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THE EXISTENCE OF AN EQUILIBRIUM DENSITY FOR MARGINAL COST PRICES,

AND THE SOLUTION TO THE SHIFTING-PEAK PROBLEM" t

By Anthony Horsleytt and Andrzej J. Wrobel

Center for Economic Research, University of Tilburg, Hogeschoollaan 225,

P. 0. Box 90153, 5000 LE Tilburg, The Netherlands.

A result on the existence of a price density in Bewley's (1972) model of competitive

equilibrium is used to set up a model of competitive equilibrium pricing for time-

differentiated commodities (which are usually also differentfated over events of

delivery), supplied either by price-taking, profit-maximizing industries or by public

utilities pricing their products at exact marginal cost. This has applications to, e.g., the

pricing of electricíty and water. Since Bewiey's "Exclusion Assumption" does bq.~, hold

for firms using the differentiated commodity as an input, we use a weaker version of this

assumption, which is shown to hold for firms with Mackey continuous production

functions. In peak-load pricing problems, firms and households satisfy Mackey

continuity assumptions if their consumption of the commodity in question is harmlessiy

interruptible. Under this assumption, we prove that the equilibrium time-profile of

output has a peak plateau over which the marginal capacity cost, represented by a price

density, is spread. This provides a formal setting in which a conjecture of Boiteux on

the solution to the "shifting-peak problem" is true.
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Introductlon

Our purpose in this paper is to set up a continuous-time model of competitive

equilibrium pricing for time-differentiated commodities (which are usually also

differentiated over events of delivery and over locations) such as electricity and water,

supplied either by price-taking, profit-maximizing industries or by public utilities

pricing their products at exact marginal cost. To answer questions raised in the past on

the existence of a market equilibrium in peak-load pricing problems, we formulate and

prove an equilibrium existence result of the kind called for by Dreze (1964, pp. 16-

17), and we examine within this context a conjecture of Boiteux (1964, pp. 81-82) on

the form of a solution to the "shifting-peak problem".

Marginal cost pricing has long been recommended on the grounds of its

theoretical allocatíve efficiency, and a number of tariffs for, e.g., electricity, has been

constructed to approximate roughly marginal costs. However, pricing at exact marginal

costs has until recently been impracticable. With advances in metering and

computation, more detailed, "responsive" pricing has become feasible. As a result, there

have been proposals for, and several experiments with, "spot" pricing which

equilibrates supply and demand in real time: see, for example, Bohn, Golub, Tabors and

Schweppe (1984). To provide a rigorous basis for such pricing, it is necessary to

construct an equilibrium theory which not only takes account of the stochastic aspects of

the problem and of the asymmetries of information which exist in such a market but also

is set up in continuous time. The framework given in Section 2 below can be used as the

basis for such a study, but in this Daper, as far as peak-load pricing is concerned, we

concentrate on the continuous-time aspects of the problem. For this reason, the example

analyzed in Section 2 is a deterministic model of electricity generation. Even in this

context the continuous-time treatment is desirable from a formal viewpoint, since, a

priori, no natural periodization exists, Any approximate pricing solutions which may

be required in practice for the deterministic problem, e.g , for the constructíon of



3

tariffs with relatively few rating periods, should be obtained ex post, by simplifying the

results of the continuous-time analysis.l Similar views are expressed by Boiteux

(1964 , p. 81, lines 13-15) and by Gallant and Koenker (1984, p. 84, Footnote 1).

The only proper alternative to modelling in continuous time would be to consider a

sequence of discrete-time models (with the length of subperiods decreasing to zero in the

límit), and to show that the solutions converge. The limit of such discrete-time

equilibrium prices would be the continuous-time equilibrium prlce. Thus, the

discrete-time approach offers no true simplification by comparison with the

continuous-time approach if the dependence of the discrete-time solution on the

periodization is taken into account, since conditions for the convergence of solutions

should be established. (In technical terms, determining these requíres a specification of

the limiting commodity and price spaces, which are infinite-dimensional, and of the

topologies in which convergence of discrete-time solutions takes place. This amounts to

dealing with the same mathematical questions as those of the continuous-time analysis.)

In the context of peak-load pricing, doubts about the existence of an equilibrium

have been expressed because of the so-called " shífting-peak problem", which can be

described as follows ( cf. Boiteux (1964, Section 3.4.3, p. 81) and Boiteux and Stasi

(1964, p. 118)). For simplicity, we look at a deterministic, one-station model of

electricity generation with a given unit capital cost, r, and a given unit fuel cost, w. The

relevant time period, for one production cycle, is taken to be the unit time interval,

[0, 1]. The long-run cost of generating a time-profile of output, y(t) for t E[0, 1], is

given by

1

C(y) L w fy(Udt t r sup y(t),
0 tE[~,1]

where "sup" stands for the supremum (over time, t). Consider some time-profile of

demand, y. An example of such a time-profile, with a peak of short duration, is shown in
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Figure 1. Offpeak, the marginal cost, i.e., the cost, p(t), of supplying an additlonal unit

at time t, is constant and equal to the unit fuel cost, w. At every peak instant, the long-

run marginal cost, p(t), is higher than w, and the total excess of p(t) over and above

w, summed up over the peaks of y, is equal to the unit capital cost, r. Formaliy,

p(U ~ w t rv(t)

for some nonnegative, integrable function, v, with

i

J ~ct)dt ~ 1,
0

and

v(t) - 0 for every t e[0, 1 1 with y(t) c sup y.

This is illustrated in Figure 2. Since the peak of y lasts only for a short time, peak

marginal costs, w t rv(t), are correspondingly high. Faced with these marginat costs as

prices, electricity users may shift some of their consumption from high-price times to

low-price times. If so, the new time-profile of demand, y', i.e., the demand at prices p,

is líkely to have its peak at times other than the peak times of y, in whích case p is not

a marginal cost price system for y'. That is, the peak shifts away from the original peak

times, and, as a result, peak prices are charged at the wrong times. If a long-run

marginal cost price system, p', for the new demand profile, y', is then tried, the peak

may well shift again. The resulting iterative sequences of demands and marginal costs

need not converge, and it is not clear whether an equilibrium, in which prices are equal

to marginal costs, exists at all. Misgivings of this kind have never been completely

cleared up, although Boiteux (1964, pp. 81-82) and Boiteux and Stasi (1964, p. 119)

have made some progress towards sorting the problem out. Boiteux's conjecture is that

in equilibrium the time-profile of output, y', has a"fairly long" peak plateau (perhaps

consisting of a number of peak intervals). The peak charge, equal in total to r, is spread



5

so as to sustain this plateau on the demand side, i.e., in equilibrium the peak-offpeak

price difference is low enough not to cause the peak to shift. This is illustrated in

Figures 3 and 4. The conJecture is formallzed and proved in Section 2(Example 2.3).

in the discrete-time set-up, the idea that in equilibrium the peak charge may be

spread over more than one subperiod is also put forward by Steiner (1957). For a two-

subperiod model and under the assumption of "independent demands" (i.e., cross-price

independent demands), Steiner (1957, DP. 587-590) in effect shows the existence of

an equilibrium long-run marginal cost tariff. However, Steiner's graphical argument Is

unsuitable for extensions either to the case of more than two subperiods or to the case of

"interdependent demands" (i.e., cross-price dependent demands). Seeking to obtain such

extensions, Steiner (1957, Appendix) reverts to the social surplus maximization

framework, and only gives necessary and sufficlent conditions for a surplus maximum.

These shortcomings are pointed out by Dreze (1964, pp. 16-17) who stresses the need

for a rigorous analysis of existence and uniqueness of peak-load pricing equilibria. In a

continuous time set-up with "independent demands", peak-load pricing policies for a

social surplus-maximizing monopoly and for a profit-maximizing monopoly are

described by Takayama (1974, pp. 671-684). The issue of the existence of an optimum

is not addressed in that work, either. This gap might be filled, but, as with Steiner's

contribution, a basic flaw is that the Marshallian surplus concept is ill-defined except

for very special cases. Although Marshallian surplus may be useful in practice for an

approximate appraisal of the effect of small price and quantity changes, its use for ylobal

optimization, even were it correct, would be unnecessary for the purpose.

The equilibrium distribution, v', of the peak charge is determined by the

relative strength of demand at the peak instants, and, in general, It is not uniform (i.e.,

v' is not constant over the peak plateau), since, at different peak instants, different

prices may be required to bring the demand down to the same (peak) level. Typically, a

unique v~ is singled out in this way, in which case the eouilibrium marglnal cost price
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system, p', is uniquely determined, despite there being many marginal costs at the

equilibrium output, yY (each corresponding to a possible spreading, v, of the unit

capital cost over the peak plateau of y~). A similar observation is made by Littlechild

(1970, p. 326, lines 3-7) in the context of a discrete-time model.

It can be shown that the equilibrium price, px(t), is continuous over time, t,

under the assumption that the marginal utility of each household's electricity

consumption and the marginal productivity of each firm's electricity input are

continuous (over time): see Horsley and Wrobel (1990a). This is because a

discontinuous time-profile of price causes a"shifting-pattern problem", which can

informally be described as follows. Since marginal utilities and productivities are

continuous, an upward (discontinuous) jump in price at any time will bring about a

downward jump in both household and ínput demand. This cannot be an equilibrium

because the marginal cost, for a given output bundle, is not higher at a time when the

output level Is lower (i.e., for a tlme-prof(le of marginal cost, p, at an output bundle, y,

and for every pair of instants, t and t', if y(t) i y(t'), then p(t) z p(t')).

To see what the price continuity result of Horsley and Wrobel (1990a) implies

for the properties of the equilibrium output in peak-load pricing problems, consider a

two-station model of electricity generation. From the continuity of the equilibrium

price it follows that the equilibrium output has an Q[[-neak plateau at the level equal to

the total base-load capacity. This is because only during such a plateau is it possible for

a gradual, continuous transition of the equilibrium price from the marginal operating

cost of the first station, wl, to that of the second station, wz, to take place. This removes

the "shifting-pattern" problem that would occur if, offpeak, the price could only be

equal to wl or to wz. Similarly, in an N-station model, generally there are N-1

off-peak plateaux in the equilibrium output, in addition to a peak plateau. A difference

between the roles of the peak and the off-peak plateaux should be noted: whereas th?

peak plateau is necessary for the existence of an equilibrium price, in a multi-station
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model the off-peak plateaux are necessary for the equillbrium price to be continuous. It

is worth observing that the price continuity result follows crucially from the property

that cost is a symmetric function of the output bundle, i.e., the joint cost, C(y), depends

only on the distribution of the output level in the bundle y, and aQ,~, on the way in which

the values y(t), for t E[0, 1], are arranged on the time interval. Cost symmetry is a

characteristic of peak-load pricing problems: for details of the above arguments, see

Horsley and Wrobel (1990a).

An implicit assumption of Boiteux's solution to the shifting-peak problem is that

customers switch off briefly to avoid paying high charges levied during short periods of

time. This implies that households' electricity consumption and the production

processes of those firms using electricity as an input can be interrupted for a short time

without much loss of utility or output. To state this assumption formally, denote by

f(z) a firm's output when the electrictty input is z. If the set of times during which the

firm switches off its power intake is denoted by A, then the firm's input is equal to z(t)

for t e A and zero for t e A. This new input can be written concisely as zX10, t]`A~

where XIO 1)`A is the characteristic function of the complement of A, equal to 0

on A and to 1 on [0, 1]`A. In these terms, the requirement on the production function

is that f(zX10 t)`A) increase to f(z) as the duration of A decreases to zero ( i.e., as

the Lebesgue measure, mes(A), of A decreases to zero). This is illustrated in Figure 5.

A similar continuity assumption must be made for each household's utility as a function

of electricity consumption.

