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Abstract

This paper characterizes pure-strategy Nash equilibrium in noncooperative
games. Conditions which are called 0-generalized quasiconcavity and uniform
generalized quasiconcavity, together with some “regular” topological conditions,
are shown to be necessary and sufficient for the existence of pure-strategy and
dominant-strategy Nash equilibrium. We also provide theorems for existence
under weakened topological conditions. Thus our results, which require nei-
ther the continuity nor quasiconcavity of individual utility functions, generalize
many of the existence theorems on pure-strategy Nash equilibrium in the liter-
ature, including those of Nash (1950, 1951), Debreu (1952), Nikaido and Isoda
(1955), and Dasgupta and Maskin (1986). Keywords: Pure-strategy, Nash

Equilibrium, Existence.
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1 Introduction

Nash equilibrium is “the” equilibrium concept in economics. Its widespread appecal
stems from the intuitively appealing notion that, if - given the behavior of other
individuals — any individual could improve his well-being by altering his behavior,
he would do so. For an economic steady-state to exist in the sense of Nash therefore
means that no rational maximizing agent has an incentive to change his behavior,
given the behavior of others.

Because of the importance of Nash equilibrium in the study of markets and
other games, there has been continued interest in setting forth conditions for the
existence of Nash equilibria. Unfortunately, existence theorems invariably set forth
only sufficient conditions for the existence such an equilibrium. If the conditions
of a particular theorem are satisfied, then one knows the particular model has an
equilibrium. If the conditions of the theorem are not satisfied, the theorem is of little
value; the game may or may not have a Nash equilibrium. It is for this reason that
economists continually strive to weaken the conditions that guarantee the existence
of Nash equilibrium.

Existence theorems are essentially characterized by the conditions placed on the
strategy spaces and payoff functions of the players sufficient to establish a given
characterization of equilibrium. The characterization of equilibrium may be the
existence of a pure-strategy equilibrium, or a mixed-strategy equilibrium whereby
individuals randomize over pure-strategies.

The table below summarizes several of the existence theorems used in economics.
The early theorems of Debreu (1952) and Fan (1953) reveal that games possess a
pure-strategy Nash equilibrium if (1) the strategy spaces of the agents are nonempty,
convex and compact, and (2) players have continuous, quasiconcave utility functions.
The theorems, including those of Nash (1950, 1951), say nothing about equilibrium
in games with discontinuous payoffs. Accordingly, Dasgupta and Maskin (1986) were
motivated to establish an existence theorem valid for discontinuous utility functions.

Their results reveal that even games with discontinuous payoffs possess a pure-



strategy equilibrium, provided (1) the strategy spaces of the agents are nonempty,
convex and compact, and (2) players have utility functions that are quasiconcave,

upper semi-continuous, and graph continuous.

Strategy | Payoff Type of

Space Function Nash Equilibrium
Debreu (1952) Convex | Quasiconcave | Pure-Strategy
Fan (1953) Compact | Continuous

Dasgupta-Maskin Convex | Quasiconcave | Pure-Strategy

(Theorem 2, 1986) | Compact | Discontinuous

Glicksberg (1952) Compact | Continuous Mixed-Strategy

Dasgupta-Maskin Convex | Discontinuous | Mixed-Strategy
(Theorem 5%, 1986) | Compact

Based on the existing literature, the most that can be said about games with
payoff functions that are not quasiconcave is that they posses a mixed-strategy
equilibrium, provided that the conditions of either Glicksberg (1952) or Dasgupta-
Maskin (1986, Theorem 5*) hold. Each these theorems are applicable only to games
with compact strategy spaces. The Glicksberg theorem also requires continuity of
the utility functions, while the Dasgupta-Maskin theorem relaxes continuity but
requires a convex strategy space.

In summary, given state-of-the-art existence theorems, the most that can be
said of games where players do not have quasiconcave utility functions is that they
might possess a mixed-strategy equilibrium, provided the strategy spaces and utility
functions satisfy some other conditions. Indeed, the central message of Dasgupta-
Maskin is that discontinuities in the payoff functions are not responsible for the
nonexistence of pure-strategy Nash equilibrium, but rather “the blame for nonexis-
tence of pure-strategy equilibrium [is the] lack of quasiconcavity” (p. 3). We show

that quasiconcavity can be weakened.



In Section 2 we introduce the basic terminology used in our study of noncoop-
erative games, and then present in Section 3 examples of economic games that have
a pure-strategy Nash equilibrium even though the utility functions do not satisfy
the continuity and quasiconcavity conditions required by the aforementioned exis-
tence theorems. These examples are intended to motivate Section 4, which presents
our main theorems on the existence of pure-strategy Nash equilibrium for games in
which payoffs are neither quasiconcave nor continuous. The first part of this section
deals with games in which strategy spaces are “regular” (eg. convex and compact),
while the second part relaxes the assumed regularity conditions. Section 5 applies
these theorems to the games used to motivate our analysis, in order to explain why
the games possessed pure-strategy equilibria. The proofs of our main results, along
with the required additional mathematical terminology and notation, are contained

in Section 6. We offer some concluding remarks in Section 7.

