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ABSTKACT

Quiggin (1982) introduced anticipated ("rank-dependent") utility theory into decision
making under risk. Questions have been raised about mathematical aspects in Quiggin's
(1982) analysis. This paper settles these questions, and shows that a minor modification
ofQuiggin's axioms leads to a useful and correct result, with features not found in other
recent axiomatizations.
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l. INTRODUCTION

This note discusses mathematical aspects of Quiggin ( 1982), the paper that introduced
anticipated utility into risk theory. Other tenns are "rank-dependent utility", or, less
tractable," expected utility with rank-dependent probabilities". We shall use the tetm
anticipated utility for the special case of rank-dependent utility where the prubabiliry
transfotmation function assigns value 1~2 to probability 1R. The tank-dependent stream
is currently the most popular one in nonexpected uálity. Independently from Quiggin

(1982, first version 1979), essentially the same form was developed by Schmeidler
(1989, first verxion 1982), Yaari (1987, first version 1984), and Allais (19R8, first
version 1986). "1'he special case considered by Yaari ( with linear u[ility) had been

developed and axiomatized before for welfare theory in Weymark ( 1981). The
importance of the form is based on the possibility to expttiss risk attitudes by ways to
deal with probabilities, without violating basic requirements such as stochastic dominance
or transitivity. Tversky 8t Kahneman ( 1990) adopted the form to obtain a new version of

prospecitheory.

Given the historical importance of Quiggin ( 1982), a new study of the mathemaács in
the paper seems appropriate. Examples A7-A9 below show some complications for that
mathematics. There have been some discussions and misunderstandings about Quiggin's
main theorem, and this note aims to clarify the issues. As we shall see, only a very minor
modification of the axioms is needed. Yaari ( 1987, p. I 13) already suggested that
Quiggin's axiom 2 should be strengthened. Indeed, it suffices to strengthen Quiggin's
Axiom 2 to stochastic dominance, or, as we shall do, to a weaker version that only
considers two-outcome prospects. The prtxif of the result will be entirely rewritten, and
will not invoke continuity with respect to outcomes. Recently, variations on the
axiomatization of Quiggin have been developed. Chew ( 1989) generalized Quiggin's
mtx~el by deleting the restriction that the probability transforniation assign value 1~2 to
probability ]~2; he still required continuity both in outcomes and in probabilities. In
Wakkers ( 1990) axiomaázation it is possible that the pmbability transfotmation is not
continuous, while Nakamura ( 1992) deleted the reyuirement that the utility function be
continuous. So in a structural sense these results are more generel than Quiggin's ( 1982).
Still, in a logical sense none of these results is a complete generali7ation of Quiggin's.
First, Quiggin's independence Axiom 4 only involves 1~2-1~2 prospects, and dces not
use other probabilities. Second, remarkably, Quiggin's dominance Axiom 2 and
continuity Axiom 3 need only be imposed on two-outcome prospects. So Quiggin's
result sáll stands as a useful axiomatization. An additional advantage of Quiggin's result
is that concavity of utility can be characterized as easily as in expected uálity: For 1R-1R
prospects the model coincides with expected utility. Hence, given the usual conánuity
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conditions, preference ofexpected values over 12-12 prospects is necessary and

sufficient for concavity of utility, as it is in expec[ed utility.

2. DEFINITIONS

The notations and tetminology of this paper will as much as possible follow Quiggin
( I~)82). X is a se[ of otttcomes, and may at thix stage be any general set. We shall see, at

the end of Appendix A2, that X is isomorphic to a connected topological space; the

analysis in Quiggin (1982) implicitly used continuity with respect to a connected topology

on X at several places. Our analysis will not use such an assumption, and [he

isomorphism to a connected topological space will be a consequence of the other

assumptions rather than a presupposition. By Y we denote the set of prospects, i.e., of

probability distributions over X with finite suppon, and by ~ we denote a binary

("preference") relation on Y. Outcomes x are identified with degenerate prospects. This

induces a binary reladon y on the outcome set X through the degenerate prospects. By

~(xt,...,x~),(pt,...,p~)) we denote the prospeet assigning probability pj to outcome xj,

j-1,...,n. Of course, the pj ~ s are nonnegative, and sum to one; pj-0 is permitted. We

write x for ( xt,...,x„), and p for (pt,...,pa). In all results in this paper, ~ will be a weak

order. So we can, and do, assume without further mentioning that x t 4. ..4x,,, i.e., the

outcomes are rank-ordered. L.et us emphasize that this assumption is essential to the

analysis; the rank-ordering of outcomes is central in rank-dependent utility.

There have been many misunderstandings in the literature conceming equalities

xj-xjt t, as pemiitted in our notation. Hence a detailed discussion is appropriate. This

discussion, dealing with a seemingly itrelevant issue as a convention of notation, will

automatically settle the essential issues in the paper. Example A9 below shows that the

rank-dependent utility form cannot even be derived from our axioms, and cannot be

distinguished from alternative fotms that violate dominance, if xi-xitl is not allowed in

the notation. Proposition A3 shows that under this alternative convention of notation,

additional continuity and monotonicity conditions do exclude the altemative forrns after

all.

