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Abstract

Simulation experiments for analysing the steady-st.ate behaviout of yueueing systems over a

range of traffic intensities are considered, and a procedure is presented for improving their

design. In such simrilations the mean and variance of the response output can increase dra-

matically with tratfic intensity; thc design has to be able to cope with thia cornplication. A

regression metamodel of the likely mean response is used consisting of two factors, namely a

low-degree polynomial and a factor accounting for the exploding mean as the traffic intensity

approaches its saturation. The best choice of traffic intensitíes at which to make simulation

runs depends on the variability of the simulation output, and this variabilíty is estimated using

analytical heavy traffic restdts. '1'he numbers of custorners simulated at each traffic intcnsity

are built up using a multistage procedure that systematically increases the efficiency of the sim-

ulation experiment. The asymptotic properties of the procedure are investigated theoretically.
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The procedure is shown to be robust and to have improved efficiency compared with more

naive procedures. A result of note is that even when the range of interest includes high traffic

intensities, the highest traffic load simulated should remain wrll away from its upper limil.; hut

the number of customers simulated should be concentrated at Lhe higher traffic int.ensities used.

I?rnpirical resulós are iuclnded for sinmlatious of a siuqle scrver queur wil,h diffi~rent prioril.y

rules and for a complicated queueing network. 'These support the theoretical results, demon-

strating that the proposed procedure can increase the accuracy of the estimated metamodel

significantly compared with more naive methods.

Keywords: response surface, interpolation, congestion, polynomial regression, variance het-

erogeneity, runlength, sequentialization

1 Introduction

A procedure fot improving the design of experiments (DOE) of steady-state simulations of

queueing systems is presented. 'I'he objective is to better estimate regression metamodels of

the system when the traffic intensity is allowed to vary over a range of values including those

approaching saturation. Congested queues are known to be hard to simulate accurately, because

both the mean and the variance of the steady-state output typically become unbounded as the

traffic intensity increases to saturation. Whitt (1989) and Asmussen (1992) discuss such steady-

state behaviour; and Whitt in particulaz considers how the length of a simulation run should

be increased in order to maintain accuracy in estimating queue length or waiting time. In

this paper we consider a comprehensive approach to determine which traHic tate intensities to

simulate and how many customers to simulate at each intensity, particularly when a range of

intensities is of interest. Though we coneider only steady-state simulat.ions, our method can be

applied to terminating simulations as well.

To estimate the mean response of interest, the procedure uses a regression metamodel
consiating of two factors: a low degree polynomial and a factor accounting for the unbounded
behaviour of the mean response as the traffic intensity approaches saturation. The best choice
of traffic intensities at which to simulate depends on the variance of thc response; and the
proposed method uses analytic heavy traffic results to guide this choice. The best choice of
the number of customers to simulate at each intensity then depends on the true variance of
the output at the selected traffic intensities. These variances are increasingly more accurately
determined using a multistage procedure that progressively improves the variance estimates
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whilst simultaneously increasing the run allocations at each of the select traffic intensities in

an efficient way. Thus this multistage procedure corrects any errors made in using heavy traffic

theory to estimate the response variance. Once the simulation runs are completed, backwards

elimination is used to adjust the degree of the polynomial to ensure that the metamodel is

a good fiL to the observed output. The procedure is studied analytically and shown to have

asymptotic optimal properties.

Empirical results are included Gom simulation experiments of the M~M~I~FIFO queue,

two priority variations: M~M~I~SPT (shortest processing time first) and M~M~I~LPT (longest

processing time first), and a complicated queueing network (involving a system of terminals with

some unusual features). These results show that the procedure leads to significant improvement

in accuracy of the fitted metamodel compared wit.h naive designs that, for instance, use evenly

spread values uf traffic intensity with equal numbers of customers simulated at each intensity.

The theotetical results, corroborated by the empirical results, also show that the method

is robust; the bias error, when the assuméd form for the unbounded behaviour of the mean is

incorrect, being rnade ncgligible through fitting of the low-order polynomial factor.

Sc far the faerature has paid relatively littlc attenticn to thc topic of this paper. In the sim-

ulation area, DOG has focussed on classic designs such as 2k-N and central composite designs,

possibly combined with variance reduction techniques (see Kleijnen 1987, 1992). Regression

models have been considered: by Reiman, Simon and Willie (1992), who show how known

theoretical results about light traífic and heavy traffic behaviour can be incorporated into thc

analysis; by Cheng (1990) and Cheng and Ttaylot (1993), who show how conditional sarn-

pling and use of known theoretical results can be combined; and by Vollebregt (1996), who

investigates a problem similar to our problem but not with heavy traffic queueing.

Outside the simulation field, optimal design in regression analysis is discussed in the seminal

paper, Kiefer and Wolfowitz (1959) (to whom Reiman et aL (1992) also refer), and also by

Fedorov (1972) and more tecently by Atkinson and Donev(1992), Ermakov and Melas(1995)

and Pukelsheim (1993). However, the focus in this literature is on the case where the response

variable has constant variance.

The paper is organised as follows. In Section 2 we introduce the regression metamodel to be

considered. In Section 3 we give theoretical results on how to optimally design the simulation

experiment and describe the multistage procedure for implementing the runs in practice. In

Section 4 we discuss the method for fitting the regression metamodel, once the results have been

obtained. In Section 5 we discuss the amount of computing effort needed to make a simulation
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run. This eftort obviously needs to be taken into account in assessing overall efficiency, and is

one that needs clari(ication iCour suggested tnethocl is to be applied properly. Section 6 gives a

summary of the proposed procedure fur ease of reference fur U~e practitiouer. lu Sectiou ï wr

give a number of examples and cumpare our analylical resulis with simulation results. These

examples show the good agreement between the Lwo, and illustrate the substantial efficiency

gains possible with our approach. Section 8 givea eunchisiuns.

2 The R,egression Metamodel

We suppose that the simulation experiment is made up of a number of independenL runs.

We assume that y, the output ( response) of a run, is determined by x, an iudependent input

variable, and that this input~output relationship can be represented by the following regression

metamodel ( response surface):

y~i -'1(xr,i~)tEti ( i - 1,...,n) ( - 1,...,rn;) (1)

with

rl(x, a) -(po f atx f a2x2 f... f akxt)J(x): the mean of y;

c;: approximation error of Lhe metamodel, with mean U and variance r';

{? -((it ,..., (3k)' : vector of k unknown pararneters representing input efCects;

j(x) : a known function (discussed in the next paragraph).

We make the simulation runs at only n distinct input valucs ri, z-,..., r,,, with na; observations

(replications) placed at the íth point, x; (i - 1,...,n). We shall be considering how best to

choose the x; and the m;, and therefore call the x;, Lhe design poirds. We write x -( xr, r,, ...,

x„), rn -(mr, m~, ., m„), and denote the total nutnber of runs by N; that is, ~~-~ m; - N.

The purpose of introducing the factor j( x) is to allow regressíon models that have un-
bounded responses; in particular J(x) allows saturated queueing situations. Consider, for
example, the M~M~1 qucue. Suppose the arrival rate is unity. Then the steady-statr expected
waíting time has the Corm

E(y) - x~(I - x) (')

where x is the traffic intensity. If we do not know the correct expression for E(y) but know

only lhat yueue saturation occurs as x~ I, then we may assume

y~ -(ljo i~r x~ -f Q: x~ )J( I- x~ ) f 4 (3)
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where the vector of parameters F3 -((30, Qi,l3z)~ rs unknown and is to be estimated. This model

is of the form (1).

