrage opportunity is the possibility of making a sure profit3. This results in the
following definition.

DEFINITION 3.2

The arbitrage-(ree ínterval of an interval model is the intersection ot cost intervals over all

strategies, lll9.
9

~or, eyuivalently, a sure loas, as this always implies a sure profit (or the counterparty.
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This can be interpreted as the interval of arbitrage-(ree option premiums. [ndeed, if there

would exist a strategy g for which an option premium lies outside the cost interval 19, this

strategy leads to a sure gain ( for all price paths in the model) Cor either the writer or the

holder of the option.
The following main result describes the arbitrage bounds and the corresponding strategies.

Ttteottent 3.3
Let f denote the premium for a European call option on an underlying asset that follows
prire paths in the interval model Q".

]. The unique strategy with lowest worst-case costs is the extreme Delta-hedging strategy
p', cf ( 11). This lowest upper bound is the Black-Scholes prire fo of the option as

defined in (3), and is achieved for all price paths with extreme jumps over each time

step, i.e., for all price paths in 1B' .

'l. The unique4 strategy with highest best-case costs is the Stop-loss strategy (7). This

highest lower bound is fo - [So -,~~]} and is achieved for all price paths that do not
cross the exercise price 1'.

3. The premium f is arbitrage free if and only if f E[Jo, Jo].

For a proof we refer to the Appendix.
1Ve remark that the results also apply to asymmetric interval models ( with d~ 1)u), if Jo
is replaced by the arbitrage-free price in the binary tree with the parameter values u and d.

The proo( is completely analogous.
The result can be interpreted as follows. Interval models limit volatility ( without assuming

it to be constant). Hedging under the assumption that the maximum volatility will occur

determines the maximum arbitrage-free price, and hedging based on zero volatility (then
Stop-loss and Delta-hedging coincide) gives the mininwm arbitrage-free price. Notice that

for each single strategy the cost interval exceeds the arbitrage interval, so every strategy

involves extra uncertainty besides the arbitrage interval. Further observe that arbitrage free

prices must consist of the intnnsic value of the option (Jo) plus a fraction of its time value

(fo - Jo).
While in the GBM and binary trees arbitrage arguments force one price and one strategy

(at least theoretically), arbitrage in interval models only yield limits for the price and does

not dictate one strateg,v. This is not only the weakness of the approach but also its strength.

The freedom left by arbitrage opens the way to atcomtt for other obvious elements in option
pricing, such as risk-attitudes and the difference between a long and short position. This

can be done within the context of arbitrage, and not only after denying the original model

assumptions, as is the case Cor Black-Scholes and binary tree models.

3.4 Martingale measures

Arbitrage theory is nowadays often developed on the basis oí martingale measures. It tnay be

clarifying to interpret the previous results from this perspective. In the absence of interest

rates, martingale measures relate to stochastic price models in which the expectation of

future prices is simply the current prices. Interval models can be colored with probability

by assigning a distribution for price jump factors in the intenal [d, u] (which may depend

on time and past and current price levels). A martingale measure Q has the property that

for positive k, E4(Sj~k~S~,Sj-1,.. - ,So) - Sj. For a given interval model we only consider

martingale measures that assign probability one to the class of paths that belong to the

model.

~ In (act there is some freedom for nt tAc moneq situations (with X - S~ for some j), es lhen every 7
between 0 and I yields the same lower bound

SAccountiug for interest ratea is just a matter of a proper discounting of pricea.
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The crucial property of martingale measures is that the expectation of costs cannot be influ-

enced by strategies. Indeed, with y~ the outcome of an arbitrary ( by definition non anticipat-

ing) strategy at time t~, we have that for positive k, F,Q(y~(S~~r -Sj)~S~,S~-r,...,So) - 0,

so the expected costs of writing an option equals (cf. (12))

(19) EQQ9(S) - E4([SN - X]}),

which is just equal to the expected value of an uncovered option under the same martingale

measure.
In complete markets there is a unique martingale measure, and under appropriate hedging
costs are certain and ( hence) equal to the expected value of the option. For example, the
unique martingale measure for the binary tree I~~d has independent jumps with probability
~-á (or jump factor u and complementary probability "-á for d.

