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Abstract

Conditional demand analysis (CDA) 1is a statistical
method for allocating the total household electricity
load during a period into its constituent components,
each associated with a particular electricity-using
appliance or end-use. This is an indirect approach to
the estimation of end-use demand and quite naturally it
often generates imprecise estimates. One of the possible
methods for Improving these estimates involves the
incorporation of data obtalned by directly metering
specific appliances. It 1is argued that an extremely
natural approach to the use of this extra information
follows directly from a reformulation of the standard
CDA model into a random coefficlent framework. Some new
results on the possible efficlency gains from such an
approach are developed. Illustrations based on an
empirical study of households in the state of New South
Wales, Australia are also provided.

This paper developed from a project carried out in the state of New South
Wales in Australia 1In conjunction with an Electricity Industry Working Group
(IWG) comprising representatives from the Electricity Commission of N.S.W.,
the N.S.W. Department of Energy, the Local Government Energy Assoclation and
the County Councils of Sydney, Prospect, Southern Riverina, Illawarra and
Shortland. The authors gratefully acknowledge the assistance of the IWG. Ve
are especially Indebted to the Commission and Its officers Bob Lumsdaine and
Mike Garben whose assistance was invaluable in the preparation of this
paper. We also wish to thank Dr. Mark Steel of Tilburg University and Dr.
Joachim Werner of Bonn University for helpful discussions, Kerrie Legge for
providing excellent research assistance and an anonymous referee for some
helpful suggestions. A preliminary version of the paper was presented at the
Australasian Meetings of the Econometric Soclety In Armldale, July 1989.



1. INTRODUCTION

Conditional demand analysis (CDA) is a statistical method for allocating the
total household electricity load during a period into its constituent
components, each associated with a particular electricity-using appliance or
end-use. The method, introduced by Parti and Parti (1980), assumes that the
electricity load of a household is linked via a linearly additive regression
model to a set of dummy variables representing the household’'s appliance
ownership. The estimated coefficients of the dummy variables can be
interpreted as the mean contribution of each end-use to the total load.
End-use load profiles through the day can be obtained by applying CDA for
each hour through the day, an approach pioneered by Aigner, Sorooshian and
Kerwin (1984).

As revealed in a recent investigation by Huss (1985), accurate information
about end-use loads 1is increasingly seen by electricity utilities as
important for their generation planning, marketing and rate-making
activities. However, CDA is an indirect approach to the estimation of
end-use loads and the estimates it produces are not always precise or
plausible. Negative loads, or technically implausibly large loads, are
difficult to justify. The problem primarily arises because the ownership of
appliances among households in the sample 1is generally not very

heterogeneous.

To overcome this weakness of CDA it is natural to look for additional
sources of information with which to supplement the analysis. Caves,
Herriges, Train and Windle (1987) conslder end-use profiles produced by
engineering models based on thermodynamic principles, and propose a Bayeslan
approach for combining these profiles with CDA. Engineering models are only
appropriate, however, in situations where individual behavior plays a minor
role, for example, heating and cooling in extreme climates. Most appliance
use depends on the life style; in temperate climates, even heating and
cooling appliances are in many households only used when the occupants are

at home.

An alternative way of obtaining additional information about end-use

electricity consumption is to meter specific appliances directly. Ad hoc



direct metering of specific appliance types is sometimes carried out by
utilities to assist in developing marketing strategies. As technical
advances reduce the cost of such metering, this optlion is now also becoming
increasingly attractive as a way of supplementing the usual household load

data collected for load research purposes.

Recently, methods of integrating the data gathered using direct metering on
selected applliances in a sample of households in a load research study with
CDA have been suggested. The basis for our discussion is the Fiebig, Bartels
and Aigner (1988) approach that follows directly from a reformulation of
the standard CDA model into a random coefficient framework. However, an
alternative approach suggested by Aigner and Schénfeld (1988), Caves et al.
(1987) and Hsiao, Mountain and Ho (1990) where the direct metering
information is treated as stochastic prior information is shown to generate

identical estimates.

