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Abatract

Thia paper characterizes pure-strategy Nasó equilibrium in noncooperatíve

games. Conditions which are called 0-genetalized quasiconcavity and uniform

generalized quasiconcavity, togethet with aome "regular" topological conditiona,

are ahown to be necessary and sufficient for the exiatence of pure-strategy and

dominant-strategy Nash equilibrium. We also províde theorems for existence

under weakened topological conditiona. Thue our results, which require nei-

ther the continuity nor quasiconcavity of individual utility functions, generalize

many of the existence theorema on pure-strategy Nash equilibrium in the liter-

ature, including those of Nash (1950, 1951), Debreu (1952), Nikaido and Isoda

(1955), and Dasgupta and Maskin (1986). Keywords: Pure-strategy, Nash

Equilibrium, Existence.
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1 Introduction

Nash equilibrium is "the" equilibrium concept in economics. Its widespread appi~al

stcros from the intuitively appcaling notion that, if - given the bchavior of other

individuals - any individual could improve his well-being by altering his behavior,

he would do so. For an economic eteady-state to exist in the sense of Nash therefore

means that no rational maximizing agent has an incentive to change his behavior,

given the behavior of others.

Because of the importance of Nash equilibrium in the study of markete and

other games, there has been continued interest in setting forth conditions for the

existence of Nash equilibria. Unfortunately, existence theorems invariably set forth

only xujJicicnt conditions for the existence such an equilibrium. If the conditions

of a particular theorem are satisfied, then one knows the particular model has an

equilibrium. If the conditions of the theorem are not satisfied, the theorem is of little

value; the game may or may not have a Nash equilibrium. It is for this reason that

economists continually atrive to weaken the conditions that guarantee the existence

of Nash equilibrium.

Existence theorems are essentially chazacterized by the conditions placed on the

strategy spaces and payotf functions of the players sufficient to establish a Riven

characterization of eyuilibrium. '1'he characterizatiun of eyuilibriwu may be the

existence of a pure-strategy equilibrium, or a mixed-strategy equilibrium whereby

iudividuals ra.ndomize over pure-strategiea.

The table below summarizes several of the existence theorems used in economics.

The eazly theorems oí Debreu (1952) and Fan (1953) reveal that games possess a

pure-strategy Nash equilibrium if (1) the strategy spaces of the agents are nonempty,

convex and compact, and (2) players have continuous, quasiconcave utility functions.

The theorems, including those of Nash (1950, 1951), say nothing about equilibrium

in games with discontinuous payoffs. Accordingly, Dasgupta and Maskin (1986) were

motivated to establish an existence theorem valid for discontinuous utility functions.

Their results reveal that even games with discontinuous payoffs possess a pure-
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strategy equilibrium, provided (1) the strategy spaces of the agents are nonempty,

convex and compact, and (2) players have utility functiona that are quasiconcave,

upper semi-continuous, and graph continuous.

Strategy Payoff Type of

Space Function Naah Equilibrium

Debreu (1952) Convex Quasiconcave Pure-Strategy

Fan (1953) Compact Continuous

Dasgupta-Maskin Convex Quasiconcave Pure-Strategy

(Theorem 2, 1986) Compact Discontinuous

Clicksberg (7952) Compact Continuous Mixed-Strategy

Dasgupta-Maskin Convex Discontinuoua Mixed-Strategy

(Theorem 5', 1986) Compact

Based on the existing literature, the most that can be said about games with

payoff [unctions that are not quasiconcave is that they posses a mixed-strategy

equilibrium, provided that the conditions oieither Glicksberg (1952) or Dasgupta-

Maskin (1986, Theorem 5~) hold. Each these theorems aze applicable only to games

with compact strategy spaces. The Glicksberg theorem also requirea continuity of

the utility functions, while the Dasgupta-Maskin theorem relaxes continuity but

requires a convex strategy space.

In summary, given state-of-the-art existence theorems, the most that can be

said of games where players do not have quasiconcave utility functions is that they

might possess a mixed-strategy equilibrium, ptovided the strategy spaces and utility

functions satisfy some other conditions. Indeed, the central message of Dasgupta-

Maskin is that discontinuities in the payoff functions aze not responsible for the

nonexistence of pure-strategy Nash equilibrium, but rather "the blame for nonexis-

tence of pure-strategy equilibrium [is the] lack of quasiconcavity" (p. 3). We show

that quasiconcavity can be weakened.
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In Section 2 we introduce the basic terminology used in our study of noncoop-

erative games, and then present in Section 3 examples of economic games that have

a pure-strategy Nash equilibrium even though the utility functions do not satis(y

the continuily and quasiconcavity conditione required by the atorementioned exis-

tence theorems. These examples are intended to motivate Section 4, which presents

our maiu thcorems on the existencc of pure-strategy Nash equilibriwn [or games in

which payo(fs are neither quasiconcave nor continuous. The first part of this sectiou

deals with games in which strategy spaces are "regular" (eg. convex and compact),

while the second part relaxes the assumed regularity conditions. Section 5 applies

these theorems to the games used to motivate our analysis, in order to explain why

the games possessed pure-strategy equilibria. The proofs of our main results, along

with the required additional mathematical terminology and notation, are contained

in Section 6. We offer some concluding remarks in Section 7.

2 Non-Cooperative Games

Let ! be a countable (possibly infinite) set of players, and euppose that each agent i's

strategy set is Z; C á2L' (L; is finite). Denote by Z the (Cartesian) product n~E~ Z~

and Z-; the product jjiEt`{;} Zi. Each player i has a payoff (utility) function u;:

?, y~?. Throughout our analyais, variables without subscripts, such as x and y, will

bo usod to denote f~lenx~nts of 'I,. Subscripts on variables will associate the variable

with a particular player or group of players. For example, z; and y; will be usc,d to

denote elements of Z;, while x-; and y-; will be used to denote elements of Z-;.