Another example is the problem discussed by 2eiman et aL (1992) wherc thc expected

squared waiting time E(yz) is to be estimated in an M~G~1 queue and the service time has a

certain n~ixture distribution. They show that

E(yz) -(2 t x f ~xz)~(1 - x)z (4)

where x is again the traffic intensity. So in this case f(x) in ( 1) is (1 - x)-z.

We must consider the variance of the response as well as its mean. We do not assume that

the error variance is constanl; it may depend on x;. For example, Whitt ( 1989) and Asmussen

(1992) show that the variante of e in (1), for the M~U"~1 queue, is O[(I - x)-4] as x y 1. We

shall assume first that the form oC the dependence is known, that is:

Y'ar(E) - [g(x)~)z (5)

where g(x) is known, but o is not. [n this case, as pointed out by Kiefer and Wolfowitz (1959),

homogeneity of ~:ariance can be restared simply by dividing (I) by g(x), which gives

~~i - yr~~9(x~)

-(ao f F~tx~ f azx; f... f Rkxk)r(x~) t hs1

where

r(x~) - Í(xi)~9(x~).

(6)

(7)

Then Var(b;~) - az, a constant, independent of x.

We shall suppose that we are interested in the behaviour of the queue over a range of x

values: x E[x~,xu], where xu may be close to unity - the near saturation case, and that. the

cibjective of the simulation is to estimate p(x, (3) over this range of x values. We use the obvious

e~i.imatoc

~1(x, A) - n(x, ~) (8)

where (i is the ordinary least squares (OLS) estimator:

p - (X'X)-'X'z. (y)

Here z -(- tt.-iz~-..,-'~.n,)~ is the vector of standardized simulation responses (of dimension

N), aud X is the N x(k F 1) matrix of independent variables, with the row vector

Xi - (l.x~,x;,...,x;`)r(x~)



appearing m; times in X. The matrix X'X is persyrnmetric (that is, all elements in any diagonal

perpendicular to the rnain diagonal are the same; sce, for example, Aitken, 1964, p.121), its

(i,j)th entry being

(X~X):~ - ~ ar x~ti (t,7 - l,'-', . ., k) (ip)
i- i

where n; - m;r'-(x; ) , for i - 1, 2, .., n;.

7'he discussion so far assurnes that the datii};u poiuts x, aud thr nwnber of runs m; made

at cach poinL, are prrscribed. Wc now musider how best. lo clioose thc r; aud rn;, where the

objective of our DOG is to optimize sorne mcasure of the variance of r~(r, Ë3). A uatural measure

is the average weighted variance over the range of interest:

P - ~~" w(x)Var~~(x,Q)~dx~ ~ ~ w(x)dx (11)
l L

with weight function w(x). 'I'he simplesL ca5e is tu(r) - I for all r E[rt., xu]. An alternative

has all the weight concentrated aL one point, xn E [rr,,xrr), whim p in (I1) reduces to

P - t~or~rl(xo, l~)~. (1`~)

"I'his latter alternative might not appeat approptiate when a range of x values is being consid-

cred. It turns out t.hat óhe choice of x and rn is not all that sensitive to the precise form of

p. Flence, if x~ is a typical value in the range of interesL, Lhen ( 12) is an adequate measure to

use. An interesting case is when we wish to focus on the behaviour of the yucue as x-. 1. 'Phe

factor in p(x, (3) that depends explicitly on (3 is (3o } ~31x -F ... f(3kxA', and this will be close in

value to (io }~1 T... }(j4 when x is close t.o unity. A sirnple convenieut pcrformance measure

is thus

Var[Iim(í~otJ~ixt...fijtxk)]-Var(íju-Fl~r~-...fdt). (1'3)

In situations where Var[q(x,(i)~ bccomes iutinite as x - l, Lhe average as giveu by (I1) is

dominated by values of the integrand close to the upper limit xu, especially when xu is close

to unity. Optimizing either ( 11) or (13) then gives similar valucs for both the x; and the m;.

We give numerícal examples later.

We discuss thc calculation of n, r, and nx; in thc ncxt section.
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3 Optimal Selection of Simulation Inputs

3.1 Error Variance of Known Form

We consider first the situation whete the form of the dependence of the error vatiance on x is

known, i.e. g(x) in (5) is known.

Kiefer and Wolfowitz (1959) address a general version of the optimum design problem in

regression analysis. "Thcy point out that,iu general, a direct approach to óhe problru~ leadn

rapidly to intractable algebra. They give an ingenious approach that transfers the difïiculty

into a Chebyshev approximation problern, thus allowing use of the extensive literatute on this

topic They give examples drawn from polynomial regression. Also see Ermakov and Melas

(1995).

!t is in principle possible to make use of the Kiefer and Wolfowitz approach in our problem.

However. there are two aspects that make an alternative, direct, approach competitive in our

case. ['irstly, it turns out that the persymmetric form of the matrix X'X makes the direct

approach much more tractable. Secondly, the form of our regression function, being non-

standard, gives rise to a non-standard ChebyshPV a.pproximation that is arguably no easier,

and is possibly more difficult, to solve than the problem resulting from our direct approach,

except in specific, very sitnple cases, which happen to be analytically tractable.

We start with the optimal choice of n(the number of distinct x values). Kiefer and Wolfowitz

(195cJ, "1`heorem 2) show that if the functiona multiplying the parameters fie, ...,~3t are linearly

independent, then n should be chosen equal to the number of unknowns, k} 1 in our case.

Thus the optimal choice is n- k} l, and we assurne that this holds for the remainder of this

section.

We now investigate how to choose the m; (the number of replications at x;, with i-

1, `l, ..., n). Let V be the so-called Vandermonde matrix:

V-

I 1 1

xl xz ... x„

x ~ x 2 .. . x,z,

~ x; xz ... x~ J
~V~ its determinant, and ~V,t~ the cofactor of its (s,t)th element. We have the following

theorem.
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Tlreorem L Let A- X'X be as defined in (10). 'Phen the inverse of A has the Conn:

i
A - ~ Br'l~)'n; r~(1'; ))

~-i

where the matrices IIt'~ have ( s.t)th element

(Bt~~),~ - ~V;.~~V~~~. e.l - 1,2,...,n
~V~~V~

which are independent of the m; and the forrn of j(.). O

Proof: See Appendix.

Corollary: The average weighted variance of i~, defined in ( I1), reduces to

with

a; - trace(Bt'tC), i - 1,2,. .,n, (10)

wherc C is the matrix whosc (i, j)th element is

(C)ii -
J

~` ll)(2)jl(Z)Li}j--(Í2, 1,) - I~ ~,. .,n. (17)
l.

In (15), for simplicity, we havc written r; for r(x;).

Theorem 1 can be used to derive the optimal m; that will minimizc (15), given x;. It will

bc convenient to write

n, - ~
p( x, rn ) - az~, ~ ri ~ ~ rn~ ( l g)

-r

m;-rr;N i-1,2,...,n, (lg)

so Lhat n; is the proportion of ruus made at x;. We write a-(n~, aZ, ..., a„)'. We have Lhe

following theorern.

Theorem 2: Let the design point x be fixed, and let the total number of simulations be

eyual to N, so that ~~-r m; - N. 'I'hen the variance (15) is minimized if

n;~r;
a; - (

(~~}i ni~ri) 19)

The minimiaed value is
y k}1

P(x) - N~~(n7 ~ji ))-, (20)
~-i

where fj - f(x~).