The primary focus of this paper is to characterize the efficiency gains
resulting from supplementing CDA with direct metering data. Both a
synthetic example and a real situation based on an actual load study
involving 400 households in the state of New South Wales, Australia are used

to illustrate these gains.

2. A RANDOM COEFFICIENT CDA MODEL WITH DIRECT METERING

2.1 Basic model
The basic CDA model for electricity consumption (possibly annual, monthly,
daily, or hourly) is of the form

(1) y =zl'¢+dl'7'l' i=1,...,N

1
where yl = electricity consumption of customer 1,

zl' = row vector of observations on 1 explanatory variables,

dl' = row vector of observations on k appliance dummies, the first

of which is always unity.

The typical assumption that the coefficients of the appliance dummies are

fixed, is unrealistic. There are two important sources of variation:



(i) during any particular hour the intensity of use of a particular
appliance will vary from household to household,
(ii) the dummies indicate only absence or presence of the appliance and

do not allow for variations in size or capacity.

Following Fiebig et al. (1988), we assume that

Y
(2) T, =2,

where y is a kxl vector of non-stochastic mean response coefficients, and
vl' = (v‘l,vz‘,...,vkl) is a vector of random disturbances.

Notice that (1) is written without a separate disturbance term. This
omission is deliberate, as a separate disturbance can not be distinguished

from v“. the disturbance associated with the intercept.

At this stage it is appropriate to recognize that some care needs to be
exercised in defining random coefficients for dummy variables. According to
(2), all elements of 7? are random. However, on observing the realized
sample values for the dummy variables, (here appliance holdings), 1t is
possible to identify some elements as identically equal to zero. Now a

modified version of (2) is appropriate, namely

’ . ¥
) v, =4
where Al is a k dimensional diagonal matrix whose diagonal elements are the
appliance dummies, which are zero or unity depending on the appliance

holdings of the ith customer.

Because dl'Al=dl', the combination of (1) with either (2) or (2’) yields a

model of the form

(3) y, =2 ¢ + dl TEN
where

(4) u, = d‘ Vi

Assuming,

(5) E(vl) =0, E(vlv") = A, E(v‘vl') = 0 for 1=},



it follows that

- 2 - » -
(6) E(ul) =10, E(ul) = dl Adl, E(uluj) =0 for 1i=}j.

This is a variant of the Hildreth-Houck random coefficient model (RCM). In
Fiebig, Bartels and Aigner (1988), A was assumed to be a diagonal matrix,

which implies a heteroskedastic error variance of the form:

(7) of = E(uf) = dl'a

where a' = (al,az,...,ak) is a vector comprising the diagonal elements of A.

In obvious notation write (3) as

(8) Vi =% B + u,

and let the full error covariance matrix be Q, which is a diagonal matrix
with typical diagonal element given by (7). Now for known Q the GLS
estimator of B is given by

(9 g = xa ' xaly
It is also possible to predict the individual random response vector. The
predictor

~g o -1 &
(10) T, = Alw + Ad‘(d"a) ( ¥, = xl'B )
is best linear unbiased; see Griffiths (1972). For our particular problem
these best linear unbiased predictors (BLUPs) are of great interest. They
represent predictions of actual customer end-use loads and as such can be
used to develop distributions of end-use loads over individuals. Operational
variants of the estimator in (9) and the predictor in (10) have been

proposed by Fiebig, Bartels and Algner (1988). See also Bartels and Fiebig
(1990) for further discussion.

2.2 Incorporating direct metering

Conditional demand analysis arrives at estimates for the load contribution
of different end-uses by statistically disaggregating the total household
loads for a sample of households. This is an indirect approach and the
estimates it generates are often imprecise. The RCM 1is likely to provide

some efficiency gains relative to OLS procedures but it remains the case



that there is considerable room for improvement in these estimates. One
obvious alternative is to directly meter specific appliances for a subsample
of households. Suppose meters were allocated to all households possessing
the kth appliance. Treatment of the resultant direct metering data would be
straightforward: the mean of the observed loads being the estimate of the
average load for that particular end-use. For the remaining end-uses the CDA
model would be estimated after having subtracted the appllance loads of the
kth applliance from the totals for the relevant households, and, after

omitting the assoclated appliance dummy variable.

