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I Introduction

The grouped heteroskedasticity model specifies a partitioning of the n
observations in a regression model into M mutually exclusive groups.
Disturbance variances are assumed to be constant within groups but are
permitted to vary between groups. Recently in this REVIEW Binkley (1989)
presented Monte Carlo evidence on the relative efficlency of two estimators
of the regression coefficlents in the grouped heteroskedasticity model. The
alternative methods differ according to whether the disturbance variances
are estimated using residuals from individual group regressions or one
pooled regression. This note extends this discussion with particular
emphasis on matters of computational convenience, and on testing hypotheses
and imposing restrictions on variance parameters. The arguments presented
here provide further information on which to base a choice between the

alternative methods.

11 The grouped heteroskedasticity model
The grouped heteroskedasticity model can be written as

(1) Yl = XIB o, L =Ll vor oM

1
where Yl and ux are nl element vectors, X‘ is an nlx k matrix of explanatory

variables, B 1s a k x 1 vector of coefficients and var (ul) = o?ln.
1

Binkley (1989) has compared two alternative methods of generating the
estimated generalized least squares (EGLS) estimator of B. In the first
method, a separate OLS regression is run for each group of observations and

vf is estimated by

- -1 ( Y‘- X‘b‘)'( Yl- le‘)

i n -k
i

where b = (X'X )X’y
1 1 | i 1

In the alternative methqd. the information that each b: is an estimate of



the same B is incorporated by obtaining a pooled estimate of B, namely b =
(X’X)"'X’'Y where X and Y contain the stacked Xl and Yl. Estimates of the

individual group variances are then obtained from

(Y=Xb)'( ¥ ~XDb)
(3) b A= L NG (T, L
1 n =k
1

Let us call the EGLS estimators of B based on (2) and (3) the unrestricted
and restricted estimators. Binkley (1989) provides simulation results
comparing these estimators. The evidence suggests that for extreme
heteroskedasticity the unrestricted estimator is more efficient in finite
samples, whereas for moderate and low degrees of heteroskedasticity the
restricted estimator is more efficient. Asymptotically, both estimators

are of course fully efficient.

For applied work, Binkley expresses a preference for the unrestricted
estimator. This preference is reinforced by his view that this estimator is
also computationally more convenient. With reference to the restricted

estimator he comments that:

"This is somewhat more troublesome to employ, since it requires

the partitioning of a residual vector." Binkley (1989, p660),
and concludes that:

"Since in general it is more troublesome to employ, we see little
recommendation for this method when the sample size is adequate."

Binkley (1989, p.664).

Unfortunately this particular criticism is misplaced. Computation of (3)
can be carried out in an entirely simple and straightforward manner. The
key is to recognize that this particular heteroskedastic model falls into
the class of additive heteroskedasticity models where the disturbance
variance is specified as a linear function of a set of exogenous variables.
Importantly, this relationship is conveniently represented by a secondary
equation which facilitates the computation of estimates of disturbance

variances. Moreover we suggest that this framework has the added advantage



of providing a ready framework for testing hypotheses and imposing

restrictions on these variance parameters.

III Additive heteroskedasticity

The additive heteroskedasticity model postulates the following particular
relationship

(4) o =z'a J=R; swy i R =Fng

where zj’ is a 1xp vector of exogenous variables and « a conformable vector
of unknown parameters. Notice that this represents a general situation
where variances are allowed to vary over the individual observations. In
order to obtain estimates of « and ultimately oj, one estimates a secondary

equation of the form
(5) wv=z'a+e
J J J
where u_are the OLS residuals from the estimation of the primary equation
given by (1). For extensive analysls of this model see Amemiya (1977,

1985).

For the special case of the grouped heteroskedasticity model, the secondary

equation in matrix form is given by

~2 0 .0 o2
ug 1 1 €
- 0 0 2
u2 # %2 €
(6) 2 = |0 0 Ly 0 : + 2
. o 2
& " o
K
u 0 0 0 (4 €
M n
where Ll is an n1X1 vector of wunit elements and a« = (cf....,ai)'.