A general framework for the equilibrium analysis of pricing for differentiated

commodities, based on a refinement of Bewley's (1972)model, is set up in Section 2.

This framework is applicable, e.g., to peak-load pricing problems, also with a stochastic

demand, and it is used for the cases of electricity and water by Horsley and Wrobel

(1990a, 1990b, 1990c). Bundles of a differentiated commodity are modelled as

(essentially) bounded functions on a set, -, of commodity characteristics (which include
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the date). More precisely, there is a measure, N, on a sigma-algebra, ~, of subsets of

-, and the differentiated-commodity space is L"(-, ~, N), abbreviated to Lp(-).

Prices are taken to be the norm-continuous linear functionals, p E L"`(~), on the

commodity space. Generally, these have a singular part, pf, as well as a density part, p~

E L~(-). The density term is a N-integrable function on -, and, therefore, it has a

natural interpretation as a list of prices, with the value of any commodity bundle, x E

L"(c), calculated as the integral, J` x(E)Pc(E)N(dE), of the quantity of each

commodity, E E-, multiplied by its price. Strictly speaking, one cannot in an

L"-economy identify singular elements of L"M as the prices of individual commodities.

Formally the presence of a singularity in a price system means that the value of unit

quantities of an arbitrarily small set of commodities is extraordinarily high in

proportion to the size of this set of commoditíes (i.e., their value would not go down to

zero with the measure of the set). In the case of our deterministic peak-load pricing

example, for which the commodity space is L"(0, 1], the price has a singular

component when the capital cost is concentrated on a peak of an "extremely short"

duration. When, however, the peak lasts for a positive time, the Deak charge is spread

over the peak plateau, in which case it is mathematically represented by a density, i.e.,

an íntegrable function on (0, 1]. Thus, in this formalism, Boiteux's conjecture can be

formulated as an assertion of the existence of an equilibrium price density, i.e., the

singular component is absent from the equilibrium price. Technically, this is proved,

in Theorem 2.1 , under the assumption that both consumer preferences and production

functions of those firms using the time-differentiated commodity as an input are Mackey

continuous (for the duality between L" and L 1). In fact, this assumption allows llie

largest possible class of continuous utility functions and production functions satisfying

the requirement, stated above, that demand be harmlessly interruptible. This is because

the Mackey topology is the strongest among those locally convex topologies on the

commodity space L"[0, 1] in which the bundle zXi~ 11`A, obtained by deleting the

part of z with dates from a subset, A, of the time interval, converges to the original

bundle, z, as the total duration of the deleted dates, mes(A), of A decreases to zero.
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Under this assumption the equilibrium output, y', has a peak plateau, and the peak

capacity cost, represented by a density, is levied during this time. This solution is

illustrated in Fiqures 3 and 4 for the case of the simplest peak-load pricing proDlem,

i.e., the deterministic, one-station model of electricity generation, discussed in

Exampie 2.3.

Some explanation of the notion of " marginal cost" is due, since, in general, the

cost of production, C(y). is a nondifferentiahle function of the output bundle, y E Lt(-).

To give a precise meaning to "marginal costs", we use the subdifferential, aC(y), i.e.,

the set of all subgradients at y, as the concept of a generalized derivative. Since any

equilibrium price, p', is a subgradient of the cost functíon, it foliows that p`

automatically belongs to Ll(-) if the cost, C(y), is a Mackey continuous function of the

output bundle, y. However, in peak-load pricing problems, a part of the capital cost is

proportional to the highest output level over the relevant time period, and It is Mackey

lower semicontinuous but not Mackey continuous. Also, it should be noted that this cost

term, viz., the supremum functional, y. ess sup tE(o, il y(t), is nondifferentiable.

(There are multiple singular subgradlents of ess sup at every y E L~, and subgradients

with a density are either multiple -- if y has a peak plateau -- or non-existent: see

Yamamuro (1974, (4.4.8) on p. 93 together with (4.1.4) on p. 77), loffe and

Tihomirov (1979, Section 4.5.1, on p. 219), and Formula (2.1 1) below. Other cost

terms may be nondifferentiable as well, e.g., In the multi-station model of electricity

generation: see Horsley and Wrobel (1986a, 1988b).) In terms of subgradients, the

equilibrium distribution of capital charges, v', in Boiteux's solution is an element

of a ess sup(y' ) n L 1[0, 1 1.

For a multi-station model of electricity generation (to which Theorem 2.1

appiies), the question of the existence of an equilibrium price density is not more

complex, from the topological point of view, than in the one-station case. This is

because the cost function, C(y), has a decomposition as the sum of a term proportional to
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ess sup y and of a Mackey continuous term, Cp(y), every subgradient of which has a

density. (These densities are calculated by Horsley and Wrobel (1988b, Theorem 4)

using the results of Horsley and Wrobel (1986b, 1987a).) However, with a multi-

station technology the structure of the equilibrium price is more complicated because

marginal operating costs are nonconstant, and, as a result, there are output plateaux on

whích marginal fuel costs are multiple, i.e., Cp Is nondifferentiable. As discussed

above, it follows from the continuity of the equilibrium price density that such output

plateaux occur in equilibrium. As a result, the equilibrium price system is determined

b.9Lh by an appropriate spreading of the peak capacity cost;~ by an appropriate variant

of margínal operating costs (on those plateaux).

It should be noted, however, that in practice Mackey continuity assumptions

about demand are by no means obviously correct. It seems that production and

consumption processes are not always harmlessly interruptible, and, in practice,

pointed peaks persist despíte highly concentrated peak charges, when, apparently, it

does not pay for firms and consumers to switch off even briefly. With point peaks, the

equilibrium price includes a peak-load charge levied at the ~eak instant, and, as

mentioned above, such a singularity in the price cannot be usefully represented if the

commodity space is L"[0, 1]. If, however, the commodity space is taken to be C[0, 1],

the normed space of continuous functions on [0, 1], with the dual equal to M[0, 1], the

space of Borel measures on [0, 1], then charges of this kind can be represented as scalar

multiples of Dirac measures, each of which represents a charge per unit of demand at a

peak instant: see Horsley and Wrobel ( 1986a, 1988a). This kind of equilibrium may

occur if consumer preferences are norm-continuous but not Mackey-continuous: the

simplest example for this is that of perfect complementarity in consumption over time,

with each consumer's maximum demand occurring at a finite number of instants. The

price space 'rK[0, 1] is suitable for modelling this case because it contains pure point

measures as well as measures with a density a~d, therefore, it can accommodate charges
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per unit of demand level (at specified times) as well as charges per unit of demand per

unit of time. The difficulties with the use of

C[0, 1] as a commodity space, caused by the noncompactness of the unit ball (in any

vector topology) are overcome by taking account of natural restrictions on the feasible

demand bundles: see Horsley and Wrobel (1988a).

Results on the existence of an equllibrium price density, which are discussed in

detail in Subsection 3.2, were first given by Bewley (1972). The case of exchange

economies is simpler, and, under assumptions which include the Mackey lower

semicontinuity of consumer preferences, Bewley shows that any equlllbrium price is

singularity-free. For production economies, equilibria with price singularities exist,

and one can only show that, under appropriate assumptions on the production sets, the

density part of every equilibrium price is itself an equilibrium price that supports the

same equilibrium allocation. Bewley considers two examples with production: an

intertemporal problem (in discrete time, with an infinite number of periods) and an

uncertainty problem. He also offers a generalizatlon of the relevant properties of

production sets in these examples, whlch he calls the "Exclusion Assumption". For our

purposes, however, Bewley's analysis is insufficient, since his "Exclusfon Assumption"

usually does not hold for firms that use a differentlated commodity as an input. This is

because the loss of a part of the input bundle results in a lower output. Our point is that,

in this context, it is sufficient to assume that the output (of a homogeneous commodity)

is a Mackey continuous function of the input of the differentiated commodity: see

Theorem 2.1. An abstract property of production sets assumed for an equilibrium price

density result should include this example as a special case, and this requirement is met

by the Elimination Property, given in Definitlon 3.3. The Elimination Property is,

essentially, formulated by Back (1984, Properties E and M). However, Back (1984;

1988, Section 4) deals mainly with the structure of consumption sets, and does not give

examples of production sets with the Elimination Property but not satisfying Bewley's

Exclusion Assumption. By contrast, our main goal in this paper is to give an application
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of the result obtained by relaxing Bewley's assumptlon on the production sets. Such an

application (Theorem 2.1) is a corollary to the more abstract Theorem 3.4, which is a

somewhat streamlined version of the analysis of Back (1984, Theorems 1 and 2).

In each section (or appendix), the numbering of formulae, etc„ is independent of

other sections. For example, (2.1) is the first formula of Section 2, and (B.1 ) is the

first formula of Appendix B. Each of Sections 2 and 3 has its own set of assumptions,

with the first assumption for Section 2 is numbered as (a.2.1 ), etc. The other formal

paragraphs (definitions, theorems, etc.) are numbered consecutively within each

section (or appendíx). Appendix A contains definitions and results about the space L"

needed for Sections 2 and 3. Appendix B contains proofs of the results of Sections 3 and

2-- given in this order, since the set-up of Section 3 is a generalization of that of

Section 2.



13

2. A Model of Equllibrium Prlcing at Marginal Cost

We set up an equilibrium model for a time-differentiated commodity (which is

usually also differentiated over events of dellvery) such as electricity and water,

supplied either by a price-taking, profit-maximizing industry or by a public utility

pricing its products at exact marginal cost. The characteristics of the industry's

products are taken to form a set, ~, with a sigma-finite, nonnegative measure, N, on a

siqma-algebra, ~, of subsets of -. Since sub-sigma-algebras of ~ are also introduced

below, it should be noted that the we use the abbreviation L~(-) exclusively to mean

L"(-, 2I, N). The commodity space for the índustry's products is L~(-. á, N),

abbreviated to L"(-) or to L~, and its norm dual, L~"(-, ~1, N), abbreviated to

L"'(-), is the price space for the industry's products. The value of a commodity

bundle, x, at a price system, p, is denoted by (x, p). The subspace of the price space

consisting of N-integrable functions on - Is denoted by LI(-), and it is of central

importance in this model. By the Yosida-Hewitt decomposition, every p E L~"(-) can

be uniquely represented as the sum of its densitu part (or countably additive part),

p~ E LI(-), and of its sinqular part (or Durely finitely additive part), pf E LS "(-)

Besides the norm, the commodity space l~(-) Is equipped with the Mackey topology for

the duality with L~(-), which, for brevity, is referred to as the "Mackey topology".

This topology, which is usually denoted by C(L~, L~ ), can be defined as the strongest

locally convex topology in which the continuous dual of L~ is L I. For our purposes, an

essential property is that XAa - 0 in the Mackey topology as a-~ if (Aa)a,~ is

a N-vanishina seouence of sets from ~f, i.e., a nonincreasing sequence of sets with an

intersection of ineasure zero, Another useful property is that order-convergence in L"

implies convergence in the Mackey topology. These concepts and results are discussed in

detail in Appendix A.

All commodities in the economy other than the given industry's products are

taken to be homogeneous, i.e., nondifferentiated. It is assumed that their number is
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finite, and they are numbered by n- 1, 2, ..., N. Therefore, the full commodity space is

L~(-, á, N) x RN, and a commodity bundle is written as a pair (x, m), where

x E L"(-) and m E RN. A price system is written as (p, q), where p E L~"(-) and

q E RN. A more abstract set-up is treated in Section 3, which can be read independently

of this Section.

