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Abstract: We explore functional properties of throughput in tandem production lines with

unreliable servers, finite buffers, and arbitrazy failure and repair times. We provide a mathematical

framework that makes use of a function space construction to model the dependence of throughput

on buffer capacities and maximum flow rates of machines. Using this framework we prove various

structural properties of throughput and mention how these properties can be used to guarantee

almost-sure convergence of sample-path optimization, a simulation-based optimization method,

when applied to the optimal buffer allocation problem. Our exposition demonstrates the utility of

using multifunctions in the modeling, analysis, and optimization of discrete event dynamic systems.

Among the properties established, monotonicity in buffer capacities and in machine flow rates aze

especially important. Although monotonicity results of this nature have appeared in the literature

for diacr~ete tandem lines, as far as we are awaze the kind of analysis we present here has not yet

been done for continuous tandem lines.
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Figure I: The tandem production line

1 Tandem Lines and Our Main Results

Investigating functional properties of performance measures, such as continuity, monotonicity, or
convexity, is an important pazt of optimal design and control of stochastic systems. In this paper
we aze concerned with exploring some properties of the throughput of a tandem queue.

A tandem queue consists of a number of servers in series. There may be buffers of finite sizes

between the servers. Jobs stazt at the first server, pass through each server in sequence, and finally
leave the system after being served by the last server. These queues have been widely used to model
a single line of multistage automated assembly lines or virtual paths in communication networks;

see Bu2acott and Shanthikumar (I992), and Yamashita and Onvural (1994) and references therein.
We focus on a pazticular tandem queue where service rates aze deterministic and the servers

aze subject to random breakdowns with associated random repair times. It is comcnon to use

this type of queues to model tandem production lines in which machines aze the servers. In a
tandem production line there aze m processing machines (Ml, ... , M,,,) connected by m- 1 buffers

(Bl, ..., B,,,-t ). The material processed may be discrete entities (e.g. assemblies in an automobile

factory), in which case we speak of a discrete tandem (DT) line, or it may be continuous (e.g.

chemical production), in which case we refer to a continuous tandem (CT) line. The time it takes

a machine to process one unit of product is called the cycle time. Notice that in a CT line the

natural description for processing rate of a machine is the How rate which is the reciprocal of cycle

time.
The tandem lines we focus on have the following additional features:

~ There is infinite supply to the first machine and infinite demand itom the last machine.

~ There is no transfer delay from machines to buffers, within buffers, or from buffers to machines.

~ A machine may fail while it is processing and it may take some time to be repaired; it can fail

only when it is operational. The amount of product processed by each machine between its

failures, i.e. the operating quantity to failure for each machine is a random vaziable. Similazly

the repair time for each machine is a random vaziable.

In the DT line we add:

. Cycle times of machines aze deterministic.

~ Machines are blocked via "manufacturing blocking" (Altiok and Stidham (1982)); that is, if

a buffer becomes fitll, the machine upstream of it may begin to work on the next piece, but
if it finishes its cycle and the buffer is still full, then it will be blocked.

In the CT line analogous to this DT line:

~ Each machine has a deterministic maximum Now rate C;, so machine i can work at a rate
anywhere between 0 and C;.
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Since many real world systems can be modeled by DT lines, they have received a lot of attention
in the literature; see Suri and F1i (1994) and the references therein. One approach to model and
analyze DT lines is to approximate them by CT lines. A translation of various input parameters

and performance measures between the CT and DT lines can be found in Suri and Fu (1994).
Furthermore, in Theorem 5.6 of Fu (1996), it is shown that the continuous production case is the

limit of the discrete production case as the piece size approaches zero while the production rate

remains constant.
There aze several reasons why the CT line approximation approach might be attractive. Using

CT lines instead of DT lines brings considerable increase in computational efficiency. Extensive

numerical results on the substantial time advantage of CT simulations over DT simulations are

reported in Suri and Fu (1994); they also present numerical experiments which show that such

approximations are quite accurate. Using CT lines is beneficial from optimization point of view

as well. When dealing with continuous pazameters there is the possibility of obtaining gradient

estimates. Furthermore, techniques for continuous pazameter optimization aze much more advanced

than those for discrete parameter optimization.

We adopt the failure model of Suri and Fli (1994) in which the next failure of a machine is

determined by the quantity produced since the last failure (as opposed to being determined by the

time of operation since the last faílure); see Suri and Fu (1994) for a discussion on why this is a

natural failure model for CT lines that aze approximations for DT lines. All of our results would go

through however, with slight modifications, if we used the failure model that is based on the time

of operation.
The chazacteristics of the line cause vazious interactions between the machines. If the buffer

between the ith and (if 1)st machines is full, then the ith machine cannot produce at a rate lazger

than the current rate of the (i t 1)st machine. This phenomenon is called ólocking. A similaz event

is starvatian; if the buffer between the ith and (it 1)sf machines is empty, then the (i t 1)st machine

cannot produce at a rate larger than the current rate of the íth machine. In any case, whenever a

machine is operational, it is operated at maximum possible rate. The main performance measure

for a tandem line is its throughput, the amount of production completed by the last machine in unit

time. In this paper, we are mainly concerned with investigating continuity, and first and second

order stochastic properties of throughput as a function of buffer capacities.

Our interest in such results aze twofold. First, they provide vazious qualitative guidelines for

analysis and optimal control. By enabling one to compaze different systems and determine whích one

performs superior without evaluating their performance individually, monotonícity results provide

qualitative guidelines for design improvement. Furthermore, second order properties along with

reversibility type of arguments may be used to provide guidelines about the optimal allocations in

symmetric systems. Continuity~differentiability type results aze likely to have impact on our choice

of optimization method.
Second, the results we establish in this paper actually have quantitative merits. Finding optimal

buffer allocations that maximize the throughput and do not violate various constraints has attracted

a lot of interest. In Gurkan (1997), the sample-path optimization method is used to find optimal

buffer allocations in tandem production lines with unreliable machines. Sample-path optimization

is a recent simulation-based method to optimize performance functions of complex stochastic sys-

tems; see Giirkan et aL (1998) for a brief overview of the so-called "sample-path methods" that can

be used for providing solutions for difficult stochastic optimization problems and stochastic varia-

tional inequalities. The idea is to observe e fixed sample path (by using the method of common

random numbers from the simulation literature), solve the resulting deterministic problem using

fast and effective methods from nonlinear programming, and then use the resulting solutions to infer

information about the solution of the original stochastic problem. Clearly, effective and provably

convergent optimization procedures, deterministic or stochastic, would requíre an adequate amount



3

of regulazity in the function to be optimized; Robinson (I996) contains a set of sufficient conditions
that guarantee almost sure convergence of this approach in solving optimization problems. Using
monotonicity and upper semicontinuity of throughput in buffer capacities, it is possible to show
that the conditions (which appeaz in Robinson (1996)) that guazantee almost-sure convergence of
sample-path optimization aze satisfied; see Gurkan (1997). Therefore provided that a long enough
sample-path is used, one can be confident about the closeness of the computed solution to a cor-
rect solution of the original problem; see Giirkan (1997) for a rigorous statement of these results,
additional details,

Let AT denote the throughput of a CT line up to time T, 6-(6~ ,..., 6m-~ ) the buffer capacities,
and C- (Cl,... ,C,,,) the cycle times of machines. Our main results could be summazized as

follows:

. We prove that 6T is a non-decreasing function of 6, for T E[0, oo].