2 Non-Cooperative Games

Let I be a countable (possibly infinite) set of players, and suppose that each agent i's
strategy set is Z; C RL+ (L; is finite). Denote by Z the (Cartesian) product [];es Z;
and Z_; the product [[;en\(i) Z;- Each player i has a payoff (utility) function u;:
Z — R. Throughout our analysis, variables without subscripts, such as z and y, will
be used to denote elements of Z. Subscripts on variables will associate the variable
with a particular player or group of players. For example, z; and y; will be used to
denote elements of Z;, while z_; and y_; will be used to denote elements of Z_;.

In quasi-games, there exist profiles of strategies that are not socially feasible, so
let A C Z denote the set of socially feasible actions. A game I' = (Z;, A, u;)ier is
simply a family of ordered triples (Z;, A, u;). We seek conditions under which the
following types of equilibrium exist for T'.

Definition 1 (Pure-Strategy Nash Equilibrium) A pure-strategy Nash equi-
librium for T' is a y* € A such that ui(y*) > ui(zi,y2;) for all z; € Z; with
(zi,y%;) € Aand foralli€l.



Thus a Pure-strategy Nash equilibrium is a vector of actions such that no individ-
ual player has an incentive to change his behavior, given the actions of the other
players. Clearly, if each player has an action that maximizes his utility for all possi-
ble actions of his opponents, then the resulting vector of “best actions” constitutes
a Nash equilibrium. Such a vector of actions is termed a dominant-strategy Nash

equilibrium. More formally,

Definition 2 (Dominant-Strategy Nash Equilibrium) A dominant-strategy Nash
equilibrium for T is a y* € A such that for alli € I, ui(y},z—i) > ui(zi,z-;) for all
(zi,2-:) € A with (y7,z-;) € A.

Nash (1951) and Debreu (1952) proved that a pure-strategy Nash equilibrium
of a game exists if each Z; C RL:i is compact, convex, and non-empty, and if u;
is continuous on A = Z and quasiconcave in z;. Dasgupta and Maskin (1986) ex-
tended their results to games where payoff functions are continuous in the following

weakened sense:

Definition 3 (Semi-Continuity) A function ¢ : X — R is said to be upper semi-

continuous if for each point z', we have
lim sup ¢(z) < &(z),
z—z’

or equivalently, if {(z,a) € X xR : ¢(z) > a} is a closed subset of X xR. A function

¢: X — R is said to be lower semi-continuous if —¢(z) is upper semi-continuous.

More precisely, Dasgupta and Maskin’s Theorem 2 establishes the existence of
a pure-strategy Nash equilibrium for games in which each player’s strategy set,
Z; C RLi, is compact, convex, and non-empty, and each player’s utility function,
u;(zi, z_;), is quasiconcave in z;, upper semi-continuous in z and graph-continuous?.
In what follows we demonstrate that quasiconcavity and upper semi-continuity are

not necessary for the existence of a pure-strategy Nash equilibrium. Then we

!Dasgupta and Maskin (1986) defined a payoff function to be graph-continuous ifforallz € Z
there exists a function F, : Z_, — Z; with Fi(2_,) = %, such that w;(Fi(z-;), z-:)) is continuous

atz_i = 2_,.



present existence theorems based on conditions weaker than quasiconcavity and

upper-semicontinuity.

3 Motivation and Examples

Before we present general theorems on the existence of pure-strategy Nash equilib-
rium in games where payoffs are neither continuous nor quasiconcave, it is instructive
to present three examples of games that cannot be analyzed with available existence
theorems. The utility functions in the first two examples violate quasiconcavity,

while the those in the third violate upper semi-continuity.

Example 1 Consider a two-person game played on the unit square. Thus Z; =

Zy = [0,1]. The payoffs ui(z1,z2) (¢ = 1,2) are given by the functions

i if& < g
ui(z1,22) = z;—¢ ifz_i<zi<1 (1)
1 fz;=1

for ¢ > 0. It is easy to verify that each u; is upper semi-continuous in z; but not
quasiconcave in z;. Since the continuity assumptions required by the theorems of
Debreu (1952) and Fan (1952) are not satisfied, and the quasiconcavity conditions
of Dasgupta-Maskin (1986) are not satisfied, we cannot infer from their theorems
that a pure-strategy Nash equilibrium exists. However, it is clear that z; = z; =1
is a pure-strategy Nash equilibrium; in fact it constitutes a dominant-strategy Nash

equilibrium.
The next game is a slight modification of the game in Example 1.

Example 2 Consider a two-person game played on the unit square. Thus Z; =
Z, = [0,1]. The payoffs u;(z1,22) (i = 1,2) are given by the functions
zg ifz; <2

ui(z1,22) = B ’ (2)
z;, —c otherwise



where 1 > ¢ > 0. Again, these utilities are not quasiconcave, and one cannot
use existing theorems to infer the existence of a pure-strategy Nash equilibrium.
Unlike the game in Example 1, this game does not have a dominant-strategy Nash
equilibrium. However, it does have a pure-strategy Nash equilibrium.? In particular,

) = z9 = 1 constitutes a pure-strategy Nash equilibrium.

