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 Dynamical systems forced by shot noise as a new paradigm in the interest rate 

modeling  

Alexander L. Baranovski (WestLB AG) 

 

Abstract. In this paper we give a generalized model of the interest rates term structure 

including Nelson-Siegel and Svensson structure. For that we introduce a continuous m-

factor exponential-polynomial form of forward interest rates and demonstrate its 

considerably better performance in a fitting of the zero-coupon curves in comparison 

with the well known Nelson-Siegel and Svensson ones. In the sequel we transform the 

model into a dynamic model for interest rates by designing a switching dynamical 

system  of the considerably reduced dimension n < m generating the forward rate 

curves in form a càdlàg function. A system is described by n-th order linear differential 

equation driven by a stochastic or chaotic shot noise. From fitted forward rates we 

specify the parameters of the switching system and discuss perspectives of our models 

to produce term-structure forecasts at both short and long horizons.  

Keywords:  forward interest rates, shot noise processes, switching dynamical systems,  

chaotic Brownian subordination, chaotic maps 
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1. Exponential-polynomial models of interest rates 

 

We introduce an exponential-polynomial term structure model of interest rates by  
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where m
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1)()(ϕ  are polynomials of degree 1−ip  with coefficients )(i
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( { },...3,2,1∈ip ) and iγ  are positive real numbers.  The total number of parameters in 
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i +=∑
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1
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We note that the widely used Nelson-Siegel (N-S) [Nelson 1987] and Svensson (SV) 

[Svensson 1994] families of f(t)  can be easily derived from (1).  Assuming  2=l  and 

21 =p , 12 =p , i.e. dimensionality m=4,  (1) leads to N-S forward rate curve 

  21
)1(

2
)1(

1 )exp()()( cttcctfNS +−⋅+= γ      (2) 

as well as the SV curve is given by 

 32
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1 )exp()exp()()( ctcttcctfSV +−⋅+−⋅+= γγ    (3) 

with 3=l , 21 =p  and 12 =p , 13 =p  i.e. m = 6.  

Another special case of (1) is a curve of the exponentials mixture under ipi ∀= ,1 , i.e.  
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We show that a performance of a new term structure (1) in a fitting of the yields is 

considerably higher of the well known Nelson-Siegel and Svensson ones. By other 

words a today’s choice of the parameters in (1) is to be not limited by the state space 
4RZ ⊂  as for the N-S curve or 6RZ ⊂  in the Svensson model, i.e. 6, ≥⊂ nRZ n .  

The corresponding term structure of the bond prices will be then given by  

( ) 
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dxZxfZtB
0

,exp:),(  at nRZ ⊂      

2.  ODE for the interest rate models  

 

We establish that dynamics of the interest rates f (t) in a model (1)  follows a n-th order 

ODE  
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where 1
1
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ipn  , ip  is the multiplicity of the root iγ , li ,...,1=  

of the corresponding characteristic polynomial  
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The coefficients of the ODE are given by the Vieta formula 
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Example (Nelson-Siegel).    

Recall that the Nelson-Siegel model corresponds to the case 2=l  and 21 =p . Then 

311 =+= pn , 1
~
2

~
1 γγγ ==  and 02

~
3 == γγ . It follows that 
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Thus, the corresponding differential equation is 

02 2
11 =′+′′−′′′ fff γγ . 

It is easy to check that the Nelson-Siegel curve )exp()()( 1321 ttccctf γ−⋅++=  

is a general solution of the ODE as a combination of the two obvious particular 

solutions of  0=′r  and 02 2
11 =+′−′′ rrr γγ , such that  
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Example (Svensson).    

By analogy to the previous example  the SV curve follows a 4th order ODE in the form 
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Generally ODE (5) can be presented in a matrix form  
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Eq. (9) has a vector solution ( ) ( ) ( )0t
t e

⋅
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F γ
f f .  

Define by  

( ) ( )ττ Ztftr ,:, =       (10) 

the instantaneous forward rate at time t for date  τ  and by  

( ) ( ) ( )τττ Zftrr
t

,0,lim,0
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    (11) 

the short rates, where stochastic process τZ  with values in mRZ ⊂  contains two 

groups of processes ( ) ( )},...,{ )1()1(
1 1

ττ −

−

l

pl
cc  and ( ) ( )},...,{ 11 τγτγ −l  such that the processes 

( )τj

ic  depend on the stochastic processes  ( ) ( )},...,{ 11 τγτγ −l  and the short rates (initial 

conditions) as shown by (8) for a Nelson-Siegel term structure.  

Taking into account (9), (10) the evolution of the forward rates on the date τ is given 

by 

( )
d

d t
τ= ⋅r F γ r     (12) 

with the given vector τγ and initial state vector ( )0,τr  . 
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Assuming τZ is given τ – evolution of  r (t, τ) can be described by two different ways. 

First one presents τ – evolution of  r (t, τ)  as a train of  curves (12) for dates τ = 1, 2,…   

in a form (see Fig. 1) 

( ) ( ) , 0i

i

d
t i T t

d t
τ δ= ⋅ + − ⋅ ≤ ≤ ∞∑r F γ r ξ      

or equivalently  

( ) ( )
d

t T
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τ τδ τ= ⋅ + − ⋅r F γ r ξ ,   (13) 

where 1+





=

T

t
τ  is a counting process ( t denotes the floor function ( largest 

integer smaller or equal to t ) and 

 ( ) ( )10, ,Tτ τ τ+= −ξ f Z f Z .    (14) 

We call the vector  
i
ξ  as the stochastic amplitude of the impulse perturbation, which  

acts on system (13) at times  t = τT,  τ = 1,2,3, …. such that 

( ) ( ) τξττττ +−⋅=+⋅ ,0,0 TrTr . 

 Thus r is a cadlag function, i.e. a right continuous function ( ) ( )ττττ ,,0 TrTr ⋅≡+⋅ , 

defined on n
R  and has a left limit.  

Between kicks iT and (i +1)T  a state vector is governed by the homogeneous system 

of linear differential equations  (12) at τ = i+1.  

Fig. 1 illustrates the system (13) with a jump ( ) ( )121 ,,0 ZTfZf −≡ξ  at t = T  
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Fig.1 Train of the two first curves with T = 10 years.  
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The solution to (13) is explicitly given by  

( ) ( )( ) ( ) 







×







∑⋅⋅= −

= =

−−⋅ ∑ 1
1

1 exp i

i ij
j

TtF
FTer ξγ

τ τ
τγ τ  

where we denote ( )00 r≡ξ . 