Complete metering is typically not a cost-effective alternative but in some
cases a limited direct metering program may be feasible. Consequently we
need to consider an appropriate method of incorporating direct metering data
into the CDA framework.

The suggested approach follows directly from our random coefficient
framework. Suppose direct metering information is available on the kth
appliance for a total of n households where n is less than the number of
households in our sample who have this appliance. For these households we
observe a realization of the random response coefficient. Again this load
can be subtracted from the household’s total observed load and for these
observations the appliance dummy set to =zero. Finally, these adjusted
observations are augmented to include the additional n observations that
constitute the actual response coefflclents of the kth appliance dummy. The
stacked regression allows Joint estimation of the mean response assoclated
with the kth appliance, utilizing the data from households that were and

were not directly metered.

The assumption that the covariance matrix for v is diagonal ensures that
the error covariance matrix for the stacked regression is also diagonal with
a heteroskedastic structure of the form discussed previously. In fact, it is
as if there is an additional sample of n households with only one appliance.
Notice also, that in the limiting case where every household with the kth
appliance is directly metered, there is no gain from joint estimation and
therefore this procedure reduces to that suggested for complete metering

data.



2.3 A general model and alternative interpretation

Suppose direct metering information is available for p appliances and that
these data were recorded for only a subset of the customers who have the
respective appliances. Also, any single customer has at most one metered
appliance. Consider two models, Model I being the basic CDA model and Model
II its generalization that incorporates the direct metering data. For an

arbitrary hour, these can be written in matrix form as:

(11) Y, =th b h=I, 11
where
[ ya Y.
(12) y = » K. = y
1 | Vry. 11 b
L ¥ |
and
- u
u a
(13) i . # U o My = L
| b c

c 4

while the design matrices for these models can be written as

2 d d

0 o1 op

(14) XI= Z1 dli 592 dlp
Z d d

P pl PP

and



Z d _4d
o 01 02 op
Z 0
1 12 1p
2. d 0
2 21 2p
(15) Z d 0
IT p pl P2
(] aws B
1
0 L
2
G O @ L
L B}

where "j is an nJ column vector of unit elements. The top block of
observations refers to the N-n (n = Zn]) customers who were not metered
while the n customers who were metered have been arranged into groups
according to the metered appliance to form the second block. For Model II
there is a third block of n observations representing the observations on
the directly metered appliances. In obvious notation these two design

matrices can be written as
Xa xu

(16) Xx= X +X ' X”= xb
b c

In a similar fashion the variance covariance matrices of the disturbance

vectors are given by

(17) Var(ux) = I=

z 0 0

a
(18) Var (uu) = Z”= 0 tb 0
0 0 z

where Zh, h = a,b,c are diagonal matrices.



While we have set up the model so that meters are assumed to be attached to
individual appliances our framework could Jjust as easily apply to the
situation where meters recorded the load of a group of appliances. It could
be that certain applliances are often put on the same circult. In this case
there would be p groups of appliances and the dlj and LJ vectors would
simply become matrices with the number of columns equal to the number of

appliances in the jth group.

Aigner and Schoénfeld (1988) and Caves, Herriges, Train and Windle (1987)
have recently suggested that limited direct metering information could be
incorporated into CDA by treating 1t as stochastic prior information.
Formally, define such a model, say Model III, by

(19) Yin =xI!IB v Y
where
yl xl ul
Y~ WY 4 xlll‘ Xb‘ Xe il Y ub* Ye
y X u
c c c

Notice that as in Model II, the basic data are augmented by the direct
metering information, but unlike Model II, there is no adjustment of total
loads or appliance dummies. The other difference is that the disturbance
covariance matrix is no longer diagonal as the observations 1in the second
and third blocks are correlated. The question of the comparison of the two
approaches embodied in Models II and III is answered by the following

proposition:

Proposition A: The GLS estimator associated with model II is identical to
that associated with model III.