Example 3 Consider a two-person game played on the unit square. Thus Z; =

Z3 = [0,1]. The payoffs u;(z1,z2) (i = 1,2) are given by the functions

1 ifzy=22=0
ui(11711)= ? ’

pi(z1,22) — z; otherwise

where p;(z1,22) = ;ffj_';’; and a > 0. This game has been proposed by Tullock (1980)
to model rent-seeking behavior; p; is interpreted as the probability player : wins a
prize worth $1 by expending $z; in resources. Baye, Kovenock, and de Vries (1989)
have shown that the limit of this game as @ — oo has the same essential structure as
Moulin’s (1986) all-pay-auction; Varian’s (1980) model of sales; Narasimhan’s (1988)
model of promotional strategies; and Baye and de Vries’ (1989) model of trade
with brand-loyal consumers. The limit-game is known to have no pure-strategy
Nash equilibria, but it does have a unique mixed-strategy equilibrium (see Baye,
Kovenock, and de Vries (1990)).2

For the purpose of this example, however, suppose 0 < a < 1. Then it is easy to
verify that the utility functions are quasiconcave but are not upper-semicontinuous.?
Thus, the sufficient conditions for the existence of a pure-strategy Nash equilibrium
set forth in the existing literature are not satisfied. However, it is easy to verify that

the game has a pure-strategy Nash equilibrium, namely z; = z; = a/4.

Since each of the above games have a pure-strategy Nash equilibrium that the

existing theorems do not point out, one might conjecture that the theorems can be

2In fact, it has a continuum of pure-strategy Nash equilibria.
3The theorems on mixed-strategy Nash equilibrium presented in Dasgupta and Maskin (1986)

are motivated by games such as this limit game.

*The problem occurs when z; = 0 for one of the players.



generalized. The next section reveals that this conjecture is indeed correct.

4 Nash Equilibrium with Non-quasiconcave Payoffs

Unless otherwise noted, we assume throughout the remainder of this paper that the
topological spaces under consideration are Euclidian spaces, and furthermore, that
A = Z.5 In what follows we present theorems that give necessary and sufficient con-
ditions for the existence of pure-strategy and dominant-strategy Nash equilibrium
under different topological conditions. We first consider “regular” games, and then
demonstrate that the assumed continuity, compactness, and convexity conditions
can be mildly weakened. Since the proofs of the theorems presented in this section

require additional mathematical baggage, we reserve the proofs for Section 6.

4.1 “Regular” Games

The above examples reveal that quasiconcavity is not essential for the existence of

pure-strategy Nash equilibrium. Accordingly, we introduce the following concept.

Definition 4 (Uniform Generalized Quasiconcavity) A payoff function u; :
Z — R is said to be uniformly generalized quasiconcave on Z if for every finite subset
{z!,22,...,2™} C Z, there ezists a corresponding finite subset {y},v?,...,y"} C Z;
such that for any subset {y¥',y¥,...,y¥'} C {3}, ¥%...,y™}, 1 < s < m and any

y¥ € co {y¥', y,l‘z, ey y¥'} we have
min [ui(z}', 2%;) - wi(yl, 25 < 0. ®)
1<I<s

Note that a sufficient condition for u; to be uniformly generalized quasiconcave
is that player #’s utility is independent of the strategies of other players. It is this
observation that provides the principal intuition for the following theorem on the

existence of dominant-strategy Nash equilibrium.

SHowever, all of our results hold for any Hausdorff topological vector spaces.



Theorem 1 Suppose that, for each player i, the strategy space Z; is a nonempty
convez compact subset in R and u;: Z — R is a payoff function such that for
every z € Z, u;(z) is upper semi-continuous in z;. Then T has a dominant-strategy
Nash equilibrium y* € Z if and only if u; is uniformly generalized quasiconcave on

Z foralli€I.

For games satisfying the “regularity” conditions of convex compact strategy
spaces and upper semi-continuous utility functions, Theorem 1 gives necessary and
sufficient conditions for the existence of a dominant-strategy Nash equilibrium. Since
the set of games having a dominant-strategy Nash equilibrium is a proper subset
of games having pure-strategy Nash equilibrium, one should be able to weaken the
uniform generalized quasiconcavity requirement to obtain necessary and sufficient
conditions for the existence of pure-strategy Nash equilibrium. Following Chang

and Zhang (1989), we thus consider

Definition 5 (0-Generalized Quasiconcavity) A function ¢(z,y): X XY — R

is said to be 0-generalized quasiconcave in z, if for any finite subset {z!,...,2™} C

X, there ezists a corresponding finite subset {y!,...,y™} C Y such that for any sub-

set {y*',v*, ..., v*'} C {¥",%%...,y™}, 1 < s < m, and any y*° € co {y*', ¥, ..., y*"}
we have

B k' kO
<0.
{;‘;‘2.“’(’ W) L0

Our next theorem applies this notion of quasiconcavity to the aggregator function,

U: ZxZ— RU {0} given by

1
U(z,y) =) gilui(@iy-i) = ui(y)], (4)
i€l
for which U(z,z)=0forall z € Z.
Note that our strategy for using an aggregator function to weaken the quasi-
concavity conditions is very similar to that used by Dasgupta and Maskin to prove
their Theorem 5*. Unlike their Theorem 5*, however, our choice of an aggregator

function allows us to establish the existence of pure-, rather than mized-strategy

Nash equilibrium.
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Theorem 2 Suppose that the strategy space Z; is a convez compact subset in R
(where L = T ier Li) and U: Z x Z — R is defined by (4) such that for everyz € Z,
U(z,y) is lower semi-continuous in y. Then T’ has a Nash equilibrium if and only

if U(z,y) is O-generalized quasiconcave in z.

Note that a sufficient condition for the lower semi-continuity of U(z,y) in y is that
u; is upper semi-continuous in y; and continuous in y_;.