. For T E[0, oo), AT is discontinuous but an upper semicontinuous function of 6; therefore

it cannot be concave. On the other hand, empirically A~ appears to be a continuous and

concavefunction.

. Although 6T for finite T is not concave, in ~4 we show that the number of depaztures from

the system by time t, De, in the analogous DT line is a concave function of the buffer ca-
pacities. Notice that this gives us the concavity of the line throughput with respect to buffer

capacities, since line throughput is just t-1Di. This is a well known result in the case of

reliable machines with exponential service times, see for example Meester and Shanthikumaz

(1990), Ananthazam and Tscoucas ( 1990), and Rajan and Agrawal ( 1994). We make a simple

extension of this concavíty result to cover the case of unreliable servers with deterministic

cycle times and exponential failure and repair times.

. Aside from the results themselves, our way of analyzing the CT line is of interest in its own. We

construct two multifunctions that model the dynamics of the system and explore the properties

of these multifunctions. Using these properties and by making sample path comparisons, that

is, fixing a sample path and compazing two processes constructed on a common probability

space, we avoid making any distributional assumptions, except that all the random vaziables

should have densities concentrated on (0, oo). We hope that our exposition demonstrates the

utility of using multifunctions ín the modeling, analysis, and optimization of discrete event

dynamic systems.

. As a by-product our analysis , we also prove that AT is a non-decreasing function of C, for

T E [0, oo].

The remainder of this paper is divided into four main section. At the end there are two ap-

pendices containing additional technical details. In ~2, we provide a mathematical framework to

model the dynamics of the CT line and develop necessazy machinery for the technical analysis. In

~3, we prove some functional properties of throughput, discuss some consequences of these results,

and compaze them to the known results from the literature. Finally, in g4 we show the concavity

of throughput in buffer capacities in DT lines. ~5 contains some concluding remazks.

2 Modeling the Dynamics via Multifunctions

In this section we provide a mathematical framework to model the dynamics of the tandem line.

We construct two multifunctions and show some of their technical properties. In the next section,

we use these to prove vazious ptoperties of throughput in CT lines.
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Let T be the prespecified amount of time we observe the line and q;(t) be the amount produced
by M; up to time t for i- 1, .. ., m. Then the line throughput can be defined as

BT - 9,,,(T)~T.

We define:
6~ - buffer capacity of B~,
C; - maximum flow rate of M;,
Wp - operating quantity between the (p - 1)st and the pth failures at M;,
RD - repair time of M; after the pth failure.

For each i, {Wo}y"-1 and {Ry}y"-~ aze random variables with distributions that are concentrated
on (O,oo).

For a fixed sample path, i.e. for fixed sequences { Wó, i- 1, ..., m,p ~ 1} and {Ry, i-

1,... ,m,p ~ 1}, let f;~ be the quantity produced by the ith machine up to its jth failure. Then

f;i - ~WD.
y-1

Fix T (simulation time), let C([O,T],Rm) be the space of continuous functions from [O,T] to

R"` with the sup-norm topology. That is, for g E C([O,T], Rm),

II9II - sup{~g;(x)~ : a- 1,... ,m,x E[O,T]}.

We next construct a multifunction F: Rm-~ ~ C([O,T],Rm) as follows. For any 6-

(61,... ,6,,,-1) E Rt-~, we define F(b) to be the set of continuous functions g :[O,T] ~ Rn`

satisfying the following requirements:

9i?9s~...~g~,?0,
g; is non-decreasing for each i- 1, ..., m,
g(0) - 0,
~9;(x) - 9;(y)~ C C,Ix - yI for any x,y E[O,T] and i- 1,... ,m,

g;(x)-g,tl(x)Có;foranyxE[O,T]andi-1,...,m-1.

For 6~ R~-~, we let F(b) - 0. Hence domF - R~-~. The graph of F is defined as

gphF - {(b,g) : g E F(b)}. One should think of the functions g E F(b) as possible ways of

operating the CT line. If we interpret ,q;(t) as the amount produced by machine i up to time t,

then functions in F(b) obey the buffer capacity and maximum flow rate constraints:

(i) the amount produced by a machine cannot be less than the amount produced by the suc-

ceeding machine,
(ii) the amount produced by a machine does not decrease with time,
(iii) the line stazts operating at time zero,

(iv) a machine cannot work at a rate higher than its maximum flow rate,

(v) the amount produced by a machine cannot exceed the amount produced by the succeeding

machine plus the buffer capacity between them.
We define A to be the following subset nf F(oo):

A-{gEF(oo):a({t:g;(t)-f;~})~R'~, foreachi-l,...,mandj-l,2,...},

where a is the Lebesgue measure on R. Again, if we think of fimctions in A as possible ways

of operating a CT line with unlimited bufter capacities between machines, then the condition
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a({t : g;(t) - j;~}) 1 R~ means that under any possible operating strategy the amount ot time
machine i stays non-operational after its jth failure is at teast equal to its jth repair time.

F(b) models the buffer capacity and maximum flow rate constraints, whereas A models the
failure and repair times of a CT line with unlimited buffer capacities between machines. So F(b) f1 A
can be thought of as the set of all possible ways of operating the CT line. Clearly, q is in F(b) t1,4.
Recall that among functions in F(b) n A, q gives the amount produced using the strategy under
which each machine is operated at maximum possible rate whenever it is operational; whenever
we need, we will refer to this strategy as "strategy q". The pseudo-code developed in l.lr (1996)
prescribes a way o( constructing such a strategy during a simulation. (His v; is the effective flow rate
of M;, i- I,... ,m; at any time the pseudo-code prescribes how to set each one to its maximum
possible value in a well-defined, non-circulaz way.)

Using this framework we can have the following three technical lemmas; their proofs aze deferred
to Appendix A.

Lemma 1 The multifunction F has the follouring properties:
a. gph F is closed.
6. gph F is convex.
c. F is compact-valued and F(6) C F(oo) for a!1 6 E Rm-I

Proof See Appendix A.

In the next lemma we denote the interior of a set S by intS and use the term Berge-usc for a
multifunction, which we now define.

Deftnition 1 A multifunction F from a topalogical space Z to a topological space Y is Berge-usc

at a point zo of Z if for each open set L' of Y vrith F(zo) C U the set {z E Z: F(z) C U} is open.

F is Berge-usc in Z if it is Berge-usc at every point of Z nnd if F(z) is compact for every z E Z.

Berge-usc is introduced in Berge (1963) under the name "upper semicontinuity"; see Rockafellar

and Wets (1997) for a treatment of relationships between vazious semicontinuity and continuity

notions for multifunctions. We thank the authors of that book for making the extracts of a draft

version available to us.
We also need to define the Hausdorff distance between two sets. Let S and T be subsets of Rk.

We use the notation e(S, T) for the excess of S over T, defined by

e(S,T) - supd(s,T); d(s,T) - iETIIs - tII.
eES

If e(S, T) is small, then each point of S is close to some point of T, though some points of T might

be far from any point of S. Such nonsymmetric behavior is not present in the Hausdorfj distance

between S and T that is defined by h(S,T) - max{e(S,T),e(T,S)}.

