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Abstract

Simulation experiments for analysing the steady-state behaviour of queueing systems over a
range of traffic intensities are considered, and a procedure is presented for improving their
design. In such simulations the mean and variance of the response output can increase dra-
matically with traffic intensity; the design has to be able to cope with this complication. A
regression metamodel of the likely mean response is used consisting of two factors, namely a
low-degree polynomial and a factor accounting for the exploding mean as the traffic intensity
approaches its saturation. The best choice of traffic intensities at which to make simulation
runs depends on the variability of the simulation output, and this variability is estimated using
analytical heavy traffic results. The numbers of customers simulated at each traffic intensity
are built up using a multistage procedure that systematically increases the efficiency of the sim-

ulation experiment. The asymptotic properties of the procedure are investigated theoretically.



The procedure is shown to be robust and to have improved efficiency compared with more
naive procedures. A result of note is that even when the range of interest includes high traffic
intensities, the highest traffic load simulated should remain well away from its upper limit; but
the number of customers simulated should be concentrated at the higher traffic intensities used.
Empirical results are included for simulations of a single server queue with different priority
rules and for a complicated queueing network. These support the theoretical results, demon-
strating that the proposed procedure can increase the accuracy of the estimated metamodel

significantly compared with more naive methods.

Keywords: response surface, interpolation, congestion, polynomial regression, variance het-

erogeneity, runlength, sequentialization

1 Introduction

A procedure for improving the design of experiments (DOE) of steady-state simulations of
queueing systems is presented. The objective is to better estimate regression metamodels of
the system when the traffic intensity is allowed to vary over a range of values including those
approaching saturation. Congested queues are known to be hard to simulate accurately, because
both the mean and the variance of the steady-state output typically become unbounded as the
traffic intensity increases to saturation. Whitt (1989) and Asmussen (1992) discuss such steady-
state behaviour; and Whitt in particular considers how the length of a simulation run should
be increased in order to maintain accuracy in estimating queue length or waiting time. In
this paper we consider a comprehensive approach to determine which traffic rate intensities to
simulate and how many customers to simulate at each intensity, particularly when a range of
intensities is of interest. Though we consider only steady-state simulations, our method can be
applied to terminating simulations as well.

To estimate the mean response of interest, the procedure uses a regression metamodel
consisting of two factors: a low degree polynomial and a factor accounting for the unbounded
behaviour of the mean response as the traffic intensity approaches saturation. The best choice
of traffic intensities at which to simulate depends on the variance of the response; and the
proposed method uses analytic heavy traffic results to guide this choice. The best choice of
the number of customers to simulate at each intensity then depends on the true variance of
the output at the selected traffic intensities. These variances are increasingly more accurately

determined using a multistage procedure that progressively improves the variance estimates



whilst simultaneously increasing the run allocations at each of the select traffic intensities in
an efficient way. Thus this multistage procedure corrects any errors made in using heavy traffic
theory to estimate the response variance. Once the simulation runs are completed, backwards
elimination is used to adjust the degree of the polynomial to ensure that the metamodel is
a good fit to the observed output. The procedure is studied analytically and shown to have
asymptotic optimal properties.

Empirical results are included from simulation experiments of the M/M/1/FIFO queue,
two priority variations: M/M/1/SPT (shortest processing time first) and M/M/1/LPT (longest
processing time first), and a complicated queueing network (involving a system of terminals with
some unusual features). These results show that the procedure leads to significant improvement
in accuracy of the fitted metamodel compared with naive designs that, for instance, use evenly
spread values of traffic intensity with equal numbers of customers simulated at each intensity.

The theoretical results, corroborated by the empirical results, also show that the method
is robust; the bias error, when the assumed form for the unbounded behaviour of the mean is
incorrect, being made negligible through fitting of the low-order polynomial factor.

So far the literature has paid relatively little attention to the topic of this paper. In the sim-
ulation area, DOE has focussed on classic designs such as 2k=P and central composite designs,
possibly combined with variance reduction techniques (see Kleijnen 1987, 1992). Regression
models have been considered: by Reiman, Simon and Willie (1992), who show how known
theoretical results about light traffic and heavy traffic behaviour can be incorporated into the
analysis; by Cheng (1990) and Cheng and Traylor (1993), who show how conditional sam-
pling and use of known theoretical results can be combined; and by Vollebregt (1996), who
investigates a problem similar to our problem but not with heavy traffic queueing.

Outside the simulation field, optimal design in regression analysis is discussed in the seminal
paper, Kiefer and Wolfowitz (1959) (to whom Reiman et al. (1992) also refer), and also by
Fedorov (1972) and more recently by Atkinson and Donev(1992), Ermakov and Melas(1995)
and Pukelsheim (1993). However, the focus in this literature is on the case where the response
variable has constant variance.

The paper is organised as follows. In Section 2 we introduce the regression metamodel to be
considered. In Section 3 we give theoretical results on how to optimally design the simulation
experiment and describe the multistage procedure for implementing the runs in practice. In
Section 4 we discuss the method for fitting the regression metamodel, once the results have been

obtained. In Section 5 we discuss the amount of computing effort needed to make a simulation



run. This effort obviously needs to be taken into account in assessing overall efficiency, and is
one that needs clarification if our suggested method is to be applied properly. Section 6 gives a
summary of the proposed procedure for casc of reference for the practitioner. In Section 7 we
give a number of examples and compare our analytical results with simulation results. These

examples show the good agreement between the two, and illustrate the substantial efficiency

gains possible with our approach. Section 8 gives conclusions.

2 The Regression Metamodel

We suppose that the simulation experiment is made up of a number of independent runs.
We assume that y, the output (response) of a run, is determined by z, an independent input
variable, and that this input/output relationship can be represented by the following regression

metamodel (response surface):

vij =n(zi, ) +ea; (i=1,..,n) (G=1,...m) (1)

with

n(z,B) = (Bo + b1z + P2z? + ...+ Brz*) f(z): the mean of y;

¢;: approximation error of the metamodel, with mean 0 and variance o7

B = (P1,...,B) : vector of k unknown parameters representing input effects;

f(z) : a known function (discussed in the next paragraph).
We make the simulation runs at only n distinct input values zy, z,, ..., .r,,.‘ with m; observations
(replications) placed at the ith point, z; (i = 1,...,n). We shall be considering how best to
choose the z; and the m;, and therefore call the z;, the design points. We write x = (2, 73, ...,
Z,), m = (my, ma, ..., my), and denote the total number of runs by N; that is, ZL, m; = N,

The purpose of introducing the factor f(z) is to allow regression models that have un-
bounded responses; in particular f(z) allows saturated queueing situations. Consider, for
example, the M/M/1 queue. Suppose the arrival rate is unity. Then the steady-state expected
waiting time has the form

E(y) =z/(1-xz) (2)

where z is the traffic intensity. If we do not know the correct expression for E(y) but know

only that queue saturation occurs as z — 1, then we may assume

% = (Bo + Brzi + Boz?)/(1 — i) + € (3)



where the vector of parameters 3 = (fo, f1, 32)' is unknown and is to be estimated. This model
is of the form (1).