The following is a direct consequence of Theorem 2.

Corollary 1 Suppose I' has a pure-strategy Nash equilibrium, z*. Then U(z,y) is

0-generalized quasiconcave in z.

This follows by letting y* = z* for k = 1,2,...,m in the definition of 0-generalized
quasiconcavity. Note that the contrapositive of the corollary states that if the aggre-
gator function, U(z, y), is not 0-generalized quasiconcave in z, then the game does
not possess a pure-strategy Nash equilibrium. This statement is powerful because it
is not predicated on individual utilities being (semi) continuous or strategy spaces
being compact.

From the above theorems, we conclude that the 0-generalized quasiconcavity of
U(z,y) is a necessary and sufficient condition for the existence of Nash equilibrium
for games satisfying “regular” topological conditions. It is thus useful to present
conditions that imply 0-generalized quasiconcavity, and thus the existence of pure-

strategy Nash equilibrium.

Fact 1 Suppose that the strategy space Z is a convez subset in RL. If u; is uni-
formly generalized quasiconcave on Z for all i € I, then U(z,y) is O-generalized

quasiconcave in z € Z.

Fact 2 For a two person game, if one player’s utility function is uniformly gener-

alized quasiconcave on Z, then U(z,y) is 0-generalized quasiconcave in z € Z.

Fact 2 and Theorem 2 imply the following corollary:
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Corollary 2 For a two-person game, let the strategy space Z be a conver compact
subset in RL and let U: Z x Z — R be defined by (4) such that for every z €
Z, U(z,y) is lower semi-continuous in y € Z. If one player’s utility function is

uniformly generalized quasiconcave, then I' has a Nash equilibrium.

Finally, note that if the utility function of every player is continuous and qua-
siconcave in his own strategy, then there exists a Nash equilibrium by the result of
Debreu (1952). Thus if u; is continuous and quasiconcave in z; for all i € I, U(z, y)

is 0-generalized quasiconcave by Theorem 2.

4.2 “Irregular” Games

In this section we demonstrate that the above results can be extended to games
where utilities do not satisfy (semi-) continuity conditions, and in which strategy
spaces are neither convex nor compact. We first show that Theorem 1 can be

generalized by relaxing the compactness of Z and the upper-semicontinuity of u;.

Theorem 3 For each player i, let the strategy space Z; be a nonempty convez subset

in R, If u;: Z — R satisfies the following conditions:
(a) for every z € Z, if ui(z) > ui(yi,z_;), then there ezist some point
z' € Z and some neighborhood N (y;) of y; such that ui(z') > ui(z,z’;)
for all z; € N(y:);
(b) there ezist z1,...,z" € Z such that (\;=, Gi(z*) is compact on Z;,
where G;(z%) = {y; € Z : ui(z*) — wi(yi,z*;) < 0}.
Then T has a dominant-strategy Nash equilibrium if and only if u; is uniformly

generalized quasiconcave on Z.

Similarly, we can weaken Theorem 2 by relaxing the compactness of Z and the

lower-semicontinuity of U(z,y).

Theorem 4 Suppose that the strategy space Z is a nonemply convez subsel of RL
and U: Z x Z — R is defined by (4) such that
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(a) for every z € Z, if U(z,y) > 0, then there ezist some pointz' € Z
and some neighborhood N(y) of y such that U(z',z) > 0 for all z €
N();
(b) there ezist z',...,z" € Z such that N}, G(z*) is compact on Z,
where G(z) = {y € Z: U(z,y) < 0}.
Then T has a Nash equilibrium if and only if U(z,y) is 0-generalized quasiconcave
inz.

Finally, we can extend our results to games where the set of socially feasible ac-
tions (A) is a2 non-compact, non-convex subset of the Cartesian product of individual
strategies (Z).

Theorem 5 Let the strategy space Z be a nonempty convez subset in RE and let
0 # AC Z. Suppose that U: Z x Z — R is defined by (4) such that
(a) for every z € A, if U(z,y) > 0, then there ezist some point z' € A
and some neighborhood N (y) of y such that U(z’,z) > 0 for all z €
N(y);
(b) there ezist z',...,z" € A such that (;—, G(z*) is compact on Z,
where G(z) = {y € Z : U(z,y) < 0}.
(c) for each y € Z\ A there ezists z € A such that U(z,y) > 0.
Then T has a Nash equilibrium on A if and only if U(z,y) is 0-generalized quasi-

concave in ¢ on A.

5 Reconsidering the Examples

In this section we demonstrate that the above theorems reveal the existence of

equilibrium in the games presented in Examples 1-3.

5.1 Example 1

Consider first the game presented in Example 1. As noted, u; is upper semi-

continuous in z; but is not quasiconcave in z;, so the existing results in the literature
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cannot be applied. However, we will establish the existence of a dominant-strategy
equilibrium (and hence, a pure-strategy Nash equilibrium) by verifying that the
conditions of our Theorem 1 are satisfied. Since the utility functions are upper
semi-continuous and the strategy spaces are nonempty, compact, and convex, we
need only show u; is uniformly generalized quasiconcave on Z = [0,1] x [0,1].