Appendix A 1 shows that only those preferences and functionals satisfy natural

continuity and monotonicity conditions, for which the convenpon of notation is

irrelevant. In a way, this is exactly what common sense suggests, at least for notmative

applications. If a convention of notation is decisive for decision making, then something

must be wrong. Indeed, for the form ~~(pj)U(xj) with nonlinear ~, the notational

convention is relevant; it is well-known nowadays that the forrn violates monotonicity

and continuity. This was, to the best ofour knowledge, first discovered by Fishburn
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(1978). For rank-dependent utility, the notational convenàon is irrelevant, and rank-
dependent uàlity dces saàsfy monotonicity and continuity. Also rank-dependent utility
can readily be extended to nonsimple prospects. The form ~Q(pj)U(xj) cannot be
extended to nonsimple prospects; this is another heuristic indicaàon of its problemaàc
nature. For descripàve applications, the latter form may be useful nevertheless, and the
notational convenàon may be relevant, as the collapsing of outcomes may affect the
perception of subjects.

Given our notation, prospects can be written as 2n tuples in several ways, e.g., the

prospect ((1);(x)) can also be written as ((Z,2);(x,x)]. This means that functionals on Y

can be expressed through 2n tuples if and only if they are invariant under diffetEnt

equivalent notations; we call this invariance reduction-robustness. For example, the

often-studied functional [(xt,...,xn),(pt,...,pn)) ra ~~(pj)U(xj), for~:[0,1]-i[O,1J

with ~(0)-0, ~(1)-1, is well-defined (identical for equivalent notations) only if ~ is the

identity, so that this form cannot deviate from expected uàlity! This is shown in Corollary

A2. I lence, in studies where this form is used tu deviate from expected utility, eyualities

xj-xjtt must be excluded from the notation. For natural forms such as rank-dependent

utility, the topic of this paper, the notational issue is irrelevant. Hence we chose the

notation that is most convenient for the purposes of this paper.

To avoid any misunderstanding, let us repeat that in this paper a functional V, defined
on Y, will automatically satisfy eyualities such as V(((xt,...,xn-I,xn).(pl,-...Pn-I.pn)I)
- V({(xt....,xn-1),(pl...-.pn-ltPn))) for xn-t-xn. This is not an assumption, but a

logical necessity, the two arguments of V being identical.

3. THE MAIN THEOREM

This section presents the modification of Quiggin's axiomatization of rank-dependent
utility. l,et us repeat that we denote preferences by ID, rather than by P as in Quiggin
(1982). We write r for strict preferences, and - for equivalences. A weak order is
comp[ete (forall ( x;p) and ( x;p'), (x;p)~(x';p') or (x';p')~[x;p])andtransitive;
completeness implies reflexivity.

A functional V:Y--~IR rrKri~,~cntc ~ if ( x;p I~ I x~:P~ l p V I x:P i~ V( x';p' (. Kunk-

depciulcnt utility holds if then: exists a representing functional V uf thc fomi

i i-1
V(((xt,...,xn);(Pt,...,Pn))) - (f(,~~j) - f(,~~j)~U(xi) (3.1)

J- J-i-1



for a function U:X-iIR, and a nondecreasing function f: (0, I(~j0,1) with f(0)-0,

f(1)-1. Anticipated utility (A1~ is the special case where f(1(L)-1~2.

Quiggin's (1982) Assumption R.I., on p.332 there, settles the notation that we

discussuí in the previous section. We shall also use the following stnictural assumption

of Quiggin, ensuring that for each prospect thcro exists a"certainty eyuivalent":

R.2. Furcach prospect {x;p} there exists an uutcomc x such that x-{x;p).

Now we turn to the axioms:

AXIOM 1. The binary relation ~ is a weak order.

The dominance axiom of Quiggin wíll be adapted as follows. Both axioms below are

implied by strict stochasác dominance when restricted to two-outcome prospects. The

first imposes weak monotonicity with respect to probabilities, the other strict

monotonicity with respect to outcomes for fixed probabiliáes 2, 2.

AXIOM 2'a. If xz~xt, and p'?p, then {(xt,x2);(1-p',p')) y((xt,x2);(1-p,p)).

AXIOM 2'b. ((xt',xz');(2,2)) ~{(xt,xz);(2,2)} whenever x2AxZ,xt'~xt, where the

former preference is strict if one of the latter two is strict.

For the sake of comparison, we give Quiggin's (1982) Axiom 2, which is the

restriction of Axiom 2'a to the case p'-1:

AXIOM 2Q. If xZ~xt, then x2 ~((xt,xZ);(1-p,p)) for all p.

AXtOM 3(Continuity). If xt,x2,x3e X, xt sx?~x3, then there exists p" such that

x2- ((xt,x3);(1-p~`,P`)).

Note that under AU, with f(2)-2, in (Z, 2) prospects it dces not matter which outcome is

substituted first in the form (3.1), since each outcome has weight 2. This suggests that

for (2,2) prospects the rank-ordering ofoutcomes is immaterial. We introduce an

addition1 iotaáon for (2,2) prospectl:]((x„x');(2,2)) denotes the prospect

[(x,x');(2,2)} if x~x', and ((x',x);(2,2)) if x'sx. The notation is useful in Axiom 4,

where the rank-ordering of each pair x;,x; , and of x and x', is undetermined. Also the

notation will be useful in proofs below.
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AXIOM 4(Independence); see Figure l. Whenever x-(z;p), x' -(x;p), c; -
11 11

((x~,.xi');(2,2)) forall i, then (c;P1 - ((x,.x');(2,2)I.