The second approach is based on a simple idea to express a random variable ( ),t τf Z  

by ( ) ( ),
fixed

t tτ +f Z ζ  in the interval Tt ≤≤0  . By other words we assume that 

dynamics of the interest rates r (t, τ) can be modelled by  

, 0 ,d dt d t T τ= ⋅ + ≤ ≤ ∀r F r ζ    (15) 

where F is a n x n matrix with the constant coefficients ( )i i fixed
β β≡ γ  for any τ . The 

model (15) generates a predicted term structure, whose exponential-polynomial shape 

depends on the model parameters and the initial short rate. One can show that (15) is 

more general and includes a class of equilibrium models such as Vasicek, CIR, 

lognormal models.  

 

3.  Approach I – demonstrating example: from estimating the yield curve to its 

dynamic modelling  

 

First we empirically estimate process τZ . For that we are going to fit the default-free 

yield spreads, downloaded from the Reuters database. The observable time period is  

23.02. 2006 – 14.01. 2008, i.e. contains q = 478 dates. In framework of the above 

exponential-polynomial approach we introduce a term structure model of yields curves 

by  

( )∫=
t

dxZxf
t

ZtY
0

,
1

:),(     (16)  

(16) can be easily done in a closed form. For this we need the relation [Prudnikov 

1981] 
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Substituting the model (1) into (16) leads to  
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We introduce a minimization criterion as: 
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Z
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N
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1 2

→−= ∑ τττρ     (18) 

where ( ){ }ττ Nisi ,...,2,1, =  are quotes of the yields on the base dateτ .  The cost 

function ( )τρ is to be minimized by the appropriate choice of the lpm
l

i

i +=∑
−

=

1

1

 

parameters of the state space Z.  It is clear that in the fitting problem the following 

restriction 

( ) { }( )qNlpZm
l

i

i ,...,1,mindim
1

1

=≤+== ∑
−

=

ττ      (19) 

is to be provided.   

Given the number l of the parameters lil ,...,1, =γ and distribution of their 

multiplicities lipl ,...,1, =  such that the condition (19) holds the nonlinear regression 

technique for the least squares criterion (18) leads to the minimum of the cost function 

with the optimal parameters m

l

l

p RZcc
l

⊂∈−
−

−
},...,,,...,{ 11

)1()1(
1 1

γγ .   

We extend the criterion (7) by  

( )
lppl

q

q ,...,,
1 1

min
1

→= ∑
=τ

τρρ     (20) 

with the obvious restrictions for the parameters  

{ },...3,2,1,,, 1 =∈ +
Zppl lK .     (21) 

We note that (20) according to a law of large numbers/ Birkhoff ergodic theorem 

approaches the mean of the stochastic/ chaotic cost function with ∞→q .   

The problem (18)-(21) for euro swap rates has the following twofold solution 
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1) 1,...,1,3,1,5 −==== lippl il  and 17
11

)1()1(
1 },...,,,...,{

1
RZcc l

l
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−

−
γγ  (m =17, 

ττ ∀= ,60N ) for a “laminar” period of the observed yields quotes on the bond market: 

( )35507.07.17)1(06.02.23 =−= ττ   

2) 2,...,1,3,1,1,5 1 −===== − lipppl ill  and 15
11

)1()1(
1 },...,,,...,{

1
RZcc l

l

pl
⊂∈−

−

−
γγ  

(m=15) for a “turbulence” period ( ) )478(08.01.1435607.07.18 =−= ττ .   

The above calculated 1++ lm  parameters specify a general term structure model of 

interest rates by the exponential-quadratic curves (1)  ( 3=lp  ) as well as a general 

term structure model of yields by the exponential-cubic curves (17).  

Fig. 2 demonstrates a performance of the general model for the Euro swap rates by 

comparison of its cost function (18) with the cost functions of the conventional 

Nelson-Siegel and Svensson models and exponential model (4) with l = 6.  

 

 

0 100 200 300 400
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0.005

0.010

0.015

0.020

0.025
cost function rHtL

 

 Fig. 2 Comparison of the cost functions for the observable time period: 23.02. 2006 – 

14.01. 2008. N-S is a green curve, SV is a black,  the exponential is a blue, and the 

general model is a red curve. 

 

Moreover the ratios 

9
00074.0

00653394.0
≈=

GEN

NS

ρ

ρ
,  6

00074.0

00419495.0
≈=

GEN

SV

ρ

ρ
 and 5

00074.0

0039557.0
≈=

GEN

EXP

ρ

ρ
 (22) 

quantify the performance of the general model with the derived optimal exponential-

cubic curve. Thus our yield curve fitting is about 9 and 6 times better than 

conventional N-S and SV one, as well as 5 times better than an exponential curve (4) 



 9

with l = 6, respectively.  

The mean of the cost function (20) for the exponential model (4) has a local minimum 

at l = 6 in value 0039.0=EXPρ  and at l =5 in value 00074.0=GENρ  for a general 

model as shown in Fig. 3. 

 

0 1 2 3 4 5 6
l-1

0.001

0.002

0.003

0.004

0.005

0.006

0.007
rHlL

 

Fig. 3. The means of the cost functions: blue curve – exponential and red one – general 

model  

Fig. 4 collects all base curves fitted to the available data on the date 25.03.08 .  
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Fig. 4 Fitted zero curves on the spot date 25.03.08 

Repeating a fitting procedure to the another date, let’s say τ +1 = 26.03.08, we get a similar 

set of the base curves (16) which can be described by the system (13), where the impulse 

perturbation τξ  (14) is to be predetermined.  

As an example we design a dynamical system for N-S instantaneous forward rate curve 

( ) ( ) ( )( ) )exp(),( 321 ttccctr τγττττ −⋅++=  described by the following low-dimensional ODE 
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( )Ttrrr ⋅−=′+′′−′′′ τδξγγ τττ
22     (23) 

where  

( ) ( ) ( ) ( ) ( ) )exp()(11 32121 TTccccc ττ γτττττξ −⋅+−−+++= .   (24) 

according to (10) and (14).  

From the output of the above fitting procedure we retrieve the time series 

( ) ( ) ( ){ }478,,2,1,,, 321 == qccc Kτγτττ τ  for the observable time period.  

Applying (24) we immediately get time series of stochastic perturbation.  

Let us introduce the k-th order increments for both processes ττ γξ ,  by  

τττ ξξξ kkk ∆−∆=∆ +
+

1
1     (25) 

τττ γγγ kkk ∆−∆=∆ +
+

1
1 ,     (26) 

where 10 ≡∆ , k = 0, 1, 2, ….  

We are now able to do an elementary statistical analysis of both processes ττ γξ , .  

Table 1 contains the histograms of the processes and Table 2 collects  the histograms of the 

increments.  