In quasi-games, there exist profiles of atrategies that ate not social(y jeasible, so

let A C Z denote the set of socially jeasióle actions. A game T-(Z;, A, u;);E f is

simply a family of ordered triples (Z;, A, u;). We seek conditions under which the

following types of equilibrium exist for I'.

Definition 1(Pure-Strategy Nash Equilibrium) A purie-strategy Nash equi-

librium for [is a y' E A such that u;(y') ~ u;(x;,y';) jor all x; E Z; with

(x;, y';) E A and jor atl i E!.
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'1'hus a Yure-strategy Nash equilibrium is a vector of actions such that no individ-

ual player has an incentive to change his behavior, given the actions of the other

players. Clearly, if each player has an action that maximizes his utility for all possi-

ble actions of his opponents,then the resulting vector of "best actions~ conatitutes

a Nash equilibrium. Such a vector of actions is termed a dominant-strategy Nash

equilibrium. More formally,

Definition 2(Dominant-Strategy Nash Equilibrium) A dominant-sirategy Nash

equilibrium Jor T is a y' E A such that jor al! i E I, u;(y; , x-;) ? u;(x;, x-;) for all

(x;, x-;) E A urith (y; , x-;) E A.

Nash (1951) and Debreu (1952) proved that a pure-strategy Nash equilibrium

of a game existe if each Z; C átL~ is compact, convex, and non-empty, and if u;

is continuous on A- Z and quasiconcave in x;. Dasgupta and Maskin (1986) ex-

tended their results to games where payoff functiona are continuoua in the following

weakened sense:

Deflnition 3(Semi-Continuity) A function ~: X y 32 is said to be upper semi-

continuous if for each point x', we have

limsup~(x) C ~(i ),

or equivalently, if {(x, a) E X x~2 :~(x) ~ a} is a closed subset oj X x 92. A function

~: X~~2 is said to 6e lower semi-continuous if -~(x) is upper semi-continuous.

More precisely, Dasgupta and Maskin's Theorem 2 establishes the existence of

a pure-strategy Nash equilibrium for gamea in which each player's strategy set,

Z; C~2L~, is compact, convex, and non-empty, and each player's utility function,

u;(x;, x-;), is quasiconcave in x;, upper semi-continuous in x and graph-continuousl.

In what fo)lows we demonstrate that quasiconcavity and upper semi-continuity are

not necessary for the existence of a pure-strategy Nash equilibrium. Then we

'Dasgupta and Masltin (1986) defined a payoff function to be graph-continuoue if tor a0 i E Z

U,ere ezistx a fuaction F, : Z-, -~ Z, with F;(i-,) - i, eueh that ~,(F,(x-,),x-,)) ie coniinuoue
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present existence theorems based on conditions weaker than quasiconcavity and

u pper-semicontinui ty.

3 Motivation and Examples

Before we present general theorems on the existence of pure-strategy Nash equilib-

rium in games where payoffs aze neither continuous nor quasiconcave, it ia instructive

to present three examples of gamea that cannot be analyzed with available existence

theorems. The utility functions in the first two examples violate quasiconcavity,

while the those in the third violate upper semi-continuity.

Example 1 Consider a two-person game played on the unit square. Thus Zl -

Zz -[0, 1]. The payoffs u;(x~, xz) (i - 1, 2) are given by the functions

x; if x; C x-;

u;(xl, xz) - x; - c if x-; ~ x; C 1

1 Ifx;-1

(1)

for c~ 0. IL is easy to verify that each u; is upper semi-continuous in x; but not

quasiconcave in x;. Since the continuity assumptions required by the theorema of

Debreu (1952) and Fan (1952) are not satisfied, and the quasiconca4ity conditions

of Dasgupta-Maskin ( 1986) are not satisfied, we cannot infer from their theotems

that a pure-strategy Nash equilibrium exists. lIowever, it is clear that xl - xz - 1

is a pure-strategy Nash equilibrium; in fact it constitutes a dominant-stmtegy Nash

equilibrium.

The next game is a slight modification o[ the game in Example 1.

Example 2 Consider a two-person game played on the unit squaze. Thus Zl -

Zz -[0,1]. The payoffs u;(x~, xz) (i - 1, 2) are given by the functions

x; if z; C x-;
u;(xi,xx) - . (2)

2~ -!' nLhefWISP
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where 1 1 c~ 0. Again, these utilities are not quasiconcave, and one cannot

use existing theorems to infer the existence of a pure-strategy Nash equilibrium.

Unlike the game in Example 1, this game doea not have a dominant-strategy Nash

equilibrium. Ifowever, it does have a pure-strategy Nash equilibrium.~ In particular,

xl - x~ - 1 constitutes a pun.-alrate~y Nash eyu;liGrium.