Calculation of (3) is simply a matter of running an OLS regression of the

squared residuals from OLS estimation of (1) on a matrix of dummy variables.



In the case of M = 2, both methods discussed by Binkley (1989) involve two
OLS regressions to determine estimates of cf and hence would seem to be
computationally equally convenient. It is true that as M increases there is
a difference in computational convenience. However it 1is the method
preferred by Binkley that becomes somewhat troublesome, as it requires M OLS
regressions while the alternative method still only requires two. While the
weight of the simulation evidence in favour of either estimator depends on
the degree of heteroskedasticity, the computational aspects surely favour

the restricted estimator that utilizes the secondary equation.

IV Hypothesis testing

Notice that (6) does not contain an intercept. We can consider an
alternative form of (6) where say the first group dummy is replaced by an

intercept. In this reparameterization of the model, the coefficients on the
. -
remaining group dummies; say az. ceea 0,

disturbance variance of the first group. This serves to highlight an

represent deviations from the

additional advantage of using the secondary equation approach to estimate
the af. Namely it provides a ready framework for testing hypotheses and

imposing restrictions on these variance parameters.

Estimation of the secondary equation would naturally provide "t-statistics"
for use in the testing of hypotheses regarding individual a: parameters

More importantly the null hypothesis of homoskedasticity is represented by
the restriction a; = ... = a: = 0. The LM test of this hypothesis is based
on a statistic given by the regression sums of squares from this regression
divided by 2;‘. where ;2 is the average of the squared residuals from the
OLS regression of (1); see Breusch and Pagan (1979) for further details.
Moreover, a simple alternative that 1is asymptotically equivalent to the
Breusch-Pagan statistic but which 1s robust to nonnormality can be
calculated as n times the R2 from this regression; see Koenker (1981). See
Buse (1984) for some Monte Carlo comparisons of alternative methods of

testing for additive heteroskedasticity.

As an example of a framework that facilitates the imposition of restrictions

on the form of the heteroskedasticity, suppose one has a priori information



2 2 2
of the form ol < az & wons & ﬁn . The secondary equation then becomes
-
~“2 ] 0 2
ug 1 1 €,
o L L %
o2 2 2 o &
4 2 = L L L +
) . 3 3 3 =
% é 5 ”
- ’ «
2
u' & ¢ L €
n M ] M M n |
* 2 ol 2 2
where o, Fio and e, S S g =0, 1 =2, ... ,M. A speclal case is the

model proposed by Nerlove (1971) as an alternative reparametrization of an

error components model with individual effects. Here M = 2 with ci = ci}and
cz = ai + T@Z , where oz is the variance of the individual effect, oi)ls the

variance of the disturbance and T is the number of time series observations
-
avallable for each cross-section. The reparameterization leads to a = cs
¥ 2
and a_ = To
2 M

As another example, suppose M = 3 and that the variance in one group is the

sum of the other group variances. Here the secondary equation takes the
form
"2 L 0 *
u; 1 « €
(8) 2 lwe j? G o |+
; 7 i L :
i 3 3 :
u €
= n
* 2 * 2 - - 2
where oy, =0y, & = ey and %y + O =0 Again the secondary equation

framework proves to be very convenient.

V Comments

Before concluding, there are several points worth noting that relate to the
additive heteroskedastic model and the speclal case of grouped
heteroskedasticity. First, in (5), the condition that E(c)|zj) = 0 is only
satisfied asymptotically. Hence, even though the OLS estimates of « in (6)

are identical to (3), inferential procedures in regard to «a are asymptotic.



Second, Amemiya (1977, 1985) notes that the cj in (5) are themselves
heteroskedastic with an asymptotic variance (under normality) equal to
2(zJ'a)2 and hence recommends a second step in the estimation of (5) in
which the equation is reestimated using weights derived from the OLS

estimates of « to obtain EGLS estimates.

Interestingly, a special feature of the grouped heteroskedastic model is
that this additional step is unnecessary because GLS produces estimates of «
that are identical to OLS. (See the Appendix for a proof of this
proposition.) Hence there is no efficiency gain in carrying out Amemiya's
second step. It is true that the standard errors of the «’s produced by OLS
will be biased, so that the full 2-step procedure should be carried out for

making (asymptotically) correct inferences about a.