Histogram of τγ  Histogram of τξ  
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Table 1.  
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Histograms of the increments 10,1, =∆ k
k

τγ  Histograms of the increments 10,1, =∆ k
k

τξ  
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Table 2.  

We note that the both processes are diffusion processes characterized by symmetrical bell-like 

but not-Gaussian distributions of their increments. A 2χ  Pearson’s test with the confidence 

level 0.95 rejects a hypothesis of the independence of the increments for both forced signal 

τξ and τγ .  

The means of τγk∆ and 1, ≥∀∆ k
k

τξ  are zeros. The sample variances 22 ,
ξγ

σσ kk ∆∆
 grow 

exponentially with the order  k  as shown in Fig. in a log scale  
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Fig.5.  Red line is 2ln
ξ

σ k∆
, black line is 2ln

γ
σ k∆

 

A distance between the above two lines does not remain constant with k but grows slowly 

with rate 00594878.0ln
2

2

∞→
∆

∆
→

k
k

k

dk

d

ξ

γ

σ

σ
. It means that a variance of the τγk∆  grows a bit quicker 

than a variance of 1, ≥∀∆ k
k

τξ . 

The sample autocorrelation functions  

( )
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1
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−
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ξ
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  (28) 

are presented in Table 3.   
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Autocorrelations of 20,10,1, =∆ k
k

τγ  Autocorrelations of 20,10,1, =∆ k
k

τξ  
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Table 3.  

To estimate a mutual correlation of τξ and τγ  and their increments we introduce the Pearson 

product-moment correlation coefficient [Norman L. Johnson 1995] 

( ) ,...1,0,...;1,0;,
1

11

==∆⋅∆
−−

= ∑
−−

=
+

−

∆

−

∆
kj

jkq
kjR

jkq

j

kk
kk

τ
ττ

ξγ γξ
σσ

  (29) 

depicted in Figures 6 – 8. 

 

Fig. 6  . Geometric interpretation of the matrix R of dimension 40x40 
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Fig. 7  The Pearson’s correlation coefficient at j = 0,1,…,60; k = 0, 1, 10, 20 
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Fig. 8 The Pearson’s correlation coefficient at  j = 0,1,10,20; k = 0, 1, …, 60 
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4. Approach II – forcing signal as a shot noise 

We note that applying Vieta formula (7) at j = n the coefficient 0β  is equal to zero since 

0=lγ . It implies that a general solution of the ODE (5) is a combination of the obvious 

solution of  0=′f  and the particular solution η(t) of  

0... 1
)3(

2
)2(

1
)1( =++++ −

−
−

−
−

ffff
n

n

n

n

n βββ    (30) 

i.e. f r cη= ≡ + .  

We are specifically interested in the behaviour of the system (30) with a shot noise as a 

chaotic/stochastic perturbation, i.e.  

( )

( ) , 0
N t

i i

i

d
t t t T

d t
δ= ⋅ + − ≤ ≤∑η F η A    (31) 

0

1

2n

η

η

η −

 
 
 =
 
 
 

η
M

 , 

1 2 1

0 1 0 0

0 0 0

0 0 1 0

0 0 1

n nβ β β− −

 
 
 
 

=  
 
 
  − − − 

F

L

M O O O

L L

L L L

L L

 . 

where  tk  are successive occurrence or arrival times of δ-impulses,   

( )0 1 k0 ... ...t t t T= < < < < <  

{ }ttktN k ≤= :max)(  is a counting process.   

The impulse perturbation acts on system (31) at times  t = tk, k = 1,2,3, …. such that 

( ) ( )0 0
k k k

t t+ = − +η η A .    (32) 

In sequel we assume that η is a càdlàg function.  

We introduce the positive inter-arrival times Tk  such that 

∑
=

− =+=
k

i

ikkk TTtt
1

1        

Between kicks a state vector is governed by the following homogeneous system of linear 
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differential equations  

d

dt
= ⋅η F η   

and the initial condition of the system ( )0 0 0t≡ +η η  defines an evolution of a state vector 

(Cauchy theorem). 

4.1. One-dimensional case 

We consider a special case of (31) in a form of one-dimensional ODE:  

( )

( ) , 0
N t

i i

i

d
A t t t T

d t
η δ= − ≤ ≤∑    (33) 

4.1.1. Response to a Shot Noise. The generalized Wiener process 

 

Integrating Eq. (33) we immediately get a solution 

   (34) 

A plot of the process η is depicted in Fig.  

 
ηk 

ηk+1 

η 

t 
tk tk+1 

Tk 

 

Fig. 9.  A solution of Eq. (1) 

 

Thus the process η(t) (Fig. 9) is a rectangular signal with step heights ηk satisfying the 

relation: 

1k k kAη η −= +     (35) 

Probability density function 

 

( )
( )

( ) ( )
1

(0) 0
N t

k N t

k

t Aη η η
=

= ≡ =∑
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We first establish that the distribution function of  η(t) is 

( )( ) ( ) ( )
1

k k

k

P t z P t P zη η
∞

=

≤ = ≤∑ , 

where ( ) ( ) ( )( )1k k k
P t P t t t P N t k−= ≤ < = = .  

We assume zero mean for the magnitudes Ak . It immediately implies that η(t) is a martingale 

with a zero mean  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )0 0 |E E N t E A A as E N t N t E Aη η= = = =   (36) 

To calculate a variance of η (t) we use a law of total variance  

( ) ( )( ) ( )( )| |D E D N t D E N tη η η   = +     

One can show that the conditional variance is 

( )( ) ( ) ( ) ( )
( ) 1

1

| 2 ( ) ( )
N t

A

n

D N t N t D A N t n c nη
−

=

= + −∑    (37) 

where ( )( )A i i kc k E A A +=  is the autocorrelation function (acf) and ( )ADA ≡
2σ  is the 

variance of the Ak.  

Hence, for i.i.d. random or uncorrelated chaotic magnitudes Ak (cA(k)=0) we have 

( )
( )

( ) ( )( ) ( )( ) ( ) ( )2

0A
tc n

D D A E N t D N t E A D A Nη
=

= + =   (38) 

where ( ) ( ){ } { }
( )t k

t t
k k k

t
N H t kP N t k P t t

E t>>
≡ = = = <∑ ∑ � is the intensity function.  