There is a finite number of of producers and of households (or consumers) in the

economy. Households are numbered by h- 1, 2, ..., H. The set of feasible consumption

plans for household h is taken to be a nonnegative orthant,

Xh - Lt(-. Bh, N) X R N, (2. 1)

where Bh is a sub-sigma-algebra of 21, for each h. Note that, although the special case

of Bh - 2f is important, we do ~ assume that Bh is equal to ~ for each h, since this

would be too restrictive for our applications to equilibrium with asymmetric

observation of random events. The extent to which Bh may differ from ~ is, however,

limited by Assumption (a.2.2) below. The initial endowmenL of household h is (0, mh )

with mh E RN, i.e., it consists of a nonnegative amount, rnh~, of each homogeneous

commodity. Preferences of household h are represented by a complete weak pre-order,

i.e., a complete and transitive binary relation, Sh, in Xh. The strict order obtained as

the asymmetric part of Sh is denoted by ~h. One of the producers, referred to as "~g

industru", is the sole supplier of the differentiated commodity. As is usual in practical

examples, the industry's production possibilities (or, equivalently, its production

costs) are originally speclfied only for nonnegative product bundles. This is done in

terms of a set, Y, consisting of commodity bundles,(y, a), each of which represents a

nonnegative output of the differentiated commodity, y e L~(-), that the industry can

produce from an input bundle, - a e RN, of the homogeneous commodities. (The

possibility that the industry can also produce some of the homogeneous commodities, in

which case some components of a are positive, is not excluded.) We assume that
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inaction is feasible, i.e., (0,0) e Y. The asymptotic cone of Y, defined as the largest

cone (with vertex at zero) contalned in Y, is denoted by As(Y). (In view assumption

(a.2.7), this definition is equivalent to a number of other definitions of the asymptotic

cone, also called "the recession cone".) With free disposal added, the industry's

production set is the free-dfsposal hull of Y, i.e., it is the set

Y -Lt(-)xRN. (2.2)

By Part (vii) of Proposition A2, this set is equal to the set Yt, defined in Definition A t

of Appendix A. This equality is used to prove that the production set g(ven by (2.2) is

Mackey closed (if Y is).

Besides households, the industry's customers are the other producers, who are

referred to as "fj.Cm~" and numbered by J- 1, 2, ..., J. Firms use the differentiated

commodity as an input into the production of the homogeneous commodities. The

production set of firm j is denoted by YJ, for each J. For each firm, J, its productfon

possibilities are equivalently described by a production correspondence, FJ,

from L"(-, CJ, u) into RN, where C~ is a sub-sigma-algebra of ~1, for each J.

Note that, although the special case of CJ - 2[ is important, we do p.p,t assume that tJ is

equal to b for each j, since this would be too restrictive for our applications to

equilibrium with asymmetric observation of random events. The extent to which CJ

may differ from N is, however, limited by Assumption (a.2.4) below. For every fnput,

- z, of the differentiated commodity, FJ(z) is the set of those bundles, b, of the other

commodities that firm j can produce from the input -z of the differentiated

commodity. Note that some of the homogeneous commodities may also be used by a firm

as inputs, in which case they are represented by negative components of b. We assume

that inaction is feasible, i.e., 0 E FJ(0). The production set of firm J has the

representation as the graph of FJ:



16

Y~ -((z, b) e L~(-, C~, N)x RN I b E Fj(z)}, (2.3)

for each j. For a single-product firm, its production possibilities can also be described

by a concave production function, fj, from L"(-, Cj, N)x RN-i into R, with

fj(0, 0) - 0. In this special case, the number fj(z, b-n,) is the maximum output of
J

the single, homogeneous commodity, nj, that firm j can produce from the input -z of

the differentiated commodity and from the input

-b-nj - -(bi ,.... bnj -1 . bnj t ~ ,..., bN)

of the other N-1 homogeneous commodities. (We follow the convention that the minus

sign before a subscript to b denotes the vector obtained by deleting the corresponding
component of b. Also, we write b-(b-nj, bnj).) On the assumptions of free disposal

and that the output is nondecreasing in the amounts of inputs, the production set of a

single-product firm has the representation as the hypograph of the firm's production

function, fj, i.e.,

Yj -((z, b) e LW(-, Cj, N) x ( RN-1 X R) I bn s fj(z, b-n.)), (2.4)
.1 J

or, equivalently, the firm's production correspondence is

Fj(z) -[b E RN-1 x R I bn i fj(z, b-n )), (2.5)
.Í j

for every z E L"(?, Cj, N).

The share of household h in the profits of firm j is denoted by shj, with

shj z 0 and ~h shj - 1 for each j. The share of household h in the industry is denoted

by sh, with sh z 0 and ~h sh - 1 (in the case of constant returns to scale, these shares

are immaterial for the competitive equilibrium solution). The concepts of: an
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allocation, a comoetitive Quasi-eauilibrium, and a comoetitive eauilibrium for this

economy are defined in the usual way, which is given in Section 3 for a more general

set-up. The correspondence of notation between this Section and Section 3 required for

reference to Sectton 3 is: (xh, mh) - xh, (0, mh) - xh, (z~, b~) - y~, (p, q) - p, etc.

The following assumptions on households, firms and the índustry are made for

this Section. Assumptions (a.2.1). (a.2.5), (a.2.7) and (a.2.9) are the usual

assumptions of: nonsatiation of households, convexity of preferences, convexity and

closedness of production sets for firms, and boundedness of the set of feasible allocations,

respectively. Their roles are explained, e.g., by Debreu (1962) and Bewley (1972, p.

520). Assumption (a.2.8), used together with Parts (vii) and (i) of Proposition A2,

guarantees that the industry's production set -- with free disposal included, i,e., the set

gfven by Formula (2.2) -- is Mackey closed. Assumption (a.2.10) is a rudimentary

form of the adequacy (or survival) assumption. It guarantees that in any quasi-

equilibrium all households have a positive income, and, therefore, that each quasi-

equilibrium is an equilibrium. As usual, this is done by ensuring that each household's

initial endowment has a positive value, and it follows that for the adequacy assumption to

hold, all (or at least sufficiently many) of the productive factors should be explicitly

included in the list of commodities, so that rents on fixed factors are modelled as

endowment income rather than as profit, A weaker form of the adequacy assumption can

be obtained by using the concept of an irreducible economy: see McKenzie (1959 and

1961). The rest of the assumptions, which relate to Mackey continuity, are crucial for

the existence of an equilibrium price density. For clarity, the definitions of

"semicontinuity" and "hemicontinuity" (for functions, orders, and correspondences) are

given in Appendix A, since the use of these terms varies in the literature. The

assumption of upper semicontinuity for preferences, included in (a.2.3), is needed for

the existence of an equilibrium price in L~`. For the existence of a density for

equilibrium prices, the assumption of lower semicontinuity for preferences, included in

(a.2.3), is needed, as is explained by Bewley (1972, p. 523). Assumption (a.2.2) is
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also needed for this purpose (in Bewley's set-up it holds trivially, since B h- ~( for

each h). Since, as well as consumer demand, there is also an input demand for the

industry's products in our model, lower semicontinuity of firms' production functions is

also needed for the price density result (just as, for households, semicontinuity of

utility functions is needed), and it is assumed in (a.2.6). In our context, this

assumption is significantly weaker than Bewley's "Exclusion Assumption", which is

quoted in Formula (3. t) below. In our model, Bewley's "Exclusion Assumption" does p~

normally hold for firms, because it would mean that a small subset of commodities in the

firm's input bundle of the differentiated commodity could be dropped without any loss of

the firm's output at all. Instead of such a"no loss" assumption, which would usually be

false, we make a"small loss" assumption, and this is (a.2.6). (Assumption (a.2.4) is

also needed for the price density result, similarly as Assumption (a.2.2); in Bewley's

set-up it holds trivially, since Cj - ~I for each j.) In Section 3, we formulate an

abstract property of production sets, which we call the Elimination Property, and which

includes the example of a firm with a Mackey continuous production function as a special

case. For the industry, which is a producer of the differentiated commodity (rather than

its user), Bewley's "Exclusion Assumption" holds automatically.

(a.2. 1) For each household, h, the preference relation, Sh, is: (i) Mackey

locally nonsatiated, and (ii) convex. (Part (ii) of this assumption holds if preferences

are represented by a quasi-concave utility function.)

(a.2.2) For every N-vanishing sequence, (Aa)Q.~, of sets from 2[, and for each

household, h, there exists a N-vanishing sequence, (Aá)a.j, of sets from Bh

with Aa c Aá for each a-1 , 2, ... .
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(a.2.3) For each household, h, the preference relation, Sh, is Mackey continuous.

(This assumption holds if preferences are represented by a Mackey continuous ut(Iity

function.)

(a.2.4) For every N-vanishing sequence, (Aa)a.i, of sets from g(, and for each

firm, J, there exists a N-vanishing sequence, (Aá)a.~, of sets from CJ with Aa e Aá

for each a -1, 2. ... .

(a.2.5) For each firm, J, its production set, Yj, is convex and Mackey closed (i.e.,

closed in the product of the Mackey topology on L~(-) and the usual topology of RN).

Put in terms of the firm's production correspondence, F~, this assumption means, by

Formula (2.3), that the graph of FJ is convex and Mackey closed. (In the case of a

single-product firm, with YJ and Fj given by Formulae (2.4) and (2.5) in terms of

the production function, f~, this assumption is also equivalent to the concavity and

Mackey upper semicontinuity of f~.)

(a.2.6) For each firm, j, the productlon correspondence of firm j, z- FJ(z), is

Mackey lower hemicontinuous. ( In the case of a single-product firm -- with F~ defined

in terms of fJ by Formula ( 2.5), and under Assumption ( a.2.5) -- this is equivalent to

the Mackey lower semicontinuity of the production function, f~, in its first variable,

i.e., in the input bundle of the differentiated commodity.)

(a.2.7) The industry's production set (before the Inclusion of free disposal of

output), Y, is a Mackey closed and convex subset of L~(-) x RN.

(a.2.8) (i) The set V has the following monotonicity properties:

If (y, a) E Y and 0 s y' s y, then (y', a) E Y; (2.6)
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and

If (y, a) E Y and a' s a, then (y, a') e Y. (2.7 )

(a.2.9) The set

Y n(Lt(-) x RN - F Yj - h (0, rnh) )

and, for each j' - 1, 2, ..., J, the set

Yj~n(L~(c)xRN-Y- ~,Yj-~(O,rnh))
j ~j h

are bounded (in the norm or, equivalently, in the weak~ topology on L`"(-)).

(a.2.10) (i) Each household is endowed with a positfve amount of each homogeneous

commodity, i.e., mhn ~ 0 for each h and n.

(i() The industry can produce every output using production techniques with
constant returns to scale, i.e., for every y E L;(~) there exists a E RN with

(y, a) e As(Y).

Theorem 2.1. Assume ( a.2.1) to ( a.2.10). Then Lhere exists a competitive

equilibrium with a price system for the differentiated commodity that is represented by

a density, pY E L1(c).

Production-supporting prices for the industry's outputs can be calculated as

marginal costs. This is convenient when, as in Example 2.3 below, the relationship
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between the properties of the output prlces and the properties of the output bundle is to
be studied. For any input prices, q E RN, and for any nonnegative output bundle,

y E Lf(c), the production cost can be defined as

C(y, q) - Inf (-(a, q) I(y, a) E Y).

and thls formula Is extended to all y E L"(-) by

Ct(y. q) - inf (-( a, q) I(y, a) E Yt) - inf (-(a, q) I(y}, a) E Y)

- C(y}. q).

In many examples the cost, C(y, q), is a nondifferentiable function of the output bundle,

y, e.g., the cost functions for electricity generation and for water supply, studied by

Horsley and Wrobel ( 1986a, 1987b, 1990b). In the case of a nondifferentiable cost

function, the notion of " marginal cost" requires clarification, and, to give it a precise

meaning, we use the subdifferential, i.e., the collectfon of all subgradlents, aIC(y, q),

as the concept of a generalized derivative, with respect to the first (vector) variable of

C, at any point, ( y, q). Properties of subdifferentials are discussed by, e.g., loffe and

Tihomirov (1979).