For any finite subset {z!,z2,...,2™} C Z, if we let ¥ = Lior k= Lsaeom;
then for any subset {y¥',y¥,..., 98"} = (1} c {s},¥d,.. .0} = {1}, 1<s<m

and %0 € co{y¥',y¥,...,uf"} = {1}, we have

A 1
ui(zd,28) — w(1,2%)

. k! K
min (e, 24) = w40, 25)

IA

ur(zh',25)-1<0 (5)

for all 1 < I < s. Thus u; is uniformly generalized quasiconcave. One can similarly
show that uj is also uniformly generalized quasiconcave. Thus, by Theorem 1, the

game in Example 1 has a dominant-strategy Nash equilibrium.

5.2 Example 2

We now establish the existence of a pure-strategy Nash equilibrium for the game
described in Example 2 above by verifying that the conditions of Theorem 4 are
satisfied.

We first show that U(z,y) is O-generalized quasiconcave. Now for any finite
subset {z!,22,...,2"} C Z,ifwelet yf = 1fori=1,2and k=1,...,m, then for
any subset {y*',y*",...,9*} = {(1,1)} C {#",¢%..,y"} = {(1,1)},1<s<m
and ¥*° € co{y¥', ¥¥",...,¥¥"} = {(1,1)} we have

[ur (2%, 94%) — ua (40, ¥5%)) + [ua(ud®, 25)) — ua(vf®, 45°))
[ur(zX, 1) = wa(1, 1)) + [ua(1, 25 ) — ua(1,1)]

[u(2¥', 1) = 1] + [uz(1,25') - 1] <0 (6)

U(z*,y*)

for 1 < I < s. But this means U(z,y) is 0-generalized quasiconcave in z.



14

Next, we show that U(z,y) satisfies Condition (a). In particular, we must show
that if U(z,y) > 0 for z,y € Z, then there exists some point 2’ € Z and some
neighborhood N (y) of y such that U(z’,z) > 0 for all z € N(y).

Case (i): y1 < y2.

Case (ia): 1—c < y2. Let 2} = y2—€ and 7 = 1, where 0 < € < min{1 — y;,y2}.

Then

U(z',y) = w(2h, ) — wi(y, v2) + w2y, 23) — u2(y1, 92)
= (-9-n+(l-c)—(rr-c)=1-y—-c>0. (7)

Case (ib): 1 — ¢ > y;. Let z{ =1 and z = 1. Then

ui(zh, ¥2) — wa(y1, 2) + wa(v1,22) — w2y, ¥2)
(I-c)-n+QQ-¢)-(nr-9
(l-c—y)+(1-n)>0. (8)

U(z',y)

I

]

Case (ii): y1 > v2-
Case (iia): 1—c < y;. Let z{ = 1and 24 = y1 — 8, where 0 < § < min{l -y, %1 }.

U(z',y) = w2}, v2) — w1, 92) + va(tn, 23) — u2(91,92)
= (1-0-nm-9+nm-0)-yp=1-yp-6>0. (9)

Case (iib): 1 —¢ > y;. Let 2z} =1 and z5 = 1. Then

]

U(z',y) ui (24, ¥2) — w11, 92) + u2(y1,23) — u2(y1,%2)
(l-¢)-(n-c)+(1-¢c)-mn

Q-c—-n)+(1-w)>0. (10)

Case (iii): y1 = y2. In this case, y; = y; must be less than 1 — ¢ for otherwise

U(z,y) < U(y,y) = 0, which contradicts the hypotheses that U(z,y) > 0. We only

SNote that U(z,y) is not lower semi-continuous in y, say, at § with §1 < 2 = 71 = z2 so

Theorem 2 cannot be applied.
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consider the case that y; = y2 <1 —c. Let ] = 1 and zj = 1. Then

U(z',y) uy (2, ¥2) — w1y, ¥2)] + [w2(31, 23) — wa(y1,92)

Il

(l-c)-n+(1-c)-mnm
(I—c-u)+(Q—c—ym)>0. (11)

Thus we have U(z’,y) > 0. Since U(-) is continuous at (z’,y) for cases (i) — (ii),
U(z',z) > 0, provided z is sufficiently close to y. For case (iii), one can directly
verify that it is also true that U(z’, 2) > 0 provided z is sufficiently close to y. Hence
Condition (a) is satisfied.

Condition (b) is trivially satisfied, since Z is compact. Thus the conditions
of Theorem 4 are satisfied, and we conclude that the game in Example 2 has a

pure-strategy Nash equilibrium.

5.3 Example 3

Similar to the above examples, one can establish the existence of an equilibrium for
the game in Example 3 by showing that the conditions of Theorem 4 are satisfied.
To do so, we first establish that U(z,y) is 0-generalized quasiconcave. For any finite
subset {z!,z2%,...,2™} C Z, if welet y¥ = 2fori=1,2and k =1,...,m, then for
any subset {y*',y¥",...,s*} = {($, P C o2y} = {(5. D) 1< s<m

and y*° € co {y{",y{",...,yf'} ={(%,9)}, we have

[ua(zh', v4°) — ua (v, w°)) + [ua(vf, 25') — wa(uf®, v8°)]
P a o [+ ] a o

[ua(af 7)) (g l+ [uz(z,z'z‘ ) = w2l )l

wa 1 e a . 1, a
[“l(zl 14) 2+ 4]+[“2(4!32) 2+ 4]$0 (12)

U(z*,y*)

for 1 <1< s, since uy(z1,§) < %— ¢ and u3(§,22) < %— Gforall0 < a<1and
0 < z; < 1. Thus U(z,y) is 0-generalized quasiconcave in z.