For correlated random/chaotic Ak  we assume that the first moment of the autocorrelation 

function cA(k) is finite  

( )
1

A

k

k c k
∞

=

< ∞∑      (39) 

and then the variance is given by 

( )2 2 1
k A

k oησ σ= + .     (40) 
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Let us introduce a new variable 
k

k k

k

η

η η
ε

σ

−
=  with ( ) 0

k
E ε =  and ( )2 1kE ε =  . It can be 

shown that k
ε  converges in distribution to the standard normal law, i.e. the central limit 

theorem holds both with i.i.d.random [Feller] and chaotic magnitudes Ak [Chernov 1995].  In 

[Baranovski 2003], authors have presented the analytical expressions for the characteristic 

functions of the chaotic partial sums kη of the magnitudes Ak generated by PWL onto maps 

and shown their fast convergence to the limit ( )2exp / 2ω− . 

We consider a piecewise constant function ( )k
W t  on [ ]0,1t ∈ such that 

   (41) 

where x   is the floor function (it gives the greatest integer less than or equal to x). 

Then for any k { }k
W  induces a measure on the space of continuous functions on [0,1] . 

According to the  invariance principle this measure converges weakly, as k → ∞ , to the 

Wiener process W  [Chernov 1995 ] Fig. 10 depicts examples of functions { }k
W for different 

k when the magnitudes Ak are chaotic variables generated by a tent map on [-1,1]:  

1 1 2 , 1,2,...
n n

A A n+ = − =     (42) 

 

Fig. 10 Three realizations of the process W for k =100,300 and 10000 (red, green and blue 

line) 

 

0 0.2 0.4 0.6 0.8 1
t

-2

-1.5

-1

-0.5

0

0.5

1

W
k
H
t
L

( )
( ) ( )

[ ]
1

1
, 0,1 , 0,1,...,

kt
k t

L i

i

W t A t k L
D A L D A L

η   
  

=

= = ∈ =∑
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The weak invariance principle known also as the functional central limit theorem provides an 

approximation deterministic dynamical systems by a Brownian motion on large space and 

time scales.  

Thus the distribution of η(t) tends to the Gaussian law with the mean (36) and variance (38).  

This confirms the diffusion character of η(t). It follows that the Eq.  (33) can be used for 

stochastic and chaotic modeling of the Wiener process. 

 

Example 1. Valuation of the European call option. 

The underlying asset of the European option is assumed to grow at the constant risk-free rate r 

perturbed by a stochastic/chaotic marked point process η(t). Thus an asset price is modeled as  

(43) 

Properties:  

1) Markov property: the next asset price (S+dS) depends solely on today’s price 

2) The next value for S is higher than the old by an amount 

 

3) Variance of dS is 

 

 

We want to price a call option, i.e. 

( ) ( ) ( )( ) ( ) ( ), |r t r t

k

C t K e E S K e P N t k E S K N t k
+ +− ⋅ − ⋅   = − = = ⋅ − =

   ∑ , (44) 

where K is a strike price. We calculate a conditional expectation 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

( )

0

0

0

0

, |

ln

ln
k

k

r t t

x x k

K K

K

C t K E S K N t k x K P S x N t k

x
x K P S e x N t k x K P r t

S

x dx
x K p r t

S x

η

η

η

∞
+ +

∞ ∞
⋅ +

∞

 = − = = − ∂ ≤ = =
 

  
− ⋅∂ ≤ = = − ⋅∂ ≤ − ⋅ =   

  

  
− ⋅ − ⋅   

  

∫

∫ ∫

∫

%
%

%

  (45) 

where 
( )2

2,
2

D A
r r

T

σ
σ= − =% . 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
22 2 2 2 2

D dS E dS E dS E S d S D d S D A dH tη η= − = = =

dS
rdt d

S
η= +

( ) ( )( 0)E dS rSdt as E dη= =
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A pdf of  kη  can be found via its characteristic function. We note that   

( ) ( )
1

, ,
k

k

p k

p

E i Aηψ ω ω ω ω ω
=

 
= = Θ 

 
∑ K    (46) 

where 

 ( ) ( )1 2 1 1
1 1

X

( , ,..., ) exp exp ( ,..., ) ...
k k

k k i i i i A k k
i i

E i A i x p x x dx dx
= =

 Θ ω ω ω = ⋅ ω = ⋅ ω ⋅ ⋅∑ ∑ 
  ∫ ∫L  (47) 

is a k-dimensional characteristic function of a sequence { }kAA ,,1 K  having a joint pdf 

( )kA xxxp K,, 21 .   

For a case of i.i.d. random values  Ak  (46) simplifies to  

( ) ( )ωωψη
k

k 1Θ=     (48) 

where 1( ) ( )i x

A
e p x dx

ωω ⋅

Χ

Θ = ∫ is the characteristic function of the distribution of Ak .  

Here we focus on a special case of (46) when the magnitudes Ak are generated by a chaotic 

mapping  

( )1−= kk AA ϕ       (49) 

in an interval X.  

A joint pdf does not factorize in this case and calculates as 
1

( )
1 2 1 1 1

1

( , ,..., ) ( ) ( ( ))
k

i

A k A i

i

p x x x p x x xδ ϕ
−

+
=

= ⋅ −∏ ,     (50) 

where pA (x) is the invariant density of the map ϕ .  

 

The goal equation (46) simplifies for piece-wise linear onto maps  

( ) ( ){ , , 1, 2,...,i i i ix x a x b x J i mϕ ϕ= = + ∈ =    (51) 

such that ( ): : 0,1ii J Xϕ∀ → = .  

We collect their main probabilistic properties: 

• The invariant density is uniform with 
1

2
A =  and variance 2 1

12A
σ =  

• The autocorrelation function is  

( ) 2

1

1
, 1 1

m
k

A A

i i i

c k r r
a a

σ
=

= − < = <
⋅

∑    (52) 
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A property (39)-(40) can be easily illustrated with the exponentially decaying acf.  

We next substitute the acf (52) into (37) and get 

( )
( )

2 2 2

2

2 11

1 1k

k

A A

r rr
k

r r
ησ σ σ

−−
= −

+ −
 

This confirms (39) at large k as 0k
r → .  

