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Abstract

This paper studies collusive behavior in a repeated oligopoly model with local-

ized competition, also reinterpreted as a model of multimarket operation. Private

information about the rivals' past actions naturally arises from these product mar-

ket structures. The resulting communication problems imply that �rms should not

adopt strategies with too severe punishments. In�nite grim punishments may be

too severe, for large discount factors. The standard stick-and-carrot punishments

from the perfect public information model are always too severe, for all discount

factors. Modi�ed stick-and-carrot punishments can still be used, though for a

smaller range of discount factors than the standard stick-and-carrot punishments.
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1 Introduction

As has been recognized at least since Stigler (1964), the essential problem of enforcing

collusive agreements in an oligopoly consists of detecting and punishing past deviations.

In a repeated game framework the recent oligopoly literature has explored several aspects

of this enforcement problem in detail. The present paper aims to link the enforcement

problem explicitly to the structure of the product market. I consider an industry with

localized competition, also reinterpreted as an industry with multimarket operation.

Problems of private information about the rival �rms' past actions endogenously arise

in such product markets. It is shown that these information problems create serious

di�culties in both detecting and punishing deviations from a collusive agreement.

In the absence of a formal information exchange mechanism, such as a trade associa-

tion, �rms cannot easily observe their rivals' past actions. In some product markets they

can nevertheless make su�cient inferences about these actions, based on their own past

realized pro�ts. This is the case in a homogeneous goods oligopoly with certain demand,

in which all �rms compete directly with each other. In such a simple market an unex-

pectedly low price or high output by one of the �rms results in a pro�t reduction to each

other �rm, from which the unexpected action can be inferred. Most product markets,

however, are more complicated and contain aspects of localized competition is localized:

di�erent �rms may compete directly with di�erent sets of rivals. The �rms' pro�ts then

do not depend on the actions of all �rms in the market. As a result, the possibility arises

that �rms make di�erent inferences about their rivals' past actions. In particular, they

may make di�erent inferences about the incidence of cheating in a collusive agreement.

This creates the following communication problem. A �rm who has privately observed

cheating may not want to punish the cheater: this would avoid a further punishment and

allow the �rm to at least continue to collude with the other �rms, who did not observe

the cheating.

In a repeated game model that captures the essential properties of localized compe-

tition, I analyze this communication problem in detail. For simplicity, I focus on sym-

metric punishments, using a symmetric model of demand.1 The results of the analysis

1On the one hand, the used model of demand is more general than Abreu's (1986) model because

it relaxes the homogeneous goods assumption. On the other hand, the used model is more speci�c,

because it assumes a linear demand structure.
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stress the importance of appropriately chosen punishments for collusion to be sustain-

able. When �rms are patient, i.e. for large discount factors, some punishments may be

too severe to induce communication of privately observed cheating. In particular, it is

shown that the frequently studied in�nite grim punishments, as in Friedman (1971), are

too severe for su�ciently large discount factors. For this range of discount factors, less

severe punishments then become necessary to sustain collusion, for example �nite grim

punishments. In addition, it is shown that the "standard" (symmetric) stick-and-carrot

punishments of the perfect public information model, as in Abreu (1986, 1988), are al-

ways too severe, for all discount factors. This result suggests that the communication

problem due to localized competition hinders collusion in a nontrivial sense.2 To obtain

more concreteness about the reduced collusive possibilities, I construct "modi�ed" stick-

and-carrot punishments, which take into account the communication problem and are

correspondingly less severe than Abreu's standard stick-and-carrot punishments. These

modi�ed punishments sustain collusion for a larger range of discount factors than Fried-

man's grim punishments. However, they cannot sustain collusion for the entire range of

discount factors covered by Abreu's standard stick-and-carrot punishments in the public

information model.

The analysis is further reinterpreted in a model of multimarket operation absent mul-

timarket contact, a situation where a multimarket �rm meets di�erent single-market

competitors in di�erent markets. Multimarket operation absent multimarket contact

may then hinder collusion due to the same kind of communication problems. This is in

sharp contrast with the established theoretical results on multimarket contact, a situa-

tion where two or more multimarket �rms meet each other in several markets. Bernheim

and Whinston (1990) have shown that multimarket contact may facilitate collusion, due

to a pooling of the �rms' incentive constraints. Because of crucial communication prob-

lems their results therefore do not turn out to generalize to economic situations with

multimarket operation but without multimarket contact. It would be interesting to in-

vestigate whether this theoretical implication can be veri�ed in the growing empirical

work on multimarket competition.3

2This is based on Abreu's (1986) Theorem 14, stating that there are no other (symmetric) punish-

ments than the standard stick-and-carrot punishments that can enforce a better collusive outcome in

the public information model.

3More references on the theoretical and empirical multimarket literature are given in section 5.
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The results of the analysis explain the presence of various information exchange mech-

anisms in industries with a complicated market structure. Such mechanisms make the

�rms' private information about past actions public, and may hence eliminate the com-

munication problem. An interesting example of an information exhange mechanism in

practice is the ATP computer system, commonly owned by a group of airlines in the

US. The ATP system provides instant information of every price change (or future price

change) to each of the subscribing airlines. See Barla (1993) for a more detailed discus-

sion. If the sole reason for these information exchange mechanisms is the elimination

of the communication problem, then the above analysis makes a strong case for making

them per se illegal. The debate on information exchange in antitrust is still going on,

both in the US and in Europe. Scherer and Ross (1990, p. 347-352) discuss the US an-

titrust debate, based on several past legal cases. Phlips (1988) discusses the "woodpulp

decision", made by the European Commission in 1984.

Much of the previous literature on collusive behavior in a repeated oligopoly has

assumed perfect public information about the �rms' past actions.4 A �rm can obtain

perfect information about the relevant aspects of its competitors' past actions either

directly or indirectly through information on the past realized prices or its own past

realized pro�ts. The most notable exception to the perfect public information literature

is Green and Porter (1984). They allow for random aggregate demand shocks so that

�rms cannot infer whether a low realized price or pro�t was due to a low demand or

due to cheating by one of the �rms. In the Green-Porter model, however, all �rms re-

ceive the same information. Competition is nonlocalized, so that an unexpectedly low

realized price or pro�t is shared by all �rms. In sum, the Green-Porter model and its

subsequent generalizations5 are models of imperfect public information. In contrast, as

explained above, the present model with localized competition, and its reinterpretation

as a model of multimarket operation absent multimarket contact, generates private infor-

mation about the �rms' past actions. To the best of my knowledge, this is the �rst model

in which such problems of private information arise naturally from the product market

structure. In this sense the results contribute to the growing Industrial Organization

4Because �rms move simultaneously during each period, and consequently do not observe each others'

current actions, these games are sometimes called games of almost perfect information.

5See especially Fudenberg, Levine and Maskin (1994).
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literature, formalizing the links between market structure, conduct and performance.

A few game-theoretic papers have already addressed some aspects of private infor-

mation about the players' actions in a repeated game. Fudenberg and Levine (1991)

assume players are only epsilon-rational. If players are patient, they may not mind be-

having suboptimally for some time.6 Ben-Porath and Kahneman (1993) and Kandori

and Matsushima (1994) consider rational players. However, these papers assume that

players can make explicit public announcements at certain periods in time about their

obtained private information. In contrast with these previous contributions, the present

paper considers rational players who are not able to make explicit public announcements

about their own private information. Furthermore, plausible economic environments are

considered from which the private information problems naturally emerge.

Though the paper focuses on the sustainability of one speci�c outcome, the joint-

pro�t maximizing outcome, it seems that the analysis would readily extends to the

sustainability of the whole set of outcomes for which all �rms obtain more than their

one-shot Nash pro�ts. This then implies a Nash-threat folk theorem. It is not so clear,

however, whether a minmax folk theorem would still apply.

Section 2 presents the model of localized competition. Section 3 provides some pre-

liminary observations and section 4 obtains the main results. In section 5 the model is

reinterpreted as a model of multimarket operation. Conclusions and suggested extensions

follow in section 6.