Lemma 2 The multifunction F is Berge-usc in Rm-~ and 6 H F(b) is a continuous mapping from

int(R~-~) to compact subsets of C(jO,T],Rm) unth the metric topology índuced 6y the HausdorQ

distance.

Proof. See Appendix A.

Lemma 3 .4 is closed in F(oo).

Proof. Sc~c Appendix A.
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Now let QT(b) - sup{g,,,(T) : g E F(b) f1 A}. In the next theorem, we show that the supremum
in the definition of QT(b) is actually attained and it is equal to the amount produced by the
last machine up to time T when each machine is operated at maximum possible rate whenever
operational.

Theorem 1 Suppose thnt the event times have no cluster point. Then Jor each finite time T,
Qr(b) - 4m(T ).

Proof. See Appendix B.

Remark Although, the a.vsumption that the event times have no cluster point is fairly realistic and
general, it excludes deterministic failure and repair times.

3 Properties of Throughput in CT lines

We now discuss some functional properties of (~T and O~. Below we use the term "non-decreasing"
for a function f: Rm -t R, by which we mean that f(xt, ... , xk) ~ f ( yt, ... , yk ) whenever a; ~ y;
for i - 1, . . . , k. -

Theorem 2 For T E [0, oo], 6T is a non-decreasing Junction of b with probability ane.

Proof. Observe that for 6' C 6, F(b') C F(b). Hence QT(b') G QT(b) and AT is a non-decreasing
function of b. 1

The reader may compare this monotonicity result with Meester and Shanthikumaz ( 1990). Their

result is concerned with monotonicity of throughput as a function of buffer capacities of a discrete
tandem queue with exponential service times and reliable servers, whereas we aze concerned with
monotonicity of throughput of a continuous tnndem line with unreliable machines and deterministic

fiow rates. Furthermore, we do not make any distributional assumptions for the failure and repair
times. Aside from these differences, our proof technique is very different. They use certain recursive

equations to chazacterize the dynamics of the system, especially the number of depaztures from each

server, and obtain the result by manipulating these equations inductively, whereas we provide a new

function space representation to model the dynamics of the system and exploit this mathematical

framework to obtain the result.
bleestsr and Shanthikumaz ( 1990) and Ananthazam and Tscoucas ( 1990) also show the concavity

of sample throughput in buffer capacities. This result holds for the discrete analog of the system

we are studying if failure and repair times aze exponentially distributed, as shown in g4; however
it fails to hold for CT lines; see Figure 2 and the discussion following Theorem 4.

We 7mte that though it is not the main subject oE the work reported here, one can also define a

multifunction F(C) from Rm to C([O,T], Rm) by the same four conditions that we used to define
F, where the variable is C, the vector of maximum flow rates. It is easy to see that F(C') C F(C)

if C' C C. Then by following the lines of proof of Theorem 2, we can show the monotonicity of

throughput in How rates.

Theorem 3 For T E [0, oo], HT is o non-decreasing Junction of C with probnbtiÍity one.

We should point out the difference between the monotonicity result of Theorem 3 and those of

Shanthikumar and Y'ao ( 1989a); as in the previous result the difference is in the system studied and
t.he proof technique employed. Theorem 3 is concerned with continuous tandem queues, whereas

Shanthikumar and Yao study general discrete queueing networks for which the discrete tandem

queue is a special case and use recursive equations to establish the monotonicity of throughput
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in the job service times. In addition to monotonicity, Shanthikumaz and Yao (1989b) show that
the reciprocal of throughput is a convex function of pazameters of the external interazrival times
and the machine service times, provided that these times themselves aze convex functions of those
parameters. A similaz convexity result about discrete tandem queues with unreliable machines
appears in Fu (1996). In addition, the convexity of reciprocal of throughput in maximum flow rates
of machines in CT lines is proven in FL (1996). We have pointed out to B.-R. Fu that by using
the recursive equations for departure time process developed in Fu (1996), he can also show the
monotonicity of throughput in maximum flow rates of machines; that would be an alternative way
of proving Theorem 3.

Remark A GSMP representation is constructed in Suri and Fu (1994) to model CT lines. In
Remazk 2 oE Giirkan (1997), it is shown that this GSMP is not non-interruptive (in the sense

of Schassberger (1976)). Unfortunately, violation of the non-interruption condition rules out the
applicability of the results, developed in Glasserman and Yao (1992a, 19926), for checking the first
and second order properties of stochastic systems that aze modeled as non-interruptive GSMP's.
Note that we aze not ruling out the possibility of constructing a different GSMP representation
(for this system) which is non-interruptive or modifying some of the results oE Glasserman and

Yao (1992a,19926) so that they are applicable to interruptive GSMP's. However, both uf these
approaches would require further investigation which is not the subject of this paper.

The next result deals with the upper semicontinuity of sample throughput. This is important

since the lack of upper semicontinuity in a function to be maximized may cause great difficulties
when doing practical optimization.

Theorem 4 For T E [0, oo), 6T is an upper semicontinuous Junction of b urith probability one.

Proof. Let T E [0, oo). We will show that q,,,(T) is an upper semicontinuous function of b and the

result will follow since AT(b) - q,,,(T)~T. By Theorem 1 it is enough to show that QT(6) is an

upper semicontinuous function of b. Let H: F(oo) -~ R be defined by H(g) - g,,,(T). Then H is

continuous and attains its supremum over F(b) n A since the set F(b) n A is compact by Lemmas

1 and 3. FLrthermore for any y E R, the set Sy - {g E F(oo) : H(g) C y} is open. Then

{b : Qr(b) G y} -{6 : g,,,(T) G y for all g E F(b) n A}
- {b:F(b)nACS„}
-{6 : F(b) C SY u A`}.

So {b : QT(b) C y} is an open set since Sy U A` is open and F is Berge-usc. 1

The reader may wonder whether the sample throughput, 9T for T E[0, oo), is lower semicon-

tinuous as welL In fact, OT is a discontinuous function of buffet capacities for finite T; see Figure

2. This is due to the fact that if two events occur at the same time, an infinitesimal change in

buffer capacities may cause the order of these events to change, as illustrated by a simple, numer-

ical example in Gurkan (1996), p. 52-56. Of course, when the failure quantities and repair times

for machines have continuous distrihutions, one may azgue that the probability of a continuous

random vaziable being equal to a specific value is zero; hence the probability that the time of two

events coincides in a discrete event simulation is zero, as well. Therefore these types of phenomena

cannot take place, in practice. On the other hand, it is clear from Figure 2 that once a sample

path (a random number sequence w) is fixed, there aze some buffer capacities at which this type

of phenomenon does occur and results in discontinuities in throughput. In other words, at each b

the probability of throughput being discontinuous is zeto; but the probability of throughput being

discontinuous at some b is not zero.
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Using the upper semicontinuity and monotonicity of sample throughput, one can easily show

that for any finite T, any 6, and any c 1 0, there exists ó~ 0 such that for every j, if 0 G 06~ G ó

and 6' - 6~ 06~ then AT(6) G 6T(6') G 6T(6) t c. This shows that the phenomenon described in

that example cannot occur when buffer capacities are íncreased by an infinitesimal amount; it can

only occur when they aze decreased by an infinitesimal amount. Furthermore, this phenomenon

may likewise occur when the operating time to failure (instead of operating quantity) is a random

vaziable, see Remark 4.33 of Giirkan (1996) or if one chooses the jth failure epoch of machine M;

as the stopping time (instead of a fixed stopping time).

