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Abstract

Many papers in the litterature have adopted the expected utility paradigm to analyze insurance
decisions. Insurance companies manage policies by growing, by adding independent risks.
Even if adding risks generally ultimately decreases the probability of insolvency, the impact
on the insurer's expected utility is less clear. Indeed, it is not true that the risk aversion toward
the additional loss generated by a new policy included in an insurance portfolio is a
decreasing function of the number of contracts already underwritten (i.e. the "fallacy of large
numbers"). In this paper, it is shown that most commonly used utility functions do not
necessarily positively value the aggregation of independent risks so that they are not éligible
for insurers. This casts some doubt about the conclusions drawn in the papers postulating such
completely monotonic utilities for guiding insurers' choices. Finally, it is shown that the
sufficient conditions for adding risks that can be found in the litterature need to be refined by
restricting the domain of définition of the insurer's utility function.
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1 Introduction and motivation

Many explanations for the creation of insurance portfolios are based on a loose application
of the law of large numbers and of the central-limit theorem. Most authors use these funda-
mental results of probability theory to show that the average loss per policyholder becomes
more concentrated around the mean as the size of the portfolio increases. However, the in-
surer is not so much interested in the average loss per policy, but rather in the total payout.
As pointed out by BROCKETT (1983), large deviations theorems are the appropriate tools to
study exceedance probabilities for the insurer’s total payout as the portfolio size increases.

SMITH & KANE (1994) explained that insurance is made possible by the inclusion of
safety loadings, i.e. excesses of the premiums paid over the corresponding expected losses. In
the case of independent risks, such loadings ensure that the insolvency probability becomes
negligible when the size of the portfolio is large enough. Contributions in excess of the
insured’s expected loss create capacity to absorb deviations from the expected outcomes.
This explains why insurance is beneficial.

As insurance policies are purchased to protect policyholders against adverse financial
contingencies, insolvency risk plays a special role in the insurance industry. Risk capital is
held to assure policyholders that claims can be paid even if larger than expected. Increasing
the number n of independent losses L1, Lo, ..., L, is expected to decrease the probability of
loosing money so that the collective of n policies may be found acceptable. This, however,
confuses risk with insolvency. Increasing the size n of the portfolio may increase the risk even
though it lessens the probability of insolvency and lowers expected loss. Even if insolvency
is avoided with a probability approaching 1, a loss is still possible and its disutility may be
considerable. An expected utility maximizer must take this disutility into account.

The present paper explores the impact of adding risks in the classical expected utility
paradigm. This allows us to examine the shape of an insurer’s preferences. Let us assume
that the insurer possesses some utility function u(-) and that he acts in order to maximize
the expected utility. The prospect X with distribution function Fx is then evaluated by

0] = [ u@)dbx(e) = Bu(x)

—00

and X is preferred over Y if U[X] > U[Y]. Typically, X represents the net loss, i.e. the pure
premium minus the total claim amount in this paper (so that X has zero mean). Formally,
X = E[L] — L where L denotes the loss related to some insurance contract and E[L] is the
corresponding expected loss (often called pure premium in the actuarial literature).

Insurers are often considered to be risk neutral, that is, their utility function is assumed
to be linear. This is reasonable as long as all the assumptions underlying the law of large
numbers apply. In such a case, the insurer may indeed be seen as a kind of intermediary who
collects and disperses funds amongst the policyholders, and who diversifies the insurance
risk among a large set of shareholders. See, e.g., EECKHOUDT ET AL. (2005, Chapter 3) for
a discussion.

However, the assumptions underlying the law of large numbers are quite restrictive.
Even if the individual insurance risks remain independent (an assumption that will be kept
throughout this paper), the number of policies is limited in practice and insurance portfolios



can be quite heterogeneous. Considerable safety loadings have then to be included in the
premium, making it unfair and questioning the insurer’s risk neutrality.