Proof: Minimization of (15) subject Lo m; ~ 0 for all i, and ~~ r m; - N, is a convex

programming problem. Au easy application oC the method of Lagrange multipliers gives the

rvsult. O

r



We Itave ignored the implicit constraint that the rn; have to be integers. Oíten in practice

we can assume that the m; are so large that rounding to an integer makes a negligible difference.

However there is a rnore subtle reason why rounding is not an issue. Though it has been more

natural in the regression context to formulate the problern in terms of number of runs of given

length, in facL it is the allocations of total computational effort at each design point, measured

(say) in terms of t.he nurnber of customers simulated, tttat comprise the more fundamental

design variables. An integer constraint on the (large) number oí customers simulated at each

design point is clearly of no coucern. Thus if rounding in terms of given run lengths is a

problem, the rwi lengths thernselves can always be adjusted to ensure that the m; are integers.

We shall discuss this more fully in Section 5.

In simple cases, 'Pheorem 'l is sufTicient to enable the optimal settings of the x; to be found

explicitly by solving the system oC equations

~7p(x)~óx; - 0, (i - 1, 2, ..., n

Howevet it cau happen that the smallest design point value, xl, is located at the limit of the

a;lowable iange of valucs, sa it will not correspond to :vhere êp(x)~dxr - 0. An alternative,

which we consider preferable bccause it applies even to complicated cases, is to numerically

minimize (20) using a standard direct search algorithm. We have found that the Nelder-

Mead algorithm is perfectly satisfactory (see Nash, 1979, for example). The formulas are in a

(orm particularly suited to nurnerical optimization. 'I'he calculation of p involves a potcnt.iall}'

expensive numerical quadrature. 'This expense is minimized by confining the quadrature to the

calculation of the matrix C, which does not involve the design points r,. Thus, as far as the

numerical minimization is concerned, C is a constanL that needs be calculated only once at the

start of the minimization.

3.2 Error Variance of Unknown Form

In practice g(x) in (5) will not be known, or will only be known approximately. IL is possible

in principle to develop a procedure which will allow the x; and m; to be estimated increasingly

more accuralely as N, the total number of runs, is increased. Such a procedure will of necessity

be elaborate. In our experience, identifying and having the correct design points is of secondary

importance cumpared with having the correct number of runs at each point. "rhis is especially

so because t.he range of x values of interest is often dictated by the pract.ical context of the

problem so that the choice of design points is restricted. We shall assume that an approximation,

g



y„(x), for g(z) is available from asymptotic Lheory or other considerations. Ibr example, as

has aln~ady bcen poiuted ouL, 6'ar(t) in (S) is O[(1 - r)-~] ;~. x- I. Moreover l`ar(c) - 0,

as x, 0. Thus we could take ,qa(x) - x(1 - x)-'~ for this case.

We now suggcfit the following rnultistage stratcgY, whirh fixes lhe di..igu puinLs approxi-

InaLely, and then adopts a meLhod ofallocxl.ing runs whirh rouvi-rges, as the .N incmases, Lo Lhc

correcL optimal proportions for Lhese given design poinL seLtings. Kleijnen and `lau Groenen-

daal (1995) have discussed the method in deLail. We give below a full theoretical justification

for the technique. The method is as fullows.

I. het p, the performance criteriou Lo be optimized, bo as givrn iu ( I 1) ur (13)- 'hhe number

of design points is set at n- k f 1, where k is the highesL degree of the polynumial considered

necessary to guarantee a good fit. for Lhe regression model. Use a variance approximalion g„(r)

for g(r.) in (5) to calculatc Lhe upLimal ehoicc fur x, aL Icast accordiug Lu Llris approximation,

by numerically minitniring p(x) in (20). 'Phe design points are uow fixed at Lhese values.

2. Let N be Lhe total nutnbcr of runs to be made. IniLially make m~ pilot runs at each x;.

with rArno GG N. 'I'his yields initial sample variances

a: - ~[Ya - Y;(~a)]~~(rne - I),
1- I

which estimaLe the Lruc variances [g(x;)rr]1. 1'Ire number oC initial runs is not critical, and in

the exarnples given below it wati set at approxirnately 30~~ of the total number uf anticipated

runs.

3. Additional runs are now assigned and made at each x; in a multistage way. Each design

point is considered in turn in a(ixed order, 1,1, ..., n, say, cycling repeatedly Lhrough this (ixed
sequenca The number of runs, m;,itl, carried out. at r.; in the (j f 1)Lh rycle is calculatrd as

follows. Suppose that, afLer j cycles, iLl;i runs have been made at r,. Then the updated sample

variances
M,~

S i - ~[J~l - y~(M~j )]Z~(M~
t- r

- 1)

better estimate the truc variances [g(x;)o]z than did the initial cstimates s; . These updates are

used in r;i - j;~,,;i to est.imate a„ t.he uptimal loadiug al r;, dcfined in (19):

a~~r'~i

~'' - (~1 }Ir ajlrlj)

Set

m~,ifl - max{ [(j t 1)a;i - M~i~, 0}

I ll



where ~.f denotes "integer part of", so that the total nwnber of runs made at x; aCter (j t 1)

cycles is

M;,y~i - a~ax{ ~(I } 1)a;,~f }.

The rationale for this procedure is that, given the current estimates of the optimal allocations

in (21), now ( j t I)ir;~ is the number of runs that should be allocated to point x;. Ilowever,

because runs have already been made in previous cycles, this updated desired number is not

always achievable, and h'l;.~ti ís the closest we can get to the desired value.

9. 'I'he process is cantinued until the required total number of runs has been made, i.c.

~~-iMi-A

The following "fheorem shows that as N-ti oo, the process makes an allocation where the

proportions converge, almost surely, to the correct optimal values.

Theorem 3 Let a; denote the (unknown) optimal proportions (19), which is realsies (20),

the p(x) valuc that minirnizes p(x, m) Cor given x. Let M; be the number of runs made at x;

by the end of the process, when a total of N runs has been made. Then, if N--~ `z,

-. a; and M;~ ~ Mt -~ a; a.s. for all i. ('l3)

i-1

Proof: Sce Appendix.

As already remarked, our procedure is not fully optimal if Lhe initial variance approximation

gn(x) is differenL from g(x), since the method does not update Lhe values of the design point.

For this reacon the design resulting from this procedure is optimal only with regard to the giveu

design points, rather than fully optimal. However, the right choice of design point values is a

less serious problem compared with the right choice of run allocations, and this is what the

method focuses on. We shall give numerical examples in Section 5.

4 Specifying the Polynontial Regression Metarnodel

Apart from selecting the x; and m;, the other main practical issue is the fitting of the regression

function r,k(x, i3) to the simulation output, where we introduce the subscript k to denote the

degree of thc polynomial factor in q. The main issue discussed in this section is the choice k.

Our basic assumption is that k can be selected sufíiciently large, k- k~ say, for the bias

error to be negligible compared with the random error, when the rnodel rlko(x, (3) is fitted. A

question that aríses is when this assumption will be valid. The main problem is that we allow

f(x) to become unbounded. For example, if it is assumed that f(x) -(1 - x)-~, and this is

incorrect, then the assumption will not be valid as x-~ oo. The simplest solution is to restrict x

11



to a range where the regression function is smoot.h and bounded. In particular, suppose rrr(x)

is the unknown true regression function, thaL iL continuorrti and hencc bowtded iu the int.erval

[xI„ xu], and thaL f(x) is any continuous strictly positive (unction in the same interval [x~,

xu]. Then if

n(x, l3) -(Qo i-l~ix t... f litx`~ )f(x),

iL follows from thc Wcicrstra.xw approxiiuatiou thcureni ( sec Johnson aud liics., IJS'l, for

example) that for any c 1 0, k and i3 can be fowid for which

r~[r~~r~l ~n(x,Q) - nr(x)~ c f.