Another example is the problem discussed by Reiman et al. (1992) where the expected
squared waiting time E(y?) is to be estimated in an M/G/1 queue and the service time has a

certain mixture distribution. They show that

@) = (G +2+ 52)/(1 - 2 @

where z is again the traffic intensity. So in this case f(z)in (1) is (1 —z)"2

We must consider the variance of the response as well as its mean. We do not assume that
the error variance is constant; it may depend on z;. For example, Whitt (1989) and Asmussen
(1992) show that the variance of ¢ in (1), for the M/G/1 queue, isO[(1—z)*asz — 1. We

shall assume first that the form of the dependence is known, that is:
Var(e) = [g(z)o]? (5)

where g(z) is known, but ¢ is not. In this case, as pointed out by Kiefer and Wolfowitz (1959),

homogeneity of variance can be restored simply by dividing (1) by g(z), which gives

zij = yij/9(z:)
= (Bo + Brzi + Boz? + ... + Brxl)r(zi) + &j

(6)

where
r(zi) = fzi)/g(zi). (7)
Then Var(é;;) = o2, a constant, independent of z.

We shall suppose that we are interested in the behaviour of the queue over a range of z
values: z € [z, zy], where zy may be close to unity - the near saturation case, and that the
objective of the simulation is to estimate n(z, B) over this range of z values. We use the obvious
estimator:

i(z, B) = (=, B) (8)

where /3 is the ordinary least squares (OLS) estimator:
B=(X'X)"'Xz. 9)

Here z = (211,212, ) Zam, )’ 18 the vector of standardized simulation responses (of dimension

N), and X is the N x (k + 1) matrix of independent variables, with the row vector

x; = (1,z; 2, LT ED)



appearing m; times in X. The matrix X'X is persymmetric (that is, all elements in any diagonal
perpendicular to the main diagonal are the same; see, for example, Aitken, 1964, p.121), its
(7, j)th entry being
n
(XX =Y mpzit = 1,2, 8) (10)
I=1
where n; = m;r?(z;), for i = 1,2, ..., n,.

The discussion so far assumes that the design points »; and the number of runs m; made
al cach point, are prescribed. We now consider how best to choose the z; and m;, where the
objective of our DOE is to optimize some measure of the variance of 5(z, /3) A natural measure
is the average weighted variance over the range of interest:

zu = zu
p= [ wWarlite. B/ [ wie)ie a1
Ty Ty
with weight function w(z). The simplest case is w(z) = 1 for all z € [z1,zy]. An alternative

has all the weight concentrated at one point, zo € [z, 2], when p in (11) reduces to
p = Var(p(zo, A))- (12)

This latter alternative might not appear appropriate when a range of z values is being consid-
ered. It turns out that the choice of x and m is not all that sensitive to the precise form of
p. Hence, if zo is a typical value in the range of interest, then (12) is an adequate measure to
use. An interesting case is when we wish to focus on the behaviour of the queue as r — 1. The
factor in n(z, #) that depends explicitly on 3 is By + Biz + ... + Brz*, and this will be close in
value to fg + f1 + ... + B when z is close to unity. A simple convenient performance measure
is thus

Va"[:[i_.ffll(ﬁ.o + AT+ .+ Breat)) = Var(Bo + by + ... + Br). (13)

In situations where Var[y(z, 3)] becomes infinite as = — 1, the average as given by (11) is
dominated by values of the integrand close to the upper limit zy/, especially when zy is close
to unity. Optimizing either (11) or (13) then gives similar values for both the z; and the m;.
We give numerical examples later.

We discuss the calculation of n, z; and m; in the next section.



3 Optimal Selection of Simulation Inputs

3.1 Error Variance of Known Form

We consider first the situation where the form of the dependence of the error variance on z is
known, i.e. g(z) in (5) is known.

Kiefer and Wolfowitz (1959) address a general version of the optimum design problem in
regression analysis. They point out that, in general, a direct approach to the problem leads
rapidly to intractable algebra. They give an ingenious approach that transfers the difficulty
into a Chebyshev approximation problem, thus allowing use of the extensive literature on this
topic. They give examples drawn from polynomial regression. Also see Ermakov and Melas
(1995).

It is in principle possible to make use of the Kiefer and Wolfowitz approach in our problem.
However, there are two aspects that make an alternative, direct, approach competitive in our
case. Firstly, it turns out that the persymmetric form of the matrix X'X makes the direct
approach much more tractable. Secondly, the form of our regression function, being non-
standard, gives rise to a non-standard Chebyshev approximation that is arguably no easier,
and is possibly more difficult, to solve than the problem resulting from our direct approach,
except in specific, very simple cases, which happen to be analytically tractable.

We start with the optimal choice of n (the number of distinct z values). Kiefer and Wolfowitz
(1959, Theorem 2) show that if the functions multiplying the parameters fo, ..., B are linearly
independent, then n should be chosen equal to the number of unknowns, k 4+ 1 in our case.
Thus the optimal choice is n =k +1, and we assume that this holds for the remainder of this
section.

We now investigate how to choose the m; (the number of replications at z;, with 7 =

1,2,...,n). Let V be the so-called Vandermonde matrix:

T 3 & 1
ry T2 ... Zn
Vi |l 22 23 22 |,
k k k
z] 23 - T,

[V| its determinant, and [V | the cofactor of its (s,t)th element. We have the following

theorem.



Theorem 1: Let A = X'X be as defined in (10). Then the inverse of A has the form:
n
A7 =Y "B [mi*(ay) (14)
s=1

where the matrices B(*) have (s,¢)th element

@y _ Vil Vil
@ ="V

sts L. ..n

which are independent of the m; and the form of f(.). O

Proof: See Appendix.