((xl , ... , xi . ... , xn) ; (PI , ... , pi , ... , pn)) -- x

~~,~-~-.~- ~~c `
for all i: c; - )(C1 , ... , ci , ... , Cn) ; (Pl , ... , pi ~ .-~ ~ Pn)) ~ ((x„ x~);(1R.112))

((x;,,x;);(112.112))
i(x~ , ... , x~ , ... , xn) ; (pl , ... , pi , ... , pn)) ~ x~

implied by
independence

FIGURE 1 (Independence ). Every c-outcome is a"midpoint" between the x-outcome
above, and the x'-outcome below. The bold-printed equivalence is implied by the other
equivalences.

In other words: Midpoints can as well be taken before, as after, the taking of
certainty equivalents.

The result of the lemma below is implied by Quiggin's (1982, top of p. 327) assumption

that eyuivalent outcomes would not be distinguished.

LEMMA 3.1. If R.2 holds, as well as Axioms 1,2'b, and 4, then ( x;p} -- (x ;p)

whenever x;--x;' for all i.

PROOF. By Axiom 2'b, c; -((x;,,x;');(2,2)) both for c;-x; and c;-x;'. By R.2, x and x'

as in Axiom 4 exist. Now apply Axiom 4 both with c-x, and with c-x'. p

The following modification of Quiggin's (1982) characterization of AU is the main

result of the paper.

THEOREM 3.2. Let ~ be a binary relation on the set Y of prospects. Then the following

two statemen[s are equivalenr.

(i) Condition R.2, and Axioms 1, 2'a, 2'b, 3, and 4, are satisfied.
(ii) AU applies (so f(2)-2), where f is continuous and nondecreasing,

and the range of U is an interval.

Further, f in (ii) above is uniquely determined, and U is unique up to scale and location.

O
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Note that, if X is an interval in the above theorem and U is nondecreasing, as it will be
under traditional dominance, then U must be continuous as its range is an interval.

4. CONCLUSION

This paper has shown that the stochastic dominance Axiom 2 in Quiggin (1982)
should be strengthened to obtain a characterization of anticipated utility. The main
restriction of this characterization in comparison to later characterizations by Chew (1989)
and Nakamura (1992) is that the probability transformation function f should assign value

Il2 to probability I12. '1'his n;striction, however, gives much in roturn. I~irst, the

independence Axiom 4 need only be imposed for the fixed probability 1r2, and need not

be extended to other probabilities. Second, a remarkable, and to da[e still original, feature

is that the dominance Axioms 2', as well as the continuity Axiom 3, need only be

imposed on two-outcome prospects. Because of this, Quiggin's axiomatization continues

to be of interest to date, and still offers features not found in other axiomatizations.

APPENDIX Al.

This Appendix formally studies and justifies the notational conventions used in the main
body of the paper. It can be considered a formalization of Quiggin's (1982) Section 2.
We adopt here a notation that deviates from the main body of the paper. Y now consists
of abstract 2n tuples, denoted by ((xl,...,xn),(pl....,pn)). where the pj's are still
supposed to be nonnegative and to sum to one, the xj's are still rank-ordered outcomes
xt ~...~xn, and n may be any natural number. The 2n tuples are no longer identified
with prospects. Obviously, for xj-~-xj, the identity

((xl,...,xj-t,xj.xjtl,....xn).(PI....,Pj-I,Pj.Pjtl,....Pn)) -

((xl,....xj-I,xjtt....,xn).(Pt,...,pj-.IfPj.Pjtl....,Pn) ~

dcxs nut hold anymore. So for a functíonal V:Y-~IR : rnd xj ~-xj, the eyuation

V({(xt,...,xj-I,xj,xjtl,....xn),(Pl,....Pj-I.pj,pjtl,...,Pn))) -

V( ( (x I,...,xj-l.xjtl,...,xn),(PI,....PJ-IfP1,PJt L...,Pn) ) )

(nl)

(A2)

need not hold. We call V reduction-robust if it does satisfy (A2). Note that this is
necessary and sufficient for the possibility to identify V with a functional on prospects.
To illustrate the restrictive nature of the equation, we give the following result. It is a
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small generalization of Allais (1988, Appendix A.l ), and shows how the only possible

reduction-robust form of the general functional in (A3) is rank-dependent utility.