In othet words, a polynomial can be found which will allow rl(x, (3) Lo approxirnate ryr(x) to

arbitrary accuracy. From now on, we shall assurne that the range o( r can be restricted in this

way.

IL is of interest to see if a polynomial of degree Icss than ko can be used. Seber (1977) has

reviewed methods for checking this. We adopt Srber's recornmendation of using backwards

selection, where thc rnodels qk(x, (i) for k- ku, ko - l, ... are successively fitted. .1t each stage,

after titting ~k(x, ji), t.he highest remaining paratneter i3p is tested Lo sce if it can be assumed

to be zero. 'I'he procedure stops at the first k(- k', say) for which {~r. is significantly nou-zero

and the degree of the polynomialis then takcu to be k'.

Assuming for the rnotnent Vnr(r) -[a~(x)]~ l.o bc kuown, iL is simplest lo use the OLS

formula (9) for (3, bascd on the norrnalized observations s,j. We can writr the residual sum of

squarcw, whcn standardized Cor Lbc variaucc, ax

k}1

~l'S~.Sk tlij - r)k(r~,~~)

-~~ o.v(x~) )~~-r;-~

'Co test if (jk - 0, wo can use (see Seber, Chaptcr 4)

d~. - 2S.Sk - RSSk-~. (i5)

When thc errors are normally distributed, then dk has the chi-squared distribution with one

degree of íreedom: x~ . The hypothesis that ~3k - 0 can then be rejected at the (1 -0)100

percent level if

dk ~ Xi(o) (26)

where x ~ (a) is the upper 1- a quantile of the x ~ distribution. We set the a level at Solo in the

examples given later.
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When Var(c) is not known, then oy; can be replaced with the estimated standard deviation

of the observations at r; :

s; ~~y;i -y;(m;))z~(m: - 1)
~-i

~ tt2

As s; -. vg; almost surely as m; - - oo, we have Lhat dk is asymptotically X~ as m; y oo for

all i. A similar adjustment applies to the estimation of (3. So we still use (9), but now the y;~

are rescaled using s, rather than g; so that z;~ is calculated as z;~ - y;~~s; rather than as in

(6). 'rhe procedure has been suggested by Kleijnen and van Groenendaal ( 1995) who call it

estimaied weighted least squares.

Of course the usual caveat applies: the overall level of confidence decreases if the test is

applied sequentially to several different (i. This is a well-known situation which we do not

discuss further here.

A question that arises is whether r; and m;, which are selected based on k- ko, will be

satisfactory for k - k' ~ ko. We shall give some numerical examples which indicate that there

appears to be relatively little loss of efficiency (also see Atkinson and Donev ( 1994)).

5 Translating Fiegression Variablesinto Simulation Variables

Without loss of generality we suppose that it takes one unit of computer time to generate and

process one simulatcd rustomer. We let b; be the Icngth of each run at design point. x;, as

measured in such units. 'The cost involved is then directly measured in run length and Lhere is

no ambiguity whether we talk of the number of customers processed or of run Icngth.

So far it has been most natural, because we have focused on regression analysis aspects, to

treat the m; as being the decision variables, and the response from a run as the basic unit of

observation: the total number of runs N- Em; being fixed. However, a more insightful víew

is to consider as decision vatiables, not the m;, but

c; - 6; m; ,

which gives the t.otal computing eSort expended at design point ri. Let the total available

computer time be C units. Then it is simplest to regard C as being fixed, with selection of the

c; as being subject to ~ r.; - C, which therefore replaces the original condition ~ m; - N. In

the case of steady-state simulation it is well known that if the response is some form of sample

average, then its variance is O(b; 1) as b; -~ oo . Thus, provided the 6; are sufficiently large,
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we can write (5) in the form

Var(c;i) - ~9(x;)~)Z~b~ (2g)

where g(x;) does not depend on m; or b;. Then 5, 7 and 28 reld r r., i( ) ( ) ( ) Y~ ( ) - f(z;)b~ ~9(x;).

Defining t; - f(x;)~g(x;), ( 15) becomes

k}1
a' 1

P(X,m)-o2~(i;) (G;ru;)-. (29)

We see therefore that minimization of (29) subject to ~ b;m; - C, is precisely the sarne problem

as the original, except that 6; m; replaces m;, and t; replaces ,. The solution is therefore

analogous to (19):

a;~t;
ó'm; - k~r C f- 1,2,...,kt 1. (30)

(~i-t ai~ti)

Thus we have the result that the only requirement is that 6;m;, the tota] run length at the

point x;, should be as given by ( 30). We are (rec to choose either the value of b; ( that is, how

long to make each run), or to choose the value of rn; (that is, how many runs to make at the

point x;). Whichever value is chosen, the other is given by ( 30). Consequenlly the Lotal number

of obscrvations N can be regarded as either fixed or variable, as we likc. For example, if N is

given, we can choose any set of m; satisfying ~ m; - N, and then fix the ruu lengths using

(30). The only proviso is that m; should uot be so largc that it makes b; too sinall, berause

(2g), which is an asymptotic result, might then no longer hold. The munber of runs N is thus

in e0ect arbitrary, so we could iu principle set N- k f 1, and make a singlc ruu at each puint:

m; - l for all i. However, we would then need to use batching or spectral analysis, say, to assess

lack of fit. Conversely, making the m; too large would mean making very many short runs. In

general this is a bad idea, as each run will require a setup time to rcach steady state, aud it

is usually more efficient to make one long run (see Cheng, 1976). [n our numerical examples

we have chosen b; proportional to ga(x;) so that runs give outputs of roughly cyual vatiance.

Additionally the b; are sufficiently large so that initialization bias is not a serious problem, but

at the same time not so latge that they make m; so small that making them integer seriously

affects their optimal setting.

6 Intermezzo: Summary of the Method

For convenience we set out the full suggested procedure for fitting thc regression metamodel

(1):
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I. Select: (i) the bounding factor f(x) in (1); (ii) the run lengths b; in (28); (iii) the variance

function g(x) in (5); (iv) the total number of runs N, below (1); (v) the performance index p in

(11); (vi) ko, the maximum degree of the regression polynomial factor; see (1) and Section 4.

2. Find the optimal design points x, by numerically minimizing p in (20). The Nelder-Mead

simplex search is suggested.

3. h1ake the N simulation runs using the sequential procedute described in Steps 'l and 3

ot Sectíon 3.2.

4. Progressively fit the regression metamodels qk(x, ~3) to the simulation results, for k- ko,

ko - 1, ..., using backwatds selection based on (26) to select the final fitted model.

7 Examples: Numerical and Simulation Results

We give examples to illustrate the points discussed in previous sections.

7.1 Sonsitivity of the Perforrnance Measure to x and m: M~M~1 Queue Example

7.1.1 Exact numerical Results

Firstly we consider the sensitivity of the performance measure p to the choice oC x and m. We

give numerical results based on the theory of Section 3, and also simulation results.We take as

our example the M~M~1 yueue with the objective otestimating the wait.ing time response curve

(3) in the range [0.5,0.95~. In this case, ( 1 - x)-t, the natural choice Cor f(x) in ( 1), happens

to be the correct one. This (orm for f(x) occurs ín many other queues, so in this regard the

M~M~1 queue is a good typical example.