It is worth to mention that although OT for T E[0, oo) is discontinuous, A~ appeazs to be

a cuntinuous function. Intuitively, this is expected: the steady-state throughput of a line should

not be very sensitive to arbitrazily small changes in the buffer capacities. In a 2-machine line, the

continuity of steady-state throughput is provided by the analytical formula derived in Gershwin and

Schick (1980). For longer lines we are not awaze of results of this nature, although computational

evidence strongly indícates that the steady-state throughput is indeed a continuous function of

buffer capacities, see Figure 3. Figure 3 displays the throughput of a 2-machine CT line, where

operating quantities to ïailures and repair times aze exponentially distributed, for different run

lengths T. In extensive numerical experiments (also for longer lines) we observed the same kind of

behavior. a discontinuous function with frequent jumps of lazge sizes when T is small, a smooth

function when T is lazge.
Although ~T for finite T is not concave in CT lines, in the next section we show that the

number of depaz tures from the system by time t, Dr, in the analogous DT line is a concave function

of the buffer capacities. This immediately gives the concavity of the line throughput with respect

to buffer capacities, since line throughput is just t-tDr. As mentioned eazlier, this is a well known
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result in the case of reliable machines with exponential service times, see tor example Meester and

Shanthikumar (1990), Ananthazam and Tscoucas (1990), and Rajan and Agrawal (1994); we make
a simple extension of this result to cover the case of unreliable setvers with deterministic cycle times

and exponential failure and repair times.

4 Concavity of Throughput in DT lines

In this section, we show that the depazture process of the DT line has a certain type of concavity

property which will be made precise later, in the buffer capacities.

Let r;, be the total repair time of M; for all failures that occur at M; while it is working on the

nth job, and S;, be the service time (including the repair time) of the nth job at M;. Then it is

easy to see the following relation:
S', - C; ~ t r;,

Let ~-({S,i,}~ i,... ,{S~ }~ 1) be the underlying service time sequence. Define D;(t,~) to be

the number of jobs completed up to time t by the ith machine and let D(t, w) -(Di (t,W), ..., D,,,(t, ~)).

D(t,w) is the departure process we are interested in. Also let

~k-;6k ifiGjGm
u;i- 0 iflCjGi (4.1)

undefined if j - i

It is clear that D(t,~) must satisfy:

D;(t,~) G Di(t,m) t u;i for all ( t,w) E Rt x f2, 1 G i~ j C m. (4.2)

Equation (4.2) basically says that the number of jobs completed by the ith machine up to time t

cannot exceed the number of jobs completed up to time t by any preceding machine and by any

succeeding machine plus the total buffer space between these two. To prove the main result we

need to introduce a few concepts, namely those of TDES, CDES and a NBU random variable. We

keep the exposition of TDES and CDES very brief; t.he interested reader is referred to Rajan and

Agrawal ( 1993, 1994).
A timed discrete event system (TDES) ( Rajan and Agrawal ( 1993, 1994)) has two components,

the logical component and the temporal component. The logical component specifies all feasible

sequences of successive event occurrences, i.e. deals with the order in which events can occur,

whereas the temporal component selects one particular sequence of events and their occurrence

times. A constmined discrete event system (CDES) (Rajan and Agrawal ( 1993, 1994)) is a subclass

of TDES whose logical component is completely specified by a constraint function. Let Z be the

set of integers. We now define CDES in mathematical terms.

Deflnition 2 Let g : Zt --i Z~ be nny func,tion that satisfies g(y) G g(z) whenever y G

z and y, z E Zt , and e; 6e the ith unit vector in Zm. The CDES ~ with constmint Junction

g is a timed discrete event system 0-(i,A,ó,tG,a) with state space I' -{y E Z~ : y G g(y)},

event set A-{1,... ,m}, enabting (multi)function Ó(y) -{i : y; f 1 G g;(y t e;)} for y E C,

transition junction ,V(y, i) - y t e;, and initinl state a- Ó.

Deflnition 3 A rea! valued non-negative random variaóle .X is said to 6e new-better-than-used

(NBU) if Jor each non-negative, non-decreasing, óounded and measuraóle function h: R-~ Rf,

one Ita.v
E~h(X - t)~X 1 t] ~ E[h(X)J,

i.e., Jor any t~ 0, the distrióution of X - t, given that X~ t, is stochastically smaller than the

distnbutian of X.
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It is easy to show that a random vaziable with Erlang distribution is NBU and that adding a
constant to an NBU random variable conserves this property. We will use these facts in the proof
oC Lemma 4 which we now state.

Lemma 4 Assume that for each i andp, Wó and R'y are exponentially dístributed random variables
with means w; and 1 fr; respectively. Consider the sequence of rondom vanables {S',}~ ~ for i-
1, . . . , m. Then,

(a) For each i, S' -{S;,}~ i is an i.i.d. sequence oj NBU mndom variaóles.

(b) {Sl,... ,Sm} are independent.

Prooj. For ( a): First we will show that {S`,}m i is an i.i.d. sequence of random vaziables. Let

N'(n) be the number of failures machine M; experiences while working on the nth job. Note that
N`(n) is a random vaziable that can take the value 0. Hence for each n, S;, - C; 1 t r,'„ where

C; is a constant and r;, is the sum of N`(n) many exponentially distributed random vaziables. Let
h1'(t) - sup{p : W'1 f... t Wy G t}. Since Wk,k - 1,... aze exponentially distributed random

variables, M'(t) is a Poisson process. Flirthermore for n E Zt, M'(n) is the index of the last

failure occurring not later than the completion of the nth job. Thus N'(n) - M'(n) - M`(n -

1) and r;, -~k~,~y~l~-llt~ Rk. If we let X'(t) -~k~i~l Rk, then X'(t) is a compound Poisson

process since {Rk}~ ~ is an i.i.d. sequence of exponential random vaziables which is independent

of {M`(t) ~ t~ 0}. Independence of {Rk}k-~ and {M'(t) ~ t~ 0} follows from independence

of {Rk}k-1 and {Wk}k-~. Since a compound Poisson process has independent and stationazy

increments the result follows by observing r;, - X'(n) - X'(n - 1).
Let Yk be the random variable r;, conditioned on the event {N'(n) - k}; then from the above

discussion it is appazent that the distribution of }k is an Erlang(k,r;).
Next we will show that {S;,}n ~ is a sequence of NBU random vaziables. Obviously the S;,

aze non-negative. For any non-decreasing, non-negative, bounded measurable function h and any

t 7 0, we have:

E[[h(Sn - t) ~ Sá ? t] ~ N'(n) - k] - E[h(Y. f C~ '- t) ~ Yk t C~ '' tl
G E[h(Yk t C; ~ )] -

The first eyuality follows from the independence of the repair times and the failure times whereas

the second inequality is a conseyuence of Yk being NBU.