The characteristic function can be also calculated analytically.  Substituting (50) into (47) for 

the inner integral we have 

( )

1 1 1 1

1

1

2
1

1
( 1) ( 1)

2 1 1 1 1 1 1
1 1

( )

( 2)
2

1

(
3 2

1

( ( )) ... ( ( )) ( ( ( ))

1
( ) ... ( )

1
( ( )) ...

l
l

l

l

l

l

km
i v x i v xk i

k i l

l iJ x z

z b
m i v

a k

k

l l

x b
m i v

a k

k

l l

e x x x x dx e x x dx

e x z x z dz
a

e x x x
a

ϕ

δ ϕ δ ϕ δ ϕ ϕ

δ δ ϕ

δ ϕ δ ϕ

−
⋅ ⋅− −

+
= =Χ =

−
⋅ ⋅

−

= Χ

−
⋅ ⋅

=

⋅ − ⋅ ⋅ − = ⋅ −

= ⋅ ⋅ − ⋅ ⋅ −

= ⋅ ⋅ − ⋅ ⋅ −

∑ ∏∫ ∫

∑ ∫

∑ ( )2)
2( ) .x

−

 

Hence the following recurrence equation can be obtained 

1
1

1 1 2 3
1

1
( ,..., ) ( , ,..., )

l

l

b
m i

a

k k k k

l l l

e
a a

ω ω
ω ω ω ω ω

− ⋅ ⋅

−
=

Θ = ⋅ ⋅Θ +∑     

the solution of which is 

1 1

1

1 2 1

1
1 11

1 1
, ,..., 1 11

1 1
( ,..., ) ,

pk k

n ip
n p n l n il

k pn

k ki bm k
a

k k n k

i i i nn p n ii

e
aa

ω

ω ω ω ω

− −

= = =

−

− −− ⋅ ⋅ ⋅ −∑ ∑ ∏

= == =

 
 Θ = ⋅ Θ ⋅ +
 
 

∑ ∑∏ ∏       (53) 

where 
1

1

0

1
( ) ( )

i
i x i x

A

e
e p x dx e dx

i

ω
ω ωω

ω
Χ

−
Θ = = =∫ ∫ is the characteristic function of the uniform 

distribution.  Setting ωωωω ==== kK21  in (53) and substituting the result into (46) we 

first get a characteristic function and then a required pdf of kη  by use an inverse Fourier 

transform. In [Baranovski 2003] authors have shown a fast convergence of the characteristic 

function ( ,..., )
k

ω ωΘ  of the cumulative sum 
1

k

k p

p

Aη
=

=∑ to ( )
2 2

cos exp
2

ηω σ
η ω

 
−  
 

, which is 

the characteristic function of a normal distribution with the mean η  and variance 2
ησ . 

For example, a tent map on the unit interval has the following characteristic function 

[Baranovski 2003] 
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12
( , )

11 1
1

1
( ) (2 1)

2 2

k

i f k j

k k k
j

e jω ω
ω

−

− −
=

 
Θ = Θ − 

 
∑ , 

where ( )
2

1

2 2 1

2 1
( 1, ) , 1,2,..., 2

( , ) ; 1,1 =02

( 1, 2 ), 2 1,..., 2

k

k

k k k

j
f k j for j

f k j f

f k j for j

−

−

− − −

−
− + =

= 
 − − = +

. 

 

Then we get a price for the European call option 

( ) ( )( ) ( ), ,r t

k

k

C t K e P N t k C t K
− ⋅= = ⋅∑ , 

where 

( )

( ) ( )

( )( ) ( )( ) ( )

( )

2 1

1

2

0 11

2

0 2 1 2
1

2

2 1
2 , ;

2
1 1

, , ;
2 2 1

0, .

k

B Br t

k

B tBr t

k

i

i
S e e e K a if B t B

C t K S e e e K B B t if B B t B
a i

if B t B

−

⋅

−

⋅

=

−
− − ⋅ ⋅ <


= − − ⋅ − < <

− 
>



∑

%

%

( ) ( )1 2 1 1
0

2 1
ln , 2 , , 2

2 2k

K k i
B t r t B a f k i B B a

S
−

  − 
= − ⋅ = ⋅ − = + ⋅   

  
%  

which converges to the Black-Scholes price as shown in Fig. 11.  

 

Fig.11. Chaotic price of the European call option (green curve) vs Black-Scholes price 

(black curve) 

 

Example 2. Building hybrid (stochastic/chaotic) processes by Brownian subordination. 
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Here we calculate a price  of  the European call option if the underlying asset follows a 

Wiener process with a time driven by stochastic/chaotic marked point process 

( )
( )

1

N t

k

k

t Aη
=

= ∑       (54) 

Properties:  

1) mean: ( )( ) ( )( ) ( )| 0 0E W E E W Eη η η = = =   

2) variance: 

( )( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( )

| |

| 0
t

D W E D W D E W E t

E E N t E N t E A N A A

η η η η η η

η

   = + =      

 = = ⋅ = ⋅ ⇒ >   
 

3) distribution function: 

( ){ } ( )( ) ( ) ( ){ }|
k

P W y P N t k P W y N t kη η< = = ⋅ < =∑  

Price of the European call option: 

( )

( )

( )( )
( ) ( )

1

0

2
0

,

1 1
1 1

2 2 22 2

N t

i

i

rt W A

r t

kA

r t rt

k

C t K e E S e K

B t B tkA
e P N t k S e e erf K erf

kA kA

=

+
 
 +
 

− ⋅  

− ⋅

  ∑  
= ⋅ −  

  
  

        
= = ⋅ − − − ⋅ −          

          
∑

%

%

(55) 

 

Comparison with Black-Sholes price:  
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Fig. 12. Black curve is a Black-Sholes price; red one is C(t,k) 

 

 

4.2. Case of simple real roots of a characteristic polynomial  

 

We consider the case when the characteristic polynomial of the system (31) has simple real 

negative roots , 1, 2,..., 1
i

i nγ = − . The Routh-Hurwitz theorem provides necessary conditions 

for that.  By introducing the following two matrices  

 1

 2

 1

1 2 1

2 2 2
1 2 1

1 1 ... 1 0 0 0

... 0 0 0
, (t)

... ... ... ... 0 0 ... 0

... 0 0 0 n

t

t
n

n n n t
n

e

e

e

γ

γ

γ

γ γ γ

γ γ γ −

−

− − −
−

  
  
  = =
  
    

   

Λ E
 (56) 

The solution of (31) is then given by:   

 1( ) ( ) ,
k k k

t t at t t t−= ≤ <η ΛE D    (57) 

where the vector of constants
( ) ( )( )1 1, ,

T
k k

k nD D −=D K  can be specified from the initial 

conditions ( )1−ktη  by  

( ) ( )1
1

1 −
−

− Λ⋅−= kkk ttED η     (58) 

As η is a càdlàg we first get for t = 0 (k = 1) 

( ) ( )0 10 0+ ≡ = ⋅ ⋅η η Λ E D  0
1

1 η⋅Λ=⇒ −
D    

then from (32) one can show that for 1−= ktt  

( ) ( ) ( ) ( ) ( ) 11111111 00 −−−−−−−− +⋅⋅Λ≡+−=⋅⋅Λ=+≡ kkkkkkkkk ADtEAtDtEtt ηηη (59)  

It leads to a recurrent equation: 

( ) 1
1 1k k k kt

−
− −= + − ⋅D D E Λ A  

with a solution  
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1
1 1

0
1

( ) ,
k

k l
τ

−
− −

=

= + −∑D Λ η E Λ A
l

l

    (60) 

where  ( )0 0t =η η .  