Even in this elementary case, g(x) cannot be given explicitly. We take g(x) ~ x1~2(1-x)-',

the form suggested in Section 3.2. IL should be emphasised that our choice here of g(x) is made

mainly for illustration and other choices are possible. For the performance criterion, we use the

average variance ( 11), with weight w(x) - 1.

The optimum design values are obtained by minimizing p given in (20). For the case where

the end points are allowed to vaty, the chosen form of g(x) is already too complicated to allow

a tractable solution except for the case where n - 2. (The result for this case is xl - 0 and

xZ - 1~3.) It is generally much simpler to use numerical optimisation directly on (20). We

used the well-kitown Nelder-Mead simplex search modified to satisfy the consttaints 0.5 G xt c

xZ C... G x„ G 0.95. The modification ís as follows. At any step, the components of x are

updated one at a time. If the change to any component would result in breaking a constraint
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then we reduce the step length so that the distance Lo the constraiut boundary is halved. For

example if the jth step value of x; required by the original algorithm is x~~l - x~j-11 - 6, and

x~~~ G x~' ~~l,breaking the constraint, thcn wc sim il wd. x~~~ - x~.~-~~ ~~-~~I Y. ( i r,-~ )~2. 1'or initial

values of the x; we used valuee evenly sprcad in Lhe upper half oC Lhe interval, and eucomrtered

no difficulties in locating the optimwn.

Table 1 gives the optimal desigu points, x, and desigu allocations, a, Cot n- 2 through 6,

Cor both the case whcre the end design points are fixed and where they are allowed to vary.

The values Np~oz are the performance index calculated at these optimal design points and

loadings, and then scaled by N~o2. The values Np~~o2 are where the optimised design points

are still used, but the allocations are all set equal (i.e. x; - n-1).

There are several points of interest:

(i) 'fhe optirnal loadings hcavily favour the end whcrr the variability is highcst.

(ii) 'I'here is a largc improverncnt in the perCormance index as one gocs from design points

evenly spread with equal allocxtionss, W dc5ign poiuts aud allocations that are optimally ad-

justed. For example in the case n- 3, Np~aZ decreases from 22, 943 to 1, 273.

(iii) When the endpoints are allowed to vary optimally, the design points are located well

away Crom the upper endpoint. Ncvertheless, this is perhaps of theoretical interest only, becausc,

unless there is considerable certainty concerning the precise form Cor f(x), it is inadvisable to

use design points Lhat do not cover the rangc ofinterest. Otherwise estrapolation, with its

wcll-known attendant risks, would be needed to estimate the responsc outside the experimental

range.

(iv) Still in thc casc whcre thc endpoints are allowed t.o vary, the lowcr end point is located

at zero. This is outside the range over which the performance index (viz. the average variance

of the estimator) is obtained, . Moreover, the true average waiting time, the estimated average

waiting time and its variance are all identically zero at xr - 0. The design allocation reflects

this by being zero also. This has the interpretation that the known (zero) valuc of the regression

function at xr - 0 should be used in fitting the model, but there is evidently no need to make

any simulation runs at this design point.

(v) In the case where the endpointa are fixed, the minimised varíance does noL inctease

monotonically as n increases. However, the minimised value remains reassuringly stable, espe-

cially in the case where the other points are optimally chosen.

(vi) In Table 16 the points are equally spaced and the allocations are optimized subject to

these design point values. The resulting allocations and optimized Np~o2 valucs are similar to
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Lhose of '1'ablc la. For example when n- 4, if we usc fixed endpoints, buL optimizcd design

points and loadings otherwise, then Npwz - 9,680. If the design points are equally spread

out, but we use optimised loadings at these values, then Np~oz increases to only 9,929. If,

instead, optimised design points are used with evenly spread loadings, then the performance

index jumps to .ti'pE~a' -'?3, 900. If evenly spread design points are used as well as equal

loadings then .~ peI á~ -'?4, 7:39 '1'his supports our view that priority should be attached to

optimizing the loadings over optimizing the design point values.

The last column in 1'able la and Table lc shows the optimal settings using the performance

criteriou based on thc variancc ( l3). Ifowever, the corresponding valuea of Np~ol and Npg~ól

are for the original criterion, (11), where this has been calculated at the settings of that column.

For example, in the case of fixed endpoints (Table la), the value of (11) using the design settings

based on (13) is p- 11,441.'Chis is only 10~o more than the minimum value of 10,383 when

its own settings are used. This indicates that we do not lose much eEÏtciency when using the

simpler criterion (13) Lo obtain the design points and allocations.

InserL TaGle 1 aóout here

7.1.2 Sirnulation Results

To test the above ( exact) numerical results we carried out some simulations. To simplify the

discussíon, we cuusider

á-RotRt-F. fPk, (31)

which estimates rl(x,~3) as x y 1; its use simplifies the simulation expetiments and thc dís-

cussion ot the results without altering our broad conclusions. So we shall use the performance

criterion (13).

As in the numerical calculations we set f(x) -( 1 - x)-~ and g(x) - xt~Z(I - x)-~. In this

example, we present the 'best case scenario'; that is, ( í) n is regarded as fixed; ( ii) the selected

f(x) is assumed to be correct so that no model fitting is done, and (iii) g(x) is assumed to be

correct, so that the sequential procedure for updating the variance estimates at the different

design points is not implemented. The optimal value of n is n- 2, the optimal input values

and allocations ( given previously in Table lc) being x~ - 0, x2 - 1~3 and a~ - 0, n2 - 1. The

value tor Np~a' is then 208. If n- 3 is assumed, then the optimal input values and allocations

are xi - 0, xZ - 0.107, xz -.7`ll and ~ri - 0, a2 - 0.16, a2 - 0.84 ( Table lc) and the

corresponding value for Np~oZ is 1273. lf,instead, the design points are evenly spread over
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the interval [0.5, 0.95] and the allocations are all equal, then Np~o- increases to 2'?, 091 when
n- 2, and to 23, 391 when n- 3(Table 16).

Simulations were carried out using both optimised and equally spread input. values and

allocations. The results for the case n- 2 are given in Table 'la, and those for n- 3 in
Table 26. The underlying true expected waiting time being estimated is given by (2), so the

correct parameter values are Qo - 0, ~ir - 1 and (32 - 0. Thus consistent estimators of the

coefficienta are obtained by using eithet n- 2 or :S, and Lhe true value of B, corresponding to
(31) is unity. l~or cach n, the total uumber of rusturners simulated for carh set uf design points

is 30, 000, these being allocated to the design points according to the corresponding allocation

under consideration. The service rate was set at unity, so the traffit intensities wete therefore

equal to the arrival rates in all cases. The average waiting times of customers in each of the

runs was recorded and the regression model (3) was then fitted to the observations, yielding the

estimated value B as the response. As already mentioned, the only exceptional case is where the

thcory calls for a design point oC zcro with no rmrs Lo bc made. This can simply bc interpreted

to mean that the known value of the waiting timc at xr - 0 is used to impose a constraint

on the fitting procedure. In our example this corresponds to immediately setting Qo - 0, and
using the results at the other design points to estimatc the other parameters. Each experiment

was replicated l00 tirnes, giving I110 indepemlent, ll esl.imates. '1'he sample mc:w and aample
variance of the 100 B's are given iu '1'able 'L, as well as a 95"Io confidence interval for B based
on these values. From each experiment, a 950~~ coufidence interval for B was also calculated,

using the B value Crom that experiment and thc standard estimate of its variance based on the

residual sum of squares.The obscrved coverage of these 100 confidence intervals is also given in

the Table 2.