The proof 1is supplied in the Appendix.
Notice that this equivalence refers to a particular method of handling

stochastic prior information. The result 1is unlikely to hold for

alternatives that could come from a richer Bayesian framework.
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3. EFFICIENCY GAINS FROM DIRECT METERING

3.1 Direct metering implies efficiency gains

An immediate question of interest is the characterization of the efficiency
gains that arise from incorporating direct metering data, relative to the
alternative of simply ignoring the information. In particular, this involves
a comparison of the relative efficiency of the GLS estimators of Models 1
and II.

Proposition B: The GLS estimator associated with model II is more efficient
than the estimator assoclated with model 1. Denoting the
variance-covariance matrices of the two estimators by Vl and Vn it 1s the
case that:

(1) the difference between the variance-covariance matrices, VI = VIV
is positive semi-definite (psd),

(ii) the trace of this difference, t.r(VI - VII). is strictly positive.

The proof is supplied in the Appendix.

Different configurations of meters imply different forms for the X matrix
and the error covariance matrix which translates into different covariance
matrices for the B estimates. Glven an actual data set and values for the
variances of the random responses these covariance matrices can be
determined and compared. We now do this for two particular models in order

to further characterize the gains from direct metering.

3.2 Efficiency gains in a simple model

In order to further characterize the gain from direct metering, consider a
simple CDA model comprising an intercept and two appliance dummies where
direct metering 1is available for the first appliance. The model
incorporating the direct metering information is given by,

L L L
1 1 1
L, L, 0 Bl
(20) Yin L, 0 L, 82 +u
LN 0 0 B3
0 L 0
s

where there are a total of Nl households that own both appliances, N2
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households that own only the first appllance, N3 households that own only
the second appliance, and N‘ households that do not own elither appllance.
There are a total of n houscholds that have the first appllance metered, nl
having been taken from the first group of households and the remalning n,
from the second group. Consequently, veeealy are unit vectors with

1

dimensions: N - n, N. - n, N + n, N + n_and n. The disturbance
1 1 2 2 3 1 4 2

variance-covariance matrix is given by,

2 2 2 2 2
(21) Var(uxl) = diag(tr1 It' o Iz‘ L Ia' E I‘. o Is)

where 02 =a +oa_ +a, 02 =a + a, 02 = + 0., vz = a , and 02 = 0 .
i 1 2 3’ T2 1 2" "3 1 3" a4 1 5 2
The first estimator of this model, denoted by él, does not {Fcorporate the
direct metering information while the second, denoted by BII, does. Two
experiments were conducted in order to compare the efficiencies of these two
estimators the designs of which are given as:
Experiment 1: NI = 200, N2 = 100, N3 = 50, N‘ = 50, n = 50
a =a =1, G, & 0.04, 0.25; 1; 4; 25

1 3
o, 10, 25, 40, S0

n
1

Experiment 2: Nl = 200, N2 = 100, N3 = 50, N, = 50
-3 « =1, «_ = 0.04, 0.25, 1, 4, 25
1 3 2
n = 10, 20,...,100

1

Both experiments allow for a range of values for the relative variability of
the random response of the metered appliance. In Experiment 1, this 1is
coupled with variation in the composition of the type of household
(according to appliance holdings) that is metered, while Experiment 2 varies

the number of metered households.

For the purposes of comparison. the criterlon chosen was the relative traces
of the covariance matrices of Bx and B These quantities will be less than
unity, with smaller values indicating greater efficiency gains from direct
metering.