2 The model of localized competition

There are several ways to model localized competition. The best-known model is the

Hotelling model with price-setting �rms. In this model �rms are located on a line,

representing a one-dimensional product space in which �rms are di�erentiated. With

three �rms located at di�erent points on the line competition is localized: although the

�rm in the middle competes directly with both the �rm to the left and the right, the

left and right �rm do not directly compete with each other. Localized competition is

6Furthermore, Fudenberg and Levine only consider informationally connected games, i.e. games in

which a message can always be passed from one player to another, regardless of which single player

might try to interfere. In models of localized competition, in particular in the model developed in this

paper, this property may not hold.
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also present in more complicated spatial models with price competition. It is possible

to allow for more than three �rms, possibly located on a circle rather than a line. The

product space may consist of more than one dimension, provided there are enough �rms

relative to the number of di�erentiating dimensions. 7

In this paper I will consider a nonspatial setting to model localized competition.

Demand is determined by a representative consumer with preferences for three goods.

The preferences for two of these goods are independent. There are three �rms who

compete in quantities. This speci�c model generates localized competition of a similar

form as the Hotelling triopoly model with price-setting �rms. It has, however, two main

advantages for the purposes of this paper. First, it is analytically more tractable because

of some convenient symmetry properties and because of the continuity of the reaction

functions.8 Second, and more importantly, it allows for a close comparison with the

literature on collusion in oligopolies with perfect public information, in particular with

Abreu's results in a homogenous goods oligopoly and with Deneckere's (1983) results in

a di�erentiated goods oligopoly. Despite the advantages of the used model, it remains an

interesting future research topic to consider the robustness of the results in alternative

models that capture aspects of localized competition.

2.1 Demand and pro�ts

There is a representative consumer with the following quadratic utility function:

U(q0; q1; q2; q3) = � (q1 + 2q2 + q3)�
�

2

�
q2
1
+ 2q2

2
+ q2

3

�
�  (q1q2 + q2q3) + q0

where qi, i = 0;1; 2; 3, is the quantity consumed of good i. Assume � > 0, � > 0,

 6= 0 and � �  � ��. Good 0 is the outside good: the utility from its consumption is

independent of the consumption of all other goods. The utilities from the consumption

of good 1 and good 3 are independent of each other. The utilities from the consumption

of good 1 and 2, and of good 2 and 3 are, however, interdependent: good 1 and 2, and

good 2 and 3, are substitutes for  > 0, they are complements for  < 0. Solving the

representative consumer's utility maximization problem subject to the budget constraint

7Anderson, de Palma and Thisse (1989) provide su�cient conditions on the dimension of the product

space for competition to be localized.
8Spatial models with price-setting �rms typically generate discontinuous reaction functions, making

the analysis more tedious.
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y �
P

3

i=0
piqi, where y is income and pi is the price of good i, p0 = 1, gives the inverse

demand equations for good 1, 2 and 3:

pi = � � �qi � q2 , i 6= 2

p2 = 2 [� � �q2 � (q1 + q3)=2] :

There are three �rms. Each �rm i chooses to produce the quantity of a single good i,

qi, given the quantity chosen by the other �rms. Normalizing marginal cost to zero and

ignoring �xed costs, �rm i's realized pro�t �i is given by

�i = �i (qi; q2) � (� � �qi � q2) qi

�2 = �2 (q1; q2; q3) � 2 [� � �q2 � (q1 + q3)=2] q2:
(1)

These pro�t equations reveal that competition is localized in the following sense: �rm

i's pro�t, i 6= 2, directly depends only on its own quantity choice and the quantity of

�rm 2, and not on the quantity choice of the third �rm. In other words, �rm 1 and �rm

3 do not directly compete with each other; they only compete indirectly through the

interaction with the common competitor �rm 2. This structure of localized competition

is similar to the standard Hotelling model with price-setting �rms. Using this analogy,

one may call �rms 1 and 2, and �rms 2 and 3, "neighboring" �rms, whereas �rms 1 and

3 are "non-neighbors". This analogy should not, of course, be taken literally.

Despite the localized nature of competition, the speci�c functional form of the pro�t

equations generates some convenient symmetry properties. These properties will be

exploited below.

2.2 Information and beliefs

In the one-shot game �rms interact for only one period. A strategy for �rm i is then

simply a quantity choice independent of the past. In the in�nite horizon game, �rms

interact for an in�nite number of periods. In every period t each �rmmay then condition

its own quantity choice on the observed sequence of the �rms' past quantity choices. This

fact lies at the basis of potential information problems in the in�nite horizon game.

De�ne �rm i's history ht�1

i
at the end of period t � 1, t � 2, as the sequence of its

past quantity choices, ht�1

i � (q1
i
; :::; qt�1i ). Firm i's null-history at the end of period 0

is de�ned as h0
i
� ;. At the beginning of period t, each �rm i observes its own history
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ht�1

i and the sequence of its own realized pro�ts (�1
i
; :::; �t�1

i ). From this information

each �rm can make some inferences about the other �rms' history. Due to the localized

structure of competition, these inferences are necessarily imperfect. Upon observing

their own history and their own past realized pro�ts, �rm 1 and �rm 3 can infer �rm 2's

history, with whom they directly compete, but they cannot infer each others' history. In

contrast, �rm 2 can infer a sequence (q1
1
+ q1

3
; :::; qt�1

1
+ qt�1

3
). Assume for simplicity that

�rm 2 can identify the quantity q�

1
from q�

3
.9 This then gives the following information

for each �rm i.

� At the beginning of period t � 1, �rm i's observed history, i 6= 2, is (ht�1

i
; ht�1

2
).

� At the beginning of period t � 1, �rm 2's observed history is (ht�1

1
; ht�1

2
; ht�1

3
).

Hence, �rm 2 who is directly competing with all other �rms, is perfectly informed about

the history of all �rms. Firm 1 and 3 are only imperfectly informed. Clearly, the

localized structure of competition generates this private information structure. It is in

sharp contrast with the standard approach with public information.

Given their imperfect information, �rm 1 and �rm 3 must have a belief about each

other's history at each period t and after every possible observed history. The equilibrium

concept will require these beliefs to be consistent with the strategies.

2.3 Strategies and machines

A strategy for �rm i is a sequence of quantity functions ff t

i
g1
t=1

, where each function

f t

i
assigns a quantity qt

i
to every possible observed history. In particular, for �rm i,

i 6= 2, f t

i
(ht�1

i ; ht�1

2
) is the quantity to be chosen in period t when its observed history

is (ht�1

i ; ht�1

2
); for �rm 2, f t

2
(ht�1

1
; ht�1

2
; ht�1

3
) is the quantity to be chosen in period t

when its observed history is (ht�1

1
; ht�1

2
; ht�1

3
). Assuming �rms discount the future at a

common factor �, the (normalized) present value of each �rm i's continuation pro�t from

following its strategy, given that the other �rms follow their strategy, is at any period t

9This can be justi�ed if �rm 2 can decide in each period whether or not to spend an amount � upon

observing a certain (unexpected) sequence (q1
1
+ q

1

3
; :::; q

t�1

1
+ q

t�1

3
) in order to identify q

�

1
+ q

�

3
for some

� . In the Hotelling model of localized competition, �rm 2 could be assumed to be able to inspect the

actual customers that he served in the past in order to identify the prices charged by the left neighbor

from the prices observed by the right neighbor.
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after every observed history:

(1 � �)
1X
�=t

���t�i [f
�
i (h

�
i ; h

�
2); f

�
2 (h

�
1; h

�
2; h

�
3)] , i 6= 2;

(1� �)
1X
�=t

���t�2 [f
�
1 (h

�
1; h

�
2); f

�
2 (h

�
1; h

�
2; h

�
3); f

�
3 (h

�
3; h

�
2)] :

The normalization factor (1 � �) serves to measure the one-shot pro�ts and the contin-

uation pro�ts in the same units.