We next verify that U satisfies condition (a). To do so, we must show that if
U(z,y) > 0, then there exists some point z’ € Z and some neighborhood N(y) of y
such that U(2’,z) > 0 for all z € N(y).
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Case (i): ¥ > 0 (¢ = 1,2). In this case, U(z,y) is continuous for all z and thus
condition (a) is satisfied.
Case (ii): y1 = y2 = 0. Let z{ = 2% = § > 0. Then for any y! with 0 < y! < %

(i=1,2), we have

u(',y') 2 u1(6,%) - ug(&,%) -1

2Tt*);—26—1>0, (13)

as § is a sufficiently small number and n is a sufficiently large number. Thus condi-
tion (a) is satisfied in this case.

Case (iii): ¥y = 0 and y2 > 0 or y; > 0 and y, = 0. We only need to show one

of these two cases, say the case of yy = 0 and y > 0. Let 2} = zp = ¥ =6 > 0.

Then for any ¥} with 0 < y} < £ and y} satisfying |5 — y2| < £, we have

u(z,y) 2> u1(6,26+§)+u2(%,6)—1+26
1 S
1+@2+3)  1+Q)

150; (14)

as n is a sufficiently large number.
Ilence the example satisfies condition (a) of the thecorem. Since Z is compact,
condition (b) is trivially satisfied. Thus Theorem 4 establishes the existence of a

pure-strategy Nash equilibrium for the game in Example 3.

6 Proofs

Now that we have presented and illustrated our main theorems, we present their
proofs. In Section 6.1 we introduce some mathematical concepts that are used to
prove five lemmas, which appear in Section 6.2. The proofs of our Theorems 1-5

follow directly from the lemmas and are presented in Section 6.3.

6.1 Mathematical Preliminaries

The proofs require an investment in additional mathematical terminology and nota-

tion. Accordingly, let X be a subset of L-dimensional Euclidian space ®X. Denote



1¢

the convex hull, closure, and interior of the set D by coD, ¢lD, and intD, respec-
tively. Let Z be a convex subsct of RL and let § # X C Z. Denote the set of all
subsets of Z by 2Z. Let § be a subspace (subset) of % and let D C §. Denote by
clsD = clDN S and intsD = intD N S the closure and interior of the set D in the
subspace S.

In addition to this notation, we introduce

Definition 6 (Generalized KKM Property) A correspondence G : X — 2V is
said to have the generalized KKM property on X , if for any finite subset {z?,z?,...,
X, there ezists a corresponding finite subset {y*,y2,...,y™} C Y such that for any
subset {v*',v*",...,v¥"} C {¥',9%,...,y™}, 1 < s < m, we have

s
co{v*',v*,...,v*'} C U G(z"‘).
=1

The generalized KKM property’is a generalization of FS-convexity®, which has been
used elsewhere by Fan (1961) and Sonnenschein (1971). In particular, note that if
G is FS-convex, then G has the generalized KKM property. (To see this, let M = L
and y* = z*). However, the generalized KKM property is much weaker than FS-
convexity. For example, for any function g : X — RU{+o0}, define a correspondence
G: X —=2Y byG(z)={y€ X :9(y) 2 g(z)} forall z € X. Then G so defined has
the generalized KKM property (by letting y! = --- = y™ = max, g(z*)). But, G is

not FS-convex if it is not quasiconcave.®

6.2 Some Lemmas

Our proofs rely heavily on the following lemma, which generalizes the FKKM lemma
of Fan (1961, 1979, 1984) by relaxing FS-convexity and the convexity of X, and
generalizes the KKM lemma of Chang and Zhang (1989) by relaxing the convexity

TKKM is short for Knaster, Kuratowski, and Mazurkiewicz, whose seminal work in 1929 is the

basis for our understanding of fixed-points.
8A correspondence G : X — 2% is said to be FS-conver on X if for every finite subset

{z', 52, .. ;2™} of X, co{z?,2%,..., ™} C U G(z*).
9Tian (1989) shows that the FS-convexity of G is equivalent to the quasiconcavity of g.

- g
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of A.1° The proof is very similar to that of Chang and Zhang (1989) and Tian
(1990), and is thus relegated to the Appendix.

Lemma 1 Let X be a non-empty subset in RL and Y be a nonempty convez subset
inRM. Let G : X — 2Y be a correspondence such that for each z € X, G(z) is
closed in Y. Then, the family of sets {G(z) : ¢ € X} has the finite intersection
property if and only if G has the generalized KKM property on X .

Remark 1 If we define the mapping G : X — 2Y by G(z) = {y € Y : ¢(z,y) < 0},
it can be easily verified that G has the generalized KKM property if and only if ¢

is 0-generalized quasiconcave in z.