Example 3 Consider a two-person game played on the unit syuare. Thus Zt -

Z2 -[0, 1]. The payoffs u;(xr,x2) (i - 1,2) aze given by the functions

-( Z it xr - x2 - 0
u;(xt,xs) Sl ,

p;(xl,xZ) - x; otherwise

where p;(xt, xz) - ~~-~~aand a ~ 0. This game has been proposed by Tullock (1980)

to model rent-seeking behavior; p; is interpreted as the probability player i wins a

prize worth S1 by expending Sx; in resources. Baye, Kovenock, and de Vries (1989)

have shown that the limit of this game as a-. oo has the same essential etructure as

Moulin's ( 1986) all-pay-auction; Varian's ( 198U) model of sales; Narasimhan's (1988)

model oí promotional strategies; and Baye and de Vries' (1989) model of trade

with brand-loyal consumers. The limit-game is known to have no pure-strategy

Nash equilibria, but it does have a unique mixed-strategy equilibrium ( see Baye,

Kovenock, and dc VricA ( 199(1)) ~

}'or the purpose of tltis exaluple, howevcr, suppose 0 C a C 1. '1'hen it is eb5y to

Veflfy Lhat tI1C nLlllty fUnctlOnfi SI'e quasiconcave but are not upper-ACn11C(1ntlnllOllA.a

'1'hus, the sujTcient conditions for the existence of a pure-strategy Nash equilibrium

set forth in the existing literature are no! satisfied. However, it is easy to verify that

the game has a pure-strategy Nash equilibrium, namely x~ - xz - a~4.

Sirtce each of the above games have a pure-strategy Nash equilibrium that the

existing theorems do not point out, one might conjecture that the theorems can be

'In (act, it haa a continuum of pure-atrategy Nash equilibria.
~The theorema on mixed-atrategy Naeh equilibrium preaented in Dsagupta and Maskin (1986)

are motivated by gamee euch aa this limit game.

(The problem occura when s; - 0(or one o( the players.
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generalized. The next section reveals that this conjecture is indeed correct.

4 Nash Equilibrium with Non-quasiconcave Payoffs

Unless otherwise noted, we assume throughout the remainder of this paper that the

topological spaces under consideration are Euclidian spaces, and furthermore, that

A- 7..5 In what follows we present theorems that give necessary and sufficicnt con-

ditions for the existence oí pure-strategy and dontinant-strategy Nash equilibrium

under different topological conditions. We first conaider "regular~ gamea, and then

demonstrate Lhat the assumed continuity, compactness, and convexity conditions

can be mildly weakened. Since the proofs of the theorems presented in this section

require additional mathematical baggage, we reserve the proofs for Section 6.

4.1 "Regular" Games

The above examples reveal that quasiconcavity is not essential for the existence of

pure-strategy Nash equilibrium. Accordingly, we introduce the following concept.

Definition 4(Uniform Generalized Quasiconcavity) A payo,(j Junction u; :

Z-. ~t is said to be uniformly generalized quasiconcave on Z ifjor every finite suóset

{xl, xZ, .., xm} C Z, there exists a eorrespondingftnite suóset {y~ , y; ,..., y;`} C Z;

such that Jor any suóset {y;`' , y;`', .. , y;`~ } C{y~ , y?, ..., y;"}, I C s G rrt and any

y~ E co{yk',yk', ..,yk~} we have

min ~uí(xi,~xk'í) - ui(tJi-0ixk'í)~ C 0. (3)
t~i~s

Note that a sufficient condition for u; to be uniformly generalized quasiconcave

is that player i's utility is independent of the strategies of other players. It is this

observation that provides the principal intuition for the following theorem on the

existence of dominant-strategy Nash equilibrium.

'}lowever, all o( our resulte hold for any Hauedorff topological vector epacen.
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Theorem 1 Suppoae that, jor each player i, the atrategy apace Z; ia a nonempty

convez compact aubset in ~L~ and u;: Z-1 Jt is a payoff junction such that jor

every x E Z, u;(z) is upper semi-continuous in x;. Then I' has a dominant-atrategy

Nash cyuilibrium y' E Z ij and only ij u; is unijornaly genernlized quaaiconcave on

Z joralliEl.

For games satisfying the "regulazity" conditions of convex compact strategy

spacea and upper semi-continuous utility functions, Theorem 1 gives necessary and

sufficient conditions for the existence of a dominant-strategy Nash equilibrium. Since

the aet of games having a dominant-strategy Nash equilibrium is a proper subset

of games having pure-strategy Nash equilibrium, one should be able to weaken the

uniform generalized quasiconcavity requirement to obtain necessary and sufficient

conditions for the existence of pure-strategy Nash equilibrium. Following Chang

and Zhang (1989), we thus consider

DeSnition b(0-Generalized Quasiconcavity) A junction ~(z, y): X x Y --~ 92

is said ta be 0-generalized quasiconcave in x, ij jor any finite subset {xt,...,xm} C

X, there exists a corresponding finite subset {y~, ..., ym} C Y such that jor any sub-

set {yk',yk',...,yk~} C {y~,yz,...,ym}, 1 G s C m, andanyy~ E co{yk',y~`',..., yk~}

we have
r

min ~(xk , y~) G 0.
i~r~.

Our next theorem applies this notion of quasiconcavity to the aggregator function,

U: ZxZyRU{foo}givenby

U(x, 3t) - ~ 2; ~ui(xi,1l-i) - ui(at))~ (4)
iEt

for which U(x,x) - 0 for all z E Z.

Note that our strategy for using an aggregator function to weaken the quasi-

concavity conditions is very similar to that used by Dasgupta and Maskin to prove

their Theorem 5;. Unlike their Theorem 5', however, our choice of an aggregator

function allows us to establish the existence of pure-, rather than mized-strategy

Nash equilibrium.
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Theorem 2 Suppose that the strategy space Z; is o convex compact subset in 112~~

(where L-~;EI L;) and U: Z x Z-~ ~2 is defined 6y (4) such that for every x E Z,

U(x,y) is lower semi-continuous in y. Then T has a Nash equilibrium if and only

ij U(x,y) is 0-generalized quasiconcave in x.

Note that a sufficient condition for the lower semi-continuity of U(x, y) in y is that

u; is upper semi-continuous in y; and continuous in y-;.

The following is a direct consequence of Theorem 2.