It will be more convenient to use the language of machines to describe strategies in

the repeated game. Each �rm i's machine is intended as an abstraction of the process

by which �rm i executes its strategy ff ti g
1

t=1.
10 Firm i's machine has the following

components:

� a set of states Si = fcig[ Mi [ fp
1
i ; :::; p

J
i g; Mi = fmi

ig, i 6= 2; M2 = fm1
2;m

2
2;m

3
2g;

� an initial state ci 2 Si;

� a quantity function fi : Si ! IR+, assigning a quantity to each state si;

� a transition function gi : Si � IR2
+ ! Si, i 6= 2, assigning a state to each vector (si; qi; q2)

g2 : S2 � IR3
+ ! S2, assigning a state to each vector (s2; q1; q2; q3).

Call the state ci the collusive state of �rm i's machine; the state m
j
i the j-th commu-

nication state of �rm i's machine, and the state pji the j-th punishment state of �rm i's

machine. The reason for this terminology will become clear below.

Each �rm i's machine induces a sequence of states and a sequence of quantity choices.

The actual state of �rm i's machine, i 6= 2, at period t is given by the transition function

sti = gi[s
t�1
i ; (qt�1i ; qt�12 )], and similarly for �rm 2. Hence, the actual state sti recursively

summarizes the "relevant" elements of �rm i's observed history. The quantity to be

chosen in period t is then fi(s
t
i), i.e. it is based on the relevant elements of �rm i's

observed history. In this sense, �rm i's machine executes its strategy. In principle,

machines and their resulting strategies can be very complex, containing a large set of

possible states, and sophisticated quantity and transition functions. In practice, however,

some restrictions on the �rms' machines can be imposed. In this paper I explicitly impose

restrictions on the machines' transitions from the collusive and the communication states.

10See Osborne and Rubinstein (1994) for an overview.
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This approach can be viewed as a way of modelling the �rms' bounded rationality.

Alternatively, it may be viewed as a �rst step towards a better understanding of the

collusion problem when not all �rms' actions are observed due to localized competition.

Abbreviate �rm i's quantity choice when it is in the collusive state by qci � fi(ci). The

transitions from the collusive and communication states are now restricted as follows:

Transitions from ci, for all i:

Firm i, i 6= 2:stay in ci unless

� only qi 6= qci , in which case move to mi
i

� at least q2 6= qc2, in which case move to p1i .

Firm 2: stay in c2 unless

� only qi 6= qci , i 6= 2, in which case move to mi
2

� only q1 6= qc1 and q3 6= qc3, in which case move to m2
2

� at least q2 6= qc2, in which case move to p1i .

Transitions from m
j
i , for all i; j:

Firms 1,2 and 3: stay in m
j
i unless at least q2 6= qc2, in which case move to p1i .

These transitions are illustrated in Figure 1. In contrast with models of public infor-

mation, a �rm i who is in the collusive state cannot always immediately move to the

�rst punishment state p1i after one of the �rms has deviated from its speci�ed collusive

quantity. This is only possible in case the deviation occurred by �rm 2, who is publicly

observed. In case �rm 1 or �rm 3 deviated, an intermediate communication state is

required.11 A �rm who is in the communication state remains in this state until �rm

2 has chosen a quantity di�erent from its collusive quantity qc2, in which case all �rms

move to the �rst punishment state.

11Note that �rm 2 may go to three di�erent communication states m1

2
,m3

2
and m2

2
, depending on

whether �rm 1, �rm 3 or both deviated.
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3 Preliminary observations

3.1 One-shot best-response functions

An important element in the analysis of equilibria in both the one-shot game and the in�-

nite horizon game is the derivation of the �rms' one-shot best-response functions. Given

the pro�t functions derived above, �rm i's unilateral one-shot best-response quantity is:

qi = qUi (q2) �
(��q2)

2�
, i 6= 2

q2 = qU2 (q1; q3) �
��(q1+q3)=2

2�
:

(2)

Due to the localized structure of competition �rm i's best-response quantity, i 6= 2, does

only depend on �rm 2's quantity. Firm 2's best-response quantity, in contrast, depends

on both �rm 1's and �rm 3's quantity.

Firm i and �rm 2's simultaneous, or bilateral, one-shot best-response quantities to the

third �rm j's quantity qj , j 6= i; 2, are given by the solution to the system qi = qUi (q2),

and q2 = qU2 (q1; q3):

qi = qBi (qj) �
2�(2��)+2qj

8�2�2
, i 6= 2, j 6= i; 2

q2 = qB2 (qj) �
�(4��)�2�qj

8�2�2
, j 6= i; 2:

(3)

Finally, �rm 1, �rm 2 and �rm 3's trilateral one-shot best-response quantities to each

other are given by the solution to q1 = qU1 (q2), q2 = qU2 (q1; q3) and q3 = qU3 (q2):

qTi = qT �
�

2� + 
, for each i: (4)

The solution (qT ; qT ; qT ) is simply the unique Cournot-Nash equilibrium for the one-shot

game. Notice that this solution is symmetric in the present model.12

3.2 Necessary equilibrium conditions

In the one-shot game an appropriate solution concept is the Cournot-Nash equilibrium.

In the in�nite horizon game with private information developed above, an appropriate

12The intuition for the symmetry between �rm 1 and �rm 3 is straightforward. The additional

symmetry with �rm 2 follows from an exact balance of two forces. On the one hand, �rm 2 has a higher

"intrinsic" demand, inducing it to set higher quantities. On the other hand, �rm 2 has two competitors

instead of just one, inducing it to set lower quantities.
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re�nement is the concept of perfect Bayesian equilibrium [Fudenberg and Tirole (1991)].

This solution concept requires a consistent speci�cation of �rm 1 and 3's beliefs about

each others' history, at every period t after every observed history. A speci�cation of

beliefs is consistent if it can be derived from the strategies using Bayes' rule whenever

possible. The following simple speci�cation of beliefs is consistent with the strategies in

this paper, and will henceforth be used: at each period t after every observed history,

�rm 1 (�rm 3) believes that �rm 3 (�rm 1) has chosen the quantity prescribed by its

equilibrium strategy.13

A perfect Bayesian equilibrium then results if no �rm has an incentive to deviate from

its strategy in any state, given the other �rms' strategies and given its consistent beliefs.

Using the transitions from ci and m
j
i described above, and using wi to denote �rm i's

(normalized) continuation pro�t once play has moved to the �rst punishment state p1i , it

is already possible to obtain the �rms' no-deviation constraints in the collusive state and

in the communication states. Call these constraints briey the collusion and communi-

cation constraints. These constraints are necessary for all punishments considered in this

paper. Observation 1 shows that the collusion and the communication constraints can

hold only if the �rms choose their one-shot best-response quantity in the communication

state. More precisely:

OBSERVATION 1. Given the transitions from ci and m
j
i described above, a perfect

Bayesian equilibrium obtains only if:

fi(m
i
i) = qBi (q

c
j ), i 6= 2, j 6= i; 2

f2(m
i
2) = qB2 (q

c
j), i 6= 2, j 6= i; 2; f2(m

2
2) = qU2

h
qB1 (q

c
3); q

B
3 (q

c
1)
i
:

PROOF: See Appendix.

The intuition for this observation is simple. First, in equilibrium �rm 2 does not choose

qc2 in its communication state, because then �rm i, i 6= 2, would always have an incentive

13Consider �rm 1's period t beliefs after an observed history (ht�1

1
; ht�1

2
). Suppose �rst that �rm 1

did not observe a period t� 1 defection by �rm 2 from its equilibrium strategy. It can then use Bayes'

rule to infer that �rm 3's period t�1 quantity choice was according to its equilibrium strategy. Suppose

next that �rm 1 did observe a period t � 1 defection by �rm 2 from its equilibrium strategy. It can

then have any belief about �rm 3's period t� 1 quantity choice. Specify these beliefs such that �rm 1

believes �rm 3 did not defect in period t� 1. A similar speci�cation of beliefs applies to �rm 3.
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to deviate in its collusive state (as this deviation would never be "communicated"). Next,

given that �rm 2 chooses a quantity di�erent from qc
2
in the communication states, all

�rms in their communication states expect the punishment state to obtain independent of

their speci�c quantity choice, so that the one-shot best-response quantity choice remains

the single candidate equilibrium quantity choice in the communication state. It is now

possible to write the collusion and communication constraints as follows, after some

rearrangements.