Results for Experiment 1 are given in Table 1. Numerically, these efficiency
gains can be quite dramatic and display a strong inverse relationship with
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. While the effect of varying n is small, notice the systematic tendency
for the preferred value of n to increase with larger a, values. In other
words, the efficiency gains from direct metering are greatest when the
variance of the random response of the metered appliance 1s relatively
small, in which case there are small gains to be made from metering

households with fewer appliances and hence smaller disturbance variances.

Results for Experiment 2 are given in Table 2. Again these efficiency gains
can be quite dramatic. While efficiency gains are directly related to n, the
number of meters, it is very interesting to note the considerable decrease
in the rate of gain from additional meters especlially when «, is small. In
other words we rapidly reach a point where the gains from additional meters
are likely to be outweighed by their costs. As an alternative way of viewing
this phenomenon, consider o= 1.0. Here substantially more than 100 meters
are required to obtain the type of efficiency gains provided by 10 meters
when o, = 0.04.
Table 1: Relative Efficiencies: Experiment 1

‘12
n, 0.04 0.25 1.0 4 25
0 0.459 0.545 0.686 0.808 0.890
10 0.459 0.542 0.668 0.766 0.849
25 0.460 0.543 0.661 0.738 0.820
40 0.462 0.552 0.674 0.746 0.821
S0 0.464 0.562 0.696 0.773 0.840

Table 2: Relative Efficiencies: Experiment 2

a
n 0.04 0.25 1.0 4 25
10 0.538 0.751 0.882 0.926 0.948
20 0.494 0.659 0.809 0.872 0.910
30 0.478 0.611 0.760 0.831 0.881
40 0.469 0.582 0.723 0.799 0.858
S0 0.464 0.562 0.696 0.773 0.840
100 0.453 0.516 0.621 0.696 0.785
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3.3 Efficiency gains in a second model

For the second model we draw heavily on the application of Flebig, Bartels
and Aigner (1988). The data for this study were compiled as part of the
Domestic End-Use study conducted for the state of New South Wales (N.S.W.)
in Australia under the auspices of an Industry Working Group comprising
representatives from the Electricity Commission of N.S.W., the N.S.W.
Department of Energy, the Local Government Energy Assoclation and the County

Councils of Sydney, Prospect, Southern Riverina, Illawarra and Shortland.

Load data consisted of hourly integrated demands for each customer averaged
over working days for the month of July 1986. The resultant 24 observations
for each customer represent the household’s average working day load profile
for that month. A selection of nine appliance dummies was chosen. These,
together with their estimated population penetration rates, are provided in
the following list:

FREEZ = separate freezer (47%),

FRIGAUT = automatic defrost fridge (53%),

COOK = electric oven or hotplates (73%),

DSH = dishwasher (22%),

DRYER = clothes dryer (52%),

HEAT = electric main or secondary heating (79%),

HWPK = main tariff water heater (32%),

HWOP = offpeak tariff water heater (51%),

POOLPUMP = pool pump (6%).
The total sample size was 348. Direct metering information was available for
two appliances, namely, HWOP and HWPK.

Empirical results from this study indicate substantial efficlency galns from
the use of a random coefficient model and from the inclusion of directly
metered observations. The improvements attributable to the latter were
especially noteworthy prompting Fieblg et al. (1988, p.22) to recommend
that: "... in future residential load studies every effort should be made to
record loads of all appliances such as offpeak water heaters or ranges which

are on a separate circuit running from the main board."

While their study highlights the potential gains from direct metering it

provides little guidance on the appropriate allocation of meters across
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households and appliances. The actual allocatlon in the study was ad hoc.
Would 1t have been better to allocate the avallable meters to ranges or some
other mix of appliances? Glven the actual data from this study and assumling
the unknown variances to be given by their estimated values we are able to
investigate such questlions. These varlances are not re-estimated for

different configurations of meters.

In all our experiments we only consider those appliances most likely to be
metered; namely COOK, HWPK and HWOP. Again the basic criteria used in
evaluating alternative configurations of meters are the relative traces of
the coefficient variance-covariance matrices. Because the estimation of the
coefficients of the appliance dummies 1is our main concern these are only
partial traces taken over the appliance coefficlents and including the

intercept.