Substituting (60) into (57) leads to a general solution of  (31) as a mixture of the magnitudes 

of the all previous kicks in the system: 

1
1 1

0 1
1

( ) ( ) ( ) ,
k

l k k
t t t t at t t t

−
− −

−
=

= + − ≤ <∑η ΛE Λ η ΛE Λ A
l

l

   (61) 

From (59) and (58) we derive 

( ) ( ) 1
1 1 2k k k kt T

−
− − −= − ⋅ ⋅ ⋅A η Λ E Λ η    (62) 

Using (61) Eq. (62) transforms to  

( ) ( ) ( )
2

1 1
1 1 1 0 1

1

k

k k k k l l

l

t t t t
−

− −
− − − −

=

= − − − ⋅∑A η ΛE Λ η ΛE Λ A . 

The inverse matrix 1−Λ  exists as the Vandermonde determinant det( )Λ  does not equal to 

zero and   for large time  t  

 

 1

 1

1... 0
n

t

t

t

e

e

γ

γ −

−

→∞

 
 

→ 
 
 

Λ Λ  .      

A stationary mode is then established by the second term in (61).   

 

4.2.1. Periodic perturbation: the inter-arrival times are equal to Ω 

 

Now we start to analyze the statistical properties of the stationary mode of process ( )tη of a 

system (31) forced by a periodic shot noise.  

Let amplitudes ( )p

iA  be independent zero mean random values with the probability density 

function: 1,...,2,1),,( −= nitxp
iA  common for all p, i.e. t ; 

( )k

iA  and ( )m

jA  are mutually 
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independent values ∀i ≠ j, j∈{1,...,n-1}, ∀k, m .  

Then from (58) the stationary mode is given by  

( ) ( ) ( )( ) 2,,1,0,
1

1

1

1
, −=⋅=∑∑

−

=

−

=

njtAt
k

p

n

i

p

ij

p

ij Kαη  ,   (63) 

where 

( )( ) ( ) ( )∑
−

=

Ω⋅−⋅⋅=
1

1
,,

n

m

ptj

mim

p

ij
mest

γγα ,    (64) 

,m i
s  being the elements of the inverse matrix 1−Λ .  

Then a vector η of the means and a vector 2
ησ of the variances of the process η(t) can be 

calculated from (63 ) as   

  A⋅=νη       (65) 

 22
Aσϑση ⋅=       (66) 

where T

nAAA ),,( 11 −= K , T

AAA n
),,( 222

11 −
= σσσ K , 

( )( ), , 0,1, , 2; 1, , 1
j i

t j n i nν= = − = −ν K K  is a matrix (n-1)x(n-1) with the elements 

( ) ( )( ) 1,,1;2,,1,0,
1

1
,, −=−==∑

−

=

ninjtt
k

p

p

ijij KKαν . 

( )( ), , 0,1, , 2; 1, , 1
j i

t j n i nυ= = − = −υ K K  

( ) ( )( )[ ] 1,,1;2,,1,0,
1

1

2

,, −=−==∑
−

=

ninjtt
k

p

p

ijij KKαυ . 

 

4.2.2. Asymptotic properties of η(t) 

 

We introduce the following notations: an exponential pulse shape ( ) i z

i
g z e

γ Ω= , an amplitude 
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 ( 1)( ) ( ) i ki i

k k
A A e

γ− Ω −=% .  

Taking into account that 1
t

k
 

− =  Ω 
 for an arbitrary interval ( 1)k t k− Ω < < Ω , the process η(t) 

can be rewritten in the following form 

  
1

1

( ) ( )
n

i

i

t z tη
−

=

=∑ ,       

where ( )

1

( ) mod1k

i i i

k

t
z t A g

=

 
=  

Ω 
∑ %  is a sequence of  pulses adjoining to each other  with given 

form gi = gi(z) at 0 < z ≤ 1and random amplitudes  distributed on ( ) ( ),iA
p x i∀   and fixed 

duration  Ω . 

The characteristic function of the process η(t) factorizes:  

( )( )

1 1

( , ) ( ) ( ) ( , )i

n n
jz t ujx t u

i

i i

u t E e E e u t
= =

Ψ = = = Ψ∏ ∏  

and the distribution function:  

( , ) ( ( ) )F y t P t yη= ≤  

can be easily calculated by use of the inverse theorem.  

The mean value is given by 

( ) ( )( )

1

( , ) ( ) mod1 0,  ( 1) ,  
n

i

k i

i

t
ydF y t E t E A g k t k

T
η

∞

=−∞

 
= = = − Ω < < Ω 

 
∑∫  

as  
( 1)

mod1
t k t− − Ω

=
Ω Ω

 . The variance of η(t) calculates as  

2 21 1 1 1
2 ( ) ( ) 2 2 2

1
1 1 1 1

( ( )) mod1 mod1 ( ( )) ( ) ( )
n n n n

i i

k i k i i i n

i i i i

t t
E t E A g E A g E z t b t B t

T T
η

− − − −

−
= = = =

      
= = = = =      

      
∑ ∑ ∑ ∑

We assume that the variance b ti
2 ( ) of the elementary process ( )iz t  is finite entailing that for 

almost all t: 

( )2
n

n
B t

→∞
→ ∞ . 

Then one can show that a Lindeberg condition [Feller 1968] is satisfied: 
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1

1
2

2
11  ( )

1
lim ( , ) 0,   0

( )
n

n

i
n

in y B t

y dF y t
B t ε

ε
−

−

→∞
=− ≥

= ∀ >∑ ∫ ,     (67) 

where Fi(y,t) is the distribution function  of  zi(t). Moreover  

( )( )( , ) ( ) ( , ) 1 ( , )

mod1
ii i A i i

i

y
F y t P z t y F F y t F y t

t
g

T

= < = ⇒ − = −
 
 
 

 

hence 
2

 ( )

( , ) 0
n

i

y B t

y dF y t
ε≥

=∫ . But at     n → ∞  

y dF y t b t B ti i n

y B tn

2 2( , ) ( ), ( )
( )

→ → ∞

<
∫   
 

ε
ε

. 

Eq. (67) is a necessary and sufficient condition of convergence F(y,t) to normal distribution 

with parameters E(η(t))=0 and 2
1( )

n
B t− , according to the Lindeberg and Feller theorem [Feller 

1968]. 