Corollary 1 Suppose P has a pure-strategy Nash equilibrium, x'. Then U(x,y) is

0-generalized quasiconcave in x.

This follows by letting yk - z' for k- 1,2,...,m in the definition of 0-generalized

yuasiconcavity. Note that the coutrapositive of the corollary states that if the aggre-

gator function, U(x, y), is not 0-generalized quasiconcave in x, then the game dces

not possess a pure-strategy Nash equilibrium. This statement is powerful because it

ia not predicated on individual utilities being (semi) continuous or strategy spaces

being compact.

From the above theorems, we conclude that the 0-generalized quasiconcavity of

U(x, y) is a necessary and sufficient condition for the existence of Nash equilibrium

(or games satisfying "regular" topological conditions. It ia thus useful to present

conditions that imply 0-generalized quasiconcavity, and thue the existence of pure-

strategy Nash equilibrium.

Fact 1 Suppose that the atrategy space Z ia a convex aubset in J2~. If u; is uní-

formly generalized quasiconcave on Z for a!I i E I, then U(z, y) is 0.generalized

quasiconcave in x E Z.

Fact 2 For a two person game, if one player's utility function ia uniformly gener-

alized quasiconcave on Z, then U(x, y) is 0-generalized quasiconcave in x E Z.

Fact 2 and Theorem 2 itnply the following corollary:
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Corollary 2 For a two-person game, let the stmtegy space Z be a convex compact

subset in 92L and let U: Z x Z y I2 6e defined by (.{) such that for every x E

Z, U(x,y) is lower semi-continuous in y E Z. If one player's utility function is

uniformly generalized quasiconcave, then P has a Nash equilibrium.

Finally, note that ií the utility function of every player is continuous and qua-

siconcave in his own strategy, then there exists a Nash equilibrium by the result of

Debreu (1952). Thus if u; is continuous and quasiconcave in x; for all i E I, U(z, y)

is 0-generalized quasiconcave by Theorem 2.

4.2 "Irregular" Games

In this section we demonstrate that the above results can be extended to games

where utilitics do not satisfy (scmi-) continuity conditions, and in which stratcgy

spaces are neither convex nor compact. We Rrst show that `I'hixrrem 1 can be

generalized by relaxing the compactness of Z and the upper-semicontinuity of u;.

Theorem 3 For each player i, let the strategy space Z; be a nonempty convex subset

in IìL~. If u;: Z y It satisfies the jollowing conditions:

(a) jor every x E Z, if u;(x) ~ u;(y;,z-;), then there exist some point

x' E Z and some neighborhoodN(y;) of y; such that u;(x') ~ u;(z;, x~;)

for all z; E IV(y;);

(b) there exist xl, ..,x" E Z such that (~k-1 G;(xk) is compact on Z;,

where G,(xk) -{y; E Z: u;(xk) - ui(y;, xk;) G 0}.

Then T has a dominant-strategy Nash equilibrium if and only if u; is uniforrnly

generalized quasiconcave on Z.

Similarly, we can weaken Theorem 2 by relaxing the compactness of Z and the

lower-semicontinuity of U(x, y).

Theorem 4 Suppose that the strategy space Z is a nonempty convez subset of 32~

and U: Z x Z y ái is defined 6y (~) such that
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(a) Jor every x E Z, iJ U(x, y) ~ 0, then there exist some point x' E Z

ond some neighborhood N(y) of y such that U(x', z) ~ 0 Jor all z E

N(y)~

(b) there exist xt,...,x" E Z such that (~k-tC(xk) is compact on Z,

where G(x) -{y E Z: U(x, y) ~ o}.

Then P has a Nash equilibrium iJ and only ij U(x, y) is 0-generalized quasiconcave

in x.

Finally, we can extend our reaults to gamea where the aet of socially feasible ac-

tiona (A) is a non-compact, non-convex aubset of the Cartesian product of individual

strategies (Z).

Theorem 5 Let the strategy space Z 6e a nonempty convex subset in JtL and lei

0~ A C Z. Suppose ihat U: Z x Z-. ái is defined 6y ({) such that

(a) jor every x E A, if U(x, y) ~ 0, then there ezist some point x' E A

and some neighborhood N(y) of y such that U(x', z) 1 0 jor all z E

N(y)~

(b) there exist xt ,..., x" E A such that (~k-t G(xk) is compact on Z,

where G(x) -{y E Z: U(z, y) C 0}.

(c) jor each y E Z`A there exists z E A such that U(x, y) ~ 0.

Then 1' has a Nash equilibrium on A if and only iJ U(x, y) ia 0-generalized quasi-

concavein x on A.

5 Reconsidering the Examples

In this aection we demonstrate that the above theorema reveal the exiatence of

equiGbrium in the games presented in Examples 1-3.

5.1 Example 1

Consider firat the game presented in Example 1. As noted, u; is upper semi-

continuous in x; but is not quasiconcave in x;, so the existing results in the literature
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cannot be applied. However, we will establish the existence of a dominant-strategy

equilibrium ( and hencc, a pure-strategy Nash equilibrium) by verifying that the

conditions of our Theorem l are satisfied. Since the utility functions are upper

semi-continuous and the strategy spaces are nonempty, compact, and convex, we

need only show u; is uniformly generalized quasiconcave on Z-[0,1] x[0,1].

For any finite subset {x~, x~, . .., xm} C Z, if we let yl - 1 for k- 1, ..., m,

then for any subset {yl',y;',...,yl~} -{1} C {y„ y~,...,yl }-{1}, 1 G s G m

and y~o E c~{y~`,y~', .,y~~} - {1}, we have

min (ui(xi~,x~~) - ui(yice,x~~)] - ur(xi~,x2~) - ui(1,x2~)ru~.