Remark 2.2. (i) At any input prices, q, and any price system, p, for the

industry's products, if a production plan, (y, a), maximizes the industry's profit, then

p E alCt(y, q). For this reason, If (p', q~) is a competitive equilibrium price

system, then p` is termed an eoullibrium marpinal cost orice system (for the

differentiated commodity).

(ii) For the case of constant returns to scale, i.e., when Y is a cone, the

industry's marginal costs can be characterized as follows. At any input prices, q, a price

system for the industry's products, p, is a marginal cost at the zero output bundle íf and

only if the value of every feasible input-output bundle, calculated at prices (p, q), is
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nonpositive. Formally, p E a1Ct(0, q) If and only If (p, q) belongs to the polar cone of

Yt, usually denoted by Yt'. For any output, y, one has p E a1Ct(y, q) if and only if

p E d1Ct(0. q) and Ct(y, q)' (y. P)

Example 2.3. Theorem 2.1 can be applfed as follows to solve the shifting-peak

problem in peak-load pricing at marginal long-run cost. For simplicity, consider the

deterministic, one-station model of electricity generatlon with constant returns to scale.

Besides electricity, generating equlpment and fuel, there may be other goods in the model

(the number of which is N-2). In this example, the set of commodity characteristics,

?, is the unit interval of the real line, [0, 1], which represents the relevant time period

(usually a year). This interval is taken wlth the sigma-algebra of Its Borel subsets. B,

and with the Lebesgue measure, mes, on B. With the installed capacity, k, and the

output level, y(t), measured in, say, MW, and with the amount of fuel, v, measured in

MWyears (one MWyear of fuel is defined as the amount needed to run a unit station

continuously for a year), the production set, Y, is given by

1

Y-((y, (-k, -v), 0) e L; [0, 1] X RZ x RN'2 I ess sup y(t)s k, jy(U dt s v), (2.8)
tE [U.Í] ~

where "ess sup" stands for the essential supremum with respect to the Lebesgue

measure. With the unit capital cost per perlod denoted by r, and the unit fuel cost

denoted by w, the (long-run) cost function derived from the production set Y ja~given

by ~

1

C(y; r, w) - w Jy(t) dt t r ess sup y(U,
U tE[~,1)

(2.9)

for nonnegative y, and íts free-disposal extension to all y E L`"[0, 1] is
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1

Ct(y; r, w) ~ w Jyt(t)dt t r esssup yt(t). (2.10)
U tE(~.~)

The set Y is Mackey closed, since ess sup y is a Mackey lower semicontinuous function

of y, and since the integral in Formula (2.8) Is Mackey continuous in y. The set Y

also satisfies the rest of Assumption (a.2.7), Assumption (a.2.8) and Part (ii) of

Assumption (a.2.10). Therefore, with firms and households that satisfy the other

assumptions of Theorem 2.1, there exists an equilibrium price system,

(p'; r', w', ...), with p' E L1(0, 11. (The prices r', w', etc., are scalars.) The

corresponding equilibrium output of electricity is y' z 0. By Part (i) of Remark 2.2,

p' E a1Ct(y': r', w').

We assume that y' ~ 0 and, also, that r' ~ 0(this can readily be guaranteed by

additional assumptions). For simplicity, suppose first that y'(t) ~ 0 for (almost)

every t; then a1Ct(y': r', w')-ij1C(y'; r', w'), from (2.9)-(2.10). At

every y E L`"I0, 1 l,

1

d ess sup(y) n L 1(0, 1] -(v e L t I J v(t) dt- 1, v(t) - 0 if y(t) ~ ess sup y). (2.1 1)
0

This follows from the fact that, at each y, every subgradient of the supremum

functional, v E a ess sup(y), is supported, for every real number 6~ 0, by the set of

approximate (up to 6) peaks of y, i.e., by the set

(t e(0, 1] I y(U ~ ess sup y- 6). (2. 1 2)

(Formula ( 2.1 1) is also given by, e.g., loffe and Tihomirov (1979, Section 4.5.1 , on
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p. 219).) By Formula (2.1 1), a subgradient of ess sup with a density exists if and only

if ines (t I y(t) - ess sup y) ~ 0, i.e., if y has a peak plateau. Since the equilibrium

price, p', has a density, i.e.,

p`ea~Ct(y';r',w')nL1[0,11 - (w`tr'vlvEaesssup(y')nL1[0,1)),

it follows that the equilibrium output of electricity, y', has a peak plateau, over which

the peak charge, equal in total to the unit capacity cost, r, is spread, i.e.,

p`(t) - w' t r`v`(t), (2.13)

for some v` E Li[0, i l with

1

jv~cc)dt - 1,
0

and

(2.14)

v~(U - 0 for ( almost) every t e[0, 1] with y`(t) ~ esssup yr. (2. 15)

If y' ~ 0 but y~ is not strictiy positive, then the constant wY in Formula

(2.13) has to be replaced by some (Borel-measurable) function, ~`, on [0, 1) with

the properties: 0 S~Y(t) s w' for all t and ~`(t) - w` for ali those t with

y'(t) ~ 0.

In the stochastic version of this Example, the peak piateau extends across states

of the worid as well as time.
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Remark 2.4. (i) In the above peak-load pricing example everu equilibrlum

price is singularity-free, unless the corresponding equilibrium output, y', is zero. To

see this formally, take any equilibrium price, (p~; r', w',...), with p' E L~"[0, 1].

Then, by Theorem 2.1, the density part, (p~; r', w~,...) is also an equilibrium price

which supports the same equilibrium allocation. Since C is Iinearly homogeneous in

the output, it follows that (ys, p') - C(y'; r~, wY) ' '- (y , pc). Hence,

(y', p~) - 0. Since: ess sup y~ i 0, p~ z 0, and p~ is supported by the set (2.13)

for every positive 6, it follows, by taking a 6 smaller than ess sup yY, that p ~- 0.

(ii) The equilibrium allocation can be supported by a price with a singular term

in the degenerate case in which the equilibrium output, y~`, is zero. To give an example,

assume, for simplicity, that in Example 2.3 the input prices, r and w, are fixed. This

is an economy in which an electricity bundle, y E L~[0, 1], can be produced at a cost, in

terms of the numeraire commodity, given by Formula (2.9). There is one household,

with an initial endowment, m, of the numeraire commodity only, and with a utility

function on Lt[0, 11 x Rt given by U(x, m) - m t JÓ u(t, x(t))dt, where

u: [0, 1 1 x R, - R is assumed to be concave and nondecreasing in its second varlable and

to satisfy also the other conditlons Ilsted by Bewley (1972, p. 535). Furthermore,

suppose that at zero consumption level the marginal utility of electricity, i.e., the

partial derivative of u with respect to its second variable, is finite and Integrable

over t, i.e., JÓD2u(t, 0)dt c t~, Then any price, p~, with the density part

p~(t) - D2u(t, 0) and with any nonnegative singular part, p ~, of norm strictly less

than r- Ja(D2u(t,0)-w)tdt (which can be made positive by the choice of r and w)

supports the equilibrium allocation in which there is no production and the household

consumes its initial endowment.

In much of the literature on marginal cost pricing it is assumed that the prices,

q, of all commodities other than the given industry's products are fixed. In this case all

commodities in the economy other than the industry's products can be aggregated into a
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homogeneous numeraire commodity ( by positing that, to all intents and purposes, a unit

of commodity n is equivalent to qn units of the numeraire commodity). The full

commodity space is then L~(-) x R, and the minimum production cost, C(y), of any

nonnegative output bundle, y E Lt(-), is expressed in terms of the numeraire

commodity. The industry's production set, Y, is equal to the hypograph of -C, i.e.,

Y-((y, a) E L}(-)x R I a s-C(y)1. (2. 16)

In this context, Assumptions (a.2.7)-(a.2.8) and Part (ii) of (a.2.10) are implied by

the following set of assumptlons on the cost functlon: C, defined on L}(-), is finite,

convex, nondecreasing and Mackey lower semicontinuous, C(0) - 0, and the recession

function2 of C is norm-continuous. Under these assumptions, the free-disposal hull of

the set Y given by Formula (2.16) is equal to the hypograph of -Ct, i.e.,

Y- L',(-) x R -(( y, a) e L~(-) x R I a s-Ct(y)), (2. 1 7)

where Ct(y) - C(yt). Since lattice operatlons ( such as taking the nonnegative part)

are Mackey continuous in L~, Mackey lower semicontinuity of C implies that of Ct. It

follows that -Ct is Mackey upper semicontinuous, or, equivalently, that its hypograph

is Mackey closed. This is another way of phrasing the proof of the closedness of the free-

disposal huli of Y, given in Parts ( i) and (vii) of Proposition A2.



27

3. The Exlstence of an Equillbrium Price Density for Productlon

Economles

In this Section we study the question of the existence of a density for equilibrium

prices in a more abstract set-up than that of Section 2. For ease of reference, in this

Section bold letters, e.g., x and p, are used to denote commodity bundles and price

systems, since in Section 2 the letters x and p denote bundles and price systems for

the differentiated commodity only.

3.1 The Model

Consider an economy with the commodity space Lp(M, 711, NM), where

(M, 9l, NM) is a sigma-finite, nonnegative measure space. Its norm dual,

L""(M, Yf'l, NM), is taken to be the price space. (The framework of Section 2 is a

special case of this, with the underlying measure space equal to the direct sum of

(-, 2(. U) and of the counting measur~ on the set (1, 2, ..., N}.) For brevity, the

symbols M, Yft, and NM are suppressed except where their use helps clarity. All the

concepts and resuits that we use about these spaces are given in Appendix A, including

the Yosida-Hewitt decomposition of every p e L~" into the sum of Its Qgp~ part (or

countably additive part), pc E LI, and of its sinyular part (or purely finitely additive

part), pf E LS". By the "Mackey topology" we always mean the Mackey topology on L~

for the duality with L~.

There is a finite number of households and producers in the economy. Households

are numbered by h- i, 2. ..., H. The set of feasible consumption plans for household h

is denoted by Xh. The initial endowment of household h is denoted by i}~. The

preferences of household h are represented by a complete weak pre-order, i.e., a

complete and transitive binary relation, Sh, in Xh. The strict order obtained from the

weak pre-order Sh is denoted by ~h. Producers are numbered by j- 0, 1, 2, ..., J.
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(For an application of the result of this Section In the framework of Section 2, it is

convenient to number "the industry" of Section 2, wlth the production set Yt, as the

0-th producer.) The production set of producer j is denoted by Yj. The share of

household h in the profits of producer j is denoted by shj, wlth shj z 0 and

~h shj - 1 for each j. An allocation is a Ilst of consumption plans, xh E Xh for each

household, h, and of production plans, yj e Yj for each producer, j. In summations, etc.,

we follow the convention that the range of a subscript (or a superscript) is the largest

possible, with any restrictions specified; e.g., in Condition (i) of the following

definition, h ranges from 1 to H and j ranges from 0 to J.

Definition 3.1 . A pair consisting of an allocation, ((x h)h.H, (y ~)j.~), and of a

price system, p' E L~", is termed a comoetitive auasi-eauilibrium if:

(i) ~(xh-xh) - ~y
h j

( i i) for each j, (y~, p') - sup [(yj, p') I yj E Yj ),

(iii) for each h, (xh, p') t(xht ~shjy~ , p'),
1

(iv) for each h and for every x e Xh, if (x, p~) ~(xh, p'),

then x Sh x h,

and

(V) p' x 0.