4.2.3. An empirical model 

Let us consider an exponential term structure of interest rates (4) with l = 6 which is 

characterized by a performance (22) .    For that we fix a dimension n  = 6  of  a system (31) 

and set Tk  = Ω  as well as an arbitrary time t in a k-th interval ( ) )1 ,t k k∈ − Ω Ω . 

According to the second approach (read discussion in section 2 and equation (15) take a 

spectrum of the eigenvalues by  

59.1,83.3,94.1,68.2,21.4 54321 −=−=−=−=−= γγγγγ   (68) 

 corresponding to the median fitted curve of the instantaneous forward rate on the date 

255=fixedτ  (22.02.2007) . From the eigenvalues we calculate the matrix Λ  and its inverse 

1−Λ . 

Above fitting procedure provides a sample of trajectories  

( ) ( ), , 1,...,fixt t Z qτ τ τ= − =η f c ,     (69) 

where ( )( ),0, ,0
T

fix l fix
c τ=c K , ( ) ( ) 043.02556 ≅≡ cc fixl τ  
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We rewrite Eq. ( 62) in the form  

( ) ( ) ( ) ( )( )1 1k k kτ ττ −= ⋅Ω − ⋅ Ω ⋅ ⋅ − ⋅ΩA η Λ E Λ η    (70) 

and calculate the sample central moments of the magnitudes 
k

A  

( )

( )

( )

( )

( )( )

,1

,2

, 1

1

k

i

k q
k ii

i k k

k

i n

q τ

µ

µ
τ

µ −

 
 
 

= = − 
 
 
 

∑µ A A
M

 

where the vector ( ) ( ) ( )( )1 2 1, , ,
T

k k k

k n
A A A −=A K  has the components ( ) ( ) ( )

1

1 q
k k

j jA A
q τ

τ
=

= ∑  . 

The central moments of the magnitudes ( )kA1 are given by the following empirical relations: 

( )
( )

( )
K,2,1,12

1,2
1

=⋅= −
ie

ii

A

k

i k

βσµ      (71) 

and    

 ( )
( )( ) ( )

1

1

2 22
2 1,1 , 2,3,k

i
k i

i A
e i

βµ σ α
−

−

− = ⋅ ⋅ = K ,    (72) 

 

where 7945.21,16751.6 == αβ . 

The central moments of the magnitudes ( ) 1,,3,2, −= njA
k

j K demonstrate also the following 

patterns: 

the even moments 

 ( )
( )

( )2
2 , , 1, 2,k

j

k ki

i j iA
iµ σ φ= ⋅ = K     (73) 

and the odd moments 

 ( )
( )( ) ( )

2 1
2

2 1, , 2,3,k
j

i
k k

i j iA
iµ σ ι

−

− = ⋅ = K    (74) 

where the constants ( ) ( ),k k

i i
φ ι  can be tabulated. 

4.2.4. A chaotic model 
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Here we discuss an inverse problem: how to design a dynamical system (31) forming process 

η(t) with the given statistical properties. For that we need to provide a generator of the 

magnitudes with the prescribed properties discussed above.  

We will consider a case when the vector of magnitudes kA  is given by  

( )0,0, ,0,
T

k k
A=A K ,     (75) 

where the magnitudes are chaotic variables. It means that a just (n-2)-th derivative of a 

solution η(t) changes by jump 
k

A , which is governed by a chaotic map ( )1k kA Aϕ −= .  

The system coefficients 
k

β are coupled with the eigenvalues { }1 1, , nγ γ −K by Vieta’s formula. 

Without loss of generality we fix an arbitrary time t in a k-th interval ( ) )1 ,t k k∈ − Ω Ω . Then 

from (61) the stationary mode is given by  

( ) ( ) ( ) ( ) ( )
1

,
1

, 0,1, , 2
j k

j

j p j pj
p

d
t t t t A j n

dt
η η η α

−

=

= ≡ = = −∑ K    (76) 

where 

 ( )
 i

1

, , 1
1

tn p
j

p j i n i

i

t s e
γ

α γ
 − − 

Ω 
−

=

= ⋅∑ ,    (77) 

, 1i n
s −  being the elements of the inverse matrix 1−Λ .  

The mean and variance of the process η(t) and its derivatives are  

( )( ) ( )
1

,
1

k

j j p j

p

E t A tη η α
−

=

= = ∑     (78) 

( )( ) ( ) ( ) ( ) ( )
1 2 1

2 2 2
, , ,

1 1 1

2
j

k k k l

j A i j A i j i l j

i l i

D t t c l t tησ η σ α α α
− − − −

+
= = =

= = +∑ ∑ ∑   (79) 

The distribution function of η j (t)  is then defined by  

( )
1

,
1

( , ) ( ( ) )
k

j j p j p

p

F y t P t y P t A yη α
−

=

 
= ≤ = ≤ 

 
∑     (80) 

and its characteristic function becomes 
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( ) ( ) ( ) ( ) ( )( )
1

, 1 1, 2, 1,
1

, , , ,
k

j p j p k j j k j

p

t E i t A t t tψ ω ω α ωα ωα ωα
−

− −
=

 
= = Θ 

 
∑ K  (81) 

where 1 2( , ,..., )
k k

Θ ω ω ω is the k-dimensional characteristic function of the sequence  {Ap 

p=1,…,k-1}.  

Note that for a case of i.i.d. random values  Ak  (68) simplifies to  

( )( )
1

1 ,
1

( , )
k

j i j

i

t tω ωα
−

=

Ψ = Θ∏      (82) 

where 1( ) ( )i x

A
e p x dx

ωω ⋅

Χ

Θ = ∫ is the characteristic function of the distribution of Ak .  

As above shown a central limit theorem holds for ∑
−

=

1

1

k

p

pA .Then a characteristic function  (81) 

of  η j (t) approaches ( ) ( )1 2 2cos exp 2
jj ηη ω ω σ−⋅ − j∀  at large t or k. Thus the response of a 

linear system (31) forced by chaotic shot noise is normally distributed process. 

From the eigenvalues (68) by use of Vieta’s formulas we define the coefficients 

4,3,2,1,0, =iiβ leading to the following 5th order differential equation 

( ) ( ) ( )Ω⋅−=⋅+′⋅+′′⋅+′′′⋅+⋅+ ∑ itA
i

i

IVV δηηηηηη 77.13294.26781.20825.8224.14  (83) 

The equation has a solution (76) at  j = 0. 

We assume that the amplitudes Ak of the impulse perturbation are chaotic uncorrelated 

variables with zero mean. Then from (79) we get  

( )tA µσση ⋅= 22       (84) 

where ( ) ( )tt
k

i

i∑
−

=

=
1

1

2
0,αµ  . 