From Lemma 1 and the above remark, we can prove the following lemmas which
generalize the results of Fan (1972) and Zhou and Chen (1988) by relaxing the lower

semi-continuity and (0-diagonal) quasiconcavity of ¢.11

Lemma 2 Let X be a nonempty subset in RL, let Y be a nonempty compact convez
subset in RM and let ¢: X x Y — R be a function such that for every z € X, ¢ is
lower semi-continuous in y € Y. Then there ezists y* € Y such that ¢(z,y*) < 0

Jor all z € X if and only if ¢ is 0-gencralized quasiconcave in z € X

Proof. For each z € X, let G(z) = {y € Y : ¢(z,y) < 0}. Since ¢ is lower semi-
continuous in y, G(z) is closed in Y. Then, by Lemma 1, the family of sets {G(z) :
z € X} has the finite intersection property if and only if G has the generalized
KKM property on X. Since Y is compact, cx G(2z) # @ if and only if G has
the generalized KKM property. Also, note that $(z,y*) < 0 forall z € X and
y* € Y is equivalent to y* € N;exG(z). Further note that G has the generalized
KKM property if and only if ¢ is 0-generalized quasiconcave in z (cf. Remark 1).
Therefore, there exists a point y* € Y such that ¢(z,y*) < O forallz € X if and
only if ¢ is O-generalized quasiconcave in z € X. Q.E.D.

10 Also, we do not require A = Z.
1A function ¢(z,y): X x Z — R is said to be 0-diagonally quasiconcave in z, if for any finite

subset {z',...,z™} C X and any z° € co {z',...,2™}, we have min; <k m $(z*,2°) < 0.
<kg
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If there exists an z° € X such that {y € Y : ¢(y,z°) < 0} is compact on Y, we

can relax the compactness of Y.

Lemma 3 Let X be a nonemply subset in RL, let Y be a nonempty convez subset

in RM and let ¢: X XY — R be a function such that

(a) for every z € X, ¢ is lower semi-continuous in y € ¥

(b) there ezists an z° € X such that {y € Y : ¢(y,2°) < 0} is compact
onY.

Then there ezists a y* € Y such that ¢(z,y*) < 0 for all z € X if and only if ¢ is

0-generalized quasiconcave in z € X.

Proof. Vor cach z € X, let G(z) = {y € Y : ¢(z,y) < 0}. Thus, to prove the
conclusion of the lemma, we only need to show that ¢ x G(z) # @ if and only if
G has the generalized KKM property.

Necessity. Suppose (L;ex G(z) # 0. Then {G(z) : z € X} has the finite
intersection property. Since ¢ is lower semi-continuous in y, G(z) is closed for each
z € X. By Lemma 1, G has the generalized KKM property.

Sufficiency. Suppose G : X — 2Y has the generalized KKM property. Then, by
Lemma 1, G has the finite intersection property and thus {G(z) N G(z°) : z € X'}
also has the finite intersection property. Now since {G(z)NG(z°) : ¢ € X} is a
family of compact sets in G(z°) we have § # MNex G(z) N G(2°) = Nzex G(2).
Q.E.D.

More generally, we can replace condition (b) with
(b’) there exist z',...,z" € X such that N}, G(z*) is compact.

Similar to Tian (1989), we can also weaken the lower semi-continuity of ¢. Since

Lemma 2 is a special case of Lemma 3, we thus state:

Lemma 4 Let X be a nonempty subset in RL, let Y be a nonempty convez subset

inRM and let : X x Y — R be a function such that
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(a) for every z € X, if ¢(z,y) > 0, then there erist some point z' € X
and some neighborhood N (y) of y such that ¢(z',z) > 0 for all z €
N(y)i

(b) there ezist z',...,z" € X such that N}, G(z¥) is compact.

Then there ezists a y* € Y such that ¢(z,y*) < 0 for all z € X if and only if ¢ s

0-generalized quasiconcave in z € X.

Proof. We only need to prove sufficiency. For each z € X, let G(z) = {y € Y :
#(z,y) < 0}. Thus, to prove the conclusion of the lemma, we only need to show
that M ex G(z) # @ under the above assumptions.

We first prove ;ex cly G(z) = MNzex G(z). It is clear that N,ex G(z) C
Neex clyG(z). So we only need to show ¢y cly G(z) C Nzex G(z)- Suppose, by
way of contradiction, that there is some y in ;¢ x cly G(z) but not in N ex G(2).
Then y ¢ G(z) for some z € X and thus ¢(z,y) > 0. By condition (a), there is some
z' € X and some neighborhood N (y) of y such that ¢(z’,z) > 0 for all z € N(y).
Thus y € clyG(z'), a contradiction.

For z € X, let G(z) = ¢ly G(z). Then G(z) is closed and, by the 0-generalized
quasiconcavity of @, it has the generalized KKM property. By Lemma 1, G has the
finite intersection property. Thus, by condition (b), Mzex G(2) = Neex cly G(z) #
0. Hence, there exists a y* € Y such that ¢(z,y*) < 0 for all z € X. Q.E.D.

The final tool we need to prove our theorems is the following lemma, which
generalizes the results of Nikaido and Isoda (1955) by relaxing the finiteness of

number of players.

Lemma 5 Suppose that y* € A satisfies
sup U(z,y") <0. (15)
€A

Then y* is an equilibrium for T. The converse is true when A is a (Cartesian)

product of strategy sets.
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Proof. Let y* € A be a solution of (15) and let z = (z;,y~;). Then we have
1 . .
U(z,y7) = ;[u-‘(z-‘,y_.-) —u(y)] <0 (16)
for any z; € Z; with (z;,y%;). So y* is an equilibrium of the game.

Conversely, if A is a product of strategy sets, we can obtain (15) by summing

up (16) for all i € I. Q.E.D.