Thus

E[h(s;, - t) ~ S:, ~ tl - E[E[[h(s~ - t) ~ S:, ? t] ~ N~(n)]1- ~

c~ E[h(}k f C; ~)] P{N'(n) - k}.
- k-0

We also have

E[h(S;,)I - E[E[h(S;,) ~ N'(n)]] -~ E[h(}k t C; 1) ] . P{N'(n) - k}.
k-o

Hence we conclude E[h(S,', - t)~S', ? t] G E[h(S;,)]. So {S',}~ ~ is a sequence of i.i.d. NBU random

vaziables.
For (b): S' ~nly depends on C;, {R;,}~ „ and {W„}~ ~. But for i~ j the random number

sequences {R;,}~ ~ and {R;,}~ ~ aze independent, and so are {W;,}~ 1 and {W,~,}~ ~. Hence

{5~,... ,Sm} aze independent. 1
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We now proceed with the main result. We write X dY to denote the equivalence in distribution
of the random vaziables X and Y and ~x~ to represent the ceiling function at x, i.e. it is the smallest
integer greater than or equal to x.

Theorem 5 Assume that for each i and p, LS" and R'y are exponentially distributed mndom vari-
ables unth means w; and l~r; respectively. Let bg,61,...,6' be diSerent óuffer configurations for the
DT line defined aóave, where 6a - {~p-1 op 6p}, ~ó-~ ap - 1 and ap ~ 0 for p- 1, . .. , r. Con-
sider the fami(y of CDES Do, ~~, ... , 0' carresponding to the óufjer conJigurations 60, 61, .. ., 6',
with state spnces C~, Fl, ..., P' and event counting processes Do, D1, ..., D' respectively. Let
w-({S,',}~ 1 ,... ,{S~ }m 1) 6e the underlying service time sequence. Then there exi.st a com-
mon probability space ( f1,.T,Y) and clock time sequences
wp -({5,1,(p)}~ ~,... ,{Sn(p)}~ 1), 0 G p G r, defined on ( St,.i',P) such that

wp aw for 0 G p G r

and
Do(t wa) ~{~np' Dv(t,wn)} jor all t 1 0, a.s.

p-1 -

ProoJ. [n Lemma 4, we have shown that in the clock sequence w -({S,~,}~ 1 ,... ,{S~}~1),
S` -{S;,}~ 1 is an i.i.d. sequence of NBU random vaziables for all i, and {Sl,... ,Sm} aze
independent.

For 0 G p G r, we define gp : Z~ -r Zt by gp(x) -(ga(x), ... , gm(x)) where

go(x) - min {x~ t u ~}

i~~
with x- (x~,... ,x,,,) E Z~ and u~ defined as in (4.1) for buffer configuration 6P. Then for

0 G p G r, Dp(t,w) G gp(Dp(t,w)); this follows from (4.2).
With constraint function qp, the tandem production line corresponding to the buffer con-

figuration bp is modelled as a constrained discrete event system ( CDES) Op with state space

Fp-{yE Zt :y~gp(y)},forOGpGr.
Take yp E F', 1 G p C r. Let yo - ~~p-1 apyp}. Then for 1 G j G m,

yj - Í~opyj}
p-1

G}~ ap mm {yo t u~~ }}

p-1 ~si

G min (~ ctpy; f~ apu~;j
l~~~m
i~i p-~ p-1

G min { {~ apyD} ~- {~ ~pls~;} }
~~.~T
;~~ p-~ p-1

;-1
G min {yo f ~ bk}

~~,~m
i~j k-7

Hence yo G go(yo), which implies ye E I'o. We conclude that [w 7{~ó-1 ap - Fp}.

The result follows by Theorem 4.5 of Rajan and Agrawal (1994). 1
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Remark 1 We remazk that the result would remain valid if one uses "operating time to failuré'
model as opposed to "operating quantity to failure' model; that is when the next failure of a
machine is determined by the time of operation of the machine since the last failure. The only
difference will be in Lemma 4: the relation between the two processes N' and M' will become
N'(n) - IL1`(nC;) - M'((n - 1)C;).

5 Conclusion

~i~e have explored functional properties of throughput in tandem production lines with unreliable
machines and finite buffer capacities. For this purpose, we constructed two multifunctions to model
the dynamics of this discrete event dynamic system and investigated their properties. Although

some of our results have been pazt of the folklore, for example see Ho et aL (1983) about, the mono-
tonicity of throughput in buffer capacities in continuous tandem lines, as faz as we aze aware formal

proofs have not appeazed in the literature before. This type of results cleazly provide qualitative in-

sight and guidelines for planners. We have also given references to work reported elsewhere (Giirkan
(1997)), where these results are actually used to show almost-sure convergence of a stochastic op-

timization algorithm, in a rigorous way.
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Appendix A: Proofs of Lemmas from ~2

For 6 E R~-~ write F(b) - Fl(b) n FZ(b) n F3(b) n FQ(b) where

F~(b)-{g-gi~...~gm~0},
FZ(b) -{g : g; is non-decreasing for each i - 1, ... , m},

FsÍb) -{9 - 9;(~) - ~, ~9;(x) - 9;Íy)~ 5 C;~x - y~ for any x,y E[O,T] and i - 1,... ,m},

F4(b) -{y : g;(x) - g;t~(x) C 6; for any x E(O,T], and i - 1,... ,m - 1}.

Lemma 1 The multiJunction F has the following properties:
a. gph F is closed.
6. gph F is convex.
c. F is compact-valued and F(b) C F(oo) Jor a11 6 E Rm-1

Proof. For ( a), we take a sequence {(b", g")} in gph F that converges to a point ( b,g) and show

that (b, g) E gph F. Cleazly, g E F~ (b) n FZ(b) n F4 (b). Take c~ 0 and find a positive integer N~

such that for all n ~ N~, t E(O,T], and i- 1,... ,m, ~~g; (t) -g;(t)~~ c c. Then for all x,y E[O,T]

andi-l,...,m,

~~9;(x) - 9;(y)II - IIg;(x) - 9~ (x) t 9i( y) - g;(y) f 9~(x) - 9~ (y)~~

5 ~~9;(x) - 9i (x)~~ -F ~~9;(y) - g; (y)II t IIg: ( x) - 9~ (y)~~
G 2c t G,~~x - y~~.

Since e can be made arbitrazily small, we must have g E F3 (6) as well. Hence gph F is closed.

To prove (hl we take (b, g), (a, h) E gph F and a E[0,1]. Cleazly,

(1 - a)g t ah E Fi((1 - a)b f aa) n FZ((1 - a)6 t aa) n Fq((1 - a)b t Aa).
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For any i- 1, .. .,m and x, y E[O,T],

II[((1- a)9;(x) t ah;(x)] -[((1- a)9;(y) f ah;(y)]II G(1- a)II9;(x) - 9;(y)II t alih;(x) - h;(y)II
5 (1-~)C;IIx-ylltaC;Ilx-yII
- C;IIx - yII.

Hence (1 - a)g t àh E F3((1 - a)b t aa) as well.
Clearly, Fl(b),FZ(b),F3(b), and F4(b) aze closed sets. Furthermore, for any g E F3(b), any

x E [O,T], and i- 1,... ,m, Ig;(x)I G C;IxI G C;T. Hence for any g E F3(6), II9II C max;" ~ C;T
and

IIg(x) - g(y)II - m~ Ig~(x) - 9~(y)I 5 r??axGllx - yII for any x,y E[O,T].

Then by the Arzelà-Ascoli theorem F3(b) is compact. Hence F is compact-valued. Furthermore
we have for all b E Rm-~, F(b) C F(oo). I

Lemma 2 The multifunction F is Berge-usc in R`"' I and b.-i F(b) is a wntinuous mapping from
int (Rt-~) to compact subsets of C([O,T],Rm) urith the metric topology induced 6y the Hausdorfj
distancc.