In incomplete markets as represented by interval models, arbitrage-free prices still can be

given the interpretation of expetted values under martingale measures. These measures,

however, are no longer unique and in general do not allow for a sure outcome of costs under

any hedging strategy. A particulatly simple martingale measure is the uniform distribution

on jumps for interval models II" d with d - 2- u~ 0. For symmetric interval models D'

with extreme jump factors d- l~u„ u- uo (cf. (5)), a family of martingale measures

is obtained e.g. by assigning at time t~ probability 0 G m~ G 1 to jump factor 1, and

probabilities ~~~~ and 1 ~-J to respectively the extreme factors d and u, where mi may

depend on (So, .-., Sj ). A'piecewise uniform' martingale measure on jump factors v is the

one with densities ~ and "~ for respectively d G u G 1 and 1 G v G u. The next

theorem lists some basic results on the relation between martingale measures and arbitrage-

Cree option prices in an interval model. We tall a probability measure degenernte if it restricts

price paths almost surely to a finite set.

THEOREM 3.4

Let be given an interval model II"~" for asset prices, and let [fm;n, fine.] denote the corre-

sponding interval of arbitrage-free prices (or a European call option with exercise price ,l'.

In particular, [fm;", finex] - [fo, Ío] for symmetric models II", with u- uo, d- l~uo (d

Theorem 3.3).

1. Under every martingale measure, the expected option value is an arbitrage-free price.

2. Every arbitrage free príce is the expected option value under some martingale measure.

3. .4 martingale measure leads to e.rpected option value fm;n if and only if it prohibits

the asset price to cross the exercise level 1. Costs are certain then under the Stop-

loss strategy. .4n example is given by the (degenerate) martingale measure Q`"'" that

assigns probability one to jump factor 1, implying constant price paths. This is also the

unique martingale measure with expected option value fm;n for at-the-money options.

4. There exists a unique rnartingalemeasure Qm" for which fn,ex equals the expected

option value. Qm"' is degenerate, assigns probability ~-d to jump factor u, and

probability ~-d to d. Under Qm"r II"~a reduces to the binary tree 111R"~d, and the

Delta-hedging strategy (9) yields certain costs fmax.

For a proof we refer to the Appendix.We remark that for expected costs f E(fm;n,fma.),
martingale measures are highly non-unique, need not be degenerate, and may have positive

continuous probability density for jumps in [d, u].

3.5 One-step models

As an illustration oC the previous results arbitrage intervals are depicted in Figure 1 for
models with just one time step. A strategy for this simple case amounts to choosing a real
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Pigure 1: Arbilrage intervals in one-step models.

So -~

The thick Gnes correspond to the arbitrage interval in the interval model II"'", as tunction

o( the initial price So, with upper bound Jo - ~-á(uSo -.~~) and lower bound [So - X]4

The Lhin lines with discontinuity in So -.Y denote the worst-case costs [or the Stop-loss

strategy, the curved Gne below denotes the best-case costs under the Delta-hedging strategy.

p", which are given by "' t;,Xd ~-á X.[n addition, [or both strategies one cost intetval is

depicted, [or Delta-hedging with an initial price below .C, and [or Stop-loss with an initial

price So 1 X

number 7 in a portfolio C- yS, independently of the outcome of St. The given (ormulas

ïollow from simple calculations.
The left-most and right-most regions correspond to trivial situations in which it is certain

that the option will not be exercised (uSo 5-~) or always will be exercised (dSo ~,C).

Notice that then Delta-hedging and Stop-loss both have resp. y- 0 or ry- 1. The

corresponding arbitrage interval then reduces to one poínt, and this certain outcome of

costs determines the option premium.
Worst cases for Delta-hedging are St - uSo or St - dSo, while minimal costs are achieved

(or St - X. For Stop-loss this depends on whether the option is in~at the money or out

of the money. In the first case (X ~ So), the worst case has St - uSo, in the second case

(with X G So), St - dSo. Best cases under Stop-loss are achieved for all price paths that

do not cross X. Notice that St -.~ is a common worst case (or both strategies, while either

Sl - uS'o or St - dSo is a common best case. This implies that weighted combinations of

these strategies give weighted combinations of cost intervals. Ceneralization of this result

to models with more than one step is under current investigation.