G ul(x~`,xz`) - 1 c 0 (5)

for all 1 C I C s. Thus ui is uniformly generalized quasiconcave. One can similarly

show that u2 is also uniformly generalized quasiconcave. Thus, by Theorem 1, the

game in Example 1 has a dominant-strategy Nash equilibrium.

5.2 Example 2

We now establish the existence of a pure-strategy Nash equilibrium for the game

described in Example 2 above by verifying that the conditions of Theorem 4 are

satisfied.

We first show that U(x,y) is 0-generalized quasiconcave. Now for any finite

subset {x~,x~,...,zm} C Z, if we let yk - 1 for i- 1,2 and k- 1,...,m, then for

anysubset {yk',yk~,...,yk~} -{(1,1)} C {y~,y~,...,ym} - {(1,1)}, 1 C s G m

and yko E co {yl',yl', ..,y~~} -{(1,1)} we have

U(xk~,ym) - [ui(xi~,y~)-ui(yie,y~)]i~[us(yi-0,xs~)-uz(y~i`o,y~)]

-[ut(xi~, 1) - ui(1, 1)] f[us(l,xz~) - us(1, 1)]

-[u,(xi', 1) - 1] f fus(1, xs~) - 1] C o (s)

for 1 G l C s. But this means U(x, y) is 0-generalized quasiconcave in x.
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Next, we show that U(x, y) satisfies Condition ( a).s In particular, we must show

that if U(x, y) 1 0 for x, y E 'L, then there exists some point x' E 'L and some

neighborhood JV(y) of y such that U(z', z) ~ 0 for all z E N(y).

Case (i): yt c Yz.

Case(ia): 1-eCyz. Letx~-yz-candxj-l,whereOCcCmin{1-yt,yz}.

"1'hen

U(x~,Y) - ut(xi,Yz) - ut(Yt,Yz) t uz(Y~,xx) - uz(Yi,Yz)
- (Yz-c)-Yif(1-c)-(Yz-c)-1-Yi-c10.

Case (ib): 1- c~ yz. Let xl - 1 and x2 - 1. Then

U(2,Y) - u~(xi~Yz) - u t(Yt,Yz) f uz(Yt,x~) - uz(Yt,Yz)

- (1-c)-Ytf(1-c)-(Yz-c)

- (1-c-Yz)-f-(1-Yt)~0.

(7)

(8)

Case (ii): Yt 1 Yz-

Case (iia): 1-c C y~. Let x~ - 1 and x~ - yl -b, where 0 C b G min{1 - yz, yt }.

U(í,Y) - u t(xi,Yz) - u t(Yt,Yz) t uz(Yt,x2) - uz(Yi,Yz)

- (1-c)-(Yt-c)t(Yi-6)-Yz-1-Yz-6~0. (9)

Casc (iib): 1- c 1 y~. Let x~ - 1 and x2 - 1. Thcn

U(x',Y) - ul(xi,Yz) - ut(Yt,Yz) f uz(Yt,xz) - uz(Yt,Yz)

- (1-c)-(Yt-c)f(1-c)-Yz

- (1 - c - Yt) f (1 - Yz) ~ 0. (10)

Case ( iii): yl - yz. In this case, yt - yz must be less than 1- c for otherwise

U(x, y) C U(y, y) - 0, which contradicts the hypotheses that U(x, y) ~ 0. We only

"Note that U(x, y) ie not lower eemi-continuoue in y, esy, at ti with qi G yT - x~ - z~ so

Theorem 2 cannot be appóed.
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consider the case that yt - yz G 1- c. Let xl - 1 and xz - 1. Then

U(x~,Y) - ut(xi,Yz) - ut(Yt,Ys)~f [us(Yt,xi) - us(Yt,Ys)
- (1-c)-Ytt(1-c)-Ys

- (1-c-Y~)t(1-c-Ys)~0.

Thus we have U(x',y) ~ 0. Since U(.) is continuous at (x',y) for cases ( i) -(ii),

(1(x',z) ~ 0, providod z is sulBciently cIOeC to y. For case (iii), one can directly

verify that it is also true that U(x', z) 1 0 provided z is sufficiently close to y. Hence

Condition (a) is satisfied.

Condition (b) is trivially satisfied, since Z is compact. Thus the conditions

of Theorem 4 are satisfied, and we conclude that the game in Example 2 has a

pure-strategy Nash equilibrium.

5.3 Example 3

Similar to the above examples, one can establish the existence of an equilibrium for

the game in Example 3 by showing that the conditions of Theorem 4 are satisfied.

To do so, we first establish that U(x, y) is 0-generalized quasiconcave. For any finite

subset {xt,x~,...,xm} C Z, if we let yk - 4 tor i- 1,2 and k- 1,..., m, then for

any subset {Yk~,Yk~, ..,Yk~} -{(~, ~)) C{Y1,Y~, ..,Y~`} -{(q,q)}, 1 C s C m

and y~ E co{y~',y;', .,y;~} -{(~, ~)}, we have

U(xk~,Yko) -~ut(xi~,Y~) - ut(Yio, Y2o)] -F (u2(Yi~, xz~) - u2(Yi-0,Y~)]

- ~ut(xi~,4)-ut(4,4)]t~u2(4,xz~)-us(4,4)]

- ~ut(xi~,4)-2t4]f~us(4,x2~)-2f4]CO (12)

forlClGs,sinceu1(xt,~)Cz-~anduz(~,xz)C~-~forallOGaCland

0 C z; C 1. Thus U(x, y) is 0-generalized quasiconcave in x.

We next verify that U satisfies condition (a). To do so, we must show that if

U(x, y) 1 0, then there exists some point x' E Z and some neighborhood N(y) of y

such that U(z', z) ~ 0 for all z E N(y).
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Case (i): y; ~ 0(i - 1,2). In thia case, U(x,y) is continuous for all x and thus

condition (a) is satisfied.