It appears extremely difficult to elicit an analytical expression for the utility function of
a particular insurer. Nevertheless, it is possible to infer which general properties have to
hold. Every utility function has to be non-decreasing, indicating that more money is always
better. Furthermore, insurers have to exhibit some sort of risk averse behavior. Henceforth,
every utility function will be assumed to be non-decreasing (non-satiation) and concave (risk
aversion). Denoting as u® the kth derivative of u, assumed to exist, this means that we
restrict ourselves to utilities such that u > 0 and u(® < 0. This paper studies additional
features of the utility function v making insurance possible.

The present paper concentrates on the situation of an insurance company aggregating
risks in a portfolio. Section 2 discusses the acceptance property. Insurers exhibiting this
kind of behavior positively value the aggregation of independent risks. DIAMOND (1984)
indicates sufficient conditions for the acceptance property to hold. Section 3 shows that
these sufficient conditions put some restrictions on the domain of definition of the insurer’s
utility function. We provide some examples of utility functions satisfying these conditions.
The final Section 4 discusses the implications of these results for insurance economics.

2 Adding risks and acceptance property

2.1 Compensating premium

Denote as k the initial capital owned by the insurance company. Whatever the independent
net losses X; = E[L;] — L;, i = 1,2,. .., with zero mean,
n+1

=1 =1

so that without safety loading, no rational decision-maker would agree to increase the number
of policies. Moreover, adding a policy which does not contribute any loading deteriorates the
situation of the insurance company, even if all the other policies pay a premium exceeding
their expected loss. Hence, we see that no insurance company is willing to cover risk in
exchange of only the pure premium but requires some extra money.

The insurer is ready to cover a net loss X = E[L] — L for a price at least equal to the
solution 7[X] of the equation

U <U

Uk + 7[X] + X]| = U] = u(k). (2.1)

The premium charged to the policyholder for covering X is then E[L]+#[X]. In EECKHOUDT
& GOLLIER (2001), 7[X] is called the compensating premium. It is the price to be paid to
compensate for the bearing of X, when initially the insurer holds the deterministic capital
k. Condition (2.1) expresses that w[X] is fair in terms of utility: the right-hand side of (2.1)
represents the utility without X; the left-hand side of (2.1) represents the expected utility
of the insurer covering the net loss X. Therefore (2.1) means that, provided an amount of
7w[X] is obtained, the expected utility of wealth with X is equal to the utility without X:
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(2.1) can be interpreted as an equality between the expected utility of the income 7[X]+ X
and the utility of not accepting X. If u is concave then 7[X] in (2.1) is non-negative.

2.2 Utility functions with the acceptance property

SAMUELSON (1963) termed adding risks a “fallacy of large numbers” because it is not true
for all risk averse utility functions that the risk aversion toward the nth independent risk
is a decreasing function of n. DIAMOND (1984) was the first to provide conditions under
which adding risks is beneficial, that is, the conditions for adding independent risk to reduce
insurer’s risk aversion, which are the conditions when SAMUELSON (1963)’s “fallacy of large
numbers” is not a fallacy.

According to DIAMOND (1984), adding independent risks provides true diversification
if the incremental compensating premium for adding the second risk to the portfolio is
lower than for adding the first risk. Consider independent (but not necessarily identically
distributed) net losses X and Y, and define 7[X], 7[Y], and #[X + Y] as the solutions of
(2.1) for net losses X, Y, and X 4 Y, respectively. Adding risks reduces the incremental
compensating premium if

X +Y] < w[X]+7[Y]. (2.2)

This means that the functional x[-] is subadditive. In order to show that this favors adding
risks, let us consider the increase in the compensating premium caused by the addition of a
new policy X, in a portfolio 21" | X; of size n, that is, 7[>.1 X;] — 7[>, Xi]. If we
take X =3 ", X; and Y = X,,1; then (2.2) becomes

T [% Xz] - T [ Y Xz] < 7T[Xn+1]. (23)

1=

Hence, it is less expensive to cover X, if the policy is included in an existing portfolio of
n independent risks X7, X5,..., X, compared to the coverage of X, ; in isolation. This
property is called the “acceptance property” of the insurer’s utility function.