Collusion constraints for �rm 1, 2 and 3:

ci; i 6= 2 : �i(q
c
i ; q

c
2
) � (1� �)�i

h
qUi (q

c
2
); qc

2

i
+ �(1� �)�i

h
qBi (q

c
j ); q

B
2
(qcj)

i
+ �2wi

c2 : �2(q
c
1
; qc

2
; qc

3
) � (1� �)�2

h
qc
1
; qU

2
(qc

1
; qc

3
); qc

3

i
+ �w2:

(5)

Communication constraints for �rm 2:14

m1

2
: (1 � �)�2

h
qB
1
(qc

3
); qB

2
(qc

3
); qc

3

i
+ �w2 � �2

h
qB
1
(qc

3
); qc

2
; qc

3

i
; i 6= 2:

m3

2
: (1 � �)�2

h
qc
1
; qB

2
(qc

1
); qB

3
(qc

1
)
i
+ �w2 � �2

h
qc
1
; qc

2
; qB

3
(qc

1
)
i
:

(6)

These constraints are incomplete in the sense that the continuation pro�t wi at the

start of the �rst punishment state is not yet determined. The next section considers

alternative, perfect Bayesian punishments to calculate wi. Nevertheless, it is instructive

to already have a �rst look at the collusion and communication constraints. Only �rm

2's collusion constraint is standard from the perfect public information models. It says

that the (normalized) present value from colluding forever should be at least as high as

the pro�t from (optimally) deviating once and then going to the �rst punishment state.

The other constraints di�er from the public information models.

First, consider �rm i's collusion constraint, i 6= 2. Firm i realizes that, after deviating,

there is an intermediate communication state before the �rst punishment state. A priori

it is not clear how this intermediate communication state a�ects �rm i's collusion con-

straint. Depending on the severity of the punishment, it turns out that the intermediate

communication state may either relax or tighten �rm i's, i 6= 2 collusion constraint, as

compared to the public information models.

Second, consider �rm 2's communication constraints. These potentially binding con-

straints are not present in public information models. Take �rm 2's communication

14The communication constraints for �rm 1 and 3 (states m1

1
and m3

3
) and for �rm 2 in state m2

2
are

trivially satis�ed.
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constraint in state m1

2
, i.e. when �rm 2 is supposed to communicate a deviation by �rm

1 to �rm 3. This constraint says that �rm 2's (normalized) pro�t from communicating

once and then going to the �rst punishment state should be at least as high as the present

value of the payo� from never communicating �rm 1's defection to �rm 3, and hence

at least keeping collusion with �rm 3. A similar intuition holds for 2's communication

constraint in state m3

2
.

The collusion constraints are more likely to be satis�ed the lower the wi, i.e. the more

severe the punishments. The standard literature on public information has emphasized

one bound on the severity of the punishments: the punishment should not be so severe

that �rms have an incentive to deviate from their strategy in any of their punishment

states. The present model with private information identi�es a new potential bound

on the severity of the punishment: the punishment should not be so severe that �rm 2

has an incentive not to communicate a privately observed deviation. From (??), if the

punishment is too severe (i.e. w2 is too low), �rm 2 may prefer not to communicate a

deviation by one of the other �rms in order to at least continue to collude with the other

�rm, who did not observe the deviation. This demonstrates the even greater impor-

tance of appropriately chosen punishments when there is private information. Section 4

discusses alternative punishments in greater detail.

3.3 Symmetric collusion, symmetric punishments

In the in�nite horizon game many outcomes di�erent from the static Cournot out-

come may generally be sustainable as a perfect Bayesian equilibrium. Attention is

restricted here to the set of symmetric collusive outcomes, de�ned as the set of sym-

metric outcomes (qc; qc; qc) that give all �rms strictly greater pro�ts than the Cournot-

Nash pro�ts. This restriction can be defended as follows. As is easily seen, for all

symmetric outcomes (q; q; q), the �rms' pro�ts are in the same, constant proportion,

i.e. �1(q; q) = �2(q; q; q)=2 = �3(q; q). Furthermore, the one-shot Cournot-Nash out-

come (qT ; qT ; qT ) derived above is symmetric. Consequently, in the present model any

symmetric collusive outcome (qc; qc; qc) in the in�nite horizon game increases the �rms'

pro�ts proportionally, a property frequently imposed in the literature.15

15Friedman and Thisse (1993), for example, de�ne the collusive solution as the Pareto-optimal solution

that yields pro�ts that are in the same proportion as in the one-shot equilibrium. See also Schmalensee
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The joint-pro�t maximizing outcome, i.e. the outcome that maximizes the sum of the

�rms' pro�ts, is given by:

qci = qc �
�

2(� + )
, for each i: (7)

Because the joint-pro�t maximizing outcome (qc; qc; qc) is symmetric, it is an element

of the set of symmetric collusive outcomes. Furthermore, it is also a Pareto-optimal

outcome. These facts make the joint-pro�t maximizing solution a particularly attractive

candidate equilibrium outcome. Therefore most of the attention will be focused on the

joint-pro�t maximizing outcome (qc; qc; qc).

Attention is further restricted to symmetric punishments, de�ned as punishments

such that all �rms choose the same quantity in a given j-th communication state, i.e.

f1(p
j
1
) = f2(p

j
2
) = f3(p

j
3
) for all j, so that w1 = w2=2 = w3. Given symmetric collusive

outcomes, symmetric punishments reduce all �rms' pro�ts proportionally after a publicly

observed deviation. This generalizes Abreu's (1986) notion of symmetric punishments.

It is now possible to make the following observation, determining which of the collusion

and communication constraints is nonbinding.

OBSERVATION 2. Given a symmetric collusive outcome and a symmetric punishment,

�rm 1 and 3's collusion constraints coincide. Moreover, �rm 2's communication con-

straint in m1

2
and in m3

2
coincide. Finally, �rm i's, i 6= 2, collusion constraint is nonbind-

ing if �i[q
B
i (q

c); qB
2
(qc)] � wi � 0; otherwise, �rm 2's collusion constraint is nonbinding.

PROOF: Check the collusion and communication constraints (??) and (??), noting

that �1(q
c; qc) = �2(q

c; qc; qc)=2 = �3(q
c; qc), �1[q

U
1
(qc); qc] = �2[q

c; qU
2
(qc; qc); qc]=2 =

�3[q
c; qU

3
(qc)], �2[q

B
1
(qc); qB

2
(qc); qc] = �2[q

c; qB
2
(qc); qB

3
(qc)], �2[q

B
1
(qc); qc; qc] =

�2[q
c; qc; qB

3
(qc)], and w1 = w2=2 = w3. 2

Using observation 2, it su�ces to consider only (i) either �rm 1 or �rm 2's collusion

constraint depending on the sign of �i[q
B
i (q

c); qB
2
(qc)] � wi, (ii) �rm 2's �rst communi-

cation constraint, and (iii) the no-deviation constraints in the punishments states, or

(1987) for a general discussion of Pareto-optimal solutions that are not necessarily inconsistent with the

collusive solution de�ned here.
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shortly, the punishment constraints. These punishment constraints are derived below

for alternative punishments, completing the description of the strategies.

4 Alternative punishments

I consider two classes of (symmetric) punishments: grim punishments and stick-and-

carrot punishments. These punishments are relatively simple, and they allow for a close

comparison with existing results.

4.1 Grim punishments

First consider in�nite grim punishments, as in Friedman (1971). These are de�ned as

follows. For each �rm i, there is only one punishment state, p1i . In p1i �rm i produces its

Cournot-Nash quantity qT . Transitions from p1i are very simple: once in p1i , �rms always

stay in p1i .