4 Robustness Analysis

Our starting point for the robustness analysis is a ( European call) option on an underlying

asset with volatility o under corresponding Delta-hedging. So we first assume the asset

price to follow paths in the binary tree t~ , and hedge against the costs of the written option

according to strategy ~", d. ( 11). Under these assumptions a certain outcome of costs is

enforced equal to fo.
We analyze the sensitivity of these costs for a change of assumptions on the assets volatility,

in three respects. First we relaz the assumption of constant volatility and consider the

d



nominal volatility as just an upper hound. Setondly we consider over-hedging, when the

actual bound on volatilit}' is smaller. Finally we consider under-hedging, in which case the

presumed maximunt volatility is too low. This amounts to replacing the nominal model ~

by

. G' in the 'limited volatility' case,

. Q' (and ~` ) with r G o for over-hedging,

. II' (and IIfB' ) with r~ o for under-hedging.

In the next three subsections we describe some general results on the sensitivity oC costs with

respect to these model changes, and we conclude the section by a rather extensive numerical

example.

4.1 Limited Volatility

As the nominal situation we consider a binary tree lll8', a corresponding Delta-hedging strat-

egy 0', and the resulting arbitrage price of the option fo. This price equals the costs for

all paths in the binary tree IIB' .
Now suppose the votatility may drop below o and need not be constant over time. This is

accounted for by considering, in addition to the binary' tree paths in l~ , also interior paths

in the interval model Q', which may have smaller jumps at any moment. The outcome of

costs for these interior paths need not be equal to fo, and the question arises how large this

difference can be.
Notice that for models of one step it is easy to obtain an analytit formula for this effect, cf.

Section 3.5. For u - uo and d- l~uo the cost interval under d' is given by

(15) ~o. - ~(uaSo - ,~)(So - X), fo].
(uo - 1~us)So

Costs may (all to this lower bound in 'quiet' interior paths, with not all jumps at the limits.

This fall is zero for So C X~vo and 50 1 uoX, and has maximum value ~-u-d-a for

So - X. The best-case costs are even smaller than the minimum arbitrage price, and the

diflerence. is the largest for So - X ~f for out o( the money options and So - X~~ for in

the money options.
A second analytic result, valid Cor any number of steps, concerns the worst-case tosts: they

remain equal to fo, as a consequence of Theorem 3.3. So a ( temporarily) fall of volatility

leads to a fall of costs. For multi-step models it is hard to keep track of the analytit formula.

Therefore we only give an impression of the cost interval by the numerical example in Section

4.4.

4.2 Over-hedging

We analyze the performance of the Delta-hedging strategy ~', assuming that the actual

price paths are in Q' with r G v. This means that the actual volatility is below the volatility

for which the strategy is designed. We use the notation

(16) f~s - ~fmin, fmaz~

for the corresponding worst- and best-case costs, and concentrate on fmax.
First observe that

(17) fo 5 Jma. ~ f.,

as C' C~i', while fr is the unique strategy with minimum worst-case costs in II'.

In fact the worst cases in II' have constant maximum volatility r.

J



PROPOSITIOY 4.1

The worst-case price path in Il' under over-hedging.'1o with v 1 r is in 1~.

PROOF For ,N - 1 it is obvious that worst cases are at the boundary of Sl -[d5o, uSo~

with u- u, and d- l~u, and tha[ these worsbcase costs are comex in the initial price.

Similar to the proof of "Cheorem 3.3.1, it can be proved by induction that worst cases have

extreme jumps and remain convex in the initial price for any number of time steps. ~

This implies that, in case of over-hedging, there is no extra loss in interval models as com-

pared to the binary trees. In fact the analysis could take place entirely on the level of binary

trees (or even GBM's), by considering worst-case cost of Delta-hedging based on a too high

volatility.

4.3 Under-hedging

Now we consider the case that the hedge strategy underestimates the vola[ility of assets.

So we analyze the performance of the Delta-hedging strategy ~a, assuming that the actual

price paths are in II' with r~ o.
The analogue of the inequalities (17) is now

(ls) Jo ~ f, ~ Jmox,

as .1' is the unique strategy with minimal worst-case costs in II'.

In contrast with over-hedged options, worst cases in II' under 0' need not have maximum

constant volatility. The next example shows Lhat interval models may cause a substantial

intrease of worst-case costs as tompared to the corresponding binary tree.