Let us come back to (2.2) and define the indirect utility function v(-) as

v(y) = Elu(k + X + y)].

This is also a utility function as it inherits non-decreasingness and concavity from u. The
expected utility of the insurer bearing X + Y is E[o(Y)]. The condition (2.2) holds if u is
more risk averse than v, that is,

v (0) E[u® (k + X)] u? (k)

~vM(0) - T Eu® (k4 X)] < T uM(k) (2.4)

Sufficient conditions for u to be more risk averse than v can be obtained by finding sufficient
conditions for (2.4) to hold. As pointed out by DIAMOND (1984), a set of sufficient conditions
obtained by Jensen inequality is given by u® > 0 and «( > 0 (with at least one strict
inequality).

Note that these sufficient conditions are determined only by imposing restrictions on
the utility function and do not depend on the distribution of X. This means that if these
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conditions are satisfied then the acceptance property holds whatever the distribution of X
provided [ X] is well-defined.

If u® < 0 and u® < 0 (with at least one strict inequality) then the inequality in (2.4) is
reverted and the functional 7[-] is superadditive. In this case, defining 7[X + Y], n[X], and
7[Y] as the solution of the indifference equation (2.1), the superadditivity of 7[-] means that

[ X + Y] > [ X]+ 7n[Y]. (2.5)

Thus, utility functions of this type are not eligible for describing insurers’ preferences. Indeed,
inequality (2.3) is reversed in this case. Including a new risk X, in a portfolio of size n is,
thus, more expensive than covering X, in isolation. This clearly prevents the formation
of insurance portfolios.

2.3 Inclusion of a safety loading

The previous results are obtained under the assumption E[X] = 0, that is, when the premium
is the pure premium. As stated by DIAMOND (1984), if X is a gamble that agents accept
voluntarily this assumption must be replaced by E[X] > 0. In an insurance context, this
means that some safety loading has been included in the premium. With the expected value
premium principle, this means that X is now equal to (1 + n)E[L] — L where n > 0 is the
safety loading coefficient. Thus, E[X] = nE[L] > 0.

In this case a set of sufficient conditions for the acceptance property is «¥ > 0 and

decreasing absolute risk aversion (DARA). Note that DARA (meaning that the index of
@

i

than «® > 0, since u® > 0 is necessary but not sufficient for it.

absolute risk aversion a(-) defined as a(z) = is decreasing in x) is a stronger condition

3 New findings on the shape of insurers’ utility func-
tions

3.1 Commonly used utility functions do not satisfy the acceptance
property

The results summarised in Section 2 showed some features of the utility function ensuring
that the acceptance property is satisfied. However, it can be also shown that the presence of
these features is not so common. Many negative results can even be obtained in this field.

First, EECKHOUDT & GOLLIER (2001) proved that the compensating premium is super-
additive in the number of independent and identically distributed risks if the utility function
is proper. Properness was defined by PRATT & ZECKHAUSER (1987). Properness answers
the following question: if an individual considering two independent undesirable risks is
required to take one of them, should he continue to find the other undesirable?

The preceding analysis shows that a utility function inducing superadditive compensating
premiums prevents the formation of insurance portfolios because incremental compensating
premiums become larger as the size of the portfolio increases. This leads to the following
result.



Proposition 3.1. If the utility function exhibits proper risk aversion then the acceptance
property (2.2) is not satisfied.

Proper risk aversion is difficult to characterize and it is difficult to determine whether
a particular utility function satisfies this condition. A necessary condition for properness is

DARA and a sufficient condition is, in general, DARA plus decreasing absolute prudence

®(z) .
——Z(Q)g; is de-

creasing in x). In many cases, DAP alone is sufficient for properness. This holds since DAP
often implies DARA. Indeed, both KIMBALL (1993) and MAGGI, MAGNANI & MENEGATTI

(2006) prove that global DAP implies global DARA. Specifically, under the assumption

u® (z
_u(l)ga;;
is followed (or coincides with) at least one local minimum (maximum) of the function

x — p(z) = —%. This means that global DAP implies global DARA under this as-
sumption. Furthermore, MAGGI, MAGNANI & MENECGATTI (2006) also prove a similar
implication for local analysis in different cases. Assume, for instance, that a(-) has one max-
imum in zy and p(-) has one maximum in z; (where 21 > zy). Now, for x > x; DAP implies
DARA.