With in�nite grim punishments, the punishment constraints are trivially satis�ed for

each �rm i, given that its rivals produce their Cournot-Nash quantity. Necessary and

su�cient conditions for a perfect Bayesian equilibrium are then �rm 2's �rst communi-

cation constraint in (??), and either �rm 1 or �rm 2's collusion constraints (??), where

w1 = w2=2 is substituted by �1(q
T ; qT ) = �2(q

T ; qT ; qT )=2. Using the joint pro�t maxi-

mizing outcome as the collusive solution, straightforward calculations16 show that �rm

1's collusion constraint is satis�ed if and only if � � �1g; �rm 2's collusion constraint is

satis�ed if and only if � � �2g; and �rm 2's communication constraint is satis�ed if and

only if � � �g, where �1g is the largest solution to quadratic

�4�(32 + 32� � 4�2 � 5�3)(�1g)
2+

(2 + �2)2(4� �)(32 + 16� � 8�2 � �3)�1g � (8� �2)2(2 + �)2 = 0;

where

�2g �
(2 + �)2

(2 + �)2 + 4(1 + �)

�g �
(2 + �)2

(2 + �)2 + �(4 + �)(8 � �2)=(4� �)2
;

16The calculations follow from substituting the payo�s given in the Appendix in the various con-

straints. They are available from the author on request.
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and where � � =� is the substitution parameter. Which of these constraints is actually

binding, turns out to depend crucially on whether the goods are substitutes, � > 0, or

complements, � < 0. Applying observation 2, it turns out that � � �
1

g is irrelevant for

� > 0, and that � � �
2

g is irrelevant for � < 0. Furthermore, �g > 1 for � < 0, and

�g < 1 for � > 0. To economize on notation, de�ne a new variable �g � �
1

g for  < 0,

and �g � �
2

g for  > 0. The earlier �ndings then yield:

PROPOSITION 1. Suppose �rms use in�nite grim punishments. (i) If � > 0, the joint-

pro�t maximizing outcome is sustainable as a perfect Bayesian equilibrium if and only

if � 2 [�g; �g].

(ii) If � < 0, the joint-pro�t maximizing solution is sustainable if and only if � 2 [�g;1].

Proposition 1 is illustrated on Figure 2, plotting the range of feasible discount factors,

delineated by the critical discount factors �1g, �
2

g, and �g, as a function of the substitution

parameter �. It is straightforward to show that @�1g=@� < 0 for � < 0, @�2g=@� > 0 for

� > 0, and @�g=@� < 0 for � > 0, as drawn. This shows that, when �rms use in�nite

grim punishments, the joint-pro�t maximizing solution is most likely to be sustainable

when goods are very independent, i.e. � close to zero. The more the goods become

complements or substitutes, the smaller the range of discount factors for which the

joint-pro�t maximizing solution is sustainable.

These �ndings may be compared with the hypothetical case in which there would

be perfect public information. In this case only �rm 2's collusion constraint would be

relevant,17 so that the joint-pro�t maximizing outcome would be sustainable if and only

if � � �
2

g. This turns out to be exactly the same condition as derived by Deneckere

(1983), in a related model without localized competition.18 The analysis then stresses

that when there is private information due to localized competition and when goods

are substitutes, � > 0, there exists a binding upper bound on the discount factor, �g,

above which the joint-pro�t maximizing outcome is not sustainable, in addition to the

17To see this, note that when there is public information, no intermediate communication state is

required in case �rm 1 or �rm 3 deviated; �rms can then immediately move to the �rst punishment

state. Firm 1 and 3's collusion constraint consequently would coincide with �rm 2's collusion constraint,

and �rm 2's communication constraints would be absent.
18The results on product di�erentiation and collusion di�er when �rms set prices rather than quan-

tities. See Deneckere (1983), Chang (1991) and Ross (1992).
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standard lower bound from the public information model. The upper bound arises from

�rm 2's incentive problem to communicate privately observed deviations by �rm 1 or

�rm 3. If �rm 2 is very patient, then it prefers to continue to collude with even just

one �rm, rather than to communicate and then to be punished. This suggests that the

in�nite grim punishment may sometimes be too severe, rather than insu�ciently severe

as argued in the literature on public information [e.g. Abreu (1986)]. The question now

arises whether the upper bound may be relaxed if �rms follow alternative, less severe

punishments.19

Consider therefore the following less severe punishments: �nite grim punishments.

These punishments specify J punishment states, i.e. fp1i ; :::; p
J
i g for each �rm i. In

each state p
j
i �rm i produces its Cournot-Nash quantity q

T . The transition from p
j
i ,

j = 1; :::; J � 1, is always to p
j+1
i ; the transition from p

J
i is to ci. In other words, after a

deviation by �rm 2, each �rm i reverts to the Cournot quantity for only a �nite number

of periods, J , and then goes back to the collusive state.20

The punishment constraints in all states p
j
1, j = 1; :::; J are trivially satis�ed for

each �rm i, given that its rivals produce their Cournot quantity. Necessary and

su�cient conditions for a perfect Bayesian equilibrium are then the collusion and

communication constraints (??) and (??), where w1 = w2=2 is now substituted by

�1(q
T
; q

T ) + �
J [�1(q

c
; q

c) � �1(q
T
; q

T )]. Clearly, as J ! 1 the case of in�nite grim

punishments obtains; as J decreases, the punishment payo� increases and hence the

punishment becomes less severe. This generates a great deal of exibility on the punish-

ments.

Figure 3 plots the range of discount factors that sustain the joint-pro�t maximizing

outcome for alternative punishment lengths, J ! 1, J = 50 and J = 10. As could be

19An alternative way to relax the upper bound may seem to be to increase �rm 2's pro�t from

communicating. Notice however that �rm 2 is already producing a one-shot best-response strategy

against the other �rms. Hence, the only way to increase �rm 2's communication pro�t is by changing

�rm i, i 6= 2 quantity when it is in the communication state. By observation 1, however, this is not

possible.
20Notice that �nite grim punishments can be considerably more "complex" than in�nite grim pun-

ishments in the sense that the �rms' machines need J states to execute the punishment rather than

just one state under in�nite grim punishments. Consequently, �rms who are boundedly rational in the

sense that their machines can only process a small number of states, may not be able to execute these

strategies for large J .
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expected, reducing the punishment length, and thus softening the punishment, has two

e�ects: the collusion constraint is tightened and the communication constraint is relaxed.

For high discount factors, the collusion constraint is nonbinding and the communication

constraint is binding, so that a reduction of the punishment length is in fact appropriate.

The question arises whether it is possible to vary the punishment length such that the

joint-pro�t maximizing outcome becomes sustainable for all discount factors above �g.

The following proposition establishes that this is indeed the case.

PROPOSITION 2. There are grim punishments, �nite or in�nite, such that the joint-

pro�t maximizing outcome is sustainable as a perfect Bayesian equilibrium for � 2 [�g; 1].

PROOF. If � < 0, then J ! 1 supports collusion for any � 2 [�g; 1] by proposition 1.

If � > 0, then J !1 supports collusion for � 2 [�g; �g] by proposition 1. Now consider

J = 2. Straightforward algebra using the collusion and communication constraints (??)

and (??) with the appropriate substitutions shows that a grim punishment with length

J = 2 supports collusion if � 2 [��g; 1], where

�
�

g �
1

2

2
4
s
1 +

(� + 2)2

� + 1
� 1

3
5 :

Furthermore, for � > 0, @��g=@� > 0, @�g=@� < 0; and at � = 1, ��g = :673 < �g = :698.

Therefore, for any 1 � � > 0, ��g < �g. This implies that the regions [�g; �g] and [��g; 1]

overlap so that the range [�g; 1] is covered by either in�nite grim punishments or grim

punishments with length J = 2. This su�ces to show the proposition. 2

Proposition 2 shows that less severe punishments than in�nite grim punishments may

sometimes be necessary, when some of the �rms' deviations are not publicly observed

due to localized competition. This contrasts with the literature on public information

[Abreu(1986)], which criticizes in�nite punishments as being not su�ciently severe. A

surprising part in the proof of proposition 2 is that, in the present model, a very soft

punishment, with length J = 2, already su�ces to cover the whole range of discount fac-

tors above �g. This implies that the strategies do not actually need to be too "complex"

(in the sense of requiring a large number of states) in order to sustain collusion when

the discount factor is high.
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4.2 Stick-and-carrot punishments

The previous subsection established that appropriate punishments can be found such that

the joint-pro�t maximizing outcome is sustainable for � � �g. Do there exist punishments

such that this outcome is sustainable for some discount factors below �g? This requires

relaxing the collusion constraints (??), which should be done by making the punishments

more severe than the in�nite grim punishments considered above. To �nd the true lower

bound on the discount factor, the most severe credible punishments should be found.