Corollary: The average weighted variance of 7, defined in (11), reduces to

p(x,m) = uﬁg‘: (~)n (15)

a; = y/trace(BO)IC), i=1,2,...,n, (16)

where C is the matrix whose (i, j)th element is

with

(C)i; = /“' w(z)fA(z)e Ve, ij=1,2,.. 0. (17)

In (15), for simplicity, we have written r; for riz:)-
Theorem 1 can be used to derive the optimal m; that will minimize (15), given z;. It will
be convenient to write
mi=mN i=12 ..n, (18)
so that 7, is the proportion of runs inade at 2;. We write 7 =(my, 72, ..., m,)". We have the
following theorem.
Theorem 2: Let the design point x be fixed, and let the total number of simulations be

equal to N, so that 3" m; = N. Then the variance (15) is minimized if

ai/ri
S —gar 19
" S win) o
The minimized value is
o2 k1
p(x) = D (a;/ )P, (20)
j=1

where f; = f(z;).
Proof: Minimization of (15) subject to m; > 0 for all i, and Yiimi = N, is a convex
programming problem. An easy application of the method of Lagrange multipliers gives the

result. O



We have ignored the implicit constraint that the m; have to be integers. Often in practice
we can assume that the m; are so large that rounding to an integer makes a negligible difference.
However there is a more subtle reason why rounding is not an issue. Though it has been more
natural in the regression context to formulate the problem in terms of number of runs of given
length, in fact it is the allocations of total computational effort at each design point, measured
(say) in terms of the number of customers simulated, that comprise the more fundamental
design variables. An integer constraint on the (large) number of customers simulated at each
design point is clearly of no concern. Thus if rounding in terms of given run lengths is a
problem, the run lengths themselves can always be adjusted to ensure that the m; are integers.
We shall discuss this more fully in Section 5.

In simple cases, Theorem 2 is sufficient to enable the optimal settings of the z; to be found

explicitly by solving the system of equations
Op(x)/0z; = 0, (i=1,2,..,n).

However it can happen that the smallest design point value, 1, is located at the limit of the
allowable range of values, so it will not correspond to where 9p(x)/dz; = 0. An alternative,
which we consider preferable because it applies even to complicated cases, is to numerically
minimize (20) using a standard direct search algorithm. We have found that the Nelder-
Mead algorithm is perfectly satisfactory (see Nash, 1979, for example). The formulas are in a
form particularly suited to numerical optimization. The calculation of p involves a potentially
expensive numerical quadrature. This expense is minimized by confining the quadrature to the
calculation of the matrix C, which does not involve the design points z;. Thus, as far as the
numerical minimization is concerned, C is a constant that needs be calculated only once at the

start of the minimization.

3.2 Error Variance of Unknown Form

In practice g(z) in (5) will not be known, or will only be known approximately. It is possible
in principle to develop a procedure which will allow the z; and m; to be estimated increasingly
more accurately as N, the total number of runs, is increased. Such a procedure will of necessity
be elaborate. In our experience, identifying and having the correct design points is of secondary
importance compared with having the correct number of runs at each point. This is especially
so because the range of z values of interest is often dictated by the practical context of the

problem so that the choice of design points is restricted. We shall assume that an approximation,



9ga(z), for g(z) is available from asymptotic theory or other considerations. For example, as
has already been pointed out, Var(e) in (3) is O[(1 — z)™% as z — 1. Moreover Var(c) — 0,
as r — 0. Thus we could take g,(z) = z(1 — z)~* for this case.

We now suggest the following multistage strategy, which fixes the design points approxi-
mately, and then adopts a method of allocating runs which converges, as the N increases, (o the
correct optimal proportions for these given design point settings. Kleijnen and Van Groenen-
daal (1995) have discussed the method in detail. We give below a full theoretical justification
for the technique. The method is as follows.

1. Let p, the performance criterion to be optimized, be as givenin (11) or (13). The number
of design points is set at n = k + 1, where k is the highest degree of the polynomial considered
necessary to guarantee a good fit for the regression model. Use a variance approximation ga(x)
for g(z) in (5) to calculate the optimal choice for x, at least according to this approximation,
by numerically minimizing p(x) in (20). The design points are now fixed at these values.

2. Let N be the total number of runs to be made. Initially make mg pilot runs at each z;,

with nmg << N. This yields initial sample variances

mo

si =Y [yt — 5 (mo)]*/(mo — 1),
=1

which estimate the true variances [g(z;)o]2. The number of initial runs is not critical, and in
the examples given below it was set at approximately 30% of the total number of anticipated
runs.

3. Additional runs are now assigned and made at each z; in a multistage way. Each design
point is considered in turn in a fixed order, 1,2,...,n, say, cycling repeatedly through this fixed
sequence. The number of runs, m; ; 41, carried out at z; in the (7 + 1)th cycle is calculated as
follows. Suppose that, after j cycles, M;; runs have been made at z;. Then the updated sample
variances .

shi = ) lva — 5 M)/ (My; — 1)
I=
better estimate the true variances [g(z;)0]? than did the initial estimates s2. These updates are

used in 7 = fi/si; to estimate 7, the optimal loading at x;, defined in (19):

TR L - 21
LD e /) 1)

Set
mi ;41 = max{|(j + 1)7i; — My;], 0} (22)



where |.] denotes "integer part of”, so that the total number of runs made at z; after (j + 1)
cycles is

Mij41 = Y}IS%X{ L+ D7)}
The rationale for this procedure is that, given the current estimates of the optimal allocations
in (21), now (j + 1)7;; is the number of runs that should be allocated to point z;. However,
because runs have already been made in previous cycles, this updated desired number is not
always achievable, and M, ;41 is the closest we can get to the desired value.

4. The process is continued until the required total number of runs has been made, i.e.
Z?:; M; =N.

The following Theorem shows that as N — oo, the process makes an allocation where the
proportions converge, almost surely, to the correct optimal values.

Theorem 3 Let ; denote the (unknown) optimal proportions (19), which is realsies (20),
the p(x) value that minimizes p(x, m) for given x. Let M; be the number of runs made at z;
by the end of the process, when a total of N runs has been made. Then, if N — oo,

n
mi; — m and M;/ZM; —m; a.s. foralli. (23)
=1

Proof: See Appendix.

As already remarked, our procedure is not fully optimalif the initial variance approximation
ga(z) is different from g(z), since the method does not update the values of the design point.
For this reason the design resulting from this procedure is optimal only with regard to the given
design points, rather than fully optimal. However, the right choice of design point values is a
less serious problem compared with the right choice of run allocations, and this is what the

method focuses on. We shall give numerical examples in Section 5.