Comparing the samplc variances in the optimized and non-optimized versions, we see an

over hundred-fold (0.000199 : 0.0198) and over twenty fold (0.00186 : 0.0465) reduction in the

variability for the cases n- 2 and n- 3.. These reductions are as predicted by the theory:

208 : 22091 and 1273 : 23391 respectively; see Tableslb and lc Moreover this represents a

genuine saving as the computing times were almost identical for the non-optimized and the

optimized experiments (the computer time for 100 macro-replications was `L60 seconds (plus or

minus 3 seconds). 'I'he 9501o confidence intervals based on the 100 macro-replications include
the true value of B(- 1) in all cases; the observed coverages are similarly satisfactory.

Inaert Tabte 2 about here
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7.2 Bias Error when Specifyinb the Regression Metxmodel: Priority Queue Ex-

amples

7.2.1 Exact Numerical Results

Next we consider the extent to which bias etror can be corrected by the polynomial factor

when J(x) is only an approximately known. We again illustrate with the M~M~1 queue, but

not F[FO. By adjusting the priority rule, behaviour for f(x) that is markedly different from

f(x) ~(1-x)-1 can be obtained. Again we give both numerical results and simulation results.

The service tirne of an arriving customer is assumed to be exponentially distributed and

to be precisely known at the moment of customer arrival, who takes a position in the queue

dependent on this value. 1Ve consider the case of shortest processing time (SPT) first, and the

case of longest processing time (LPT) first. We consider the nonpremptive case. Kleinrock

(19(i9, Para. 3.6) gives a general formula for W(x), the avcrage stcady-state waiting time of

a customer wilh service time x. For the M~M~1 case, with arrival rate x, servicc rate of unit,

and SPT and LP'I' respectively, the Formula reduces after some manipulation to

E(W) - xfs(x) and E(W) - xft(x)

where

and

Ís(x) - J~ e-u[1 - x} x(1 } u)e-v]-~du
0

ft(x) - f~ e-~[1 - x(1 } u)e-u]-~du.
0

The behaviour of fs(x) and fL(x) is substantially difterent from that for thc M~Mf1~F1F0

queue, when f(z) -( 1 - x)-i. If we write fs(x) as fs(x) - ( 1 - x)-a`tz~ and it(x) as

fL(x) -(1 - x)-a~ts~, then we find that, as x increases from 0.5 to 0.99 say, as(x) remains

roughly constant, changing írom Q51 to 0.62, whereas a~(x) remains substantially constant.

with a value oí approxitnately 1.5. Thus f(x) increases substantially more quickly than fs(x)

as x increases, and so overestimates it. Conversely, it increases substantially more slowly than

ft(x), and so underestimates it.

Suppose uuw that we use r)(x,~3) - (E?u f... tl?txk)~(1 - x) to estimatr xfs(x) and x fL(x).

Figures la and 16 show the fitted polynomial (io f..- f s3kxk for the cases k- 1, 2, and 4,

where the p's are the values obtained from the least squares fit of tf(x, p) to x fs(z) and xfy(x)

19



using the design points from 1'able I with n- 5. F'or both Lhe SP'1' and Ihe I,P'I' cascs, the fit

obtained with k- 1 is not satisfactory. 'Phe maximum rclativc crror

ó - max TI(x, ~) - 1
~~los, a.ssl xj(x)

is b- 0.234 and 1.86 tor the SPT and the LYT cases respectively, when k- 1. In Cact the

fitted curve does not even remain positive for the LPT case. However, the fit obtained with
k- 4 is satisfactory, with 6- 0.009 for Lhc SI"1' easc and h- U.OfiJ for I,hc LI"f casc. 'fhc fit

is thus reasonabty close over the interpolation rangc [0.5,0.95].

The example supports the earlier analysis which indicated that the polynomial factor can

correct the bias tesulting trom an incorrect form for f(.), provided the range of interest is re-
stricted to where r)(.) remains bounded. Our condusion is that for smoothly behaved regression

metamodels, the model in (1) is sufliciently Flexible to provide an adequate fit without recourse

to a polynomial of unacceptably high degree.

~nsert Fig. ]a, lA aGout Itere.

7.2.2 Simulation Results

The above numerical results were compared with simulations. The simulation used the full

method so that the sequential procedure for updating the variance estimates at the different

design points is tested. Both SPT and LPT cases were considered. In bot.h, t.o test that the

method does correct for bias, we tried fitting q(x,(3) -(E3i~~ ~31xf .,.-F ~3kxk)(1 - 8)-t so that
Lhe incorrect j( x) -(1-x)-~ is used. Three versions ofg„(x) were used: gt(x) - i(1 -x)-3,

gz(x) - x(1 - z)-4, g3(x) - x(1 - x)-s. Moreover the use of optimal design points and
allocations was compared with the naive design where Lhe design points are equally spaced

over a given range of x values. We again took this range to be [O.Fi, 0.95]. Table 3 gives thc

results obtained from 100 rnacro-replications. ' 1'he highest degree o( the polynotnial factor was

taken to be ko - 4(i.e. quartic), so that the number of parameters was kn t l- 5. ]n each

experiment g,(x) was used to estimate the optimum design point values. The approximation

ga(x) Wa3 aISO USCd to ~stimatc thc numbcr of customers pcr ruu xt cach desigu point Ihat.

would make Var(c) constant (see Se~ction 5.1). An initial set of 12 runs was then made at
each design point to estimate Lhe actual variability of r at cach x;. R,uns were then allocated
and executed at the desigu points as ín Theorem 3, tmtil approxitnately 30, OOU custotners were
simulated in total. ( 'fhe total number of customets was nearly, but not exactly the same in each
macro-replication. 1'his was because run lengths were held at the value fixed at the pilot stage,
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to enable the variance estimates s, to be calculated from observations based on unchanging run

length throughout the macro-replication.)

We conclude three main points, based on Table 3:

(i) Irrespective of the form assumed Íor g(x), the sample variance of the B remains substan-

tially constant (approximately 0.002 for optimum x; and 0.004 for equally spaced x for SPT),

indicating that the sequential adaptive adjustment of the number of runs made at euh design

point does correct the inaccuracy in the initialform of g(x).

(ii) The sample variance for the optimized case is roughly half that of the sample variance

for the evenly spread design point case (0.002 compared with 0.009). This is very much in line

with the results for the cases presented in 'I'ables la and b.

(iii) For the fit to be adequate we should have

n(x, d) -(Ro f R~~ t

so that.

(ljo ~- Ihr ~-

~ ~k2k)I(1 - x) - Ifs(s) (and xft(x) respectivety),

~- t3kxk) ~ x(1 - x)fs(x) ( and x(1- r)fy(x) respectively).