Case (ii): y~ - y2 - 0. Let x~ - x2 - 6~ 0. Then for any y~ with 0 G y; C n

(i - 1,2), we have

U(x~, y) ? ul(ó, 6) f u2(À, 6)- 1
n n

-
21f(1)a-26-110,

n
(13)

as 6 is a sufficiently small number and n is a sufficiently large number. Thus condi-

tion (a) is satisfied in this case.

Case (iii): yl - 0 and y2 ~ 0 or yl ~ 0 and y2 - 0. We only need to show one

of these two cases, say the case of yl - 0 and y2 1 0. Let xl - xz -~ e ó~ 0.

Then for any yl with 0 G yl G n and yq satisfying ~y'2 - yz~ G n, we have

U(x',y') ? ul(ó,2ótn)fuZ(n,ó)-1t26

- 1}(`21}n)a}lf(n)a-1~0,
(14)

as n is a sufficiently large number.

llcuce the example satisfies condition (a) of the theorem. Since Z is compact,

condition (b) is trivially satisfied. Thus Theorem 4 establishes the existence of a

pure-strategy Nash equilibrium for the game in Example 3.

6 Proofs

Now that we have presented and illustrated our main theorems, we present their

proofs. In Section 6.1 we introduce some mathematical concepts that are used to

prove five lemmas, which appear in Section 6.2. The proofs of our Theorems 1-5

follow directly from the lemmas and are presented in Section 6.3.

6.1 Mathematical Preliminaries

The prooís require an investment in additional mathematical terminology and nota-

tion. Accordingly, let X be a subset of L-dimensional Euclidian space ~2~. Denote
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the convex hull, closure, and interior of the set D by coD, c1D, and intD, respec-

tivcly. Let Z be a convex subset of 92L and let Q~.K C Z. Denote the set of all

snbsc4s of Z by 'lL. Lot .5' be a subspace (subset) of i~~l' and Iet D C .S. Ueuote by

clsll - c1D fl S and intSD - intD fl S the closure and interior of the set D in the

subspace S.

In addition to this notation, we introduce

DeSnition 8(Generalized KKM Property) A correspondence G: X-~ 2Y is

said to have the generalized KKM property on X, ij for any finíte subset {xl, z2, .. ., xn` C

X, there exists a corresponding finite subset {yl,y2,...,ym} C Y such that jor any

subset {yk',yk' . ,yk~} C {y~,y~, ..,y"`}, 1 C s C m, we have

CO {yk',ykz,...,yk~} C U G(xk~).

1-1

The generalized KKM property7is a generalization of FS-convexitys, whích has been

used elsewhere by Fan ( 1961) and Sonnenschein ( 1971). In particular, note that if

G is FS-convex, then G has the generalized KKM property. ( To see this, let M- L

and yk - zk). However, the generalized KKM property is much weaker than FS-

convexity. For example, for any function g : X -~ ~iU{foo}, define a correspondence

C: k~ y'll~ by G(x) - {y E X: J(y) ? g(z)} for all x E X. '1'heu C so defined has

the generalized KKM property ( by letting yt -.- yn` - maxk g(zk)). But, G is

not FS-convex if it is not quasiconcave 9

6.2 Some Lemmas

Our proofs rely heavily on the following lemma, which generalizes the FKKM lemma

of Fan (]961, 1979, 198A) by relaxing FS-convexity and the convexity of X, and

gcncralizes the KKM Icmma o( Chang and 'Ghang (1989) by relaxing the convexity

rKKM is ehort for Knaster, Kuratowski, and Mazurltiewicz, whose aeminal work in 1929 ie the

basis (or our undcratanding o( fized-yointa.

BA correspondence C,' : X -~ 'lz is eaid to be FS-conucz on X i[ [or every finite aubset

{x~, zr,..., xm} of X, co {z~, zz,...,zm) C Uk3~ G(zk).

9Tian (1989) ahows that the FS-convexity of G ia equivalent to the quasiconcavity of g.
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of A.to The proof is very similar to that of Chang and Zhang (1989) and Tian

(19!)0), and is thus relegated to the Appendix.

Lemma 1 Let X be a non-empty subsct in 32L and Y be a nonempty convex aubset

in iM. Let C: X-. 2Y be a correspondence such ihat for each x E X, G(x) is

closed in Y. Then, the Jamily of sets {G(x) : x E X} has the finite intersection

property if and only if G has the generalized KKM property on X.

Remark 1 IC we define the mapping C : X y 2Y by G(x) -{y E Y:~(x, y) C 0},

it can be easily verificd that G has the generalized KKM property if and only if ~

is 0-generalized quasiconcave in x.

From Lemma 1 and the above remark, we can prove the following lemmas which

generalize the results of Fan (1972) and Zhou and Chen (1988) by relaxing the lower

semi-continuity and (0-diagonal) quasiconcavity of ~.lt

Lemma 2 Let X be a nonempty subset in 8i~, let Y be a nonempty compact convex

811b.ti('t in ?!?M and !cl ~: X x)' -~ ~i be a function such that jor every x E X, ~ is

tatncr srmi-r~untinurnis in y E T'. 7'ácn lhcrc cxists y' E Y auch thal ~(x,y') C 0

Jor all x E .k~ ij anrl only if ~ is 0-yencralizrd quasicottcave in x E X.