Let us now list some commonly used utility functions which violate the acceptance prop-

erty.

(DAP, meaning that the index of absolute prudence p(-) defined as p(z) =

uV(400) = 0F, each local minimum (maximum) of the function z +— a(z) =

Proposition 3.2. The acceptance property (2.2) is not satisfied for the following utility
functions:

(i) a power utility function;

(i) a logarithimic utility function;

(1ii) a HARA wutility function of the form u(x) = a(b+ xc™ 1) =¢ with ¢ > 0;

(iv) an exponential utility function;

(v) a quadratic utility function.

Proof. Utility functions in cases (i), (ii) and (iii) exhibit both DARA and DAP and are thus
proper. By Proposition 3.1 this implies that they do not satisfy (2.2).

For case (iv), given the exponential utility function of the form u(z) = —a~! exp(—az) it
is easy to see that for this function we have

E[u® (k + X)] E[—aexp(—a(k + X))]

E[u(k + X)] Elexp(—a(x + X))]
and
~u? (k) __—aexp[-ak] _
u® (k) exp|—ak]

This implies
Eu?(k+X)]  u®(k)
CEM(s+ X)) uM(k)
excluding (2.4) and thus (2.2).
For case (v), given the quadratic utility function u(z) = ax — bx?, we get

E[u® (k 4+ X)] 2b 2b u® (k)

TEuW(k+X)]  a—2b(k+E[X]) a—2bk  ul(k)

)



which excludes (2.4) and also (2.2). O

3.2 Domain of definition of insurers’ utility functions

Another negative general result can be obtained with refence to utility functions defined on
an unbounded domain. Considering utility functions defined over the domain R* = [0, +00),
MENEGATTI (2001) established that, once the signs of the first and second derivatives are
fixed to be respectively positive and negative, the sign of the fourth derivative cannot be
negative for all x € R*. This means that decision-makers who are non-satiated and risk
averse cannot exhibit u® > 0 for all z € R*. This result implies the following one.

Proposition 3.3. No increasing and concave utility function u(-) defined over RY can satisfy
Diamond’s sufficient conditions for the acceptance property for all v € RT.

The result above holds only under the assumption that the utility function wu is defined
over the domain [0, 4+00). A different conclusion can be obtained if the function is defined
over a domain which is bounded above, i.e when x € [0, z1]. In order to illustrate the case
of a bounded domain, we start from the sufficient conditions ©¥ > 0 and «® > 0, obtained
when E[X] = 0, and we examine the following example.

Example 3.4. Let us consider the following utility function defined on a bounded domain
[07 xl]:
u(r) = br — cx® +da® + 2° (3.1)

with x € [0,21], 1 < a < 2 and b,¢,d > 0. An appropriate choice for contants b, ¢ and d
ensures that u® > 0, u® < 0 and «® > 0 while it is easy to see that u® > 0. This utility
function, thus, satisfies Diamond’s sufficient conditions.

3.3 The case of a safety loading

A more complicated picture is obtained when we consider the stronger conditions u® > 0
together with DARA, obtained when we assume E[X] > 0. In this case we get the following
general result.