PROPOSITION A 1. Let V:Y--~IIt be of the form
n

V : ((xt,...,xn),(PI,...,Pn)) H jElj(P1,...,Pn)U(xj), (A3)

for a nonconstant function U:X-ilEt, where each hj depends only on the vector of ("rank-

ordered-outcome") probabilities ( pt,...,pn). Suppose V is reduction-robust. Define f(p) -
i i-1

ht(P,1-p) on [0,1]. Then hi(Pt,..-,Pn) - f( ~,pj) - f( ~pj) for all i,(Pt..-..Pn)-
J-1 1-1

PROOF. Say U(a) ~ U(p). By reduction-robustness, and comparison of the prospects

lP,(a.....a)1. IP,(p,...,ÍJ)I with d,e prospc;cts ( l,a] und ( 1,[)I, we see that both
n n
~hj(p)U(a) and ~hj(p)U((i) must be independent of p; as U(a) and U(a) cannot

J-1 1-1 n
both be zero, it follows that ~hj(p) is independent of p. We may assume the sum is l,

J-1
e.g., by multiplying U by an appropriate constant. We use below the equality h2(p,l-p)

- 1-f(p). Again by reduction-robustness, and comparison of the prospect ( p;x) for
i

which xt-...-x;-a, x;ft-...-xn-p with the prospect ((p,l-p);(a,(3)) where p:- F,pj,
J-1

we get

t t
Ehj(P)U(a) t (1-.Ehj(P))U(a) - f(P)U(a) f (1-f(P))U(R).

j-1 ~-1

We conclude that F,hj(p) - f( Ep
J-1 J-1

.O

Note that the above result only used the nontriviality assumption that U be

nonconstant. No continuity or monotonicity conditions were used. This shows the

strength of reduction-robustness. The fomi in (A3) had already been proposed by Alluis

(1979, first version in 1952; see Formula IV in Section 41). Before that, Allais had

pmposed a very general form in ( I) in Section 4(1, a fonn that can descritx; any tran'sitive

relation in many ways, so is not predictive. Allais subsequently proposed many ways to

restrict this general fortn, among them the Formula IV. He petmitted different outcomes

in the notation to be identical, and apparently at that time did not realize the implication of

the abcrve pmposition. Actually, Allais then did not even require that the outcomes should
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be rank-ordered, which in fact implies that the form must reduce to expected utility! Only

in Allais (1988, Formula (1)), rdnk-ordering was imposed on the outcomes, that were

again allowed to be identical, and the above result was dertived. His form (5) is equivalent

to (A3) (by the substitution h; -~; - tp;tt for all i~n, and hn-~„).

The corollary below considers the special case that has received most attention, in

psychological papers starting around the fifties; see for instance Preston 8c Baratta (1948)

or Edwards (1962). It leads to expected utility, instead of rank-dependent utiliry as

obtained above.

COROLLARY A2. Let V:Y-~IIt be of the form
n

V : ((xl,...,xn),(P1,....Pn)) f--~ ~,~(pj)U(xj) (A4)
j-1

for some nonconstant function U:X--~IR, and tD(0)-0, ~(1)-1. Suppose V is reduciion-

robust. Then ~ is the identity.

i i-1
PROOF. By Proposition A1, Q(pj) must be of the form f( ~pj) - f( ~pj), so that the

J-1 J-1
latter difference depends only on pj. This implies that f must be linear. Because f(0)-0,

f(1)-1, f must be the identity. p

As follows from the above observations, to obtain a generalization of expected utility

of the fotm as in (A4), a more subtle formulation must be chosen. The following

fotmulation is usually chosen in the literature; we fust give preparatory definitions. We

call (x;p) irreducible (see for instance Fishburn, 1978) if xj~xj-t for all j. For an

arbitrary ( x;p), the reducedform is the irreducible prospect obtained by collapsing all

identical outcomes. In the literature usually the above formulas are applied to the reduced

forms of prospects. So we define, for a general functional V:Y-aIR, the reducedform V'

as the functional that assigns to each (x;p) the V value of (x';p']. Note that V' is

reduction-robust, and that V-V' if and only if V is reduction-robust. In the results below

we use continuity conditions, which obviously cannot be defined for general outcome

sets X. For simplicity, we shall assume that X is an interval. The following proposition

shows that, under a continuity condition, functionals must be reduction-robust, so that

the notational convention dces not matter for these functionals.

PROPOSiTION A3. Suppose that X is an interval, and that V and its reduced form V' are

continuous in x for each fixed p. Then V-V'. Consequently, V is reduction-robust.
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PROOF. Each element (x;p) of Y can be approximated by irreducible elements ( xk;p) of
Y with the same p vector. For all these itreducible elements, V and V' coincide by the
definition of V'. By continuity, V' and V coincide at (x;p). So V-V', and V must be
reduction-robust. O

The corollary below considers the special case of the above proposiàon that is of
interest in this paper. Together with Proposition A 1 the corollary obtains rank-dependent
utility, thus shows that the general form in Quiggin's (1982) Proposition 1 reduces to
rank-dependent udlity.

COROI.LARY A4. Suppose X is an interval. Let W:Y-~II2 be of the form
n

W : (x,Pl H , Ehj(P')U(xj'),
~-1

(AS)

where (x';p') is the reduced form associated with (x;p). Suppose that for each fixed p,
W is continuous in x. Then

n
W ( ( x,P ) ) - ,Ehj(P)U(xj),

~-1
for all (x,p), i.e., W is reduction-robust.

(A6)

n
PROOF. U- W((.;1}), so U is continuous. Define V((x,p)) -~hj(p)U(xj). Continuity

j-1

of U implies continuity of V in x for each fixed p; by assumpàon W, the reduced form of

V, saàs6es the same continuity. Now Proposition A3 can be applied. O

The following corollary leads to expected utility instead of rank-dependent uàlity as
obtained above.