Proof. For each x E X, let G(x) -{y E Y:~(x, y) G 0}. Since ~ is lower semi-

continuous in y, G(x) is closed in Y. Then, by Lemma 1, the family of sets {C(x) :

x E X} has the finite intersection property if and only if G has the generalized

KKM propetty on X. Since Y is compact, (~xExG(x) ~ ~ if and only if G has

the generalized KKM property. Also, note that ~(x, y') L 0 for all x E X and

y' E Y is equivalent to y' E n~EXG(x). Further note that G has the generalized

KKM property if and only if ~ is 0-generalized quasiconcave in x(cf. Remark 1).

Therefore, there exists a point y' E Y such that ~(x,y') G 0 for all x E X if and

only if ~ is 0-generalized quasiconcave in x E X. Q.E.D.

~aAlao, we do not require A- Z.
t'A function m(x, y): X x Z- 9t is said to be 0-diagonolly quaaiconcaoe in x, if tor any finite

aubeet (x~,...,zm} C X and any i E to {zt,...,xm}, we have min~~k5,,, ~(x~,xo) G 0.
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If there exists an xo E X such that {y E Y:~(y,xo) G 0} is compact on Y, we

can relax the compactness of Y.

Lemma 3 Let X be a nonempty subset in ~2~, let Y 6e a nonempty convex suóset

ín ~2M and let ~: X x Y-~ 82 be a junciion such that

(a) for every x E X, ~ is lower semi-continuous in y E Y;

(b) there exists an xo E X such that {y E Y :~(y,xo) C 0} ia compact

on Y.

Then there exists a y` E Y such that ~(x, y") C 0 for all x E X if and only if ~ is

0-generalized quasiconcave in x E X.

I'r.x~f. I~ur cach x E X, Ict C:(x) - {y E 1' :~(a,y) C 0}. '1'lius, Lo pruvc thc

conclusion of the lemma, we only need to show that (~rEZ G(z) ~ 0 if and only if

G has the generalized KKM property.

Necessity. Suppose (~EZ G(x) ~ 0. Then {G(x) : x E X} has the finite

intersection ptoperty. Since ~ is lower semi-continuous in y, G(x) is closed for each

x E X. By Lemma 1, G has the generalized KKM property.

Sufficiency. Suppose G: X-~ 2Y has the generalized KKM property. Then, by

Lemma 1, G has the finite intersection property and thus {G(x) f1 G(xv) : x E X}

also has the finite intersection property. Now since {G(x) fl G(xo) : x E X} is a

family of compact sets in G(xo) we have 0~(~EZ G(x) fl G(xo) -(~sEZ G(x).

Q.E.D.

More generally, we can replace condition (b) with

(b') there exist xl,...,x" E X such that ()k-1 C(xk) is compact.

Similaz to Tian ( 1989}, we can also weaken the lower semi-continuity of ~. Since

Lemma 2 is a special case of Lemma 3, we thus state:

Lemma 4 Let X be a nonempty subset in 32~, let Y be a nonempty convex suóscl

in i2M and let rfl: X x Y~?fi be a junction such that
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(a) for every x E X, if ~(x,y) ~ 0, then there exist some point x' E X

and some neighóorhood N(y) oj y such that ~(x',z) ~ 0 jor al! z E

N(U);

(GJ there exist x~, ... , x" E X such that ( ~k-1 C(xk) ss cornpact.

1'hen there exisls a y' E Y such that ~(x, y') C 0 Jor alt x E X ij and only iJ ~ is

0-generalized quasiconcave in x E X.

Proof. We only need to prove sufficiency. For each x E X, let G(x) - {y E Y:

~(x, y) c 0}. Thus, to prove the conclusion of the lemma, we only need to show

that (~sEx G(z) ~~ under the above asaumptions.

We first prove (~~Ex cty G(x) -(~~Ex G(x). It is clear that (~~Ex G(x) C

(Í:Ex c[yG(x). So we only need to show (~Ey cly G(x) C(~Ex G(x). Suppose, by

way of contradiction, that there is some y in (~~Ex cly G(x) but not in ('j,~Ex G(x).

Then y~ G(x) for some z E X and thus ~(x, y) 1 0. By condition (a), there ie some

x' E X and some neighborhood N(y) of y such that ~(z', z) 7 0 for all z E N(y).

Thus y~ clyG(x'), a contradiction.

For x E X, let C(x) - clyG(x). Then G(x) is closed and, by the 0-generalized

quasiconcavity of m, it has the generalized KKM property. By Lemma 1, G has the

finite intersection property. Thus, by condition (b), (~,.Ex G(x) -(~Ex cly G(x) ~

0. IIence, there exists a y' E Y such that ~(x,y') G 0 for all x E X. Q.E.D.

The final tool we need to prove our theorema is the following lemma, which

generalizes the results of Nikaido and Isoda (1955) by relaxing the finitenesa of

number of players.

Lemma 5 Suppose that y' E A satisfies

sup U(x,y') ~ 0. (15)
rEA

Then y' is an equiliórtium jor F. The converse is true when A is a(Cartesian)

product of strategy sets.
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Proof. Let y' E A be a solution of (]5) and let x-(x;,y';). Then we have

f~(x,Y ) - 2;~u~(x„y~~)- u~(y~)) G 0 (16)

for any x; E Z; with ( x;, y';). So y' is an equilibrium of the game.

Conversely,if A is a product of strategy sets, we can obtain (15) by summing
up (16) for all i E I. Q.E.D.