A pervasive problem in the estimation of secondary equations 1is that of
ensuring nonnegative estimates of the variances, oj . Again it 1is
interesting to note that the special case of the grouped heteroskedastic
model 1is one situation where this problem does not appear. The estimates of
the 0? generated by the secondary equation are nonnegative with probability
one. This is easily seen from the form of the estimates given in (3). On
the other hand OLS (or EGLS) estimates generated from the secondary
equations of other models such as (7) and (8) are not necessarily guaranteed
to satisfy the appropriate nonnegativity constraints. Notice here the
distinction between nonnegativity of estimates of a' and of oj; the former
is not necessary for the latter. In fact unconstrained estimation of (7)
will guarantee nonnegative estimates of vj, but not of a.as required by the
specification. Fortunately an easily computed constrained version of the
Amemiya 2-step method, has recently been suggested by Bartels and Fiebig
(1990). This method has good small sample properties and has been
successfully implemented in the empirical work of Fiebig, Bartels and Aigner
(1988).

Ronning (1985) provides a more detailed analysis of the violation of
nonnegativity constraints. In the case where the dependent variable is
nonnegative with probabllity one, as it 1s 1n the secondary equation,
Ronning provides easy to check conditions for predictions of the dependent

variable, here estimates of oj, to be nonnegative with probability one.



For the secondary equation in (5), let Z be the nxp full-rank matrix of
regressors and suppose it has r = n nonproportional rows. If B is the rxp
matrix containing these rows then we can write Z = AB with A having exactly
one nonzero element in each row. A necessary and sufficient condition for
the nonnegativity of the of estimates is that p = r and that each column of
A is elther nonnegative or nonpositive. Immediately we see the potential
pervasive nature of the nonnegativity problem. A typical situation would
have r > p; i.e. there would be many distinct nonproportional rows of 2Z.
However, for the grouped heteroskedastic model of (6) Z = A and B 1s an MxM
identity matrix; the conditions of Ronning are satisfled. On the other
hand the model in (8) ylelds

¢, 0 0 0
A= b (o} and B = 0 1
0 3 i
3
where rank (B) = 2 < r = 3. Hence variance predictions from the secondary

equation of this model are not guaranteed to be nonnegative.

VI Conclusion

The paper of Binkley (1989) is important because it alerts practitioners to
differences in the efficiencies of EGLS estimators of B that may be
attributable to the use of different estimators of the group disturbance
variances. We have nothing to add to his Monte Carlo results and we agree
with his conclusion that the choice of alternatives is somewhat problematic.
Our purpose has been to provide extra informatlon that may ald the
practitioner in making the choice between methods. In particular we show
that the method that restricts B to be equal over groups in the first stage
OLS regression can be put into a framework which involves estimation of a

secondary equation for the variance parameters.

Having made this connection, it is clear that, despite Binkley’s contention,
the restricted estimator which takes advantage of the secondary equation

representation is computationally convenient and its comparative advantage



over the alternative method of estimating M separate first stage regressions
increases with the number of groups. Moreover, the secondary equation also
provides a framework that is extremely convenient and flexlble for the
purpose of testing hypotheses and imposing restrictions on the variance

parameters.

While with hindsight the relationship between grouped heteroskedasticity and
the model of additive heteroskedasticity that utilizes a secondary equation
may seem obvious, it appears as though Binkley is not alone in missing the
connection. The econometrics texts of Amemiya (1985), Fomby, Hill and
Johnson (1984) and Johnston (1984) all refer to the two models of
heteroskedasticity without indicating the relationship that has been

described here.

Appendix
Proof of the equivalence of OLS and GLS estimation of (6)
Let the design matrix in (6) be given by Z and let var (e) = 2Q. The
equivalence of the OLS and GLS estimators of a requires Kruskal's (1968)
condition to hold, namely there exists a nonsingular G such that QZ = ZG.

Here
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