Note that, in view of Condition (i), the inequality in Condition (iii) holds as an equality.

An allocation and a price system, ((x h), (y ~), p~), is termed a comoetitive

eauilibrium if: it is a competitive quasi-equilibrium, and, in addition,
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(iv') for each h and for every x e Xh, if (x, p~) s ( xh, D'),

then x Sh x h.

Remark 3.2. (i) Assume that Yp is a cone, and denote its polar by Y~. Then for

j- 0 Condition (ii) in Definition i can equivalently be replaced by the conditions that

(y ó, p~) - 0 and that p' E Y~, i.e., (yY, p~) s 0 for all y E Yp.

(ii) If some household, h, is nonsatiated at xh, then Condition (iv') in

Definition 3.1 implies that p` ~ 0.

3.2. A Review of Prlce Density Exlstence Problem

Results on the existence of an equilibrium price density were first given by

Bewiey (1972, Theorems 2 and 3). His first result deals with exchange economies, and

his second is an extension to production economies, designed for appiications to

intertemporal problems (modelled in a sequence commodity space, R~) and to

uncertainty. For exchange economies, Bewley (1972, Theorem 2) shows that if: (i) the

total initial endowment is assumed to be positive and bounded away from zero (with all

the consumption sets taken to be equal to the nonnegative orthant, Lt ), and (ii )

consumer preferences are Mackey lower semicontinuous, then any equilibrium price,

p"`, is singularity-free, i.e., p ~- 0. Bewley (1972, p. 523) also offers the following

heuristic explanation for the absence of a singular term in equilibrium prices: though

one cannot in an L"-economy identify singular elements of L"" as the prices of

individual gommodities, formally their presence in a"mathematical" price system would

mean that the total cost of unit quantities of an arbitrarily small set of commodities

would be extraordinarily high in proportion to the size of this set of commodities (i.e.,

the cost would not go down to zero with the measure of the seL), and consumers with
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Mackey continuous preferences would want to trade such a set of commodities for

cheaper ones. These commodities would then be in excess supply, since they are present

in the total initial endowment, and this cannot be the case in an equilibrium. In formal

terms, it is shown that (x h, p~)- 0 for each consumer, h, where x h is lhe

equilibrium consumption bundle of consumer h. Since ~h x h is equal to the total

initial endowment which, by assumption, is greater than some positive constant, and

since p~ t 0, it follows that p f- 0. (This formulation of the argument is given by

Back ( 1988, the proof of Theorem 4, for the case Xi - Lt and xi - 0 for each

consumer, i), who also extends Bewley's result to the case of more general consumption

sets.)

For production economies, there is a number of cases to consider, which we now

discuss to Improve upon previous expositions and elucidate the matter. We retain the

assumption that consumer preferences are Mackey lower semicontinuous. There is little

problem if: (i) a singularity in a price system can only occur on a set of commodities

that'are not used as inputs by any producer, and (ii) the assumption that the total

initial endowment is bounded away from zero is kept. In this case, for commodities with

singular prices there is neither an input demand nor, by the argument given above for

exchange economies, a consumer demand. It follows that, at singular prices, these

commodities are in excess supply (since they are present in the total initial

endowment), and the economy could not be in equilibrium. If Condition (i) above does

not hold, then the total initial endowment of expensively priced commodities may be zero

(or arbitrarily close to zero), and the position is more complicated. There are

equilibria (an example is given in Remark 2.4) in which: (i) the price system has a

singular component, (ii) demand for the expensively priced commodities is zero (since

singular prices depress demand, as argued above), and (iii) the fnitial endowment of

those commodities is zero, and so is their total supply because their equilibrium output

is also zero. (Singular prices do not necessarily result in a positive output of the

expensively priced commodities, unless their joint production cost is a Mackey
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continuous functlon of the output bundle. The Doint is that this function is usually not

Mackey continuous but only Mackey lower gg,mj-continuous, e.g., when there are

capacity costs: see Section 2. Mackey lower semicontinuity of cost Is, essentially,

equivalent to Mackey closedness of the corresponding productfon set.) For peak-load

pricing problems in which a Drice singularity can occcur only at peak output, it follows,

however, that the only equilibrla wlth singular prices are degenerate ones in which the

output is zero: for a formal proof, see Part (i) of Remark 2.4.

Thus, when the total initial endowment is not bounded away from zero, it is not

always true that every equilibrium price, ps, is singularity-free. Instead, one proves

that its density part, p~, is itself an equilibrium price which supports the same

equilibrium allocation, consisting of consumption pians, xh, for each household, h, and

of production plans, y ~, for each producer, J. The proof depends on showing that

(y ~, p ~) z 0 for each j. Given that p ~ is nonnegative, this inequality holds

automatically if p ~ is concentrated on the set of outputs of producer J. This ís

automatically the case, e.g., for the production of a differentiated commodity from a

finite number of homogeneous Input commodities, as in the uncertalnty example of

Bewley (1972, p. 527, lines 12-20) and for "the industry" in the framework of

Section 2 above. In some instances when commodities cannot a priorl, i.e., before

choosing a production bundle, be classed as either (net) inputs or outputs, e.g., in the

intertemporal example of Bewley (1972, p. 527, lines 3-11), the inequality

(y s, p ~) 2 0 follows from the feasibillty of inaction and free disposal of output. (A

formal argumenL for that example, in which the commodity space is the sequence space

Q~, goes as follows. Observe that, if (y(t))t.j is a feasible production plan, then the

truncated plan, yiT (defined, for any natural number T, by ylT(t) - y(t) for t i T

and by yiT(t) - 0 for t z T) is also feasible -- even if some of the discarded

components, y(t) for t z T, are negative. Next, note that yiT converges to ys in the

Mackey topology as T- a, and, also, (yIT. p f)` 0 for all T. Therefore, (ys, p f) ~ 0

would imply that (yIT, ps) ~(ys ps) for large enough T, which would contradict
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the profit-maximizing property of yi at prices pf.) However, as we explain in the

Introduction, Bewley's generolization of the relevant properties of production sets in

these examples, i.e., his "Exclusion Assumption", usually does not hold (for firms) in

the fromework of Section 2 above. For this reason we fortnulate the Elimination

Property (Definition 3.3 below), and we give Theorem 3.9, from which ourmain

result, Theorem 2.1, follows as a special case. The proof of Theorem 3.4 is obtained by

extending to the case of production economies the idea that, at singular prices, the

"expensive commodities" would be in excess supply. One shows that the presence of a

singularity in a mathematical price system would imply that producers with the

Elimination Property (with respect to the zero bundle), and consumers with Mackey

continuous preferences and consumption sets with Elimination Properties (with respect

to the initial endowments), would not purchase the "extraordinarily expensive"

commodities. In formal terms, this means that (ys, p ~) z 0 for each producer, j, and

that (xh- xh, p f) s 0, where xh is the initial endowment of consumer h, for each h.

(These are Formulae (6.2) and (B.4), with the latter quoted here for the case zh - xh,

in the proof of Theorem 3.4.)

Since, as stated by Aliprantis and Burkinshaw ( 1978, Exercise 9 on p. 163),

the space L`o with the Mackey topology is a topological vector lattice, the generol result

about the existence of an equilibrium given by Richard (1989), who builds on the work

of Mas-Colell (1986), is applicable to models with this commodity space. However, it

yields a weaker result than that of Theorem 3.4, since, in addition to the fact that not all

Mackey-continuous preferences are uniformly proper (as noted by Back (1988, p. 97-

98), also on the production side Mackey uniform properness is a stronger assumption

than the Elimination Property for production sets. For example, in the fromework of

Section 2, Mackey uniform properness for a firm using the differentiated commodity as

an input not only implies that the firm's production function, f, is Mackey lower

semicontinuous in this input, but also imposes a lower bound on the difference

quotients3 of f. Also, as pointed out in Remark 2.4, by using the Yosida-Hewitt
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decomposition, one obtains in many cases of interest the result that ev~rv equilibrium

price is in L~, which cannot be deduced from Richard's general result.

3.3 The Elimination Property end the Existence of an Equilibrium Price

Density

To formulate our result on the existence of an equilibrium price density in the

present, abstroct framework, we next define a property which, when possessed by

production sets, is a generolization of Mackey continuity of production functions (or

correspondences), assumed in (a.2.6) for Theorem 2.1.

Definition 3.3. Let Z be a subset of, and ï a point in, L"(M, ifl, NM). Then:

(i) The set Z has the Weak Elimination Pro ertu with respect to ï if: for

every p E L"~`(M, yll, pM), for every z E Z and for every number S~ 0, there exists

z' E Z with I(z' - z, pc)I ~ S and I(z' - ï, pf)I ~ S.

(ii ) The set Z has the Elimination Pro~ with respect to ï if: for every

p E L~~`(M, 7JI, pM), for every z E Z, for every open neighbourhood, V, of z in the

Mackey topology, and for every number S~ 0, there exists z' E V nZ

with I(z' - ï, pf)I ~ S.

(iii ) The set Z has the Monotone Elimination Propertu with respect to ï if:

for every p E L"'(M, YTI, pM) and forevery z E Z, there exists a sequence, (za)a-j ,

in Z with za T z as a~~ and (za - ï, pf) - 0 for every a- 1, 2, ... .

The Monotone Elimination Property is stronger than the Elimination Property.

The latter is formally stronger than the Weak Elimination Property, but, in our
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applications, the assumptions made Impiy that the relevant sets have at least the

Elimination Property. ( Our only reason for using the Weak Elimination Property is

that it is weaker than the " Exclusion Assumption" of Bewley (1972): see Remark 3.5

below.) We can now state an equilibrium price density result due essentially to Back

(1984).

Theorem 3.4. Assume that:

(a.3.1 ) For each household, h, the preference relation, Sh, is Mackey lower

semicontinuous, i.e„ for every x E Xh the set (z E Xh I z Sh x) is Mackey closed.

(a.3.2) For each household, h, the preference relation, Sh, is Mackey locally

nonsatiated, i.e., for every x E Xh the Mackey closure of the set (z E Xh I x~h z)

contains x.

(a.3.3) For some xl , x2, ..., itH with ~h xh equal to the total initial endowment,

~h xh, the consumption set, Xh, has the Elimination Property with respect to xh, for

each h; and

(a.3.4) For each producer, j, the production set Y~ has the Weak Elimination

Property wRh respect to 0.

Then: ( i) If ((x h), (y ~), p`) is a competitive quasi-equilibrium

and p~ s 0, then (( x h), (y }), p ~) is also a competitive quasi-equilibrium; and

(ii) Assume, in addition, that Xh c Lt and that Xh has the Monotone

Elimination Property with respect to 0, for each h. If (( xh ), (y ~), p`) is a

competitive equilibrium and p' z 0, then (( x h), (y ~), p~) is also a competitive

equilibrium.
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Remark 3.5. (i) The nonnegative orthant of the whole space, Lt(M, IR, NM),

has the Elimination Property with respect to each of its points; for a proof of this, see

Back (1988, p. 96, lines 1-6 from below; however, unless N fs finite, the condition

that N(F~) ~ 0 must be replaced by N(fl~-~ F~) - 0). Also, this orthant has the

Monotone Elimination Property with respect to 0. Note that the orthant taken wlth

respect to a sub-sigma-algebra, yl, of 9'l, considered as a subset of L~(M, TJI, NM),

need flpt, have the Elimination Property. However, if Yl and SR satisfy the condition

obtained from Assumptlon (a.2.2) by substftuting ïl for Bh and 7Tl for ~(, then

Lt(M, ïl, NM), considered as a subset of L~(M, iR, NM), has the Eilmination Property

with respect to each of its points and, also, the Monotone Elimination Property with

respect to 0. (This is because, in thls case, singular functionals on L~(M, Sll, uM)

remain singular when restricted to L~(M, Tl, NM).) It follows that, in Section 2, under

Assumption (a.2.2), the consumptlon set Xh defined by Formula (2.1) has the

Elimination Propertles, and this Is used in the proof of Theorem 2.1 .