6.3 Proofs of Theorems 1-5

Proof of Theorem 1. Define a correspondence G; : Z y 2Z~ by G;(x) - {y; E

Z; : u;(z) - u;(y;,x-;) G 0} for all x E Z. Since u; is upper semi-continuous in

y;, G;(x) is a closed subset for all x E Z. Also since Z; is compact, by Lemma 1,

j~.Ey G;(x) ~ Q if and only if G; has the generalized KKM property on Z. So there

exists a y; E Z; such that u;(x) - u;(y; ,x-;) G 0 for all x E Z if and only if u; is

uniformly generalized quasiconcave on Z. Q.E.D.

ProoJoJ Theorem :'. The proo(of Theorern 2 follows directly from Lemma 2 and

Lemma 5 by taking U-~. Q.E.D.

ProoJoJ Theorem 3. The prooí follows directly from Lemma 3 and Lemma 5 by

taking U - ~. Q.E.D.

PrrwJoJ Theorem 4. 1'he proo( follows directly from Lenuna 4 and Lemma 5 by

taking U - ~. Q.E.D.

Prooj of Theorem 5. We only need to show the sufficiency. From Lemma 4, we

know that there exists a point y` E Z such that sup~Eq U(x, y') C 0. Now we must

have y' E A, for otherwise U(x, y") ~ 0 for some x E A by condition (c). Hence

y' E A. Then by Lemma 5, y' is a Nash equilibrium. Q.E.D.

7 Concluding Remarks

The examples and theorems presented above reveal that the continuity and qua-

siconcavity conditions assumed in the literature on the existence of pure-strategy

Nash equilibrium can be considerably weakened. Specifically, 0-generalized qua-

siconcavity and uniform generalized quasiconcavity, together with some "regular"
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topological conditions, are not only sufHcient but also necessary for the existence

of pure-strategy Nash equilibrium and dominant-strategy Nash equilibrium, respec-

tively. Similar theorems obtain under weaker topological conditions. Thus our anal-

ysis characterizes the existence of pure-strategy Nash equilibrium in games where

the payoff functions are discontinuous and non-quasiconcave, the number of players

is infinite, and the strategy spaces aze neither convex nor compact. Thus the exis-

tence theorems given in this paper generalize almost all of the existence theorems

on Nash equilibrium in the literature such as those of Nash (1950, 1951), Debreu

(1952), Nikaido and Isoda (1955) and Dasgupta and Maskin (1986).

The theorems presented in this paper are based on generalizations of the FKKM

theorem of Fan (1961, 1979, 1984) and Chang and Zhang (1989) by relaxing the

FKKM conve~city and closedness of correspondences, and the compactness and con-

vexity o( strategy sets. In the context of the existence theorems appearing in the

recent economics literature, perhaps the most notable aspect of our theorems on the

existence of pure-strategy Nash equilibrium is that they weaken the quasiconcavity

conditions required by the theorem of Dasgupta and Maskin (1986).
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Appendix A

ProoJof Lemma 1. The proof of this lemma is similar to that given by Chang and

Zhang ( 1989).

Necessity. If {G(x) : x E X} has the finite intersection property, then for any

finite subset {xl,x2,...,zm} C X, (~k iG(xk) ~ 0. Taking y' E(~k rG(xk) and

letting yk - y' for k - 1, . .., m, we have
m s

CO {yk~,yk',..., yk~} - {y'} C n G(xk) C U G(xk~)
k-1 !-1

for any finite subset {yk',yk', .., yk~} C{yl, y2,...,ym}. So C has the generalized

KKM property on X.

Sufficiency. Let G: X y 2Y have the generalized KKM property on X. Sup-

pose, by way of contradiction, that {G(x) : x E X} does not have the finite inter-

section property, i.e., there exists some finite subset {xl, x~, ..,xm} C X such that

Ïlk-1 G(xk) - 0.

Since G has the generalized KKM property, (or the finite set {xl,xZ,...,xm},

there e~tiats a corresponding subset {yl , y~, .. ., ym} C Y such that for any

{yk~,yka, ..,yk~} C {yl,y2,...,ym},
.

CO{yk~,yk~, .. ,yk~} C U G(xk~).
1-1

In pazticular, we have co {yt, y~, ... , ym} C ~)k 1 G(xk). Let S - co {yt, y~, ..., ym}

and L - span{yt,y~,...,ym}. Then S C L. Since G(x) is closed, G(x;) fl L is a

closed set. Let d be the Euclidean metric on L. It is easy to see that

d(y, L f1 G(xk)) ~ 0 if and only if y~ L fl G(xk). (17)

Now define a continuous function j: S y[0, oo) as follows:
m

f(y) - ~ d(y, !, n G(xk))
k-1

for all y E S. It follows from (17) and (~k-~ G(xk) - 0 that for each y E S, f(y) 7 0.

Ucfinc a continuous functiou g: S-. S by, for each y E S,

g(y) -~ Í(y)d(y,
L fl G(xk))yk. (19)
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Then, by the Brouwer fixed point theorem, there exists a y" E S such that

1
y~ - 9(y~) -~ Í(y')d(y',

L f1 G(xk))yk. (20)

1.)enote

I~' -{k E {1, ..., m} : d(y', L fl G(xk)) ) 0}. (21)

Then for each k E K, y' ~ L f1 G(xk). Since y' E L, so y' ~ G(xk) for any k E K

and thus

y~ ~ U G(xk).
kEK

(22)

From (20) - (21), we have

1
y' - k~ f(y~)d(y', L f1 G(xk))y E co{yk : k E K}. (23)

However, since G has the generalized KKM property and maps from X into 2Y, we

have

y' E co{yk : k E If} C U G(xk), (24)
kEK

which contradicts (22). Hence {G(x) : x E X} has the finite intersection property

on X. Q.E.D.
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