COROI.LARY A5. Suppose X is an interval. Let W:Y~IIt be of the fotm
n

W : (x,Pl H ~~(pj')U(xj') (A7)
J-1

for a nonconstant funcàon U:X~IR, and Q(0)-0, ~(I)-1. Suppose that, for each fixed
p, W is conànuous in x. Then tb is the identity.

PROOF. This follows from Corollaries A4 and A2. p

Note that none of the above results has used any monotonicity condition. A

monotonicity condiàon will be used below. To jusàfy the notational convention in this
paper, where x;-x;tt is permitted, we should also provide a result, similar to Proposiàon
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A3, for preference relations. This result, somewhat more complicated, should justify the
notational convention when preferences rather than functionals are primitive. Again, we
shall see below that for preference relations that satisfy natural continuity and
monotonicity conditions, the notational convention is immaterial.

Let ~ be a binary relation on Y. Then ~', the reduced form of z, is defined as
( x;p)~' ( x;p) if and only if ( x; p' )~( z'; p' ). We cal l A reduction-robust if ~-~' .

Note that a weak order ~ is reduction-robust if and only if every ( x;p ) is eyuivalent to

its reduced form ( x;p' J. If X is an interval then we call ~ continuous in outcomes if,

foreach P-(PI,...,Pn) and (x;P), the sets (z: (x:Pl~fX:p1) and (x: Ix:P)~(X;P) )
are closed subsets of the set of rank-ordered n tuples. Note that this condition involves
possibly diffetent p,p, which makes it somewhat stmnger than the continuity in x as

used for the functionals above.

PROPOSITION A6. Suppose X is an open interval. L.et ~ and its reduced form ~' be

weak orders that are strictly increasing ín each coordinate x; of x for which p;~0, and

independent of coordinates x; for which p;-0, and continuous in outcomes. Then ~-

~'. Consequently, ~ is reduction-robust.

PROOF. Suppose, for contradiction, that not (x;p) -- (x';p'). Say (x;p) r(x';p'). By
strict increasingness of ~, independence of zero probabilities, openness of X, and
continuity in ou[comes, there exists an itreducible (z;p) such that (x;p) i{z;p j r
(x';p'), and such that all outcomes in x strictly dominate those inz. Also there exists an
irreducible {z;p) such that (z;p) r(z ;p) r(x;p'), and such that all outcomes in z'
strictly dominate those in x'. Then (x;p] r' (x;p) r' {x';p) r' (x';p'), the first
preference by strict increasingness of A', the second by the definition of r', and the
third again by strict increasingness. This contradicts (x;p) -' (x';p'J.

So always (x;p) -(x;p'}, and ~ is truncation-robust.Obviously, then ~-~'. p

In Quiggin (1982), in line 6 of Section 2, it is made explicit that the outcomes in the
notation {(xt,...,xn);(pt,...,pn)) are to be distinct at that moment; they are not yet rank-
ordered at that stage. The motivation was to be able to discuss some functionals that we
have called reduced forms. It is shown in Equations (1)-(5) there, for some special cases
of (A4) above that have been proposed in the literature, that these violate monotonicity; in
that reasoning, however, continuity is used implicitly. Above Equation (6) then the
ou[comes are assumed rank-ordered. Equation (6) defines the functional as in (A3) above
(with h(2,2)-(2,2)). Essentially, the result of our Corollary A4 is then derived from
monotonicity, where again continuity is used implicitly. Given that, the notational issue
becomes irnelevant, and thus equalities xt-x;,t in the notation of prospects can be
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pemiitted. This is done indeed in the remainder of Quiggin's paper. Furmally, it was

atready permitted in the notation introduced above Equation (6); it is repeated in

Assumption R. L This also shows, similarly to Proposition A 1, that the general fortn

((A3) above) as found in Quiggin's Proposition 1 is identical to the AU form ((3.1)

above) as derived in Quiggin's proof in the Appendix thete.

The following examples illustrate mathenwtical complications in Quiggin's (1982)
analysis.

EXAMPLE A7. L.et X-(xt,x2}, i.e., there are only two outcomes. Suppose xZ a xt and

((xt,x2);(1-p,p)) - xt for all p~l. There dces exist a rank-dependent utility

representation for ~, with U(x2) - l, U(xt) - 0, and f(p) - 1 for all O~p~l. Here f is

uniquely determined. Thus there dces not exist an AU model for ~ because f(2)2. The

preference relation satisfies all conditions in Statement (i) of Theorem 3.2, with the

exception of Axiom 2b'. We only discuss Axiom 4. Nonequivalence in the conclusion

can only occur if either (c;p) or ((x„x');(2,2)) is maximal, i.e., is x2. But this

straightforwardly implies that all other prospects are maximal, i.e., are xZ, as well. So

Axiom 4 is satisfied. Note in particular that Axiom 2'a is satisfied, which for the special

case p'-1 gives Axiom 2Q, i.e., Quiggin's Axiom 2. So all of Quiggin's conditions are

satisfied, and formally this is a counterexample to Quiggin's Proposition l.