(ii) If a set, Z, fulfils the condition:

For every z E Z and for every p E L~" there exists a sequence of ineasurable

sets, (AQ)a-~, that supports pf, wlth pc(Aa) ~ 0 as a. and
with zXM`Aa E Z for each a- 1, 2, ...; (3, 1)

which is the "Exclusion Assumption" of Bewley (1972, p. 524), then Z has the Weak
Elimination Property with respect to 0. (To show this, denote za - zXM`Aa. Then,

firstly, ( za - z, pc) - 0 as a-~-, and, secondly, (za, pf) - 0 for all a.) From this

and from Part (i) of the Remark it follows that 7heorem 3.4 is an extensíon of a result

of Bewley (1972, Theorem 3). Also, ín all examples given by Bewley (1972, pp. 527-

528), the production sets satisfy a condition that is slightly stronger than (3.1 ), viz.,
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For every z E Z and for every p E L~" there exists a NM-vanishing sequence,

(Aa)aa~, of sets supporting pf, such that zXM`Aa E Z for each a; (3.2)

and this Condition is stronger than the Elimination Property for Z(wíth respect to 0).

(iii) Unlike the case of exchange economies, in Theorem 3.4 one does not show

that p~- 0. This is because, for every equilibrium price to be in L I, Bewley's

assumption of a strictly positive total endowment, or a variant of it such as the

"Adequacy Assumption" of Back (1988, p. 96), would be needed. In production

economies, such an assumption would be very restrictive, since the initial endowment of

a differentiated commodity may well be zero, as in our model of Section 2. (Note that,

for production economies satisfying only the "Adequacy Assumption" of Bewley (1972,

p. 520), an attempt at proving that all Pareto-optima can be supported by prices in LI

would fail for the following reason. The condition that (z, p) S 0 for every z E Z,

where p E L~ and Z is a closed, convex cone in L~, in general does np.t imply that

(z, pf) s 0 for all z E Z, although for Z:-Lt this implication holds. Were this

impiication true in general, one could use it with Z equal to the asymptotic cone of the

aggregate production set.) However, since p ~ is shown in Theorem 1 to support the

same (quasi-) equilibrium allocation, and with the same producer profits, as p~, for
some problems it does follow that p~- 0, e.g., for peak-load pricing problems: see

Example 2.3 and Remark 2.4.
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Appendlx A: The Space L~, and the Yosida-Hewltt Decomposltlon of Its

Norm Dual

Consider the space of essentially bounded functions, L"(M, lYl, NM), on a sigma-

finite, nonnegative measure space, (M, 1T1, NM). Its norm dual is denoted by

L~y(M, ïJl, pM). For brevity, the symbols M, y11, and NM are suppressed except

where their use adds clarity. Below we describe the Yosida-Hewitt decomposition of

L"". Our terminology and notation is that of Dunford and Schwartz (1958, Chapters III

and IV), except that we use the term "singular linear functional" in its more customary

meaning, which is that of Castaing and Valadier (1977, Chapter VIII) and of loffe and

Levin (1972, Appendix 1). All functions (including set functions) are taken to be real-

valued. Also, we use the term "measure" to mean a"countablu additive set function

defined on a sigma-algebra of sets". In referring to other literature it should be borne

in mind that the usage of some terms may differ from that adopted here.

A linear functional, p E L~", is said to be suooorted by (or concentrated on) a

measurable set, A E 1T1, if p(x) ~ p(xXq) for all x E L", where Xq is the

characteristic function of A(equal to 1 on A and to 0 elsewhere). Also, p is termed

a singular functional if and only if there exists a sequence of XR-measurable sets,

(Aa)Q-~, such that: (i) Aa,l c Aa for every a, i.e., the sequence (Aa) is

nonincreasing, (ii) uM((lazj Aa): 0, and (iii) p is supported by Aa for every a.

Any sequence, (Aa), with properties (i) and (ii) is termed a NM-vanishino seouence of

sets, and if, in addition, it has property (iii), then it is termed a NM-vanishino

seauence q,[~g~5, suooortina p. (Also, if NM(M) ~~, then Condition (ii) is equivalent

to NM(Aa) - 0 as a-~.) The space of all singular functionals is denoted by LS y;

and the space of real-valued, NM-integrable functions on M is denoted by L 1. By the

Yosida-Hewitt decomposition, every p E L"" can be uniquely represented as the sum of

its density part, pc E L1 and of its singular part, pf E LS". (Under the isomorphism

described in detail below, the density part of p is its countably additive part, and the
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singular part of p is its purely finitely additive part; hence the use of subscripts "c"

and "f".) Furthermore, L"" is the direct sum of L1 and LS", in the category of

normed lattices; this also holds for the space of essentially bounded vector-valued

mappings: see Castaing and Valadier (1977, Theorem V111.5 on p. 236) or loffe and

Levin (1972, Appendix 1, Theorem 3).

To derive the above decomposition of L"`, the following representation of linear

functionals on L" as finitely additive set functions can be used. For brevity, we use the

term "a set function" to mean "a bounded set function defined on Ifl". The space of all

finitely additive set functions is denoted by ba(M, ïR). The space L"" is isomorphic

(in the category of normed lattices) to the space of all those set functions in ba(M, iR)

that vanish on all sets of NM-measure zero, which is denoted by ba(M, lil, pM). The

isomorphism is defined by the duality form (x, p) - JA x dp, for all x E L`"(M, iil, NM)

and for all p E ba(M, ïJl, NM), i.e., the isomorphic image of any p E ba(M, 1Tt, NM) is

the linear functional (., p) : see Dunford and Schwartz (1958, Theorem IV.8.16 on p.

296). (For an exposition of the theory of integration with respect to finitely additive

set functions, see Dunford and Schwartz (1958, Chapter III, Sections 1 and 2, pp. 95-

1 19).) By a result of Vosída and Hewitt (1952, Theorems 1.23 and 1.24), every

finitely additive set function, ),, can be uniquely decomposed into the sum of a countably

additive set function (i.e., a measure), ac, and a purely finitely additive set function, af.

(A finitely additive set function is termed ourely fini -I ~ addi iv if it is lattice-disjoint

from every countably additive set function; by a result of Yosida and Hewitt (1952,

Theorem 1.16), this definition is equivalent to that of Yosida and Hewitt (1952,

Definition 1.13).)

To see that the above decomposition of L"" is the same as the decomposition of

ba(M, iït, NM) that results from the Yosida-Hewitt decomposition of the larger space

ba(M, iJl), it remains to make two observations. First, the space L I is identified as the

space of finite pM-continuous measures, since every such measure can be represented
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by its density with respect to NM: see Dunford and Schwartz (1958, Theorem 111.10.2

on p. 176). (A measure is uM-continuous if and only if it vanishes on all NM-null sets:

see Dunford and Schwartz ( 1958, Lemma 111.4.13 on p. 131 ); the UM-continuity is

also often termed "NM-absolute continuity".) Second, for any p E ba(M, S(l, uM), p is

purely finitely additive if and only if it is singular. (To see this, consider any

p E ba(M, Sll, NM). By Yosida and Hewitt (1952, Theorem 2.6), p is purely finitely

additive if and only if it is lattice-disjoint from every element of L1(M, ïR, NM). Take

any finite measure, NM, with the same null sets as those of NM; such a measure exlsts

because NM is sigma-finite. Note that p is lattice-disjoint trom every element of

Li(M, ïil, NM) if and only if it is lattice-disjoint from NM. This last condition is, by

Yosida and Hewitt (1952, Theorem 1.22 with its proof), equivalent to the existence of a

NM-vanishing sequence of sets, (Aa), supporting p. Since N~((la~~ Aa) a 0 if and

only if NM(flasj Aa) - 0, the argument is completeJ Thus, the space LS" is

identified as the space of purely finitely additive set functions in ba(M, ïfl, NM).

By "the Mackey topology" we mean the Mackey topology on Lp for the duality

with L1, which is usually denoted by t(L", L1). If (Aa)asj is a uM-vanishing

sequence of sets, then xXqa - 0 in the Mackey topology as a-~, for every x E L";

as Bewley (1972, Part (b) of (24) on p. 534) notes, this follows from Dunford and

Schwartz (1958, Theorem IV.8.9 on p. 292). If (xa)a-~ is a sequence in L" that

order-converges to an x E L~, i.e., if there exist two sequences, (ya)a-j and (za)~-j ,

in L" with ya s x- xa s za for all a and ya t 0 and za i 0 as a-~, then xa . x

in the Mackey topology: see, e.g., Aliprantis and Burkinshaw (1978, the equivalence of

(i) and (ii) in Theorem 9.7).

In Part (vii) of Proposition A2 below we show that Definition A 1 gives an

equivalent way of incorporating free disposal into a production set. This is used in the

proof of Theorem 2.1 to show that the free-disposal hull, Yt, of Y is Mackey closed (or,
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equivalently in view of its convexity, weak" closed). Our method is based on the

continuity of the mapping y- yt, i.e., on the fact that L~ with its Mackey topology,

t(L`", L 1), is a topological lattice. We note that the general results on the closedness of

the sum of closed sets in topological vector spaces, such as those given by Khan and Vohra

(1987), are insufficient for this purpose.

Definition A1: As in Section 2, let (-, á, N) denote a sigma-finite measure

space, and Iet N be a natural number. For every Y c L~(-, ~, N) x RN, define

Yt :((y. a) I(yt, a) E Y).

Proposition A2: (i) If Y is Mackey closed, then Yt is Mackey closed.

(ii) If Y is a cone, then Yt is also a cone.

(iii) Ytt a Yt,

(iv) If Y is convex and has Property ( 2.6) of Section 2, then Yt is also

convex.

(v) If Y has Properties ( 2.6)-(2.7) of Section 2, then Yt - Yt -L; (-) x R N

which, with Yt interpreted as a production set, means that Yt includes free disposal.
(vi) If Y c Lt(-) X RN, then Y c Yt.

(vii) Assume that Y has Properties (2.6)-(2.7) of Section 2 and
that YcL;(-)XRN. Then Yt-Y-L~(-)XRN.

Proof. Part (i) follows from the Mackey continuity of the mapping y~ yt, i.e.,

from the fact that L"(-) with the Mackey topology is a topological vector lattice, which

is a special case of a result given, e.g., by Aliprantis and Burkinshaw (1978, Chapter 6,

Exercise 4 on p. 163). (In that reference, the term "a locally convex-solid Riesz space"

is used to mean " a locally convex lattice".) Parts ( ii) and (iii) hold because
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(ay)t - Xyt for every nonnegative scalar, a, and because y}t - y}. Given their

assumptions, Part (iv) holds by the convexity, and Part (v) by the monotonicity, of the

mapping y- y}. Part (vi) follows directly from Definition A1 . To prove Part (vii),

note that the set on the right-hand side is contained in the set on the left-hand side by

Parts (v) and (vi). The reverse Incluslon follows directly from Definition A 1 and from

the fact that y s yt, Q.E.D,

Definition A3: (i) A corresoondence from a set X into a set Y is a mapping

defined on X with values which are subsets of Y. If X and Y are topological spaces,

xp E X, and F is a correspondence from X into Y, then F is said to be uooer

hemicontinuous at xp if for every open set U c Y there exists a neighbourhood, V, of

xp such that the condition F(xp) C U implies that F(x) C U for every x E V. Also, F

is said to be lower hemicontinuous at xp if for every open set U c Y there exists a

neighbourhood, V, of xp such that the conditlon F(xp) n U ~ 0 implies that

F(x) r1 U ~ 6 for every x E V,

(ii) A weak pre-order, S, in a topological space, X, is said to be ~p.~L

semicontinuous if, for every x e X, the set [z E X I x S z) is closed, and it Is safd to be

lower semicontinuous if, for every x e X, the set ( z e X I z S x) is closed. (With this

terminology, a preference pre-order represented by an upper ( respectively, lower)

semicontinuous utility function is upper (respectively, lower) semfcontinuous.)
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Appendix B: Proofs

Proof of Theorem 3.4. We first prove Part (i). For each producer, j, by the

Elimination Property of the production set, i.e., by Assumption (a.3.4), for every

y E V~ and for every number S~ 0 there ex(sts y' E Y~ with (y', p ~) z(y, p~) - 6

and (y', p ~) z-6. Since y~ maximizes prof(t on Y~ at prices p',

(y ~, P~) z ( y~, P~) '(y~, P ~) t(y~, D f) z(y, P~) - 2S,

and it follows that

(y~, Pr) z (y, D~)

for every y E Y~. By substituting y~ for y in (B.1), it foliows that

(yj.D~) z 0.