Consider an at the money European call option with exercise prite t" - So - 100 at T- 2.

Nominal volatility o is taken such that u, - 6~5 in a two step model, while the actual

maximum volatility has u, - 5~4. This corresponds to o- 0.16 and r- 0.19. Nominal

costs are given by fo - ~oo and the optimal strategy .~r for the actual model would yield

fr - 190.
Worst-case costs in II' under strategy ~' turns out to be fm„ - R75~66 for worst-case
path {So,Si, SZ} -{100,500~6,2500~24}. The worst-case costs in the binary tree D{? equal
fet~ -~i-i for worst cases { 100, 125, 100} and { 100, 125, 625~4}.
Note that the excess of nominal costs in the binary tree I~' is at most fe;,, - fo - i~ , which

may be nearly doubled in II' to fm,. - Jo - 6. The key value in the worst-case path is

Si - 500~6, corresponding to a non-extreme first jump in I['. This is the highest asset price

that maneuvers the optimistic hedge s,o into an uncovered position, thus preparing for large

costs in the second step. This illustrates that replacing the assumption of constant volatility

by limited volatility may increase sensitivity oC costs for under-hedging conaiderably.

4.4 Numerical Example
We consider the worst-case costs for several combinations of nominal and actual volatilities.

As before, nominal volatility is denoted by o, and this determines the hedging strategy

0'. The actual volatility is denoted by r, and this determines the set of price paths under

consideration, II' (and for comparison also I~ ).

Global constants in the example are

initial price So - 100
exercise price X - 100
exercise time T - 1
interest rate r - 0
time step h- 0.1 so N- 10

Think of an option with exercise date one year ofï and adaption of the hedge portfolio every

five weeks. As main reterence point we take ~' - r' - 0.2, which means an annual variance
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of asset prices of 20`70. We consider the worst-case costs o( hedging strategies 0' in the
actual models Q' with o and r ranging over 0.1 to 0.3 (with a grid o( 0.05). Worst cases
are determined by a backward recursive algorithm, according to the principles of dynamic
programming.

Figure 2: Worst-case costs [or ~" in B'.
~

r (in model) o (in hedge)

In the left plot each Gne corresponds to worst-case costs under a fixed strategy ~" (or a

range of interval models, in the right plot every line denotes the worsbcase costa in a fixed

interval model Il' [or a range o[ hedging strategies. The dotted lines denote worst-case costs

in the binary trees ~'z and ]Bo~~, which are not depicted in the left.

As interval models are nested for increasing volatility, worst-case costs for a fixed strategy

must be increasing with r in the leít-hand plot. Both plots also show the optimality o( ,~"

(or II' in case r- o, e.g. for o' at the intersection of the dashed lines. One of the striking

aspects is the asymmetry in over- and under hedging: the loss of under-hedging by Do ~ in

IIo 3 is much larger than the loss of over-hedging by po a in IIo t The dotted lines in the

right-hand plot again illustrate the extra risk of non-constant volatility, especially in case ot

severe under-hedging.

5 Conclusions

We analyzed the robustness of Delta-hedging strategies for varying assumptions on the

actual volatility. We relaxed the assumption of constant volatility (as for price paths in

binary trees), and allowed for time varying, limited volatility in interval models. Arbitrage-

free option prices are not uniyue anymore, but may take any value between the intrinsic

value of the option and its arbitrage price tor constant maximum volatility. This result is

given an interpretation in terms of martingale measures. Further we have shown that under

Delta-hedging for constant maximum volatility, worst-case costs are still most effectively

suppressed and remain at the corresponding arbitrage price, while best case costs may be

much lower or even negative. [f the actual limit on volatility is overestimated in Delta-

hedging, costs are less than expected, but could have been even lower under optimal Delta-

hedging. The most risky case turns out to be the one in which volatility is underestimated.

Worsbcase cost are then higher than expected. Moreover, this excess of worst-case costs
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due to under-hedging is really amplified if non-constant volatility is taken into account. In

a numerical example we gave an impression of yuantitalive aspects of the robustness of

I)elta-hedging. F'urther work will concentrate on developing explicit robustness criteria, and

the role o( strategies different from Delta-hedging.