In a perfect public information model Abreu (1986) has shown that the most severe

punishments, within the class of symmetric punishments, take the simple form of stick-

and-carrot punishments: a very severe one-period punishment after which collusion is

restored. In Abreu's public information model, the severity of the punishment is limited

solely by a simple no-deviation constraint in the punishment state. In the present model

with private information the severity of the punishment may be further limited due to the

communication problems discussed above. I now investigate how these communication

problems precisely inuence the severity of the punishment, and correspondingly the

lower bound on the discount factor. To avoid complications I restrict attention to the

case in which goods are substitutes, i.e. � > 0.21 This case is also the most frequently

analyzed case in the literature on collusion.22

In the present model with private information due to localized competition, stick-and-

carrot punishments may be de�ned as follows. For each �rm i, there is one punishment

state, p1i . In this punishment state �rm i chooses a symmetric punishment quantity

q
p � fi(p

1

i ) yet to be determined. Transitions from the punishment state are analogous

to transitions from the collusive state as described above:

Firm i, i 6= 2: move to ci unless

� only qi 6= q
p, in which case move to m

i
i

� at least q2 6= q
p, in which case move to p

1

i .

Firm 2:move to c2 unless

21In the alternative case in which goods are complements corner solutions where the punishment

quantities are zero, may arise.
22I will also assume here that �rms operate at a su�ciently large marginal cost � > c > 0. This rules

out cases in which the punishment quantities cause prices to be negative. In this section, the parameter

� should therefore be interpreted net of marginal cost.
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� only qi 6= qp, i 6= 2, in which case move to mi
2

� only q1 6= qp and q3 6= qp, in which case move to m2

2

� at least q2 6= qp, in which case move to p1
2
.

In contrast to Abreu's model with public information, each �rm i who is in the

punishment state p1i cannot always immediately move back to the �rst punishment state

p1i in the event one of the �rms would have deviated from the punishment quantity qp.

This is only possible in case the deviation occurred by �rm 2, who is publicly observed.

In case �rm 1 or �rm 3 deviated, an intermediate communication state is required.

To determine the punishment quantity qp in the stick-and-carrot punishment, note

that �rm i's (normalized) continuation pro�t at the start of the punishment state, wi, is

now given by

w1 = w2=2 = w3 � (1� �)�1(q
p; qp) + ��1(q

c; qc) (8)

and that the punishment constraints for �rms 1, 2 and 3 are:23

wi � (1 � �)�i[q
U
i (q

p); qp] + (1 � �)��i[q
B
i (q

c); qc] + �2wi, i 6= 2

w2 � (1 � �)�2[q
p; qU

2
(qp; qp); qp] + �w2:

(9)

The punishment quantity qp in the stick-and-carrot punishment is then determined as

follows: qp minimizes the punishment payo� (??) subject to all no-deviation constraints.

The following observation is useful to determine which of the punishment constraints

is nonbinding.

OBSERVATION 3. Given a symmetric collusive outcome and symmetric stick-and-

carrot punishments, �rm 1 and 3's punishment constraints coincide. Furthermore, �rm

i's, i 6= 2, punishment constraint is nonbinding if �i[q
B
i (q

c); qB
2
(qc)] � wi � 0; otherwise

�rm 2's punishment constraint is nonbinding.

PROOF: Check (??), noting that �1[q
U
1
(qp); qp] = �2[q

p; qU
2
(qp; qp); qp]=2 = �3[q

U
3
(qp); qp],

�1[q
B
1
(qc); qc] = �3[q

B
3
(qc); qc] and w1 = w2=2 = w3. 2

From observation 2 and 3, it su�ces to consider only (i) �rm 2's �rst communica-

tion constraint, and (ii) either �rm 1's collusion and punishment constraints or �rm 2's

collusion and punishment constraints depending on the sign of �i[q
B
i (q

c); qB
2
(qc)]� wi.

23In contrast to grim punishments, these constraints are not trivially satis�ed.
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It is straightforward to show that, for � > 0, qp is the largest quantity that solves

either �rm 1's punishment constraint in (??), or �rm 2's punishment constraint (??), or

�rm 2's communication constraint (??) as an equality without violating any of the other

no-deviation constraints. Call these solutions respectively q̂p, �qp and ~qp.

If there would be public information, as in Abreu's model, it would be easy to deter-

mine qp because communication constraint (??) would be absent and because �rm 1's

punishment constraint in (??) would coincide with �rm 2's punishment constraint. Un-

der public information qp is then the largest solution to �rm 2's punishment constraint

in (??), i.e.

qp = �qp �
�

� + 

0
@ � +  �

q
�(� + )�

2� +  � 2
q
�(� + )�

1
A :

Call the stick-and-carrot punishment using this quantity �qp the standard stick-and-carrot

punishment, and the stick-and-carrot punishments using either q̂p or ~qp themodi�ed stick-

and-carrot punishments. Under public information it has been shown that the standard

stick-and-carrot punishment is the most severe punishment in the class of symmetric

punishments.24 It is therefore also the optimal symmetric punishment under public

information. The corresponding lower bound on the discount factor is found from �rm

2's collusion constraint (??), after substituting w2 given in (??) with qp = �qp:

� � �s �
(2 + �)2

16(1 + �)

which is always below the grim punishment lower bound �g, as could be expected.

The �rst question is whether the standard stick-and-carrot punishment, being the

most severe and hence optimal punishment of the public information model, is still

feasible in the private information model, or whether, to the contrary, the communication

problems make this punishment infeasible. This question is answered in the following

proposition:

PROPOSITION 3. Consider � > 0. When �rms use the standard stick-and-carrot

punishment, in which qp = �qp, the joint-pro�t maximizing outcome is not sustainable as

a perfect Bayesian equilibrium.

PROOF: See Appendix.

24This was shown by Abreu for the case in which � = 1; it immediately generalizes to � < 1.
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The intuition for Proposition 3 is simple: the standard stick-and-carrot punishment, in

which �rms produce the punishment quantity �qp of the public information model, is too

severe. For all � 2 (0;1] �rm 1 and �rm 3 do not have an incentive to carry out the

punishment, because by deviating from the punishment an intermediate communication

period occurs25 before they are punished for their deviation. Furthermore, for most �, i.e.

� 2 (0; 0:795] �rm 2 does not have an incentive to communicate a deviation by �rm 1 or 3

from their prescribed collusive or punishment quantity, because �rm 2 prefers to at least

collude with the nondeviating �rm rather than engaging in a one-period communication

state and a very severe punishment afterwards.

Given that the standard stick-and-carrot punishment, in which qp = �qp, cannot sustain

the joint-pro�t maximizing outcome under private information, the next question is for

which discount factors the modi�ed stick-and-carrot punishments, in which qp = q̂p or

qp = ~qp, sustain the joint-pro�t maximizing outcome. To answer this question, let the

value of the discount factor for which �rm 1's collusion constraint (??) is just satis�ed

with equality be �̂s when qp = q̂p, and ~�s when qp = ~qp. We then have:

PROPOSITION 4. Consider � > 0 and suppose �rms use modi�ed stick-and-carrot

punishments. (i) For � 2 (0; 0:117], the joint-pro�t maximizing outcome is sustainable

as a perfect Bayesian equilibrium if and only if � � �̂s, where �s < �̂s < �g.

(ii) For � 2 (0:117; 1], the joint-pro�t maximizing outcome is sustainable as a perfect

Bayesian equilibrium if and only if � � ~�s, where �s <
~�s < �g.

PROOF: See Appendix.

Intuitively, for � 2 (0; 0:117], �rms produce q̂p, the largest quantity such that �rm

1 and �rm 3 are just indi�erent between punishing and deviating from the punishment

when in p1
1
and p1

3
. For � 2 (0:117; 1], �rms produce ~qp, the largest quantity such that �rm

2 is just indi�erent between communicating and not communicating when in m1

2
or m3

2
.

In other words, for � 2 (0; 0:117] the �rms are constrained by �rm 1 and 3's punishment

constraint; for (0:117; 1] the �rms are constrained by �rm 2's communication constraint.