4 Specifying the Polynomial Regression Metamodel

Apart from selecting the z; and m;, the other main practical issue is the fitting of the regression
function ni(z,d) to the simulation output, where we introduce the subscript k to denote the
degree of the polynomial factor in 7. The main issue discussed in this section is the choice k.
Our basic assumption is that k can be selected sufficiently large, k = ko say, for the bias
error to be negligible compared with the random error, when the model ng,(z,3) is fitted. A
question that arises is when this assumption will be valid. The main problem is that we allow
f(z) to become unbounded. For example, if it is assumed that f(z) = (1 — z)™', and this is

incorrect, then the assumption will not be valid as z — oco. The simplest solution is to restrict z

11



to a range where the regression function is smooth and bounded. In particular, suppose 17(z)
is the unknown true regression function, that it continuous and hence bounded in the interval
[zL, zv], and that f(z) is any continuous strictly positive function in the same interval [z,
zy]. Then if

0(z, B) = (Bo + frz + ...+ Bez*) f(2),

it follows from the Weierstrass approximation theorem ( sce Johnson and Riess, 1982, for

example) that for any € > 0, k and 3 can be found for which

4 f’l(t B) —nr(z)| < e

:([:L
In other words, a polynomial can be found which will allow n(z, B) to approximate nr(z) to
arbitrary accuracy. From now on, we shall assume that the range of z can be restricted in this
way.

It is of interest to see if a polynomial of degree less than ky can be used. Seber (1977) has
reviewed methods for checking this. We adopt Seber’s recommendation of using backwards
selection, where the models ni(z, 3) for k = ko, ko— L, ... are successively fitted. At each stage,
after fitting ni(z, #), the highest remaining parameter f3; is tested to see if it can be assumed
to be zero. The procedure stops at the first k (= ’, say) for which gy is significantly non-zero
and the degree of the polynomial is then taken to be k’.

Assuming for the moment Var (¢) = [og(z)])* to be known, it is simplest to use the OLS
formula (9) for 3, based on the normalized observations zij. We can write the residual sum of

squares, when standardized for the variance, as

RSS, -atfii Yij — Uk(-'rnﬁ) 9
= ZIZI og(zi) ’ )
i=1lj=

To test if B = 0, we can use (see Seber, Chapter 4)
di = RSSk — RSSi—,. (25)

When the errors are normally distributed, then df has the chi-squared distribution with one
degree of freedom: x} . The hypothesis that By = 0 can then be rejected at the (1 — a)100
percent level if

di > xi(a) (26)
where x{(a) is the upper 1 — a quantile of the x7 distribution. We set the a level at 5% in the

examples given later.

12



When Var(e) is not known, then og; can be replaced with the estimated standard deviation

of the observations at z; :

- 1/2

si= | Yl — w(mo)l/(mi =1 (27)

j=1
As s; — og; almost surely as m; — oo, we have that d} is asymptotically x? as m; — oo for
all i. A similar adjustment applies to the estimation of 3. So we still use (9), but now the y;;
are rescaled using s; rather than g; so that z;; is calculated as z;; = y;j/si rather than as in
(6). The procedure has been suggested by Kleijnen and van Groenendaal (1995) who call it
estimated weighted least squares.

Of course the usual caveat applies: the overall level of confidence decreases if the test is
applied sequentially to several different B. This is a well-known situation which we do not
discuss further here.

A question that arises is whether z; and m;, which are selected based on k = ko, will be

satisfactory for k = k' # ko. We shall give some numerical examples which indicate that there

appears to be relatively little loss of efficiency (also see Atkinson and Donev (1994)).

5 Translating Regression Variables into Simulation Variables

Without loss of generality we suppose that it takes one unit of computer time to generate and
process one simulated customer. We let b; be the length of each run at design point z;, as
measured in such units. The cost involved is then directly measured in run length and there is
no ambiguity whether we talk of the number of customers processed or of run length.

So far it has been most natural, because we have focused on regression analysis aspects, to
treat the m; as being the decision variables, and the response from a run as the basic unit of
observation; the total number of runs N = ¥m; being fixed. However, a more insightful view

is to consider as decision variables, not the m;, but
¢ = bimi,

which gives the total computing effort expended at design point z;. Let the total available
computer time be C units. Then it is simplest to regard C as being fixed, with selection of the
¢; as being subject to Yea=C, which therefore replaces the original condition y_m; = N. In
the case of steady-state simulation it is well known that if the response is some form of sample

average, then its variance is O(b;!) as b; — oo . Thus, provided the b; are sufficiently large,

13



we can write (5) in the form

Var(ei;) = [g(z:)0]*/b; (28)
where g(z;) does not depend on m; or b;. Then (5), (7) and (28) yield r(z;) = f(z:)b /g(z:).
Defining t; = f(z;)/g(zi), (15) becomes

2Hl ai\’ -1
p(x,m)=¢ Z: (l—) (bymy)~1. (29)
i=1 ’

We see therefore that minimization of (29) subject to 3 b;m; = C, is precisely the same problem
as the original, except that b;m; replaces m;, and t; replaces r;. The solution is therefore

analogous to (19):

a;/t;
= ——C
5 aift;)

Thus we have the result that the only requirement is that bim;, the total run length at the

bim; t=0,2584 1. (30)

point z;, should be as given by (30). We are free to choose either the value of b; (that is, how
long to make each run), or to choose the value of m; (that is, how many runs to make at the
point z;). Whichever value is chosen, the other is given by (30). Consequently the total number
of observations N can be regarded as either fixed or variable, as we like. For example, if N is
given, we can choose any set of m; satisfying 3" m; = N, and then fix the run lengths using
(30). The only proviso is that m; should not be so large that it makes b; too small, because
(28), which is an asymptotic result, might then no longer hold. The number of runs N is thus
in effect arbitrary, so we could in principle set N = k + I, and make a single run at each point:
m; = | for all i. However, we would then need to use batching or spectral analysis, say, to assess
lack of fit. Conversely, making the m; too large would mean making very many short runs. In
general this is a bad idea, as each run will require a setup time to reach steady state, and it
is usually more efficient to make one long run (see Cheng, 1976). In our numerical examples
we have chosen b; proportional to g.(z;) so that runs give outputs of roughly equal variance.
Additionally the b; are sufficiently large so that initialization bias is not a serious problem, but
at the same time not so large that they make m; so small that making them integer seriously

affects their optimal setting.

6 Intermezzo: Summary of the Method

For convenience we set out the full suggested procedure for fitting the regression metamodel

(1):



1. Select: (i) the bounding factor f(z) in (1); (ii) the run lengths b; in (28); (iii) the variance
function g(z) in (5); (iv) the total number of runs N, below (1); (v) the performance index p in
(11); (vi) ko, the maximum degree of the regression polynomial factor; see (1) and Section 4.

2. Find the optimal design points x, by numerically minimizing p in (20). The Nelder-Mead
simplex search is suggested.

3. Make the N simulation runs using the sequential procedure described in Steps 2 and 3
of Section 3.2.

4. Progressively fit the regression metamodels nx(z, 8) to the simulation results, for k = ko,

ko — 1,..., using backwards selection based on (26) to select the final fitted model.

7 Examples: Numerical and Simulation Results

We give examples to illustrate the points discussed in previous sections.