A Proofs
PnooF oF PaoPOStrtoN 3.1 The proo( is by indudion on N. For N- 1 the costs of a strategy
are given by (St - X]t - 7o(St - So) (or some real number yo - 9o(So), independent of S~. The
costs are continuous ( and piecewise linear) in St. Now for a fixed initial price So, St is restricted
to an interval by the model. Continuous functions map intervals to intervals, so I9 is an interval.
In Iact it is obvious that they are even closed intervals [or N- I.
Nexl assume that the proposition is true for models with less than N steps, and consider the total

cost range I9 in an N step model [or some fixed strategy g. First consider the costs of price paths

{So,...,Sx} with SN - SN-~. It [ollows from the induction hypothesis that the cost range over
all these paths (orm an interval, I' say. Now suppose that there is a reachable cost p E Iv that
does not belong to this interval. By definition, this implies that this cost p is only achievable tor

some price path in the model with v :- Sf,. - SN-1 ~ 0. Now this price paths with Sx replaced by
Sh~-1 } ov belongs to the interval model for all 0 G a C 1. The corresponding costs are continuous
in a, [rom which it (ollows that all costs between 1' and p are (easible, which implies that 19 must
be an interval.
If a strategy is continuous, it induces a cost function that is continuous in the price paths, and as
the set Q".a is compact, in that case the cost function must achieve ils maximum and minimum
value Íor some price paths in Q"'".
An example with a cost interval that is not closed requires N 1 1 and a discontinuous stralegy.
Consider for an arbitrary interval model with two time steps and parameters ( u, d), the strategy g-
{go, gt } with go - 0, and g~ - 0 i( St G uSo, and gt - 1 if St - uSo. Then Q(S) -[Sa -.C]t - Co
(or all price paths with St ~ uSo, and Q(S) -[Sz - X]} - Co -[Si - S~] i( St - uSo. With
u- Sf4, d- 4~5, So - X-]00, the cost range is given by the half-open interval [0, a~ ). O

PBOOF oF TttEOnEmt 3.3 i. The proof is again by induction on the number of steps N. For one-

step models ( N - I), the costs are [St - X]t - yo(Sl - So), with 7o the outcome of lhe strategy,
which must be independent of S~. This is piecewise linear and convex in S~ (or every yo, hence
achieves its maximum at the boundaries S~ - uSo or St - dSo, with u:- ue and d- l~u. In

case uSo C .É, it is optimal ( i.e., it yields the lowest maximum costs) to take 70 - 0, and costs are
0 for every admissible St. In case dSo ?.~~, it is optimal to take 70 - l, and costs are So -.E
for every admissible S~. In all other cases, the costs have opposite sensitivity in both boundary
extremes, and hence it is optimal to choose 7o such that both boundary extremes coincide, i.e.,

70 -(uSo - X)~(u - d)So, which is precisely the rule (or Delta-hedging in binary trees. It (ollows

that the worst-tase costs are the costs under Delta-hedging in the binary tree for N' - 1. Observe
that the costs aze convex in the initial price So.
Now assume that for all models with Iess steps than N, the statement is proved, and in addition,
that the worst-case costs are convex in the initial price. In an N-step model, this implies that for a

given 'initial' price S~ at tt, the strategy ~' yields the lowest worst-case costs, and these costs are
conver in S~.
Then at to - 0 a value for y has Lo be found such that the maximum of costs f(S~ )- 7(St - So)

is as small as possible, with J(S~ ) the worst-case costs for paths starting at tt in St. By induction
hypothesis, J(St ) is convex in St, and hence the optimal value for 7 corresponds to an equal
maximum at the boundaries St - dSo and St - uSo, which is precisely the characteristic oC the

Delta-hedging strategy. Hence the worst-case costs equal the costs o( binary tree price paths under

Delta-hedging, which must equal fs. In order to maintain the indudion hypothesis, notice that fs
is indeed convex in the initial price So.
2. The main lines are the same as in 1. For N- 1 and the nontrivial case dSo C ~t C uSo, the

the best-case costs are achieved for St -.~', and these costs are maximal for 70 - 0 i[ So ~~~ and

70 - 1(or So ~,~ . For So - .l any value in [0, 1] will maximize the best-case costs.