ExAMPI.E A8. l.et X- IR, U is the identity, and AU holds, with one exception: the

function f:[0,1 ]--~II2 is not necessarily nondecreasing; it dces satisfy f(0)-0, f(z)-2, and

f(1)-1. Necessary and sufficient for verification of Axiom ZQ, i.e., Quiggin's (1982)

Axiom 2, is that f(p)20 for all p. Necessary and sufficient for verification of Axiom 3, is

that f([0,1]) ~[0,1]. Condition R.2 and Axiom 4 are satisfied. Thus f dces not have to

be nondecreasing, and may even take values larger than l. p

ExAMPLH A9. Yaari (1987) suggested, for X-IR and U the identity, the fotm ~w(pj)xj

with w continuous and w(p)tw(1-p) 5 1, as a counterexample to Quiggin's (1982)

characteriza[ion of AU in his Proposition 1. Yaari did not make explicit which nota[ional

conventions he followed. Under the notational conventions of this paper Yaaris fotm

must be identical to expected value maximiution (see Corollary AS), which obviously

would not provide a counterexample to Quiggin's result. Hence let us assume that the

reduced form of Ew(pj)xj should be taken. A critical question for verification of

Quiggin's axioms then is which notational conventions should be adop[ed in the

fotmulations of these axioms. If the axioms are taken exactly as in this paper, in full

strength, then Axiom 4 will be violated by Yaari s form as soon as w is nonlinear, even if

w(1~2)-1~2: Given continuity and nonlinearity of w, there must exist probabilities pt,P2
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such that w(pt)tw(P2) ~ w(PttP2). Now, with p3 - 1-PI-P2, any x-

f(xl,x2.x3);(P1.P2,P3)l, x' ~ f(x~t,x'2,x'3);(PI.P2,p3)), ci - I(xi.,xi~):(2,~)) forall i,
and further O~xt~x2~x3, O~x't - x'Z~x'3, we get ((ct,c2,c3);(pt,pZ,p3)I ~
((x„x');(~,~)) if w(Pt)tw(P2) ~ w(P1tP2). and f(cl.c2,c3);(P1,P2,P3)) Y
((x„x');(2,2)J if w(pt)tw(p2) ~ w(pttP2). Le., Axiom 4 is violated. So also under
these notational conventions Yaari's form dces not provide a counterexample to
Quiggin's result.

Finally, if the axioms are weakened to apply only to cases where all prospects in
quesáon are irreducible, then Yaari's form with w(lr1)-1~2 can be made to satisfy all of
these weakened versions of Quiggin's axioms. If then however this same convention of
notation is applied to the general fotm (see (A3) above) as provided in Quiggin's
Proposition 1, then Yaari's form is a special case of Quiggin's fotm, so again, Yaari's
form dces not provide a counterexample to Quiggin's result. But it dces then deviate
from AU and rank-dependent utility, so that in this case AU is not characterized by the
(weakened versions of) the axioms. This shows once more the importance of the
notational issue. Yaari did suggest that Quiggin's Axiom 2 should be strengthened. This
paper has proved that Yaari's suggestion is correct. O

APPENDIX A2. PROOF OF THEOREM 3.2.

Necessity of the conditions is straightforwardly verified; we only mention that R.2 is
implied by the assumption that the range of U is an interval. So we assume the conditions
of Suuement (i) hold, and derive Statement (ii). In the major p~rt of the pnxif we makc
the following assumption; only at the end of the proof, the Assumption will be relaxed.

ASSUMPTION A10. There exists a best outcome xt, and a worst outcome x~; xtrx~.

STAGE 1(Construction of binary values of U). Define U(xt)-1, U(xo)-0. By R.2, there
exists xtn -{(x~,xt);(2,2)]. By Axiom 2'b, xt~xtnrx~. Define
xll4 ,((x0,xli2),(~.2)), x314 ti{(xli2,xt),(~,~)f, and similarly define xt~, x318 ,

and inductively every x~". To each x~" we assign U value a!2". By repeated
application of Axiom 2'b and transitivity, U is representing on the set of all xaR".

STAGE 2(An application of Axiom 4). We derive the following condition:

((xa2-n xb2-m);(Z,zl .~ x(a2-"fb2-m)h, (Ag)



16

By multiplying by a large 2m~, it suffices to derive the result only for n-m, and a-b even.

The latter is derived by induction with respect to m. For m-1 it holds true. Suppose, as
induction hypothesis, that it holds true for 1,...,m-1, where m22. We show, for all

appropriate a,k:

((x(a-k)2-m x(atk)2-m);(2,2)) ~ x~-`". (A9)

Below each time Axiom 4 is applied. The equivalences needed for that always follow
from the induction hypothesis (and the definition of the xcr"). To verify that, it must be

checked that several integers, and differences of these integers divided by two, are even.

This will not be made explicit.

CASE 1: a and k are even. Then the equivalence follows from the induction hypothesis.

CASE 2: a is odd, k is even. Then, by Axiom 4, (A9) follows from the two equivalences
below, where the left prospect in (A9) plays the role of ( c;p) in Axiom 4.

((x(a-l-k)2-m x(a-ltk)2-m);(2,2)} - x(a-I)2-m

((x(atl-k)2-m x(atltk)2-m);(2,2)) ~ x(atl)2-m.

CASE 3: a is odd, k is odd. Then either a-k ? 2, or, if a-k, then atk ~ 2~T~-2, given that

m?2 and atk-2a is not a multiple of 4. If a-k 2 2 then, by Axiom 4, (A9) follows from

the two equivalences below, where the left prospect in (A9) plays the role of (c;p) in

Axiom 4.