As we showed in the prcvious subsection, the assumed form of f(x) -(I -x)-1 is very diffcrent

írom the actual forms fs(x) and it(i), so the main source of concern is if the polynomial factor

is able to correct for this. Figures 2a and 2b summarise the fit obtained from the ]00 macro-

replicates. '1'he degree uf the fitted polynomial varicd with the macro-rcplicate; however a

quadratic was selected the most often, and a linear model almost nevet. The envelope of the

100 fitted polynomials is compared with the true curve for each of the two priority queues;

there is little appreciable bias.

lnsert Table 3 about here

lrzsert Fig. 2a, 26 aóout here

7.3 Terminal PAD Controller Simulation

The final example has behaviour quite diRerent írom that of an M~M~1 queue. It is included

to show that the full method can be applied to complex queueing networks, and that it leads

to worthwhile improvements in efficiency.
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We consider a model of a packet assembly~disasscrnbly device (PAD) as described in Molloy

(1989). `The PAll receives characters generated from a number of lerminals, 1~ say, aud assenr

bles them into packets for transmission iuto a network. We assume lhat the input oCcharacters

into each terminal is Poisson, each with same rate z. 'I'he characters from a t.erminal wait in

th~~ir own iupuL 6u(fcr, onc for ~1ch tcrmiual. A packrl is fornn,d onci~ Lhe hulfor is fitll, or

if a special control characLer arríves, whichever event occurs (irst. It is [hen tagged with a

fixed number oC identification overhead characters aud Lhe whole is sent to an output buffer.

where it waits in a FIFO queue for Lransmission. 1'he output yucuc serves all Lhe tenuinals,

and transmits characters at a constant rate (C char~sec) into the network so long as there are

characters to transmit.

We consider the objective of tneasuring T, the averagr character delay. `I'he queue is quite

eumplrx in ita ovcrall oprraLiou bixausr of Lhr way p;u~ket,v an~ fanui~d. 'I'hr avcragc dclay

expericnced by a character doix not change monotunically with z. In fact, Lhe average delay of

a characLer increasea Lo in3iuity if eilher x --~ 0 or if z-. Il, where R is the saturation input

rate for the system. The unbounded delay as x approaches zero is not of particular concern,

as it is due simply to slow packet formation because of the low input rate. The behaviour as

z-~ R is the important case, corresponding to true saturation; this is what. we focus on. At first

sight, one might expect R- C~K. However, R is strictly less Lhan this value because overhead

characters are added to packets, making the traftic rate greater t.han ~rli. [1lolloy ( 1989) gives

two approximations for `L' , but ncither seems particularly accurate.

We estimated 'l by simulation, measuring in appropriate standardised units so that C~lí -

1. Details of thc simulation model are given in Molloy ( Para. 8.i.3). We simulaLed ten

input terminals. The size oC each terminal buffer was set equal to 32. The probability that a

character is the special control character was set equal to 0.02. One overhead character was

added t.o each packet. Some direcL calculation ahows Lhaó R~ 0.959 in Lhis cave; however, wi~

did not make explicit use of this in choosiug f(r.). lustcad, we asautnec3 J(x) -[x( I- x)]-t,

relying on the polynomia3 factor to compensate for possible bias. 'I'wo simulations, with x in the

range [0.5, 0.95] wcre carricd out using a polynomial factor of degree 6. In one simulation t.he

design points and allocations were optimally assigned, whilst the other used the naive design

with equal'ly spaced design poinLs and evenly spread allocations. For the same reasons as in

the M~M~l queue examples, it is rcasonable to Cocus on the estímator B given in (31), and

Lo use Lhe performancc measure (1'3) for Lhe srquential rmi allocation. '[hr approxirnation

ga(x) -[x(1 - x)]'Z was used Lo set the dcsign point values. 1'his yielded óhe points and
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allocations given in Table 4a. Notice that the condition of using both end points leads to

similar design point values in both the optimised and non-vptimised cases. However, a heavy

allocativn is made to the final y design points in the optimized case.

Insert Tab(e 4 about here

Insert Fig.3 about here

Table 96 smnmarizes the results of 200 macro-replications for the two designs. As indicated

above, because of the way run lengths are constructed, the total number of packets simulated

was slightly different in the two cases, with apptoximatel}' 76, 000 in each macro-replication

Cor the optimized case and approximately 70, 000 for the case with equally distributed design

points and run allocations. The estimated ratio of the performance measures is 72595 : 212198;

this is based on the assumption that a polynomial of degree 6 is needed. In the experiments,

a polynomial of degree 5 was selected in the majority of the macro-replications in both cases.

lJsing the same design points and allocations when vnly a polynomial of degree 5 is needed,

the raiio of perfonuance measures falls tv 31517 : 4649Z However these are only estimatcs of

Iikely perfvrmance, being based on assumed forms oï f(s) and ga(x). The observed ratio of

performance measures: 2.80 x 10-5 : 1.23 x 10-`[ (i.e. a four-fold improvement) is somewhat

better than either estimate, even allowing for the l001o difference in the number of packets

simulated in the two cases. Figurc 3, which shows the upper and lower envelopes of the 200

fitted regressiou metamodels using the optimised and non-optimised design points, corroborates

the observed perfortnance measures. Our main conclusion is that the difference in the allocations

between the Lwo designs leads to a substantial improvement in the efficiency of the experiment

when our suggested procedure is used.

8 Sumruary and Conclusion

We have proposed a general regression metamodel for use in queueing simulations where the

character oC the output of interest is to be examined over a range of traffic intensities. In such

a situation the [nean and the variance of the output will increase considerably with the traf6c

intensity, and the tnetamodel specifically allows for this. We have suggested a straightforward

experimental procedure which allows initial information of the likely variability of both the mean

and the variance to be used to select design point values. The main steps of the procedure have

been discussed and have been justified theoretically.
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In particular we have shown that the procedure is robust. Incorporation of a polynomial

factor in the regression metamodel enables bias error lo be corrected for in a tnodel fitting

stage.

As far as efficicalcy is coucenrod, the maiu reyuiremenl. is to take into account the variabilitiy

of Lho nwponse whcn allocatiug nmv Lo Lhc di~.it;n puiuts. Wc' hav~. ,huwn huw Ih~' upl.imnl

number of runs depends on this variability. Our procedure uses a simple rnultistage sampling

scheme that allows the variance of the response at each design point to be continuously updat.ed,

so that the proportion of observations made at each point converges towards the optimum as

the number of runs increasea.

R,esults from simulation experiments indicate that the method works very much as suggested

by the theory and gives worthwhile improvements in efficiency.

It would be useful to extend our method to allow multiple outputs and factors, and this is

the subject offuture research.

Appendix

Proof of Theorem 1: The notation is as in Section 2. Recall that A has (a, t)th element

k}1
arc - C-` n.T~tt-z

t-1.

where n; - m;rz(x;). Using identities such as

n10 n1i ~ Ó1; ... 61k Qlp ... ali alk alp ... bl; ... nik

we can write the determinant of A as

Z' ~ y ~

f

xg x 7}t xzk
1 iRi~

~A~ - ~ n;~n;,...n;.}~
~, s ~

~5.~,...kfi~.}~

1 a;,

1 1 1

Thus

~A~ - ~ n;~n;,...n;,},z
'is'm

~S'l. 'Y}IGA}~

x~~...zk}.

xk~ x ~ . yk~.}i
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- n1ny...rtk}1~V~ ~ fxo~x;,...x;.}~ - n1ny...nkttlV~y.
~~x ~

,G.~.. ~M}IG4}~

A similar cakiilation shows that A;i, the cofactor of the ( i, j)th element of ~A~, has the fonu

k}I k}1

( A~i I - ~ ~V,;~IV,i~rt, ~ ~ ne,
,-t ~-t

and subsLituting these expressions into

(A-`)~i -1 Ai~ I ~ I A I

gives the required form ( 14) for A-t. o

Proof of Theorem 3

It is simplest to study Lhe build up of runs, cycle by cycle (rather than let N~ oci directly).

The adjustment from cycles to N does not affect the canvergence limits in (2~).