Proof. Since gph F is closed and for all b E Rm-1, F(6) is a subset of the compact set F(oo),
the multifunction F is Berge-usc in Rm-1 by the corollary to Theorem 7 in Section 7.1 of Berge

(1963). Berge-usc implies that for any c~ 0 and any b E Rm-~, there exists a ó~ 0 such that

e(F(b'), F(6)) G e for every b' with IIb' - 6II G ó. (5.1)

To see this, observe that F(b) t int (cB) is an open neighborhood of F(6) and use the definition of

Berge-usc.
Let e~ 0 and take b E int dom F- int (R~ -~ ) and g E F(b). By applying Theorem 1 of

Robinson (1976) to the inverse multifunction F-~, we can find é(g) ~ 0 such that F-~(g t cB) 7

6 f ó(g)cB, i.e. if IIb' - bII G eá(g), then there exists f E F(b') with IIg - f II G E. Notice that á(g)

depends on g; however for every h E F(6) one could always take ó(h) 1 ó(g)(1 t IIh - 9ID-' ~ 9ee
p. 133 of Robinson (1976). If we Ie.t K9 - máXhEF(6) IIh - 9II (which is attained since F(b) is a

compart set) and ó - á(g)(1 t Kg)'~~c ~ 0, then á C ó(h) for all h E F(6). So for all g E F(b)

and b' with IIb' - bII G ó, there exists f E F(b') with IIÍ - 9II G f. This is equivalent to having

e(F(6), F(b')) G e if IIb' - bII G ó which together with (5.1) gives the continuity of the mapping

6 H F(b), for all 6 E int (R~ -~) using the Hausdorff distance. 1

Lemma 3 A is ctased in F(oo).

Proof. Take a sequence {g"} in A that converges to a function g in F(oo). Assume that g~ A.

Then there exist i and j with a({t : g;(t) - f;~}) G Rj. Since g E F(oo), each component of

g is continuous and non-decreasing. Therefore the set {t : g;(t) - f;~} is actually an interval,

say [r, s]. Choose ó ~ 0 small enough so that à([r - ë, s t é]) G Rj, g increases in [r - ó, r], and

g increases in [s,s t ó]. Then e:- min{g;(s t ó) - f;~, f;; - g{r - á)} ~ 0. Since the g" -i g in

the sup-norm, we have uniform convergence in each component. Hence there exists N, such that

Ig,"(t) - g;(t)I G c for aI1 n 1 N, and t E[O T]. Take t ~ s t á, then for any n 7 N, we have

9; (t) ~ 9;(t) - E

? g;(t) - (s;(s f á) - I;;)
~ f;;.
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Similazly, we can show that g;(t) G J;~ for any t G r- ó and n~ N,. So for any n 1 N„ if
t~[r - ó, s t ë] then g;(t) ~ f;~. Therefore we have

a({t : g;(t) - f;~}) G a([r - b,s } 6]) G Rj,

by choice of ó. This contradicts the fact that g" E A. 1

Appendix B: Proof of Theorem 1 from ~2

Theorem 1 Suppose that the event times have no cluster point. Then for each finite time T,

Qr(6) - q."(T)-

Proof Let v;(t) be the rate of machine i at time t under strategy q and v,'(t) be the rate of

machine i at time t under strategy g. When t is the time of an event, we take v;(t) - v;(tt).

Without loss of generality we assume b; 1 0 for each i(otherwise we could combine two ma-

chines). Suppose there exists g E F(b) fl A such that g,,,(T) ~ q,,,(T). Let r - inf{t : g;(t) ~

q;(t) for some i} where r G T. Suppose that {tk} is a sequence decreasing to r, such that for each

k there is an index ik with g;~(tk) ~ q;,(tk). By using the pigeonhole principle we can find some i

such that for a subsequence {tk~} we have g;(tk~) ~ q;(tk,) for each j. For simplicity, rename this

sequence as {tk}. Note that g;(r) - q;(r) and g;(t) ~ q;(t) for t E(r,r t 60] for some óo ~ 0, by

continuity of g; and q;.
Under strategy q, machine i cannot be under repair at time r. To see this, suppose it were not

true; then under strategy g machine i must have finished the same repair by time r. So it must have

begun the repair earlier, say at tv, whereas under q machine i began its repair at time tt ~ to. But

q;(t) G q;(tl) for t G ti (failures are operational only), so g;(to) - q;(tl) ~ q;(tv) which contradicts

the definition of r.
By assumption, r is not a cluster point of the event times. Since under q the rate of machine

i changes only at an event time, there is ót ~ 0 such that in the interval [r,r f ól] that rate is
constant, say v'. We claim that v; G C;. To see this, observe that if it were not true, then we
would have for all b E(o,min{óo,bt})

9;(r ~- 6) - 9;(r f ó) - 9;(r) - 9;(r) t~Tts[v9(t) - C;]dt.

Since g;(r) - q;(r), we would have g;(r ~ b) - q;(r t ó) G 0 which contradicts the existence of 60.

Therefore fot small enough 6 E(0, min{bo, 6t }) either

a) q;(t) - q;-t(t) for t E [r,r t ó]

or
b) q; (t) - q;~ t (t) t 6; for 2 E [r, r t b];

since if neither (a) nor (b) occurs, then machine i should be running at rate C; on [r, r t 6).

If (a) occurs, then for sufficiently large k

9i-1(tk) - 9i-t(tk) - 9;-1(tk) - 9;(tk) -[91-1(tk) - 9;(tk)] f g;(tk) - 9i(tk)
? g;(tk) - q;(tk) i O.

We get t.he first of these inequalities since g;-~ (tk) - g,(tk) ~ 0 and q;-t (tk) - q;(tk). The second

inequality is a consequence of the choice of ó. Now we can repeat the same argument for machine

i- 1. Note the? we must then have g;-t(r) - q;-t(r) and this time we know that only (a) can

occuc So we get the same property for i- 2, i- 3, .... Eventually we reach machine I and a

contruíiction (since the first machine is never stazved).
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If (b) occurs, then for sufficiently large k

git~(tk) - 9it~(tk) - git~(tk) - gi(tk) f Qi(tk) - qi}I(tk) f.qi(tk) - qi(tk)

? gi(tk) - q;(tk) ~ O.

The first of these inequalities follows from g;~~(tk) t b; ~ g;(tk) and q;(tk) - q;tl(tk) - b;. The
second inequality is a consequence of the choice o( á. Here again we must have g;ti (r) - q;ti (r).
Therefore we can repeat the above argument for machine i t 1 and this time we know that (b) is
the only possibility. So we get the same property for i t 2, i t 3, .. .. Eventually we reach machine
ne and a contradiction (since t.he last machine is never blocked). 1

References
[1] Altiok, T. and Stidham, S. 1982. A note on transfer lines with unreliable machines, random

processing times, and finite bufiers. IIE Transactions 14(2): 125-127.

[2] Anantharam, V. and Tscoucas, P. 1990. Stochastic concavity of the throughput in series of
queues with finite buffers. Advances in Applied Probability 22: 761-763.

[3] Berge, C. 1963. Topologicnt Spaces (The MacMillan Company, New York).