((x(a-2-k)2-m x(atk)2-m);(2,2)) ~ x(a-1)rm

((x(at2-k)2-m x(atk)2-m);(2.2)) ~ x(atl)2-m.

If afk 5 2m-2 then, by Axiom 4, (A9) follows from the two equivalences below, where

the left prospect in (A9) plays the role of (c;p) in Axiom 4.
x(a-k)2-m,x(a-2tk)2-m 1 1 x(a-t)2-",(( );(2,2)) -

((x(a-k)2-`",x(af2tk)2'm):(1 ~)) - x(atl)2-m.2'2

CASE 4: a is even, k is odd. Then, by Axiom 4, (A9) follows from the two equivalences

below, where the left pmspect in (A9) plays the role of ( c;p) in Axiom 4.
1 1 xa2-((x(a-1-k)2~,x(atltk)2-m);(2,2)J ~ m

((x(att-k)2-rn~x(a-ltk)2-m);(2,2)) ~ x~-m.

STAGE 3(definition of U on entire X). We define



U: x H sup(U(xa2-m) : xa2-m ~ x).

This is indeed a true extension of U, and it follows straightforwardly that

x'~x ~ U(x') ? U(x). (A 10)

This implies in panicular that U is constant on - eyuivalence classes, which will be

crucial for several definitions below. We can not conclude at this stage that U would

represent ~ on outcomes, as the implication x'rx ~ U(x') ~ U(x) has not yet been

derived. This implication will only be established in the sequel, and its derivation will

invoke the definition of f below, and Axioms 3 and 4. For a prospect (x;p), we define

V(x;p) as the U value of an outcome x for which x-(x;p); note that by R.2 such an x

exists, and, by constantness of U on - equivalence classes, V( x;p ) is independent of the

particular x that we chcxne. Obviously, by (A 10),

(x';P~) ~ Ix;P) ~ VUx';P~))? V({x:P))-

Next we derive the following variation on (A9), for all x2Dxt:

V((xl.x2);(2,2)) - ZU(xl) } ZU(x2).

(All)

(A 12)

To prove this, note that, by the implication U(x') ~ U(x) ~ x'{x as following from
(A10), the inequalities a2-m~U(xt)~á 2-m and b2-m~U(xZ)~b'2-m imply the
preferences x~-`"~xl~xa2-`" and xb2-`"~x2~xb'2-m. Hence, by Axiom 2'b,
((xa2-m xb2-m);(I,1)) t((xl,x2);(~,l)) ~ 1(xá2-m xb'2-m);(1.~)). By (All),
y((xa2-m xb2-m);(2 2)) C V{(xl,x2);(2,2)) ~ V((xa2-m,xb'zm);(2,2)). So, by (A8),

11V((xl,x2);(2,2)) is enclosed between (a2-mtb2-m)~2 and (á2-mtb'2-m)~2 for all
m,a,b,á,b' as above. This can only be if (Al2) holds true.

STAGE 4(construction of continuous and nondecreasing f). For every OSp51 we define
f(p):- 1-V((xo,xl);(p,l-p)). Obviously, f(0)-0, f(I)-1, and, by the definition of xl~,
f(1~2) - 1j2. Further f is nondecreasing, by Axiom 2'a and (Al 1). Also f is continuous:
For every x~" there exists, by Axiom 3, a p such that ((xp,xt);(p,l-p)) - x~", i.e.,
f(p) - 1- a~2". This shows that [he range of f is dense in [0,1). The nondecreasing f
cannot make "jumps", and must be continuous.

STAGE 5(surjectivity of U). We show now that U(X)-[0,1). L,et p.e (0,1). Take p such
that 1-(t - f(1-p) - 1-V((x~,xl);(1-p,p)); so V((x~,xt);(]-p,p)) - lt. Then, by R.2,
there exists x-((xo,xl);(1-p,p)). By (A11), V(x) -~t; so U(x) - lt.

STAGE 6(U and V are representing). The derivation in this stage will not be elementary.
Of course, if U is representing for ~ on X, then V is representing for z on Y, so we
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only derive the former. By (A 10), it suffices to assume that x"ax' and

U(x")-U(x')-:)1, and derive a contradiction.

Note that there dces exist a function, say U', that represents ~ on X: Choose for each
equivalence class ( x'E X: x'-x J a probability equivalent, i.e., a p such that
((x~,xt);(1-p,p)) - x. By Axiom 3 there exists at least one such p. Then define
U'(x')-p for all x' from the equivalence class. By Axiom 2'a, x"rx' must imply
U'(x")~U'(x'). This, and constantness of U' on - equivalence classes, shows that U' is
representing. The existence of a representing U' excludes the existence of an uncountable
number of disjoint preference intervals ( xe X: x"Ax~x' ) for x"rx', as the latter would
lead to uncountably many distinct rational numbers, from each ínterval ]U'(x'),U'(x")[
one. So it suffices, for contradiction, to derive an uncountable number of such preference
intervals.

Either ~tx0, or ltxl, say the latter. Take any it~v~l. By Stage 5, there exists xv such

that U(xv)-v. Now, by (A12), V((x",xv);2,2) -(ptv)~2 - V{(x',xv);z,2), whereas,

by Axiom 2'b, (( x,,,xv);2,2) r((x',xv);2,21. We take x"(~tv)l2-l(x,,.xv):2,2) and

x~(~tfv)!2-((x',xv);2,2). Then x"(wtv)I2Yx~(ufv)l2, but U(x"(~}v)R) - U(x'(~jv)n).