By the strong law of large numbers, for given i, if M;i - oo, then s~i -. [g(x;)~]y a.s.,

and so a;~r;i y a;~r: a.s. Suppose Lhat there is some set of indices I C{ I, 2, ..., n} for witich

M;i f. oo, for i E(. 'This implies that, after some cycle, jo, all additional runs are made only

at x; for which i~ 1. Thus a;~i;i is constar,t for all j 7 ju for i E 1 and a;~r;i -~ a;~r; a.s.

as j, x for i~ 1. It follows that ir; ~ c; a.s. for all i, where the c; are all constants greater

than zero. But this means that for i E 1, [(j t 1)ir;if y oo ag j -~ oo, implying that M:i --~ oo.

'This contradicts the definition of I so that M;i y oo as j y oo for all i. Thus a;~t:;i -- a;~r;

a.s. for all i, and so ir;i ~ n; a.s. for all i.

Given c 1 0, Lhere exists jo(r) such that Iir;i-tr;~ G e forall j 1 jo. Let M' - maxi~io{{(j}

l)á;iJ}. Then there is a jt ~ jo such that

[(1 f 1)~;iJ 11(~; - E) 1 7t(~: - E) ~ M~ for all j 1 jl.

Therefore for j ~ jt

Now

and

'1'herefore

L(j f 1)(~; - e)J ~ M~,itt - rcax{ [(l f t)~:,;1 } ~ l(j t 1)(~: f E)J

~;-(jtl)-'-E~L(jtl)(,~:-E)JI(jfl)

[(1 -1- 1)(ai -}. f)J~(1 f 1) G a; f E.

~; -(1 f 1) t- e G M;.itt~(j t 1) G a; f c for j~ h,
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and if we take jt sufficiently large we have

R; - ZE G M;,itt~(j f 1) C a; t c jor j ~ j1.

As ~ is arbitrary we have therefore that M;,~ti~(j f 1) -. a; a.s. Finally, as ~ a; - 1, we can

repl:u~c (J t I) by ~1-i Mr,~ti wit.hont aff~,ctint; Iho IiniiL, i.r.,

M;.itt~~h'fr,~ti-~n; u...
r-r

as j -. oo.

'I'he above limit is obtained by counting in cycles and letting j y oo. However it is readily

verified that the adjustment to count directly in terms of N and to replace M;,~~r by M; in

(32), does not alter the result. 'I'his proves the second part. of the theorem. ~
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Table 1

Performance hfeasure for Selected Cambinations af x and ~r

la : Optimízed x, Fixed Endpoints 0.5 and 0.95

Single Point Var
Average ~'ariance Criterion

Criterion

n 2 3 4 5 6 5

r r z a x n x n x tr x a

50 .022 . 500 .013 .500 .009 . 500 .007 . 500 .006 500 .027

95 .978 . 756 .119 .617 .039 . 564 .024 . 542 .017 545 .059

950 .868 . 819 .191 . 706 .064 . 641 .035 668 .085
950 .761 .859 .258 .769 .090 827 .178

950 .647 .885 .309 950 .651
950 .542

Np~ól 11,552 9,746 9,680 10,383 11,571 11,441

NpE~ol 22, 091 '22, 493 23, 900 25, 422 27, 714 27, 636

16 : Evenly Spaced Design Pointsin the Interval (0.5, 0.95)

Auerage Variance Criterion

,~ 2 ;; 4 5 6

x n x n t x x ~r x n

50 .022 .5011 .013 50 .009 5000 .007 .50 .005

95 .978 .7`25 .101 65 .048 6125 .031 .59 .0`l2

950 .886 80 .179 7250 .084 .68 .055
95 .764 .8375 .242 .77 .124

9500 .636 .88 .280
95 .514

Np~o~ 11,552 9,808 9,9'L9 11,342 14,281

NpE~o2 22,091 23,391 24,739 26,739 30,966

lc : Optimized x

Single Point Var
Average Variance Criterion

Criterion

n 2 3 4 5 6 5
x a x n x ~r x a x a x a

00 A 000 .000 000 .000 .000 .000 .000 .000 000 .000

33 1.0 107 .160 054 ..057 .032 .025 .022 .012 031 .052

721 .840 423 .114 .270 .036 .187 .016 258 .069

846 .829 .629 .117 .471 .036 605 .135
896 .821 .744 .146 911 .743

921 .790

Np~a2 208 1, 273 3, 246 5, 500 7, 496 6, 088

NPE~o2 415 2,793 9,131 18,989 29,084 '10,718



Table 2

Estimating E(W) in the M~M~1Queue

2n. l~.ving B -(io f(fi. ('nn.rcl nalur is B- I

Non - Ol,l inuzcrl Opf irni trrl
x ~ oj custamers~per run x ~ oJ custoniers~per run

0.50 15, 000 0.000 0
0.95 15,000 0.333 30,000

~ of runs at each x: 5
Reav(ts from 100 simulations :

Sample Mean oj B's 0.974 Sampte Mean of B's 0.999
.Sample Var of B's 0.0198 Sample Var of B's 0.000149

9501o Confidence Interval for B:

(.946, 1.002)

Observed Coverage oJ Computed 950~o L'1's :

95r7'o

(.997, 1.001)

97 ro

26. Using B -(jo f,Qi } jjz. Correct value is B- 1

Non - Optimized
r. ~ oJ cuslomers~yer run

0.500 10,000
0.725 10,000
0.950 10,000

~ aJ rrurs at rarh x: Fi
llesults frrnn 100 simu(ations :

Sarnple Mean of 0's 0.974
.Sample Var of B's 0.0465

9501o Confidence Interval for B:

(.931, 1.016)
Observed C.overage of Computed 95oïo CI's :

96oJo

x

0.000
0.107
0.721

Optimized

~ of eustomrrs~pcr run

0
4,800
25,200

Sarnple Mean of B's 0.994

Sample Var oJ t7's 0.00186

(.986, L00`L)

98 "!o



Table 3

Samplc Mean and Variancc of B E~om 100

Macro - Replicxtions of the M~M~I~SPT and M~M~I~LPT

M~M~I~.SPT M~M~I~LPT

0 Var ( 0) 0 Vur (0)

yl Optimized 203 0019 5.66 1.81
Even Spread 201 0031 5.28 4.40

yz Optimized 210 0020 5.64 1.95
Evcn Sprcad 210 0022 4.90 9.06

y3 Optimized 214 0U13 5.63 1.70

Even Spread .'lló 0034 5.05 4.27



Table 4

Results for PAD Controller Example

4a : Design Points and ,91(ocat ions

Optimixed x 0.5 0.5'l7 0.601 0.703 0.810 0.903 0.95
(Fixed Endpoints 0.5 and 0.95) ir 0.025 0.052 0.060 0.080 0.129 0.282 0.373

Even Spread x 0.5 0.575 0.650 0.725 O.R00 0.875 0.95
x 0.143 0.193 O.143 0.143 0.143 0.143 0.143

4b : Estimated Mean and Variance of 200 0 F.stimates

B Var(B) 95oIo C.f. jor B Tota( Simutation Time
Optimized 0157 2.86 x 10-5 ( 0.0150, 0.0164) 1.46 ( hours)

Even Spread .0168 1.23 x 10-4 ( 0.0153, 0.0184) 1.28(hours)



Figure 1a Best Fit Polynomials MIM~1~SPT
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Figure 2a Envelope of 100 fitted Polynomials M~M~IISPT
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Figure 1b Best Polynomial Fits MIMI1ILPT
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Figure 2b Envelope of 100 Fitted Polynomials M~MI1ILPT
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Figure 3 Average Character Processing Time in PAD Queue
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