Initially assume that each appliance 1s metered separately. Further suppose
each appliance 1is completely metered; in other words all households
possessing the appliance are assumed to be metered. The efficiency gains
relative to the base of no metering are presented in Figure 1. Complete
metering of any one of the three appliances would provide substantial
efficlency gains throughout the day. No one appliance dominates the others
throughout the day although metering HWOP provides the most gain for hours
1-15, 20-21 and 23-24, while in the remaining hours COOK 1s the best.
However, COOK has 265 meters, HWOP 189 meters and HWPK only 105 meters. In
fact the gains from metering HWPK seem qualitatively similar for say the
hours 7-22 and yet involve substantially fewer meters and hence lower

metering costs.

In order to focus our attention let us concentrate on hour 19. The results
from Figure 1 for this hour are reproduced in Table 3, together with a

series of other configurations of meters.
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Figure 1:

TRACE COMPARISON

HOUR

B=BASE TRIANGLE=COOK SQUARE~HWPK STAR=HWOP



Table 3: Efficiency gains for hour 19

Meters Ratio to
Partial base of no
COOK HWOP HWPK trace metering
0 0 0 0.318 1.000
265 0 0 0.177 0.558
0 189 0 0.245 0.773
0 0 105 0.232 0.729
90 0 0 0.251 0.792
0 0 90 0.242 0.763
45 0 45 0.232 0.729
0 125 21 0.217 0.686

Notice that metering HWPK is unambiguously preferred to metering HWOP; it
produces more efficient estimates with substantially fewer meters. This is a
somewhat surprising result in view of the fact that the random coefficient
variances are 0.118 for HWOP and 0.573 for HWPK. Results from the simple
model of section 3.2 suggest that metering of appliances with lower
variances is preferable. Naturally, this comparison does not control for
other factors such as differences in the type of households. Apparently

these factors have moderated the influence of the differences in variances.

For the comparison between COOK and HWPK the situation is unclear and an
attempt was made to control for the differences in the number of meters.
There is a group of 90 households that possess both COOK and HWPK. By
metering households within this group a comparison can be made that controls
for the number of meters and household characteristics. Again metering of
HWPK is preferred. Because the random coefficient variance of COOK is 0.828
this result is consistent with the strategy of metering the lower varliance

appliance.

The efficiency comparisons have been limited to metering single appliances.
Given the diminishing returns that were evident in the simple model of
section 3.2 it is important to consider the possibility of metering more

than one appliance.
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Fiebig et al. (1988) report results where meters were avallable for HWOP and
HWPK. A total of 125 out of the 189 households owning HWOP were directly
metered while it was 21 out of 105 for HWPK. Results from this configuration
of meters and a second example using the 90 households possessing both COOK
and HWPK are presented in Table 3. For this second example the households
were arbitrarily divided into two groups: the first 45 households were
assumed to have COOK metered while the remaining 45 have HWPK metered.

It is clear that spreading the meters over different appliances is a good
strategy. The 146 meters spread over the two hot-water appliances produces
more efficient results than the 189 employed to totally meter HWOP.
Similarly, spreading 90 meters between COOK and HWPK 1is preferred to

locating them solely to only one of these appliances.

4. CONCLUSION

Imprecise end-use load estimates have been a major problem associated with
conditional demand analysis. The use of direct metering information is one
possible method of improving this situation. As the cost of direct metering
comes down this approach will become increasingly attractive. The random
coefficient formulation discussed here, provides a simple and intuitively
appealing framework for the incorporation of limited direct metering data
into conditional demand analysis. Importantly, it has been illustrated using
both an artificial example and a real-life application that the efficiency
gains from limited direct metering can be quite substantial.