For any consumer, h, take any x E Xh with x h th x. By Mackey lower

(B.1)

(B.2)

semicontinuity of preferences and by the Elimination Property of the consumption set,

i.e., by Assumptions (a.3.1) and (a.3.2), for every number S ~ 0 there exists x' E Xh

with: x h ~h x', (x', p~) s(x, p~) f 6 and (x', p ~) S (xh, p~) t S. By Condition

(iv) of Definition 3.1 and by the last two inequalities,

(xh, Dx) S(x~, D~) '(x~, D~) t (x~, P f) S(x, P~) t (xh, P~) t 26,

and it follows that

(xh, P~) ~ (x, P~) t(xh, P~) (B.3)
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By nonsatiation of preferences, i.e., by Assumption (a.3.2). for every number

S ~ 0 there exists z E Xh with xh ~h z and (z, D ~) s(xh, p ~) } S. By substituting

z for x in (B.3), it follows that (xh, px) s (x h, p ~) }(ich, p ~) t S for every

S ~ 0, i.e.,

(xh.P~) s (xh.Pf) (B.4)

From Condition (i) in Definition 3.1, since ~h xh -~h iq~, it follows that

equalities hold in (6.2) and (6.4), i.e., for each h and each j,

(xh- xh, P~) ' 0 (6.5)

and

(yj,P~)'0.

By (6.1 ) and (6.6),

(y,P~) 1 (y~,P~) ' (yj,P~),

for every y e Y~.

For every x E Xh with xh ~h x, by (6.3) and by (6.5),

(xh, P~) 1(x, P~) t(xh, P~) '(x. P~) t (xh. P~),

and it follows thal

(xh, P~) i (x, P~).

(6.6)

(B.7)

(B.8)
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Since p~~ 0 by assumption, the proof that p ~ is a quasi-equilibrium price is

complete. This is because Formulae (B.5) and (B.6) and Condition (iii) of Definition 1

together imply Condition (iii) of Definition 3.1 with p~ substituted for p', and

Formulae (B.7) and (6.6) mean that Conditions (ii) and (iv) of Definition 3.1, with

p ~ substituted for p', are fulfilled.

The proof of Part (ii) of the Theorem is obtained by the following modification of

the argument. Take any x E Xh with xh ~h x. By the Monotone Elimination Property,

there exists a sequence, (xa), in Xh with xa f x as a-~ and ( xa, p ~) s 0 for

every a. Since order-convergence in L~ implies convergence in the Mackey topology,

it follows from Mackey lower semicontinuity of preferences, i.e., from Assumption

(a.3.1 ), that x h Lh xa for all sufficiently large a. Since pY i 0, one has p~ z 0

and p ~ z 0. By using in succession: the nonnegativity of xh and of p ~ and Condition

(iv') of Definition 3.1,

(xh~ Pc) s (xh, Dx) ~ ( xa, P~) ' (xo, P~) (B.9)

Since xa t x and p~ z 0, the term on the right-hand side of the equality in (B.9) is

nondecreasing in a, and it converges to (x, p~) as a-~. It follows that

(xh,P~) ~ (x,p~),

as required. Q. E. D.

Proof of Theorem 2.1 . The proof consists of two parts. In the first part we apply

a result of Bewley (1972, Theorem 1) to show that there exists an equilibrium price
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system, p' -(pr, q~`), with prices for the differentiated commodity, p', in L~'(-).

In the second part we use Theorem 3.1, to conclude that the price system

p ~-(p~, q'), for which p~ E L1(-). is also an equilibrium price. The first part of

the argument can also be carrled out by a"direct" proof of equllibrium existence, based

on Florenzano's (1983) extension of the Gale-Nikaido-Debreu Lemma to infinite

dimensions. As pointed out by Horsley and Wrobel (1988c), the advantage of this

approach is in showing price-continuity of demand (in the infinite-dimensional

commodity and price spaces), which may be useful for the setting of simplified tariffs.)

We verify those assumptions of Bewley (1972, Theorem 1) which are not made

directly in our Theorem 2.1 . The industry's production set, defined by (2.2), is equal to

Yt, by Part (vii) of Proposition A2 and Assumption (a.2.8). Therefore, it is a Mackey

closed, by Part (i) of Proposition A2 and Assumption (a.2.7), and it is convex, by Part

(iv) of Proposition A2 and Assumptions (a.2.7)-(a.2.8). By Assumption (a.2.10), for

each household, h, the initial endowment, (0, -rnh), belongs to the norm-interior

(relative to the whole commodity space) of the cone As(Y)-Lt (-) x R N which is

contained in As(Yt), by Part (vii) of Proposition A2. This shows that the "Adequacy

Assumption" of Bewley (1972, Theorem 1) holds. It foilows that there exists of a

competitive equilibrium, consisting of: consumption plans, (xh, mh)e Xh for each h,

production plans of firms, (z~ , b~ ) e Y~ for each J, a production plan for the industry,

(y', a') E Yt, and a nonnegative price system, ( p~, q'), with p~` e Lt"(-). Also,

q' is semi-positive, i.e., q~ i 0 for some n. (To show this, note that

(y, p') t(a, q`) s 0 for every (y, a) e As(Yt). Since (p', q`)' 0, one has q~ ~ 0

if p' - 0. If p' ~ 0, then there exists y E L~(-) with (y, p') ~ 0. One has

(y, a) e As(Yt) for some a, by Part (ii) of Assumption (a.2.10). It follows that

(a, q') ~ 0, so q~ s 0.)

To apply Theorem 3.4 and complete the proof, we verify the Elimination

Property for the production sets and consumption sets. first, for the industry's
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production set, Yt, since the industry produces the differentiated commodity from a

finite number of homogeneous inputs, this follows trivially from the free disposal

property of Yt. However, for completeness, we give a formal argument. To show that

Condition (3.2) holds, take any y E Yt; it can be written as y-(y, a), where

y E Lp(-) is the output bundle, and -a E RN is the input bundle. it follows from

Part (iii) of Proposition A2 that (y, a) E Ytt, i.e., (yt, a) E Yt. For any price system,

p-(p, q) E L"~(-) X RN, take a N-vanishing sequence, (Aa)a-j, of sets supporting

pf, and define ya -(yX-`Aa, a). Since ya i(yt, a) E Yt, it follows, by Part (v) of

Proposition A2 that ya E Yt for each a. Also, (ya, Df) -(yXy`qa, pf) - 0. Thus,

Condition (3.2) holds, and, by Part (ii) of Remark 3.5, Yt has the Elimination

Property with respect to 0.

Second, for each firm, j, take any y~ -(z~, b~) E Y~, i.e., b~ E F~(z~), by (2.3).

To verify the Elimination Property with respect to 0, take any neighbourhood, W, of b~

in RN and any Mackey neighbourhood, V, of z~ in L~(-). For any price system,

p-(p, q), where p E L~"(-), take a N-vanishing sequence, (Aá)a-~, of sets that

belong to ~j and support pf. (Such a sequence exists by Assumption (a.2.4).) Define
z~ - z~X-`Aá. Since z~ - z~ in the Mackey topology as a- m, by the Mackey lower

hemicontinuity of F~ there exists an a' such that: z~ E V, b~ E W, and b~ E F)(z ~).

Denote y~ -(z~ , b~ ), this point belongs to Y~ and it has all the required properties,

since (y~, Pf) `(zj , Pf) - 0.

Third, for each household, h, the orthant L;(-, 8h, N) has the Monotone

Elimination Property, in the space L~(-, ~, N), with respect to 0, by Part (i) of

Remark 3.5 and by Assumption (a.2.2). It follows that the household's consumption set,
Lt(-, Bh, N) x R N, has the Monotone Elimination Property with respect to the

household's initial endowment, (0, rnh), since this endowment contains none of the

differentiated commodity. Therefore, Part (ii) of Theorem 3.4 is applicable, and lhe
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price system p~ -(p~, q~), with p~ e L1(-), is an equilibrlum price system.

Q. E. D.

Remark 61: Theorem 2.1 also holds with the inltial endowment, (0, mh).

replaced by (Kh, rnh), for any xh e Lt(-, Bh, N), i.e., when households have initially

some of the differentiated commodity. In this case, the last part of the proof is modified

as follows. By Part (i) of Remark 3.5 and by Assumption (a.2.2), the consumption set,

Lt(-, Bh, u) x R N, has the Elimination Property with respect to the initial endowment,

( xh, rnh). Therefore, Part (ii) of Theorem 3.4 is applicable, and it follows that

(p~, q') is a competitive quasi-equilibrium prlce system (wlth the same quasi-

equilibrium allocation as for the equllibrium price system ( D~. q~)). Since qs is

semi-positive and rnh is strictly positive, by Assumption (a.2.10), one has

(xh. P~i t(mh, qY) 2( mh, q~) ~ 0- inf ((x. D~) t (m, qxi I(x, m) E Xh)

for each h, and It follows that this quasl-equilibrium is an equflibrlum, by the

argument of Debreu (1962, p. 269, lines 6-9).

Proof of the equivalence noted in Assumption (a.2.6): We first show that the

lower semicontinuity of f~ implies the lower hemicontinuity of F~, defined by Formula

(2.5). Define

G~(z) -((b-n.. bn.) E RN-1 x R I bn. ~ f~(z, b-n.)).
J J J J

Then F~(z) is equal to the closure of G~(z), for every z. (This is because, for every

z, the function f~(z, - ) is upper semicontinuous by Assumption ( a.2.5), so its

hypograph, which is equal to F~(z) by (2.5) is closed.) Since the correspondence
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obtained by taking the closures of the values of a lower hemicontinuous correspondence

is afso lower hemicontinuous (see, e.g., Klein and Thompson (1984, Proposition 7.3.3

on p. 85)), to complete the argument it suffices to show that G~ is lower

hemicontinuous. But this holds, since, by the lower semicontinuity of the function

f~(., b-n~) for every b-n~, the graph of G~ has open sections, i.e., for every b, the set

(z I b E G)(z)) is open (relative to L"(-, ~~, N)). The proof that conversely, the

lower hemicontinuity of F) implies the lower semicontinuity of fj, is even simpler.

Note that, for each z, the half-line (-~, f~(z, b-n )] is equal to the section of F~(z)
.Í

by b-n~. Therefore, this half-line, in its dependence on z, is a lower hemicontínuous

correspondence, which, in other words, means that the function z- f~(z, b-n.) is
J

lower semicontinuous. Q. E. D.