7.1 Sensitivity of the Performance Measure to x and m: M/M/1 Queue Example
7.1.1 Exact numerical Results

Firstly we consider the sensitivity of the performance measure p to the choice of x and m. We
give numerical results based on the theory of Section 3, and also simulation results. We take as
our example the M/M/1 queue with the objective of estimating the waiting time response curve
(3) in the range [0.5,0.95]. In this case, (1= z)~!, the natural choice for f(z) in (1), happens
to be the correct one. This form for f(z) occurs in many other queues, so in this regard the
M/M/1 queue is a good typical example.

Even in this elementary case, g(z) cannot be given explicitly. We take g(z) ~ z2(1-=2)72,
the form suggested in Section 3.2. It should be emphasised that our choice here of g(z) is made
mainly for illustration and other choices are possible. For the performance criterion, we use the
average variance (11), with weight w(z) = 1.

The optimum design values are obtained by minimizing p given in (20). For the case where
the end points are allowed to vary, the chosen form of g(z) is already too complicated to allow
a tractable solution except for the case where n = 2. (The result for this case is z1 = 0 and
z, = 1/3.) It is generally much simpler to use numerical optimisation directly on (20). We
used the well-known Nelder-Mead simplex search modified to satisfy the constraints 0.5 < x; <
2y < ... < zp < 0.95. The modification is as follows. At any step, the components of x are

updated one at a time. If the change to any component would result in breaking a constraint
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then we reduce the step length so that the distance to the constraint boundary is halved. For
example if the jth step value of z; required by the original algorithm is zgj) = .z',(-j_l) — 4, and
7= @V 4297972, Vor initial

i

::Sj) < zSi-ll),breaking the constraint, then we simply set z
values of the z; we used values evenly spread in the upper half of the interval, and encountered
no difficulties in locating the optimum.

Table 1 gives the optimal design points, x, and design allocations, =, for n = 2 through 6,
for both the case where the end design points are fixed and where they are allowed to vary.
The values Np/o? are the performance index calculated at these optimal design points and
loadings, and then scaled by N/o2. The values Npg/o? are where the optimised design points
are still used, but the allocations are all set equal (i.e. m; = n~?!).

There are several points of interest:

(i) The optimal loadings heavily favour the end where the variability is highest.

(ii) There is a large improvement in the performance index as one goes from design points
evenly spread with cqual allocationss, to design points and allocations that are optimally ad-
Jjusted. For example in the case n = 3, Np/o? decreases from 22,443 to 1,273.

(iii) When the endpoints are allowed to vary optimally, the design points are located well
away from the upper endpoint. Nevertheless, this is perhaps of theoretical interest only, because,
unless there is considerable certainty concerning the precise form for f(z), it is inadvisable to
use design points that do not cover the range of interest. Otherwise extrapolation, with its
well-known attendant risks, would be needed to estimate the response outside the experimental
range.

(iv) Still in the case where the endpoints are allowed to vary, the lower end point is located
at zero. This is outside the range over which the performance index (viz. the average variance
of the estimator) is obtained, . Moreover, the true average waiting time, the estimated average
waiting time and its variance are all identically zero at z; = 0. The design allocation reflects
this by being zero also. This has the interpretation that the known (zero) value of the regression
function at z; = 0 should be used in fitting the model, but there is evidently no need to make
any simulation runs at this design point.

(v) In the case where the endpoints are fixed, the minimised variance does not increase
monotonically as n increases. However, the minimised value remains reassuringly stable, espe-
cially in the case where the other points are optimally chosen.

(vi) In Table 1b the points are equally spaced and the allocations are optimized subject to

these design point values. The resulting allocations and optimized Np/o? values are similar to
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those of Table la. For example when n = 4, if we use fixed endpoints, but optimized design
points and loadings otherwise, then Np/o? = 9,680. If the design points are equally spread
out, but we use optimised loadings at these values, then Np/o? increases to only 9,929. If,
instead, optimised design points are used with evenly spread loadings, then the performance
index jumps to Npg/o? = 23,900. If evenly spread design points are used as well as equal
loadings then Npe/o® = 24,739. This supports our view that priority should be attached to
optimizing the loadings over optimizing the design point values.

The last column in Table la and Table 1c shows the optimal settings using the performance
criterion based on the variance (13). However, the corresponding values of Np/o? and Npg/o*
are for the original criterion, (11), where this has been calculated at the settings of that column.
For example, in the case of fixed endpoints (Table 1a), the value of (11) using the design settings
based on (13) is p = 11,441. This is only 10% more than the minimum value of 10,383 when
its own settings are used. This indicates that we do not lose much efficiency when using the

simpler criterion (13) to obtain the design points and allocations.

Insert Table 1 about here

7.1.2 Simulation Results

To test the above (exact) numerical results we carried out some simulations. To simplify the
discussion, we consider

6= Bo+ B+ ..+ Br, (31)

which estimates n(z,3) as ¢ — 1; its use simplifies the simulation experiments and the dis-
cussion of the results without altering our broad conclusions. So we shall use the performance
criterion (13).

As in the numerical calculations we set f(z) = (1 —2z)~" and g(z) = z1/2(1 —z)~2. In this
example, we present the ’best case scenario’; that is, (i) n is regarded as fixed; (ii) the selected
f(z) is assumed to be correct so that no model fitting is done, and (iii) g(z) is assumed to be
correct, so that the sequential procedure for updating the variance estimates at the different
design points is not implemented. The optimal value of nis n = 2, the optimal input values
and allocations (given previously in Table 1c) being = = 0, z3 = 1/3 and 7] =0, x5 = 1. The
value for Np/o? is then 208. If n =3 is assumed, then the optimal input values and allocations
are z; = 0, =3 = 0.107, 25 = 721 and 7} = 0, 73 = 0.16, 73 = 0.84 (Table lc) and the

corresponding value for N p/o? is 1273. 1f, instead, the design points are evenly spread over
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the interval [0.5, 0.95] and the allocations are all equal, then Np/o? increases to 22,091 when
n =2, and to 23,391 when n = 3 (Table 1b).