Under the given spectrum of the eigenvalues 5,...,1, =iiγ   (68) and the following coefficients 

44.0,54.0,9.0,7.0,29.0 5,55,45,35,25,1 =−=−=== sssss  and, for example, Ω = 1/360 (one 

day) a component ( )tµ  can be easily calculated by (77) as shown in Fig. 13 
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Fig. 13 ( )tµ  within  Ω <t <10 Ω 

The ( )tµ  quickly becomes a periodic function with a period Ω.   

In Fig. 14  we plot a ratio 
( )
( )t

t

µ

ση
2

 calculated from a sample variance of ( )tη . 
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Fig. 14.  A ratio 
( )
( )t

t

µ

ση
2

 within 0 < t < 50 years 

From (84)  and Fig. 18 we can approximate a variance of the magnitudes by  

( )
355,4.0

2
2 ≤≤≈= t

t
A µ

σ
σ η     (85) 

For a special case t = 7 (years)  we calculate ( ) 562 10867.1,10459.7 −− ⋅≈⋅≈ tµση  and then 

( )
( )

3995.0
2

=
t

t

µ

ση .  

On the base of an approach [Baranovski&Daems 1995] we design a piece-wise linear map  
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≤≤+−

<≤−+
=+

bAbA

AbbA
A

ii

ii

i 0,2

0,2
1     (86) 

which is characterized by an uniform probabilistic measure on the interval [-b, b =1.095] with 

zero mean, the variance 0.4 and zero acf  ( ) 1,0 ≥∀= nncA . 

Taking into account an analysis in section 4.1. and having a chaotic sequence 

{ }1 2 1, , , kA A A −K  one can compute a solution η(t) and its fourth derivative  η j (t) on the time 

interval [0, k Ω] as shown in Figs. 15 - 17.  
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Fig. 15 a solution η(t) on the time interval [Ω, 50 years] ; Ω = 1 (one year) 
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Fig. 16 a solution η 4 (t)  on the time interval [Ω, 10 years] ; Ω = 1 (one year) 

 



 34 

0 5 10 15 20
t

0.02

0.04

0.06

0.08
hHtL+c6H255L

 

Fig. 17 . A path (black trajectory) of a solution of  dynamical system with amplitudes 

Ak generated by tent map (70) in comparison to ( )255, Ztf  (green curve): the  

instantaneous forward rate at time t for date  22.02.2007 ; Ω = 1/12 (one month) 

   

Fig. 16 demonstrates a jump character of the last component of the vector solution η(t) and 

confirms that the magnitudes of the jumps are ( ) ( )4 40 0 kk kΩ + − Ω − ≡η η A .  

A phase portrait on Fig. 18  represents an attractor of the dynamical system.   
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Fig. 18. Parametric plot of the vector ( ) ( ) ( )[ ]ttt 210 ,, ηηη  at 500 ≤≤ t  and Ω = 1 (one year) 
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Fig. 19 shows plots ( ) ( ) ( )[ ]ttt 210 ,, ηηη  and ( ) ( ) ( )[ ]ttt 321 ,, ηηη  together.  
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Fig. 19 Parametric plots ( ) ( ) ( )[ ]ttt 210 ,, ηηη  (blue curve) and ( ) ( ) ( )[ ]ttt 321 ,, ηηη  (green curve) 

 

It is clear from Fig.23 that a dynamical system (70) demonstrates “expansion”, characterized 

by exponential growth of the variances 2

jησ  with  j, order of derivative of the solution η(t). 

A characteristic function of η j (t)  can be analytically obtained. We first establish that the map 

(87) is topologically equivalent to a tent map (51) with the parameters 

( ) ( ){ }1 1 2 12, 0 , 2, 2a b a b= = = − = . A corresponding homeomorphism is the following linear 

function 095.1;2 =−⋅ bbxb [Baranovski&Daems 1995] . It implies that a characteristic 

function (81)  of the solution η j (t)  in a k-th interval ( ) )1 ,t k k∈ − Ω Ω  is given by 

( ) ( ) ( ) ( )( ) ( )
1

1 1, 2, 1, ,
1

, 2 , 2 , , 2
k

j k j j k j p j
p

t b t b t b t Exp i b tψ ω ωα ωα ωα ω α
−

− −
=

 
= Θ ⋅ − ⋅ ∑ 

 
K , (87) 

where the (k-1) -dimensional characteristic function (66) of a tent map. 

Fig. 20 shows the characteristic function (87) at t = 7 (years), i.e. ( ) 1,8,1 =Ω=Ω⋅−= kkt  in 

comparison with 













−

2

22
ησω

Exp  as the characteristic function of a Gaussian distribution with 



 36 

zero mean and a variance ( ) 6
7

1

2
0,

22 10467.7 −

=

⋅≈= ∑ t
i

iA ασση  calculated from (79) at 

( ) 1,0 ≥∀= nncA . 
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Fig. 20.  Characteristic function of η (t) at t = 7 (years) (black curve) and Gaussian 

process (red curve) 

 

A histogram of  the 1000 paths of  η (t) at t = 7 is presented in Fig. 21 
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Fig. 21  Histogram of  the solution η(t) at t =7 

 

 A 2χ  Pearson’s test with the confidence level 0.95 accepts a hypothesis on normal 

distribution of  the solution η(t) with zero mean and the variance 7.46 10^(-6).  

In Table 6 we collect all remaining characteristic functions of η j (t) , j = 1, 2, 3, 4 at t = 7 

(years), i.e. ( ) 1,8,1 =Ω=Ω⋅−= kkt   in comparison with the corresponding asymptotical 
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curves 4,3,2,1,
2

22

=













− jExp

jησω
 , the characteristic functions of a Gaussian distribution with 

zero mean and a variance ( ) 4,3,2,1,
7

1

2
,

22 == ∑
=

jt
i

jiAj
ασση  (Fig. 26) 
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Fig. 22. Log of the variance 

 

characteristic function of η 1 (t) 
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characteristic function of η 2 (t) 
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characteristic function of η 3 (t) 
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characteristic function of η 4 (t) 
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Table 6. Characteristic functions of the components of a solution η in comparison with the 

corresponding asymptotical characteristic functions of a Gaussian distribution 

 

Conclusions 

In this paper we have first proposed an exponential-polynomial model of the interest rates and 

then demonstrated its performance in a fitting of the zero-coupon curves. Capturing dynamic 

dependencies in the fitted curves we have in a second step designed a dynamical system 

forced by shot noise with chaotic/stochastic jumps. In our proposed class the mean-reversion 

speed of the diffusive and the jump part can be adjusted separately or jointly by a suitable 

design of chaotic maps with prescribed probabilistic properties. 
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