Proof of Formula (2.17). Denote X- l"(-) for brevity. Since C is

nondecreasing,

Ct(y) - C(y}) - inf {C(y') I y' 2 0, y' z y)

c inf ( C(y') t 6(y" I X-) I y' 2 0, y" ~ y- y'), (B. 10)

where S(~ I X-) is the indicator function of X-, í.e., S(y" I X-) - 0 for y" E X-

and 6(y" I X-) ~ t~ for y" E X` X-. Since the last infimum in Formula (6.10) is

attained (for y' - yt and y" s-y-), it follows that

epi Ct a epi C t epi S(- I X-) ~ epi C t X, x Rt,

which is equivalent to Formula (2.17). Q. E. D.
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Remark 62: Formula ( 6.10) means that Ct is the infimal convolution of C and

S(~ I X-), where C is extended to X by setting C(y) - f~ for y E X`X}.
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Fiqure 1. An electricity output, y, with a peak of a short duration.
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Figure 2. A long-run marginal cost, p, at the electricity output, y, of Figure 1,

in the one-station model. The total of the peak charges, represented by

the hatched area, is equal to r.
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Figure 3. The long-run equillbrium output of electricity, y', has a peak plateau.
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Figure 4. The long-run equilibrium price for electricity, p', corresponding to

the equilibrium output, y~`, of Figure 3, in the one-station model. The

hatched area is equal to r.
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Figure 5. The continuity property of the production function, f, of a firm with an

interruptible input demand for electriclty.



58

FOOTNOTES:

~ Financial support from BOC Limited and CentER during the course of this research is

grotefully acknowledged.

' Journal of Economic Literature Classification: 021.

AMS I 980 Mathematics Subject Classification (1985): Primary 90A I 4.

" Permanent address: Department of Economics, London School of Economics and

Political Science, Houghton Street, London WC2A 2AE, United Kingdom;

I A result of Horsley and Wrobel (1988c) that shows that demand is continuous in

prices goes some way towards ensuring that such a simplification is, to some extent,

possible.

2 For the definition, see, e.g., Rockafellar (1970, p. 66).

3 More precisely, a lower bound for the difference quotient ( f(z t Sz') - f(z))~S that
is uniform over all z E L(~), all z' in some Mackey neighbourhood of zero in L~(~)

and all numbers S such that z t Sz' E L"(~).



Discussion Paper Series, CentER, Tilburg University, The Netherlands:

No. Author(s)

8801 Th. van de Klundert
and F. van der Ploeg

Title

Fiscal Policy and Finite Lives in Interde-
pendent Economies with Real and Nominal Wage
Rigidity

8802 J.R. Magnus and
B. Pesaran

8803 A.A. Weber

8804 F. van der Plceg and
A.J. de Zeeuw

8805 M.F.J. Steel

8806 Th. Ten Raa and
E.N. Wolff

880~ F. van der Ploeg

8901 Th. Ten Raa and
P. Kop Jansen

8902 Th. Nijman and F. Palm

8903 A. van Soest,
I. Woittiez, A. Kapteyn

8904 F. van der Plceg

The Bies of Forecests from a First-order
Autoregression

The Credibility of Monetary Policies, Policy-
makers' Reputation and the EMS-Hypothesis:
Empirical Evidence from 13 Countriea

Perfect Equilibrium in a Model of Competitive
Arms Accumulation

Seemingly Unrelated Regression Equation
Systems under Diffuse Stochastic Prior
Information: A Recursive Analytical Approach

Secondary Products and the Measurement of
Productívity Growth

Monetary and Fiscal Policy in Interdependent
Economiea with Capital Accumulation, Death
and Population Growth

The Choice of Model in the Construction of
Input-Output Ccefficients Matrices

Generalized Least Squares Estimation of
Linear Models Containing Rational Future
Expectations

Labour Supply, Income Taxes and Houra
Restrictiona in The Netherlands

Capital Accumulation, Inflation and Long-
Run Conflict in International Objectivea

8905 Th. van de Klundert end Unemployment Persistence and Loss of
A. van Schaik Productive Capacity: A Keynesian Approach

8906 A.J. Markink and Dynamic Policy Simulation of Linear Models
F. van der Ploeg with Rational Expectations of Future Events:

A Computer Package

890~ J. Osiewalski Posterior Denaitíes For Nonlinear Regresaion
with Equicorrelated Errora

8908 M.F.J. Steel A Bayesien Analysis of Simultaneous Equation
Models by Combining Recursive Analytical and
Numerical Approaches



No. Author(s)

8909 F. van der Ploeg

891o R. Gradus and
A. de Zeeuw

8911 A.P. Barten

8912 K. Kamiya and
A.J.J. Talman

8913 G. van der Laan and
A.J.J. Talman

8914 J. Osiewalski and
M.F.J. Steel

8915 R.P. Gilles, P.H. Ruys
end J. Shou

8916 A. Kapteyn, P. Kooreman
and A. van Soest

891~ F. canova

8918 F. van der Plceg

8919 W. Bossert and
F. Stehling

892G F. van der Ploeg

8921 D. Canning

8922 C. Fershtman and
A. Fishman

8923 M.B. Canzoneri and
C.A. Rogers

8924 F. Groot, C. Withagen
and A, de Zeeuw

Title

Two Essays on Political Economy
(i) The Political Economy of Overvaluation
(ii) Election Outcomes and the Stockmarket
Corporate Tax Rate Policy and Public
and Private Employment

Allais Characterisation of Preference
Structures and the Structure of Demand
Simplicisl Algorithm to Find Zero Points
of a Function with Special Structure on e
Simplotope

Price Rigidities and Rationing

A Bayesian Analysis of Exogeneity in Models
Pooling Time-Series end Cross-Section Data

On the Existence of Networks in Relational
Models

Quantity Rationing and Concavity in a
Flexible Household Labor Supply Model

Seasonalities in Foreign Exchange Markets

Monetary Disinflation, Fiscal Expansion and
the Current Account in an Interdependent
World

On the Uniqueness of Cardinally Interpreted
Utility Functions

Monetary Interdependence under Alternative
Exchange-Rate Regimes

Bottlenecks and Persistent Unemployment:
Why Do Booms End?

Price Cycles and Booms: Dynamic Search
Equilibrium

Is the European Community an Optimal Currency
Area? Optimal Tax Smoothing versus the Cost
of Multiple Currencies

Theory of Natural Exhaustible Resources:
The Cartel-Versus-Fringe Model Reconsidered



No. Author(s)

8925 O.P. Attanasio and
G. Weber

8926 N. Rankin

8927 Th. ven de Klundert

8928 C. Dang

8929 M.F.J. Steel and
J.F. Richard

893G F. van der Ploeg

8931 H.A. Keuzenkamp

8932 E. van Damme, R. Selten
and E. Winter

8933 H. Carlsson and
E. van Damme

8934 H. Huizinga

8935 C. Dang and
D. Talman

8936 Th. Nijman and
M. Verbeek

8937 A.P. Barten

8938 G. Marini

8939 W. Giith and
E. van Damme

8940 G. Marini and
P. Scaramozzino

894i J.K. Dagsvik

Title

Consumption, Productivity Growth end the
Interest Rate

Monetary and Fiscal Policy in a'Hartian'
Model of Imperfect Competition

Reducing External Debt in a World with
Imperfect Asset and Imperfect Commodity
Substitution

The D] -Triengulation of Rn for Simplicisl
Algorithms for Computing Solutions of
Nonlinear Equations

Bayesian Multivariate Exogeneity Analysis:
An Application to a UK Money Demand Equation

Fiscal Aapects of Monetary Integration in
Europe

The Prehistory of Rational Expectations

Alternating Bid Bargaining with a Smallest
Money Unit

Global Payoff Uncertainty and Risk Dominance

National Tax Policies towards Product-
Innovating Multinational Enterprises

A New Triangulation of the Unit Simplex for
Computing Economic Equilibria

The Nonresponse Bias in the Analyais of the
Determinants of Total Annual Expenditures
of Households Based on Panel Data

The Estimation of Mixed Demand Systems

Monetary Shocks and the Nominal Interest Rate

Equilibrium Selection in the Spence Signaling
Game

Monopolistic Competition, Expected Inflation
and Contract Length

The Generalized Extreme Value Random Utility
Model for Continuous Choice



No. Author(s)

8942 M.F.J. Steel

8943 A. Roell

8944 C. Hsieo

8945 R.P. Gilles

8946 W.B. MacLeod and
J.M. Malcomson

8947 A. van Soest and
A. Kapteyn

8948 P. Kooreman and
B. Melenberg

8949 c. Dang

895o M. Cripps

8951 T. Wansbeek end
A. Kapteyn

Title

Weak Exogenity in Misspecified Sequential
Models

Dual Capacity Trading and the Quality of the
Market

Identification and Estimation of Dichotomous
Latent Variables Models llsing Panel Data

Equilibrium in a Pure Exchange Economy with
an Arbitrary Communication Structure

Efficient Specific Investments, Incomplete
Contracts, and the Role of Market Alterna-
tives

The Impact of Minimum Wage Regulations on
Employment and the Wage Rate Distribution

Maximum Score Estimation in the Ordered
Response Model

The D -Triangulation for Simplicisl
Defo~ation Algorithms for Computing
Solutions of Nonlinear Equations

Dealer Behaviour and Price Volatility in
Asset Markets

Simple Estimators for Dynamic Panel Data
Models with Errors in Variables

8952 Y. Dai, G. van der Laan, A Simpliciel Algorithm for the Nonlinear
D. Talman and Stationary Point Problem on an Unbounded
Y. Yamemoto Polyhedron

8953 F. van der Plceg

8954 A. Kapteyn,
S. van de Geer,
H. van de Stadt and
T. Wansbeek

8955 L. Zou

8956 P.Kooreman and
A. Kapteyn

8957 E. van Damme

Risk Aversion, Intertemporal Substitution and
Consumption: The CARA-LQ Problem

Interdependent Preferences: An Econometric
Analysis

Ownership Structure and Efficiency: An
Incentive Mechanism Approach

On the Empirical Implementation of Some Game
Theoretíc Models of Household Labor Supply

Signaling and Forward Induction in a Market
Entry Context



No. Author(s)

9001 A. van Soest,
P. Kooreman end
A. Kapteyn

9002 J.R. Magnus and
B. Pesaran

9003 J. Driffill and
C. Schultz

9004 M. McAleer,
M.H. Pesaran end
A. Bera

9005 Th. ten Raa snd
M.F.J. Steel

9006 M. McAleer and
C.R. McKenzie

9007 J. Osiewalski and
M.F.J. Steel

9008 G.W. Imbens

9009 G.W. Imbens

9010 P. Deschamps

9011 W. Gt1th and
E. van Damme

9012 A. Horsley and
A. Wrobel

Title

Coherency and Regularity of Demand Systems
with Equality and Inequality Conatraints

Forecestíng, Misspecification and Unit Roots:
The Case of AR(1) Versus ARMA(1,1)

Wage Setting and Stabilization Policy in a
Game with Renegotiation

Alternative Approaches to Testing Non-Nested
Models with Autocorrelated Disturbances: An
Application to Models of U.S. Unemployment

A Stochastic Analysis of an Input-Output
Model: Comment

Keynesian and New Classical Models of
Unemployment Revisited

Semi-Conjugate Prior Densities in Multi-
variate t Regression Models

Duration Models with Time-Varying
Coefficients

An Efficient Method of Moments Estimator
for Diacrete Choice Models with Choice-Based
Sampling

Expectations and Intertemporal Separability
in an Empirical Model of Consumption and
Investment under Uncertainty

Gorby Gamea - A Game Theoretic Analysis of
Disarmament Campaigns and the Defense
Efficiency-Hypothesis

The Existence of an Equilibrium Densíty
for Marginal Cost Prlces, and the Solution
to the Shifting-Peak Problem



m iu u~NWii~~~i~~ ii~~~i ~ a u i


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66