By induction hypothesis, assume that Stop-loss maximizes best-case costs for all models with less
than N steps. In particulaq (or fixed S~ best-case costs are maximized by Stop-loss, and hence

equal [St --t]t. The problem hence reduces to the one-step situation, which has been proved.
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For all price paths that do not cross the discounted exercise price .~, the outcome of lhe strategy

is either holding constantly a naked position (ry~ - 0) or a fully covered option (y~ - 1), and it is
easily verified that in these cases the lower bound of the cost interval is achieved.
3. This is a conseyuence of t and ?. ~

Pflooe OF' TtteofteM 3.4 l. Let f denote the expected value o( the option. As f is the expected
value under all strategies, it must belong lo the cost interval !9 [or any strategy 9, cf. ( 13) and
Proposition 3.1. Hence J E nl9 -[J,,,;,,, J,,,,,], cC Definition :5.2.

9

?. Let Q' be the unique martingale measure tor the scaled binary tree 01"'e with patameters

u„ :- 1 t a(u - 1).d„ :- lfu~, so wíth p(us) - ~~ad . These are martingale measures on ll"'d

[or every n E[0, 1]. The expected option value Ja is continuous in a, and fa - fm;,, for a- 0

and f" - fm,. for a- L Hence every price J E [Jm;,, Jm.,] occurs as ezpected option value under

some martingale measure.
3. If asset prices cannot cross the exercise level, the value of the option at ezercise time effectively

depends linearly on the value o( the underlying asset at exercise time, and so the expected option

value must equal So - X if So ?.~~, and 0 if So C h, under any martingale measure, which

is exactly Jm;,,. Clearly then the Stop-loss strategy ( which now amounts to a constant naked or

covered position) yields certain costs. Conversely, suppose a measure assigns positive probability to

a crossing of the exercise level ,1-. Let j' denote the first time step in which a crossing is possible.

A martingale measure cannot enforce a crossing in any step ( it either entorces constant prices, or

assigns positive probability to both an inerease and decrease o( prices), and hence assigns positive

probability to the set ot paths that cross .l" just once, in step j'. Under stop-loss, the outcome

of costs for all these paths is strictly larger than f,,,;,,: for oubo[-the-money options, costs are

Jyt~ - X ) 0- Jm;,,, and for in-the money options costs are So - Sr.~~ 1 So --X - J,n,,,. As

Jm;,, equals the minimal outcome o[ costs under Stop-loss for any price path in Il"'d, expected costs

must be strictly larger than Jm;,,, and hence also the expected option value.

Finally, the same argument shows that tor at-the-money options, any martingale measure that

allows for price changes yields an uncertain outcome under Stop-loss: then j' - 0, the set of price
paths with St 1.i' for j 1 0 has positive probability, and each path has costs St - X~ 0- f,,,;,,.
Hence the expected option value, which equals the ezpected costs under any strategy, is higher than
f,,,;,,. (Notice that, somewhat arbitrarily, ryo - 0 according to (7). For definitions with 0 G ryr ? 1
in case S~ -.t , the same argument could be applied to the set oí all paths with prices remaining
below X after the first step.)
4. Qm" is the uniyue martingale measure on the binary tree I~"'a, and by definition Jm.: is
the (certain) outcome of costs in ~"'" under the corresponding Delta-hedging strategy, and hence
ezpected costs under Qm" (for any strategy) must equal Jm,,. lJniyueness of Qm" can be proved

as tollows. The Delta-hedging strategy according to parameters u,d (see ( 9)) has J,,,,, as upper
bound of costs, and i[ these are also expected costs, fm,. must be the certain outcome of costs
(with probability one). Now under the given Delta-hedging strategy, costs oí all price paths in II"'a

that do not belong to l~"'a are strictly lower than fm,., which can be proved straight[orwardly by
induction on the number of time steps. Indeed, in one-step models maximum costs are achieved
only at both boundaries dSo and u5o: the induction step relies on the [act that maximum costs

under the given Delta-hedging strategy are strictly convex in initial prices, implying that maximum
costs can only be achieved for an extreme jumps in the first step.
Hence the measure should assign probability one to the set of binary tree paths IB"'d, and Qm"' is

the only martingale measure with this property. ~
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