6.3 Proofs of Theorems 1-5

Proof of Theorem 1. Define a correspondence G; : Z — 2% by Gi(z) = {v: €
Z; ¢ ui(z) — ui(yi,z—;) < 0} for all z € Z. Since u; is upper semi-continuous in
vi, Gi(z) is a closed subset for all z € Z. Also since Z; is compact, by Lemma 1,
Neez Gi(z) # 0 if and only if G; has the generalized KKM property on Z. So there
exists a y7 € Z; such that u;(z) — ui(y},z-;) < 0 forall z € Z if and only if u; is
uniformly generalized quasiconcave on Z. Q.E.D.

Proof of Theorem 2. The proof of Theorem 2 follows directly from Lemma 2 and
Lemma 5 by taking U = ¢. Q.E.D.

Proof of Theorem 3. The proof follows directly from Lemma 3 and Lemma 5 by
taking U = ¢. Q.E.D.

Proof of Theorem 4. The proof follows directly from Lemma 4 and Lemma 5 by
taking U = ¢. Q.E.D.

Proof of Theorem 5. We only need to show the sufficiency. From Lemma 4, we
know that there exists a point y* € Z such that sup_ ¢4 U(z,y") < 0. Now we must
have y* € A, for otherwise U(z,y*) > 0 for some z € A by condition (c). Hence

y* € A. Then by Lemma 5, y* is a Nash equilibrium. Q.E.D.

7 Concluding Remarks

The examples and theorems presented above reveal that the continuity and qua-
siconcavity conditions assumed in the literature on the existence of pure-strategy
Nash equilibrium can be considerably weakened. Specifically, 0-generalized qua-

siconcavity and uniform generalized quasiconcavity, together with some “regular”
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topological conditions, are not only sufficient but also necessary for the existence
of pure-strategy Nash equilibrium and dominant-strategy Nash equilibrium, respec-
tively. Similar theorems obtain under weaker topological conditions. Thus our anal-
ysis characterizes the existence of pure-strategy Nash equilibrium in games where
the payoff functions are discontinuous and non-quasiconcave, the number of players
is infinite, and the strategy spaces are neither convex nor compact. Thus the exis-
tence theorems given in this paper generalize almost all of the existence theorems
on Nash equilibrium in the literature such as those of Nash (1950, 1951), Debreu
(1952), Nikaido and Isoda (1955) and Dasgupta and Maskin (1986).

The theorems presented in this paper are based on generalizations of the FKKM
theorem of Fan (1961, 1979, 1984) and Chang and Zhang (1989) by relaxing the
FKKM convexity and closedness of correspondences, and the compactness and con-
vexity of strategy sets. In the context of the existence theorems appearing in the
recent economics literature, perhaps the most notable aspect of our theorems on the
existence of pure-strategy Nash equilibrium is that they weaken the quasiconcavity

conditions required by the theorem of Dasgupta and Maskin (1986).
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Appendix A

Proof of Lemma 1. The proof of this lemma is similar to that given by Chang and
Zhang (1989).

Necessity. If {G(z) : z € X} has the finite intersection property, then for any
finite subset {z!,22,...,2™} C X, N, G(z*) # 0. Taking y* € N, G(z*) and
letting y* = y* for k = 1,...,m, we have

colg* 97, ... 9"} = 5} € () 64 ¢ U 6t
k=1 =1

for any finite subset {y*',y¥*,...,v*'} C {¥',4%,...,¥™}. So G has the generalized
KKM property on X.

Sufficiency. Let G : X — 2Y have the generalized KKM property on X. Sup-
pose, by way of contradiction, that {G(z) : z € X'} does not have the finite inter-
section property, i.e., there exists some finite subset {z',2z2,...,2™} C X such that
N, G(a*) = 0.

Since G has the generalized KKM property, for the finite set {z!,22%,...,2™},

there exists a corresponding subset {y!,y%,...,y™} C Y such that for any
{yk‘)yk27‘ & 'Yyk'} C {y17y21 L .’ym},
s
co{y*,v¥,....v*} c U 6.
=1

In particular, we have co {y!,¥2,...,y™} C Ui, G(z*). Let § = co {y!, %3, ...,y™}
and L = span{y',y%,...,y™}. Then S C L. Since G(z) is closed, G(z;)N L is a

closed set. Let d be the Euclidean metric on L. It is easy to see that
d(y, LN G(z*)) > 0if and only if y € L N G(z*). (17)
Now define a continuous function f :§ — [0,00) as follows:
)= T dw. 10 G (18)

for all y € S. It follows from (17) and NFx, G(z*) = 0 that for each y € S, f(y) > 0.

Define a continuous function g : § — S by, for each y € 5,

L s
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Then, by the Brouwer fixed point theorem, there exists a y* € S such that
¥y =9(y") = Z Ty .)d(y , L NG(z*))y*. (20)

Denote

K = {ke{1,...,m}:d(y", LN G(z*)) > 0}. (21)

Then for each k € K, y* € L N G(z*). Since y* € L, so y* € G(z*) for any k € K
and thus

v ¢ U GEY). (22)
keK
From (20) - (21), we have
=3, o )d(y ,LNG(z*))y € co{y* : k€ K}. (23)

keK
However, since G has the generalized KKM property and maps from X into 2Y, we

have

y eco{yf:keK}c | G(z5), (24)
keK

which contradicts (22). Hence {G(z) : z € X} has the finite intersection property
on X. Q.E.D.
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