[4] Buzacott, J.A. and Shanthikumar, J.G. 1992. Design of manufacturing systems using queueing

models. Queuein,q Systems 12: 135-219.

[5] Fu, B.-R. 1996. Modeling and analysis of discrete tandem production lines using continuous flow

models. Ph. D. Dissertation. Depaztment of Industrial Engineering, University of Wisconsin-
Madison, Madison, Wisconsin, USA.

[6] Glasserman, P., and Yao, D.D. 1992a. Monotonicity in generalized semi-Mazkov processes.
Mathematics af Operatians Research 17(1): 1-21.

[7] Glasserman, P., and Yao, D.D. 1992b. Generalized semi-Mazkov processes: Antimatroid struc-

ture and second order properties. Mathematics of Operations Research 17(2): 444-469.

[8] Gurkan. G. 1996. Performance optimization in simulation: Sample-path optimization of buffer
allocations in tandem lines. Ph. D. Dissertation. Depaztment of Industrial Engineering, Uni-

versity of Wisconsin-Madison, Madison, Wisconsin, USA.

[9] Giirkan. G. 1997. Simulation optimization of buffer allocations in production lines with unre-

liable machines Preprint, submitted for publication.

[10] Giirkan, G., ~zge, A.Y., and Robinson, S.M. 1998. Sample-path solutions for simulation opti-
mization problems:uid stochastic variational inequalities. To appear in: InterJaces in Computer

Science and Operatians Researrh, ed. D.L. Woodruff (Kluwer, Boston).

[ll] Ho, Y.-C., Eyler, M.A. and Chien, T.T. 1983. A new approach to determine parameter

sensitivities of transfer lines. Management Science 29(6): 700-714.

[12] bleester, L.E. and Shanthikumar, J.G. 1990. Concavity of the throughput of tandem queueing
systems with finite buffer space. Advances in Applied Probability 22: 764-767.



17

[13] Rajan, R. and Agrawal R. 1993. Second order properties of families of discrete event systems.
Technical Report-June 1993. Depaztment of Electrical and Computer Engineering, University
of Wisconsin-Madison, Madison, Wisconsin, USA.

[14] Rajan, R. and Agrawal R. 1994. Compazing families of non-Mazkovian timed discrete event
systems. Technical Report ECE-94-4. Department of Electrical and Computer Engineering,
University of Wisconsin-Madison, Madison, Wisconsin, USA.

[15] Robínson, S.Ivf. 1976. Regulazity and stability for convex multivalued functions. Mathematics
of Operntions Research 1(2): 130-143.

[16J Rockafellaz, R. T. and Wets, R. J-B. 1997. Variational Analysis (Springer-Verlag Berlin),
forthcoming.

[17] Schassberger, R. 1976. On the equílibrium distribution of a class of finite-state generalized
semi-Mazkov processes. Mathematics oJ Opemtions Research 1: 395-406.

[18] Shanthikumar, J.G. and Yao, D.D. 1989a. Stochastic monotonicity in general queueing net-
works. Journal of Applied Probability 26: 413-417.

[19] Shanthikumar, J.G. and Yao, D.D. 19896. Second-order stochastic properties in queueing
systems. Prroceedings oJ IEEE 77(1): 162-170.

[20] Suri, R. and Fu, B: R. 1994. On using continuous flow lines to model discrete production lines.

Discrete Event Dynamic Systems 4: 129-169.

[21] Plambeck, E.L., Fu, B.-R., Robinson, S.M., and Suri, R. 1996. Sample-path optimization of
convex stochastic functions. Mnthematical Programming 75: 137-176.

[22] Yamashita, H. and Onvural, R.O. 1994. Allocation of buffer capacities in queueíng networks

with arbitrary topologies. Annnls of Operntians Research 48: 313-332.



No. Author(s)

9713 H. Uhlig

9714 E. Charlier, B. Melenberg and
A. van Scest

9715 E. Charlier, B. Melenberg and
A. van Soest

9716 1.P. Choi and S.-S. Yi

9717 l.P. Choi

9718 H.Degryse and A. Irmen

9719 A. Possajennikov

9720 ]. Jansen

9721 J. ter Horst and M. Verbeek

9722 G. Bekaert and S.F. Gray

9723 M. Slikker and
A. van den Nouweland

9724 T. ten Raa

9725 R. Euwals, B. Melenberg and
A. van Scest

9726 C. Fershtman and U. Gneezy

9727 J. Potters, R. Sloof and
F. van Winden

9728 F.H. Page, Jr.

Titk

Long Term Debt and the Poliácal Support for a Monetary Union

An Analysis of Housing Expenditure Using Semiparametric
Models and Panel Data

An Analysis of Housing Expenditure Using Semiparametric
Cross-Section Modets

Vertical Foreclosure with the Choice of Input Specifications

Patent Litigation as an Information Transmission Mechanism

Attribute Dependence and the Provision of Quality

An Analysis of a Simple Reinforcing Dynamics: Learning to
Play an "Egalitarian" Equilibrium

Regulating Complementary Input Supply: Cost Correlation and
Limited Liability

Estimating Short-Run Persistena in Mutual Fund Perfortnance

Target Zones and Exchange Rates: An Empirical Investigation

A One-Stage Model of Link Fortnation and Payoff Division

Club Efficiency and Lindahl Equilibrium

Testing the Predictive Value of Subjective Labour Supply Data

Strategic Delegation: An Experiment

Campaign Expenditures, Contributions and Direct
Endorsements: The Strategic Use of Information and Money to
Inlluence Voter Behavior

Existence of Optimal Auctions in General Environments

9729 M. Berliant and F.H. Page, Jr. Optimal Budget Balancing [ncome Tax Mechanisms and the
Provision of Public Goods

9730 S.C.W. Eijffingerand
Willem H. Verhagen

9731 A. Ridder, E. van dcr Laan
and M. Salomon

9732 K. Kultti

9733 J. Ashayeri, R. Heuts and
B. Tammel

The Advantage of Hiding Both Hands: Foreign Exchange
Intervention, Ambiguity and Private Inforrnation

How Larger Demand Variability may Lead to Lower Costs
in the Newsvendor Problem

A Model of Random Matching and Price Formation

Applications of P-Median Techniques to Facilities Design
Problems: an Improved Heuristic



No. Author(s)

9734 M. Dufwcnbcrg, H. Norde,
H. Reijnicrse, and S. Tijs

9735 P.P. Wakker, R.H. Thaler
and A. Tversky

9736 T. Offerman and J. Sonnemans

9737 R. Kabir

9738 M. Das and B. Donkers

9739 R.J.M. Alessie, A. Kapteyn
and F. Klijn

9740 W. Guth

9741 L Woittiez and A. Kapteyn

9742 E. Canton and H. Uhlig

9743 T. FeensVa, P. Kort and
A. de Zccuw

9744 A. De Waegenaere and
P. Wakker

9745 M. Das, J. Dominitz and
A. van Soest

9746 T. Aldershof, R. Alessie and
A. Kapteyn

9747 S.C.W. Eijffinger,
M. Hoeberichts and E. Schaling

9748 W. Guth

9749 M. Lettau

9750 M.O. Ravn and H. Uhlig

9751 Th. v.d. Klundert and
S. Smulders

9752 1.P.C. Kleijnen

Title

The Consistency Prínciple for Set-valued Solutions and a
New Direction for the Theory of Equilibrium Refinements