Such outcomes can be constructed for each v between it and l, and ((xe X:

x'(~tv)~2sx~x"(lttv)!2) ) vE l~,tl gives an uncountable number of mutually disjoint
preference intervals.

STAGE 7(Jensen's equation). Fix p-(pt,...,pn) in this step. Because U represents A,
and because of Lemma 3.1, we can write V((xt,...,x„);p) - W(U(xt),...,U(xn)) for a
function W. For simplicity of notation, from now on we identify outcomes with their U
values in this stage. The domain of W is the set (0,1)T of all x-(xt,...,x~)E [O,1 ]~ with
OSxtS...Sxn51. We show that W satisfies Jensen's equation, i.e., for all x,ye (o,l JT,

W(x~) - W(x)2 W(Y)

11Define c; -((x;,,y;);(2,2)) for all i. Then c; -(x;ty;)r2 for all i. Note that ct5...5cn, so
that cE ( 0,1]T. L.et z-{x;p), y-(y;p). By Axiom 4, ( c;p) -((x„y);(~,~)). So,
subsututing (A12), we get W(c) -(U(x)tU(y))l2. This implies lensen's equation.

STAG6 8(W is linear, and gives the AU form). By standard techniques it can be shown
that W as obtained in Stage 7, must be linear. In general, solutions of Jensen's equation
exist that are nonlinear, but these are very irregulaz. Axiom 2'a excludes all those
nonlinear solutions. From the definition of f, it follows that the weights employed in the
linear W, are exactly what they should be according to AU. AU can also be derived from
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Proposition A 1. The n;mainder of this stage gives a fotmal derivation of linearity of W
for a fixed (pt,...,pn). ~

Define et : - (1,...,1), ... , e2 :- (0,1,...,1), ..., en :- (0,...,0,1). On a rank-ordered
cone it is convenient to take et,...,en as basis, because then standard results of Aczél
(1966) can be applied literally. The details are as follows. Define W':IRt~I}2 in the

n n
following way. If Ey; 5 1, W'(y) :- W( ~y;e;). On the domain covered so far, W'

i-1 i-1
satisfies Jensen's equation, in particular, given W'(0,...,0) - 0, W'(xl2m) - W'(x)~2m
for all m. For a general (xt,...,xn) E 1R;, find any 2m large enough to ensure that, for

n
y;:-x~2m, ~y; 5 l. Next define W'(x) :- 2mW'(y). From Jensen's equation on the

i-1
domain covered before, it follows that the definition of W'(x) dces not depend on the
particulaz choice of m and y, and that in fact W' satisfies lensen's eyuetion throughout i~c
domain. For the fixed p we get, by the definition of f, f(ptt...tpn) - W(et) -
W'(1,0,...,0), f(P2t...tpn) - W(e2) - W'(0,1,...,1), ...., f(Pn) - W(en) -
W'(0,...,0,1). The proof is complete if a contradiction is derived from nonlinearity of
W'.

By Aczél (1966, Section 2.1, extended in Section 5.1.1), W' can be nonlinear only if
thete exists an i, and an irrational ~;, such that (with the ith coordinate 1 hereafter)

W'(~,;(0,...,0,1,0,...,0)) ~?L;W'((0,...,0,1,0,...,0)); 7~;51 can always be taken, so that

W(~,;(e;)) ~~.;W(e;). Say W(~,;(e;)) ~ 7`;W(e;). Again, by Aczél (1966), for all rational r;,

W(r;(e;)) - r;W(e;). So there is a rational r such that r;~l;, but W(~;(e;)) ~ W(r;(e;)).
This conxtitutes a violation of Axiom 2'a, for thc prospects

((O,~i);(P1}...fpi-l,pit...tpn)) and {(O,rl);(P1}...tpi-1,Pit...tpn)i. If W(~i(ei)) ~
1;W(e;), then a rational r,~~; is found to reveal a violation of Axiom 2'a. This completes

the proof of Stage S.

A rereading of the proof, plus substitution of AU, shows that any choice of U(0) - a,
U(1) - t, for general 2~ instead of T-1, a-0, could be made, and would uniyuely
detetmine a positive affine transfortn of the function U as in the proof above, and that the
function f is uniquely detetmined

Finally, we relax Assumption A10. If all outcomes are equivalent, then by R.2, all
prospects are equivalent, and the result is trivial. So let there be nonequivalent outcomes.
We fix some xtrx~. For each y~xtrx~~z, we can construct an AU representation for
prospects with outcomes (xe X: y~x~z{, similar to the construction under Assumption
A10. By the uniqueness results for U and f as established above, this AU representation
foroutcomes {xeX: y~x~z{ can be made tocoincide with the AU representation



2(l

established above, which uniyuely detertnines the extended AU representation. As the
outcornes involved in any prospect are tïnite, so bounded the AU representation is
uniquely determined for all prospects. This completes the proof of Theorem 3.2.

Note that the set of - equivalence classes of the outcome set is isomorphic to an

interval; the set X, when endowed with the otàer topology, is a connected topological
space.
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