Simulations were carried out using both optimised and equally spread input values and
allocations. The results for the case n = 2 are given in Table 2a, and those for n = 3 in
Table 2b. The underlying true expected waiting time being estimated is given by (2), so the
correct parameter values are §, = 0, §; = 1 and P2 = 0. Thus consistent estimators of the
coefficients are obtained by using either n = 2 or 3, and the true value of 0, corresponding to
(31) is unity. For cach n, the total number of customers simulated for cach set of design points
is 30, 000, these being allocated to the design points according to the corresponding allocation
under consideration. The service rate was set at unity, so the traffic intensities were therefore
equal to the arrival rates in all cases. The average waiting times of customers in each of the
runs was recorded and the regression model (3) was then fitted to the observations, yielding the
estimated value § as the response. As already mentioned, the only exceptional case is where the
theory calls for a design point of zero with no runs to be made. This can simply be interpreted
to mean that the known value of the waiting time at z; = 0 is used to impose a constraint
on the fitting procedure. In our example this corresponds to immediately setting G = 0, and
using the results at the other design points to estimate the other parameters. Each experiment
was replicated 100 times, giving 100 independent. 0 estimates. The sample mean and sample
variance of the 100 §'s are given in Table 2, as well as a 95% confidence interval for @ based
on these values. From each experiment, a 95% confidence interval for § was also calculated,
using the 6 value from that experiment and the standard estimate of its variance based on the
residual sum of squares.The observed coverage of these 100 confidence intervals is also given in
the Table 2.

Comparing the sample variances in the optimized and non-optimized versions, we see an
over hundred-fold (0.000149 : 0.0198) and over twenty fold (0.00186 : 0.0465) reduction in the
variability for the cases n = 2 and n = 3.. These reductions are as predicted by the theory:
208 : 22091 and 1273 : 23391 respectively; see Tableslb and lc. Moreover this represents a
genuine saving as the computing times were almost identical for the non-optimized and the
optimized experiments (the computer time for 100 macro-replications was 260 seconds (plus or
minus 3 seconds). The 95% confidence intervals based on the 100 macro-replications include

the true value of (= 1) in all cases; the observed coverages are similarly satisfactory.

Insert Table 2 about here
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7.2 Bias Error when Specifying the Regression Metamodel: Priority Queue Ex-

amples
7.2.1 Exact Numerical Results

Next we consider the extent to which bias error can be corrected by the polynomial factor
when f(z) is only an approximately known. We again illustrate with the M/M/1 queue, but
not FIFO. By adjusting the priority rule, behaviour for f(z) that is markedly different from
f(z) ~ (1—z)~" can be obtained. Again we give both numerical results and simulation results.

The service time of an arriving customer is assumed to be exponentially distributed and
to be precisely known at the moment of customer arrival, who takes a position in the queue
dependent on this value. We consider the case of shortest processing time (SPT) first, and the
case of longest processing time (LPT) first. We consider the nonpremptive case. Kleinrock
(1969, Para. 3.6) gives a general formula for W(z), the average steady-state waiting time of
a customer with service time z. For the M/M/1 case, with arrival rate z, service rate of unit,

and SPT and LPT respectively, the formula reduces after some manipulation to
E(W) =zfs(z) and E(W) = zfL(z)

where
00
fs(z) = / e tl—z+z(l+ u)e™ ) 2du
0
and
G 9
fu) = [ U= 4w
0
The behaviour of fs(z) and fr(z) is substantially different from that for the M/M/1/FIFO
queue, when f(z) = (1 —z)~'. If we write fs(z) as fs(z) = (1 — z)~%s(®) and fr(z) as
filz) =1~ z)~2:(®) then we find that, as z increases from 0.5 to 0.99 say, as(z) remains
roughly constant, changing from 0.51 to 0.62, whereas ay(z) remains substantially constant
with a value of approximately 1.5. Thus f(z) increases substantially more quickly than fs(z)
as z increases, and so overestimates it. Conversely, it increases substantially more slowly than
fr(z), and so underestimates it.
Suppose now that we use n(z,4) = (Bo+ .- + Brzk)/(1 = z) to estimate zfs(z) and z fr(z).
Figures la and 1b show the fitted polynomial fo + ... + Bez* for the cases k = 1, 2, and 4,

where the ['s are the values obtained from the least squares fit of 7(z, B) to zfs(z) and zfL(z)
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using the design points from Table 1 with n = 5. For both the SPT and the LPT cases, the fit

obtained with k = 1 is not satisfactory. The maximum relative error

n(z,B)
2f(z) “

is 6 = 0.234 and 1.86 for the SPT and the LPT cases respectively, when & = 1. In fact the

6=
z€[0.5, 0.95)

fitted curve does not even remain positive for the LPT case. However, the fit obtained with
k = 4 is satisfactory, with § = 0.009 for the SP'T case and 6= 0.069 for the LPT case. The fit
is thus reasonably close over the interpolation range [0.5,0.95].

The example supports the earlier analysis which indicated that the polynomial factor can
correct the bias resulting from an incorrect form for f(.), provided the range of interest is re-
stricted to where 7(.) remains bounded. Qur conclusion is that for smoothly behaved regression
metamodels, the model in (1) is sufficiently flexible to provide an adequate fit without recourse

to a polynomial of unacceptably high degree.

Insert Fig. la, 1b about here.

7.2.2 Simulation Results

The above numerical results were compared with simulations. The simulation used the full
method so that the sequential procedure for updating the variance estimates at the different
design points is tested. Both SPT and LPT cases were considered. In both, to test that the
method does correct for bias, we tried fitting 7(z, 3) = (Bo+ Brz+ ...+ Bra¥)(1 —2)~! so that
the incorrect f(z) = (1—z)~" is used. Three versions of ga(z) were used: gi(z) = \/z(1 —z)-3,
93(z) = \/z(l——:)q, 93(z) = \/;m Moreover the use of optimal design points and
allocations was compared with the naive design where the design points are equally spaced
over a given range of z values. We again took this range to be [0.5, 0.95]. Table 3 gives the
results obtained from 100 macro-replications. The highest degree of the polynomial factor was
taken to be kg = 4 (i.e. quartic), so that the number of parameters was ko + 1 = 5. In each
experiment g,(z) was used to estimate the optimum design point values. The approximation
9a(z) was also used to estimate the number of customers per run at each design point that
would make Var(e) constant (sce Section 5.1). An initial set of 12 runs was then made at
each design point to estimate the actual variability of ¢ at each z;. Runs were then allocated
and executed at the design points as in Theorem 3, until approximately 30, 000 customers were
simulated in total. (The total number of customers was nearly, but not exactly the same in each

macro-replication. This was because run lengths were held at the value fixed at the pilot stage,
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to enable the variance estimates s; to be calculated from observations based on unchanging run
length throughout the macro-replication.)

We conclude three main points, based on Table 3:

(i) Irrespective of the form assumed for g(z), the sample variance of the 6 remains substan-
tially constant (approximately 0.002 for optimum x; and 0.004 for equally spaced x for SPT),
indicating that the sequential adaptive adjustment of the number of runs made at each design
point does correct the inaccuracy in the initial form of g(z).

(ii) The sample variance for the optimized case is roughly half that of the sample variance
for the evenly spread design point case (0.002 compared with 0.004). This is very much in line
with the results for the cases presented in Tables la and b.