Probabilistic Insurance

What's Causing Overreaction? An Experimental Investigation of
Recency and the Hot Hand Effect

New Evidence on Price and Volatility Effects of Stock Option
Introductions

How Certain are Dutch Households about Futurc Incark? An
Empirical Analysis

Mandatory Pensions and Personal Savings in the Netherlands

Ultimatum Proposals - How Do Decisions Emerge? -

Social Interactions and Habit Formation in s Model of Female
Labour Supply

Growth and the Cycle: Creative Deswction Versus
Entrenchment

Environmental Policy in an [nternationat Duopoly: An Analysis
of Feedback Investment Strategies

Choquet Integrals with Respect to Non-Monotonic Set Functions

Comparing Predicitions and Outcomes: Theory and Application
to Income Changes

Female Labor Supply and the Demand for Housing

Why Money Talks and Wealth Whispers: Monetary Uncertainty
and Mystique

Boundedly Rational Decision Emergence -A General Perspective
and Some Selective [Ilustrations-

Comment on `The Spirit ofCapitalism and Stock-Market Prices'
by G.S. Bakshi and Z. Chen (AER, 1996)

On Adjusting the HP-Filter for the Frequency of Observations

Catching-Up and Regulation in a Two-Sector Small Open
Economy

Experimental Design for Sensitivity Analysis, Optimization, and
Validation oCSimulation Models



No. Author(s) Title

9753 A.B.T.M. van Schaik and
H.L.F. de Groot

9754 H.L.F. de Groot and R. Nahuis

Productivity and Unemployment in a Two-Country Model with
Endogenous Growth

Optimal Product Varicty, Scale Effects, and Growth

Precautionary Motives and Portfolio Decisions

Price Fortnation by Bargaining and Posted Prices

Equivalence of Auctions and Posted Prices

The Value Relevance of Dutch Financial Statement Numbers for
Stock Marketlnvestors

97~5 S. Hochguertel

9756 K. Kultti

9757 K. Kultti

9758 R. Kabir

9759 R.M.W.]. Bectsma and H. Uhlig An Analysis of the "Stability Pact"

9760 M. Lettau and H. Uhlig

9761 F. Janssen and T. de Kok

9762 F. Janssen and T. de Kok

9763 E. Canton

9764 R. Euwals

9765 A. Blume

97ti6 A. Blumc

9767 B. van der Genugten

9768 W. Guth and B. Peleg

9769 E. Rebers, R. Beetsma and
H. Peters

9770 B. Donkers and A. van Scest

9771 K. Kultti

9772 H. Huizinga and S.B. Nielsen

9773 H. Huizinga and S.B. Nielsen

9774 E. Charlier

9775 M. Bcrliant and T. ten Raa

PreCerences, Consumption Smoothing, and Risk Premia

The Optimal Number of Suppliers in an(s,Q) Inventory System
with Order Splitting

The Fill Rate Service Measure in an (s,Q) Inventory System with
Order Splitting

Fiscal Policy in a Stochastic Model of Endogenous Growth

Hours Constraints within and between Jobs

Fast Leaming in Organizations

Infonnalion Transmission and Preference Similarity

Canonical Partitions in the Restricted Linear Model

When Will the Fittest Stuvive? -An Indirect Evolutionary
Analysis-

When to Fire Bad Managers: The Role of Collusion Between
Management and Board of Directors

Subjective Measures of Household Preferences and Financial
Decisions

Scale Retums of a Random Matching Model

A Welfare Comparison of Intemational Tax Regimes wíth
Cross-Ownership of Firms

The Taeation of Interest in Etuope: A Minimum Withholding
Tax?

Equivalence Scales for the Forrner West Germany

Increasing Retums and Perfect Competition: The Role of Land



No. Author(s)

9776 A. Kala~j, R. Alessie and
P. Fontein

9777 P.J.J. Herings

9778 G. Gurkan, A.Y. Uzge
and S.M. Robinson

9779 S. Smulders

9780 B.J. Hcijdra and L. Meijdam

9781 E.G.F. Stancanclli

9782 J.C. Engwerda and
R.C. Douven

9783 J.C. Engwerda

9784 J.C. Engwerda, B. van Aazle
J.E.J. Plasmans

9785 1. Osiewalski, G. Koop and
M.F.J. Steel

9786 F. de Jong

9787 G. Gurkan, A.Y. Ozge
and S.M. Robinson

9788 A.N. Banerjee

9789 G. Brcnnan, W. Guth and
H. Kliemt

9790 A.N. Banerjee and
J.R. Magnus

9791 A. Cukierman and
M. Tommasi

9792 A. Cukicrman, P. Rodriguez
and S.B. Webb

9793 B.G.C. Dellaert,
M. Prodigalidad and
J.J. Louvríere

Title

Household Commodity Demand and Demographics in the
Netherlands: a Microeconometric Analysis

Two Simple Proofs of the Feasibility of the Linear Tracing
Procedure

Sample-Path Solutions for Simulation Optimization Problems
and Stochastic Variational Inequalities

Should Environmental Standards be Tighter if Teclmological
Change is Endogenous?

Public Investment in a Small Open Economy

Do the Rich Stay Unemployed Longer? An Empirical Study for
the UK

Local Strong d-Monotonicity of the Kalai-Smorodinsky and
Nash Bargaining Solution

Computational Aspects of the Open-Loop Nash Equilibrium
in Linear Quadratic Games

The (In)Finite Horizon Open-Loop Nash LQ-Game: An
Application to EMU

A Stochastic Frontier Analysis ofOutput Level and Growth
in Poland and Westem Economies

Time-Series and Cross-Section Information in Affine Term
Swcture Modcls

Sample-Path Solution of Stochastic Variational Inequalities

Sensitivity of Univariate AR( I) Time-Series Forecasts Near
the Unit Root

Trust in the Shadow of the Courls

On the Scnsitivity of the usual t- and F-tests to AR(1)
misspecification

When does it take a Nixon to go to China?

Central Bank Autonomy and Exchange Rate Regimes - Their
Effects on Monetary Accommodation and Activism

Family Members' Projections of Each Other's Preference and
Influence: A Two-Stage Conjoint Approach



No. Author(s)

9794 B. Dellaert, T. Arentze,
M. Bierlaire, A. Borgcrs
and H. Timmermans

9795 A. Belke and D. Gros

9796 H. Daniëls, B. Kamp and
W. Verkooijen

9797 G. Gurkan

9798 V. Bhaskar and E. van Damme

9799 F. Palomino

97100 G. Giukan and A.Y. Ozge

Title

Investigating Consumers' Tendency to Combine Multiple
Shopping Purposes and Destinations

Estimating the Costs and Benefits of EMU: The Impact of
Extemal Shocks on Labour Markets

Application of Neural Networks to House Pricing and Bond
Rating

Simulation Optimization of Buffer Allocations in Production
Lines with Unreliable Machines

Moral Hazard and Pm~ate Monitoring

Relative Performance Equilibrium in Financial Markets

Functional Properties of Throughput in Tandem Lines with
Unreliablc Seners and Finite Bufters



p.(~ Rnx an~~~ ~nnn i~ Tii Ri iQn Tu~ n~~TU~qLANDS
Bibliotheek K. U. Brabant .i ~ i ii i

~ 7 000 O ~ 402 ~ 2 ~ 7
i


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