Note that, for � 2 (0; 0:117], ~qp is more severe than q̂p, but this would violate �rm 1's

25The payo� in this communication period is larger than the punishment, in contrast with the case

of grim punishments and � > 0.
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punishment constraint for discount factors close to the lower bound �̂s in this range of �.

Furthermore, for � 2 (0:117;1], q̂p is more severe than ~qp, but this would violate either

�rm 1's collusion constraint or �rm 2's communication constraint for any discount factor

in this range of �.

Propositions 3 and 4 are illustrated on Figure 4. Note that the lower bounds �̂s and

~�s are much below �g, the lower bound when grim punishments are used. They are also,

however, much above �s, the lower bound when the standard stick-and-carrot punish-

ments from the public information case would have been feasible. This then demonstrates

that the communication problems due to the localized nature of competition may be a

signi�cant factor hindering collusion.

5 Multimarket operation

The above model analyzed the stability of collusion when there is private information

due to localized competition. This section reinterprets the model in an alternative way,

as a model of multimarket operation. This exercise is useful, because antitrust policy

has often been concerned with the possibility of collusion when �rms operate in several

markets.

There is a growing theoretical and empirical literature on the relationship between

multimarket operation and collusion.26 From a theoretical perspective, Bernheim and

Whinston (1990) provide the most signi�cant contribution. They analyze multimarket

contact, a situation in which two or more �rms meet each other in several markets. They

show that multimarket contact serves to pool the �rms' incentive constraints and identify

conditions under which this pooling strictly enhances the �rms' ability to collude. In

their concluding section Bernheim and Whinston ask whether their results would extend

to the alternative setting of multimarket operation absent multimarket contact, i.e. a

situation in which only one �rm operates in several markets, meeting single-market

competitors in each of these markets. They question the possibility that their results

will indeed extend to such a setting, in part because the single-market competitors may

not even observe outcomes in the markets where they do not operate.

26See Bernheim and Whinston (1990), van Witteloostuijn and van Wegberg (1992), Barla (1993),

Evans and Kessides (1994), Gimeno (1994).
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In fact, a simple reinterpretation of the model developed in this paper allows to provide

a formal answer to this question. Consider two markets, A and B. In each market k,

there is one representative consumer with the standard quadratic utility function

Uk(q0k; q1k; q2k) = � (q1k + q2k)�
�

2

�
q2
1k + q2

2k

�
� q1kq2k + q0k

where qik, i = 0;1; 2, is the quantity consumed of good i in market k. Assume � > 0,

� > 0,  6= 0 and � �  � ��. Good 0 is the outside good. In each market k, goods 1

and 2 are substitutes for  > 0, they are complements for  < 0. The inverse demand

equations for good 1 and 2 in market k can be derived from solving the representative

consumer's utility maximization problem:

pik = �� �qik � qjk , i = 1; 2; j = 1; 2; i 6= j:

Consider the following situation of multimarket operation absent multimarket contact.

There are three �rms, �rm 1A, �rm 1B and �rm 2, competing in quantities for an in�nte

number of periods, discounting the future at a factor �. Firm 1A and 1B produce the

quantity of good 1 in market A and B, respectively. Firm 2 produces the quantity of

good 2 in both markets A and B. Hence there is multimarket operation by �rm 2, but

there is no multimarket contact: �rm 2 faces two di�erent single-market competitors

in each market. (Think of a multinational �rm facing a domestic �rm in two di�erent

countries.) Normalizing marginal cost to zero, pro�ts are given by

�1k = �1k (q1k; q2k) , k = A;B

�2 = �2A (q2A; q1A) + �2B (q2B; q1B)
(10)

where

�ik (qik; qjk) � (�� �qik � qjk) qik , i = 1; 2; j = 1; 2:i 6= j (11)

Consider the following three cases.

Case 1: Public information on outcomes in both markets.

In this case the three �rms observe the quantity choices of each �rm in each market, even

�rms 1A and 1B who are only active in one of the markets. Consequently, Bernheim and

Whinston's analysis applies: �rm 2's no-deviation constraints can be pooled over the

two markets. This allows �rm 2 to transfer possible slack on its no-deviation constraints

from one market to the other. In the present model Bernheim and Whinston's irrelevance
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result would hold: due to the symmetry of demand and technology in both markets the

pooling of �rm 2's no-deviation constraints does not actually facilitate collusion.27 In

contrast, if there would be some asymmetry across the markets, the pooling of �rm 2's

no-deviation constraints could, in fact, facilitate collusion.28

Case 2: Information only on outcomes in market where active; no "inherent"

linkages between markets.

In this case �rm 1A and 1B do not observe outcomes in the market in which they do

not operate. Only �rm 2 observes the outcomes in both markets. Consequently �rm 2's

no-deviation constraints cannot be pooled over the two markets, unlike in the previous

case.

Furthermore, in this case there are no demand- or cost-based linkages across the

markets, nor any other constraints inuencing �rm 2, who operates in both markets.

Consequently, �rms 1A, 1B and 2 behave as if there is only a single market, and the

no-deviation constraints from the standard single-market model apply.

Case 3: Information only on outcomes in market where active; �rm 2 con-

strained to produce q2A = q2B = q2.

As in the previous case, due to the information problems, �rm 2's no-deviation con-

straints cannot be pooled over the two markets. Furthermore, there is an inherent

linkage between market A and B: �rm 2 is constrained to produce the same quantity in

both markets. One interpretation of this constraint is as follows: �rm 2 can only control

the total quantity of its good produced, but it cannot control in which market this quan-

tity will actually be marketed. While this constraint may seem somewhat arti�cial, it

should not be taken too literally. It merely serves to illustrate a more general potential

problem with multimarket operation and collusion in exactly the same framework of the

previous sections. To see this, simply rewrite �rm 2's pro�t equation, given by (??) and

(??), after substituting q2A = q2B = q2:

�2 = 2[�� �q2 � (q1A + q1B)=2]q2:

27See Bernheim and Whinston (1990), Proposition 1, p.6.
28Asymmetry may be obtained by allowing the parameters � and � � =� to di�er across markets,

or by allowing �rms to di�er in marginal costs.
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The pro�t equations of �rm 1A, 1B and 2 then are isomorphic to the pro�t equations of

�rm 1, 3 and 2 in the model of localized competition analyzed in the previous sections.

Consequently, the same incentive problems apply. In particular, multimarket �rm 2 may

not have the necessary incentive to punish deviations by �rm 1A or 1B, because this will

trigger a break-down of collusion in the other market, given that �rm 2 is constrained

to q2A = q2B.

Case 3 illustrates a more general potential problem of collusion under multimarket

operation: (i) if the single-market competitors are not informed about the outcomes in

the other markets, and (ii) if the actions of the multimarket �rm necessary to sanction

deviations in one market cause an externality on the uninformed single-market competi-

tors in the other markets, then the multimarket �rm may actually no longer be willing

to execute the necessary sanctions out of fear for triggering a break-down of collusion in

these other markets.

A nice economic example of this potential collusion problem under multimarket oper-

ation is the simple two-market duopoly model as described above, but with price-setting

�rms as in Bernheim and Whinston. The analogous constraint of case 3 would then

be p1A = p2A = p2, i.e. multimarket �rm 2 should set the same price in both market

A and B. This may be nicely interpreted as a standard arbitrage constraint. A more

detailed analysis of this model, following the approach of the present paper, could then

show that Bernheim and Whinston's conclusion that multimarket competition facilitates

collusion may actually be reversed: (i) due to the information problems, pooling of the

multimarket �rm's no-deviation constraints is no longer possible; (ii) due to the arbitrage

constraint, an externality arises reducing the multimarket �rm's incentive to sanction

privately observed deviations in some markets.

Given the large empirical literature on multimarket contact and collusive behavior,

it would be interesting to also empirically investigate in more detail the relationship

between multimarket operation absent multimarket contact and collusive behavior. From

a theoretical perspective, the above analysis shows that multimarket operation turns out

to be distinct from multimarket contact.
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6 Conclusion

This paper has studied collusive behavior in a repeated oligopoly model with localized

competition, also reinterpreted as a model of multimarket operation. Private information

about the rivals' past actions naturally arises from these product market structures.