Our analysis has provided some interesting insights into the problem of
where, and, how many meters, need to be employed as part of a conditional
demand study. In particular it seems that quite substantial gains may be
achieved with only a relatively small number of meters. Given a choice
between appliances it seems preferable to meter appliances for which the
variation in use is smallest. Because of substantial diminishing returns
when metering a single appliance, it is also advisable to spread the meters

over different types of appliances.
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Some of these optimal experimental design questions have been addressed in
Aigner and Schénfeld (1988). Their analysis is limited, however, to the
situation where households can only have two types of appliances. It is
unlikely that useful algebraic results can be derived for the more general
case of, say, 8 or 10 appliance types. A computational approach to the
problem of how best to allocate a given number of direct metering devices is
easily specified but takes on horrendous combinatorial dimensions. In
practice, it is likely that the most fruitful approach will be to follow the
example in this paper, and compare the efficiency gains from different
feasible allocation schemes. Done systematically this could be likened to an
heuristic optimization scheme. It 1is fair to conclude that a much more
comprehensive study of the optimal placement of meters remains to be

undertaken.
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Appendix: Proofs of Propositions
Proof of Proposition A:

The proof follows directly from noting that Model III can be rewritten as

(A.1) B Vs = B XuB + B u
(0] 0
N-n
where B = 0 I i and Var (u__ ) =B Z B '.
n n 111 1
0 0 I
n
Hence,
53 = v, 8 » A= Mg ags » 5
BIII— [XIIB (B ZIIB ) B XII] xllB (B ZXIB ) B yll

1 sty =8

=1
= [X T 'X ]
T TE X1 111X 11 11

Proof of Proposition B:

The following lemmas are useful in the proof:

Lemma 1: Let S be a positive definite, symmetric matrix of rank (N+n), and R
be an arbitrary matrix of dimension Nx(N+n) and rank N, then C = S =
R’ (RSR’) 'R is positive semi-definite.
Proof of Lemma 1:

c=s"-R(RSR)'R is psd

-1/2 1/, -1 172 -1/2
« 83y - Y% fpert YRS 2157V 4w psd
2

e B=1-5"%R(RsR")'RS"? is psd

But B is idempotent and hence psd .

Lemma 2: Let X be an arbitrary matrix of dimenslion (N+n)xk and rank k, then
the ranks of X'CX and CX are equal and X'CX = 0 Iff CX = O.
Proot of Lemma 2:

T e “1/2 . . . .
Define X = S “°X then X'CX = X'BX = (BX )'(BX ) since B 1is symmetric
r(Bx’) and (BX')’ (BX') = 0 iff BX = 0.

idempotent. Now r[(BX.)'(BX.H

2

But CX = S /2BX" and the same results apply to CX as S “? 1is nonsingular.



20

Now note that X = AX and £ = AZ_ A’ where A = IN-n
1 11 I 11 o I 1
n n

Hence the GLS estimators associated with Models I and II have precision

matrices given by

(A.2) P=v lox X =X'A (AT _A')'AX
1 b I X ) § II II 11

and

(A.3) P =v t=x 'z

From (A.2) and (A.3) we have

=1

(A.4) P & P e

=% 0 EY = A AE AT K IR =X 0K
I I II 9 4 11 B ¢ I3

By Lemma 1, C is psd and hence X 'CX is psd. Now V. - V. =P - P
1111 1 11 1 11

is pd, psd or zero iff Pl’— PI is pd, psd or zero.

Part (ii) of the Proposition follows if XI;CXII is also nonzero. Note that C
has the following structure

0 0 0

1 1

- - -1
C= 0 I -(Zb+£c) -(Z,+Z )

-1 -1 -1

l 0 —(zb+£c) zc (Zb+zc) J
and thus
0

-1 -1 -1
CX = [ZT-(Z+2 ) IX - (Z+Z ) X
11 b b ¢ b b e ¢
1

(4T ) % % 2 l-(z 42 Y7UX
b ¢ b e b e c

Since all the ¥'s are dlagonal and Xc has unit elements where Xb has zeroes,

it follows that CX][ # 0 implying that X‘;CXII # 0 and hence Lemma 2
applies. Jj
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