(iii) For the fit to be adequate we should have
n(z,B) = (Bo + Brz + ... + Pez*)/(1 — 2) = zfs(x) (and zfi(z) respectively),
so that
(Bo + Bz + ... + Bez*) = z(1 — 2)fs(z) (and z(1— z)fi(z) respectively).

As we showed in the previous subsection, the assumed form of f(z) = (1—z)~" is very different
from the actual forms fs(z) and fr(z), so the main source of concern is if the polynomial factor
is able to correct for this. Figures 2a and 2b summarise the fit obtained from the 100 macro-
replicates. The degree of the fitted polynomial varied with the macro-replicate; however a
quadratic was selected the most often, and a linear model almost never. The envelope of the
100 fitted polynomials is compared with the true curve for each of the two priority queues;

there is little appreciable bias.
Insert Table 3 about here

Insert Fig. 2a, 2b about here

7.3 Terminal PAD Controller Simulation

The final example has behaviour quite different from that of an M/M/1 queue. It is included
to show that the full method can be applied to complex queueing networks, and that it leads

to worthwhile improvements in efficiency.
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We consider a model of a packet assembly /disassembly device (PAD) as described in Molloy
(1989). The PAD receives characters generated from a number of terminals, i say, and assein-
bles them into packets for transmission into a network. We assume that the input of characters
into each terminal is Poisson, each with same rate z. ‘The characters from a terminal wait in
their own input buffer, onc for cach terminal. A packet is formed once the buffer is full, or
il a special control character arrives, whichever event occurs first. It is then tagged with a
fixed number of identification overhead characters and the whole is sent to an output buffer,
where it waits in a FIFO queue for transmission. The output queue serves all the terminals,
and transmits characters at a constant rate (C char/sec) into the network so long as there are
characters to transmit.

We consider the objective of measuring 7', the average character delay. The queue is quite
complex in its overall operation because of the way packets are formed. ‘The average delay
experienced by a character does not change monotonically with z. In fact, the average delay of
a character increases (o infinity if either z — 0 or if z — R, where R is the saturation input
rate for the system. The unbounded delay as z approaches zero is not of particular concern,
as it is due simply to slow packet formation because of the low input rate. The behaviour as
z — R is the important case, corresponding to true saturation; this is what we focus on. At first
sight, one might expect R = C/K. However, R is strictly less than this value because overhead
characters are added to packets, making the traffic rate greater than z K. Molloy (1989) gives
two approximations for 7', but neither seems particularly accurate.

We estimated 7' by simulation, measuring in appropriate standardised units so that C/K =
1. Details of the simulation model are given in Molloy ( Para. 8.7.3). We simulated ten
input terminals. The size of each terminal buffer was set equal to 32. The probability that a
character is the special control character was set equal to 0.02. One overhead character was
added to each packet. Some direct calculation shows that R ~ 0.959 in this case; however, we
did not make explicit use of this in choosing f(x). Instead, we assumed f(z) = [z(1 - z)] 1,
relying on the polynomial factor to compensate for possible bias. Two simulations, with z in the
range [0.5, 0.95] were carried out using a polynomial factor of degree 6. In one simulation the
design points and allocations were optimally assigned, whilst the other used the naive design
with equally spaced design points and evenly spread allocations. For the same reasons as in
the M/M/1 queue examples, it is reasonable to focus on the estimator § given in (31), and
to use the performance measure (13) for the sequential run allocation. The approximation

9a(z) = [z(1 — z)]~? was used to set the design point values. This yielded the points and
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allocations given in Table 4a. Notice that the condition of using both end points leads to
similar design point values in both the optimised and non-optimised cases. However, a heavy

allocation is made to the final z design points in the optimized case.
Insert Table 4 about here

Insert Fig. 3 about here

Table 4b summarizes the results of 200 macro-replications for the two designs. As indicated
above, because of the way run lengths are constructed, the total number of packets simulated
was slightly different in the two cases, with approximately 76,000 in each macro-replication
for the optimized case and approximately 70, 000 for the case with equally distributed design
points and run allocations. The estimated ratio of the performance measures is 72595 : 212198;
this is based on the assumption that a polynomial of degree 6 is needed. In the experiments,
a polynomial of degree 5 was selected in the majority of the macro-replications in both cases.
Using the same design points and allocations when only a polynomial of degree 5 is needed,
the ratio of performance measures falls to 31617 : 46497. However these are only estimates of
likely performance, being based on assumed forms of f(z) and ga(z). The observed ratio of
performance measures: 2.86 x 10-5 : 1.23 x 10~* (i.e. a four-fold improvement) is somewhat
better than either estimate, even allowing for the 10% difference in the number of packets
simulated in the two cases. Figure 3, which shows the upper and lower envelopes of the 200
fitted regression metamodels using the optimised and non-optimised design points, corroborates
the observed performance measures. Our main conclusion is that the difference in the allocations
between the two designs leads to a substantial improvement in the efficiency of the experiment

when our suggested procedure is used.

8 Summary and Conclusion

We have proposed a general regression metamodel for use in queueing simulations where the
character of the output of interest is to be examined over a range of traffic intensities. In such
a situation the mean and the variance of the output will increase considerably with the traffic
intensity, and the metamodel specifically allows for this. We have suggested a straightforward
experimental procedure which allows initial information of the likely variability of both the mean
and the variance to be used to select design point values. The main steps of the procedure have

been discussed and have been justified theoretically.
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In particular we have shown that the procedure is robust. Incorporation of a polynomial
factor in the regression metamodel enables bias error to be corrected for in a model fitting
stage.

As far as efficicncy is concerned, the main requirement is to take into account the variabilitiy
of the response when allocating runs to the design points. We have shown how the optimal
number of runs depends on this variability. Our procedure uses a simple multistage sampling
scheme that allows the variance of the response at each design point to be continuously updated,
so that the proportion of observations made at each point converges towards the optimum as
the number of runs increases.

Results from simulation experiments indicate that the method works very much as suggested
by the theory and gives worthwhile improvements in efficiency.

It would be useful to extend our method to allow multiple outputs and factors, and this is

the subject of future research.

Appendix

Proof of Theorem 1: The notation is as in Section 2. Recall that A has (s,t)th element

k+1

Qg = Z n.'z;'“—z
i=1

where n; = m;r%(z;). Using identities such as

ayp ... ay+by; ... ayg @10 - Gl .. Gk o s by s ag

we can write the determinant of A as
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A similar calculation shows that A;;, the cofactor of the (i,7)th element of |A[, has the form

k+1 k+1
| Aij | = 3 IVallVijing* T ne,
s=1 =1

and substituting these expressions into

(A7) =l Aji | /| A]
gives the required form (14) for A=L, @

Proof of Theorem 3

It is simplest to study the build up of runs, cycle by cycle (rather than let N — oo directly).
The adjustment from cycles to N does not affect the convergence limits in (23).