The resulting communication problems imply that �rms should not adopt strategies

with too severe punishments. In�nite grim punishments may be too severe, for large

discount factors. The standard stick-and-carrot punishments from the perfect public

information model are always too severe. Modi�ed stick-and-carrot punishments can

still be used, though for a smaller range of discount factors than the standard stick-and-

carrot punishments.

The speci�c economic model chosen made it possible to formalize information prob-

lems generated by the product market structure in a relatively simple way. The model

also allowed for a close comparison with the collusion literature under perfect public in-

formation, and for a reinterpretation as a model of multimarket operation. Nevertheless,

it would be desirable to investigate how sensitive the results are to some of the speci�c

assumptions. Do the results extend to alternative economic models where similar private

information problems arise from the product market structure?

A �rst alternative worth investigating is a triopoly model with price-setting �rms

rather than quantity-setting �rms. One possibility is the well-known Hotelling model of

localized competition with three price-setting �rms. In this model three �rms are located

on a line, representing a one dimensional product space.29 An alternative possibility is

a model of multimarket operation with price-setting �rms and a cross-market arbitrage

constraint, as already suggested above. Both possible models will generate exactly the

same information structure as the model developed in this paper. However, the speci�c

equilibrium conditions will di�er, and it is not clear a priori how this will a�ect the

precise results.

A second alternative is a model where the private information structure is no longer

exactly the same as in the present paper. One interesting possibility is the Salop circle

model with more than three �rms. In this version of the Hotelling model �rms are

29See Kats and Neven (1990) for an analysis of the static version of this model.
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located on a circle, rather than on a line.30 This generates a rather di�erent information

structure. A �rm realizes that he cannot unilaterally "block" its information about a past

deviation: choosing whether or not to communicate a past deviation, he realizes that

independent of his action the whole industry will eventually become informed about the

deviation anyway, through the equilibrium communications taking place at the other

side of the deviator. More generally speaking, the Salop circle model is a convenient

model to illustrate communication problems in markets where �rms can only delay an

eventual punishment, but not completely prevent it as in the present model. Similar

communication problems, with delay instead of complete prevention of the punishment,

may occur in markets with multidimensional product di�erentiation.

30The line model with more than three �rms does not seem to generate interesting new insights.
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A Appendix

Proof of Observation 1. First it is shown that f2(m
i

2
) 6= qc

2
. Then it is shown that

given that f2(m
i

2
) 6= qc

2
, �rms should produce their one-shot best-response quantity in

the communication states.

Suppose f2(m
i

2
) = qc

2
. Then �rm i's, i 6= 2, collusion constraint (state ci) is given by

�i(q
c

i
; qc

2
) � (1 � �)�i(q

U

i
(qc

2
); qc

2
) + ��i[fi(m

i

i
); qc

2
]:

For this inequality to hold, it is necessary, given that �i[q
U

i
(qc

2
); qc

2
] > �i(q

c

i
; qc

2
) for qc

i
6=

qU
i
(qc

2
), that

�i(q
U

i
(qc

2
); qc

2
) > �i[fi(m

i

i
); qc

2
] (A:1)

Furthermore, if f2(m
i

2
) = qc

2
, then �rm i's, i 6= 2, communication constraint (state mi

i
)

is given by:

(1 � �)�i[fi(m
i

i
); qc

2
] + ��i[fi(m

i

i
); qc

2
] � (1� �)�i[q

U

i
(qc

2
); qc

2
] + ��i[fi(m

i

i
); qc

2
]

so that it is necessary that �i[fi(m
i

i
); qc

2
] � �i[q

U

i
(qc

2
); qc

2
], which contradicts (??). This

demonstrates that f2(m
i

2
) 6= qc

2
. Given that f2(m

i

2
) 6= qc

2
, the communication constraints

for �rm 1 and 3, and for �rm 2 in m1

2
are as follows:

mi

i
; i 6= 2 : (1 � �)�i[fi(m

i

i
); f2(m

i

2
)] + �wi � (1� �)�i

h
qU
i
(f2(m

i

2
)); f2(m

i

2
)
i
+ �wi

m1

2
; i 6= 2 : (1 � �)�2[f1(m

1

1
); f2(m

1

2
); qc

3
] + �w2 �

max f (1 � �)�2
h
f1(m

1

1
); qU

2
(f1(m

1

1
); qc

3
); qc

3

i
+ �w2;

(1 � �)�2 [f1(m
1

1
); qc

2
; qc

3
] + �(1� �)�2 [f1(m

1

1
); f2(m

1

2
); qc

3
] + �2w2 g

For these inequalities to hold it is necessary (and for �rm i, i 6= 2, also su�-

cient) that �i[fi(m
i

i
); f2(m

i

2
)] � �i[q

U

i
(f2(m

i

2
)); f2(m

i

2
)] and �2[f1(m

1

1
); f2(m

1

2
); qc

3
] �

�2[f1(m
1

1
); qU

2
(f1(m

1

1
); qc

3
); qc

3
]. A similar argument holds for the communication states

m2

2
and m3

2
. This then shows Observation 1. 2

Proof of Proposition 3.
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By de�nition of the standard stick-and-carrot punishment �rm 2's punishment constraint

in (??) is just satis�ed with equality. It may be veri�ed that �rm 1's punishment con-

straint is satis�ed if and only if �1[q
U
1
(qp); qp] � �1[q

B
1
(qc); qB

2
(qc)], which holds after some

calculations if and only if

� �
�2

(4� �)2(1 + �)
: (A:2)

It can be easily veri�ed that this condition is violated for 1 � � > 0, given that (??)

should hold for �rm 2's collusion constraint to be satis�ed. This is su�cient to prove

the proposition. (Note that it can analogously be checked that �rm 2's communication

constraint (??) is violated for :795 � � � 0, given that (??) should hold for �rm 2's

collusion constraint to be satis�ed.) 2

Proof of Proposition 4.

Given that the standard stick-and-carrot punishment in which qp = �qp is not a perfect

Bayesian equilibrium by Proposition 3, only the stick-and-carrot punishments in which

qp = q̂p or qp = ~qp remain to be considered. (a) Consider q̂p, so that �rm 1's punish-

ment constraint (??) is just satis�ed with equality. For �rm 1's collusion constraint to

be satis�ed, it turns out to be necessary that �1[q
B
1
(qc); qB

2
(qc)] � w1 � 0. Therefore

by observations 2 and 3 �rm 2's collusion and punishment constraints are nonbinding.

Hence, given qp = q̂p, it remains to check only �rm 1's collusion constraint and �rm

2's communication constraint. These two inequality constraints are extremely tedious,

but fortunately they depend on only two parameters. Hence it is possible to characterize

these constraints fully, using numerical simulations. Numerical simulations show that for

� � 0:117 these constraints cannot be simultaneously satis�ed, and that for � < 0:117

these constraints are satis�ed if and only if � 2 [�̂s; �̂
0

s], where �s < �̂s < �g, and where

�̂0

s is the upper bound on the discount factor for �rm 2's communication constraint to

be satis�ed. (b) Consider ~qp, so that �rm 2's communication constraint (??) is just sat-

is�ed with equality. For �rm 1's collusion constraint to be satis�ed, it turns out to be

necessary that �1[q
B
1
(qc); qB

2
(qc)] � w1 � 0. Therefore by observations 2 and 3 �rm 2's

collusion and punishment constraints are nonbinding. Hence, given qp = ~qp, it remains

to check only �rm 1's collusion constraint and �rm 1's punishment constraint. Numerical

simulations show that for � � 0:117 these constraints are satis�ed if and only if � � ~�s

where �s < ~�s < �g, and for � < 0:117 these constraints are satis�ed if and only if � � ~�0

s,
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where ~�0

s is the lower bound on the discount factor for �rm 1's punishment constraint to

be satis�ed.

Combining (a) and (b), part (ii) of Proposition 4 immediately follows. Further numer-

ical simulations show that, for � � :117, �̂s < ~�0

s < �̂0

s, from which part (i) of Proposition

4 follows. 2
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