By the strong law of large numbers, for given i, if Mi; — oo, then s, — [9(zi)o]? a.s.,
and so a;/Fij — ai/ri a.s. Suppose that there is some set of indices I C {1, 2, ...,n} for which
M;j #+ o0, for i € I. This implies that, after some cycle, jo, all additional runs are made only
at z; for which i @ I. Thus a;/7y; is constant for all j > jo for i € I and a;/7ij — ai/ri a.s.
as j — oo for i ¢ I. It follows that #; — ¢; a.s. for all 7, where the c; are all constants greater
than zero. But this means that for i € 1, |(j+1)i;| — co as j — oo, implying that M;; — oo.
This contradicts the definition of I so that M;; — oo as j — o for all i. Thus a;/Tij — ai/mi
a.s. for all 7, and so 7;; — m; a.s. for all i.

Given € > 0, there exists jo(¢) such that |7;j—m;| < e forall j > jo. Let M’ = maxj<j,{|(+

1)#i;]}. Then there is a ji > jo such that
LG + D] > i(mi —€) > ga(mi —€) > M' forall j > ji.
Therefore for j > ji

LG+ 1)(mi = ) < Miga = max{ [0+ Disa]} < LG+ 1)(m+ ).

Now
m—G+ D) —e< |G+ D)m—a)/G+1)
and
[G+D(m+el/G+1)<m+e
Therefore

.o —-(j+1)—‘ —€<M.‘.j+1/(j+l) < m+e forj> o,
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and if we take j; sufficiently large we have
mi— 2 < Mi.j+l/(j+ 1)< m+e forj>j.

As ¢ is arbitrary we have therefore that M; ;j11/(j + 1) — m; a.s. Finally, as > m =1, we can

replace (7 + 1) by 371, My 41 without affecting the limit, i.e.,
Mi.JH/Z Mijp — m as. (32)
=1

as j — oo.
The above limit is obtained by counting in cycles and letting j — co. However it is readily
verified that the adjustment to count directly in terms of N and to replace M; ;41 by M; in

(32), does not alter the result. This proves the second part of the theorem. D
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Table 1
Per formance Measure for Selected Combinations of xand w

1a: Optimized x, Fized Endpoints 0.5 and 0.95

Single Point Var

Average Variance Criterion

Criterion
n 2 3 4 5 6 5
z s 2 ™ z L ® d z T z T
50 .022 .500 .013 500 .009 .500 .007 .500 .006 .500 .027
95 978 756 .119 617 .039 .564 .024 .542 .017 .545 .059
950 .868 .819 .191 .706 .064 .641 .035 668 .085
950 .761 .859 .258 .769 .090 .827 .178
950 .647 .885 .309 950 .651
950 .542

Np/a? 11,552 9,746 9,680 10,383 11,571 11,441
Npg/o? 22,091 22,443 23,900 25,422 27,714 27,636

1b : Evenly Spaced Design Points in the Interval (0.5, 0.95)

Average Variance Criterion
n 2 3 4 5 6
o ™ z b z b z ™ ) b
50 .022 .500 .013 .50 .009 .5000 .007 .50 .005
95 978 .725 .101 .65 .048 6125 .031 .59 .022
950 .886 .80 .179 .7250 .084 .68 .055
95 .764 .8375 .242 .77 .124
9500 .636 .88 .280
95 514
Np/o? 11, 552 9,808 9,929 11,342 14,281
Npg/o? 22,001 23,391 24,739 26,739 30,966
1c: Optimized x
Average Variance Criterion eyl .Poz‘nt Vier
Criterion
n 2 3 4 5 6 5
z T z g 2 g z T z ™ z g
00 .0 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
33 1.0 .107 .160 .054 .057 .032 .025 .022 .012 .031 .052
791 840 423 .114 .270 .036 .187 .016 .258 .069
846 829 .629 .117 .471 .036 605 .135
896 .821 .744 .146 911 .743
921 .790
Np/a? 208 1,273 3,246 5,500 7,496 6,088
Npg/o? 415 2,793 9,131 18,989 29,084 20,718



Table 2

Estimating E(W) in the M/M/1Queue

2a. Using 0 = By + 1. Correet valuc is 0 = 1

Non — Oplimnized

z  # of customers/per run
0.50 15,000
0.95 15,000

# of runs at each z : 5

Results from 100 simulations :

Sample Mean of 6's 0.974

Sample Var of 6's  0.0198
95% Con fidence Interval for 0 :

(.946,1.002)

Observed Coverage of Computed 95% CI's :

95%

Optinized
z # of customers/per run
0.000 0
0.333 30,000

Sample Mean of ¢'s  0.999
Sample Var of @'s  0.000149

(.997, 1.001)

97%

2b. Using 0 = By + ) + PBa2. Correct value is 6 = 1

Non — Optimized

z # of customers/per run
0.500 10,000
0.725 10,000
0.950 10,000

# of runs at each z : 5
Results from 100 simnulations :
Sample Mean of #'s  0.974
Sample Var of 6's  0.0465
95% Con fidence Interval for 6 :
(.931, 1.016)

Observed Coverage of Computed 95% C1I's :

96%

Optimized
z # of customers/per run
0.000 0
0.107 4,800
0.721 25,200

Sample Mean of @'s  0.994
Sample Var of @s  0.00186

(.986, 1.002)

98%



Table 3
Sample Mean and Variance of 6 From 100
Macro — Replications of the M/M/1/SPT and M/M/1/LPT

M/M/1/SPT M/M/1/LPT
] Var (0) 0 Var (6)
g1 Optimized .203 .0019 5.66 1.81
Even Spread .201 .0031 5.28 4.40
g»  Optimized 210 .0020 5.64 1.95
Even Spread 210 .0022 4.90 4.06
g3  Optimized 214 .0013 5.63 1.70

Even Spread 216 .0034 5.05 4.27



Table 4
Results for PAD Controller Example

4a : Design Points and Allocations

Optimized z 05 0527 0.601 0.703 0810 0.903 0.95
(Fized Endpoints 0.5 and 0.95) # 0.025 0.052 0.060 0.080 0.129 0.282 0.373
Even Spread z 05 0575 0.650 0.725 0.800 0.875 0.95

m 0.143 0.143 0.143 0.143 0.143 0.143 0.143

4b : Estimated Mean and Variance of 200 0 Estimates

] Var(f)  95% C.I. for@ Total Simulation Time
Optimized 0157 2.86 x 10~ (0.0150, 0.0164) 1.46 (hours)
Even Spread 0168 1.23 x10~* (0.0153, 0.0184) 1.28 (hours)
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