Proposition 3.5. If the increasing and concave utility function u is defined over the domain
[0, 1] and if it exhibits DARA then a necessary condition for u'™) to be positive is that

lim a(x) < lim p(x).

r— X1 T— I1

Proof. The proof of this result is simple. First, note that

da(r)
= = ala) (al@) — pla) ).
Hence,
lim a(z) > lim p(x) = lim da(xx) >0,



violating DARA. Second, note that

dp(z) _ —u(2)u®(z) + (u®(2))?
dx (u®(x))?

implying that u® positive is a sufficient condition for increasing absolute prudence. MAGGI,

MAGNANI & MENEGATTI (2006) prove that if lim,_, ,, a(x) = lim,_, ,, p(z) then increasing
absolute prudence implies increasing absolute risk aversion. This excludes DARA in this
second case. O

Example 3.6. Given this general conclusion let us now go back to the utility function in
Example 3.4. Indeed it is easy to see that for a sufficiently large b, we have

(b — 2cx + 3dz® + az® 1) (6d + ala — 1)(a — 2)2°3) > (=2c + 6dx + a(a — 1)z 2)?
This means that u™ (z)u® (z) > (u?)? for all z in the domain. Since

da() _ —u® (@)u(z) + (@O(@))?
dx (uM(x))?

this implies DARA for all z in the domain. This shows that the utility function in Example
3.4 satisfies the sufficient conditions for (2.2) in the case E[X] > 0, too.

4 Discussion

4.1 Implications of previous results for the choice of insurers’ util-
ity

Section 2 indicates that insurers’ preferences should imply that adding risk reduces the

incremental compensating risk premium requested by the insurer. However, the results in

Section 3 show that it is not easy to find increasing and concave utility functions satisfying

this requirement.

Proposition 3.2 shows that the most commonly used utility functions (power, logarithmic,
exponential, quadratic and many HARA functions) violate (2.3), preventing the formation
of insurance portfolios, and are thus not eligible to describe the preferences of insurance
companies. This negative result has two main implications. First, it casts doubt on the
conclusions drawn in the papers postulating these kinds of utility for guiding insurers’ choices.
Second, it clearly indicates the same problem must be avoided in future analyses.

Quadratic and completely monotonic utility functions have been widely used in the insur-
ance literature. In his study of reinsurance agreements, BORCH (1974, Part I1T) demonstrated
the particular role played by exponential, power and logarithmic utilities. Also, quadratic
utilities are studied in considerable detail since they allow for more explicit results. See
also BORCH (1990, Chapter 8). BOWERS ET AL. (1997, Chapter 1) discuss expected util-
ity applied to insurance. The quadratic, exponential, power and logarithmic utilities are
used throughout the examples. The same occurs in the review paper by GERBER & PA-
FUMI (1999) or in the textbooks by ROTAR (2007, Chapter 3) and by KAAS ET AL. (2008,
Chapter 1), for instance.



In many empirical works, completely monotonic utility functions are routinely applied to
derive numerical results. For instance, HAINAUT & DEVOLDER (2007) analyze the dividend
policy and the asset allocation of a pension fund in a financial market composed of three
assets: cash, stocks and a rolling bond. The choice of the utility function has a huge impact
on asset liability management. In the CRRA case, dividends, value function and optimal
investment policy are a function of the fund equity (the higher is the equity, the higher are
dividends and positions in risky assets). For CARA utility functions, the optimal asset allo-
cation is totally independent from liabilities which turns out to be unrealistic. Dividends are
always positive for CRRA functions whereas a contribution can be required from sharehold-
ers for CARA utilities. HAINAUT & DEVOLDER (2007) conclude that an exponential utility
function should not be used for ALM purposes. The present paper reinforces this conclusion
by showing that completely monotonic utilities do not positively value the aggregation of
independent risks.

The picture of Proposition 3.2 is completed by the results in Proposition 3.3 implying that
the sufficient conditions for the acceptance property (2.2) cannot be satisfied for the whole
domain of the utility function if this domain is unbounded. It is important to note that this
conclusion is weaker than the previous one. It does not mean in fact that we necessarily have
a superadditive compensating premium (as in the case of the utility functions mentioned in
Proposition 3.2). It means, however, that for an unbounded domain we cannot find a utility
function which always allows for aggregating independent risks, i.e. which allows aggregating
independent risks for every distribution of X. Proposition 3.2 finally does not exclude that
a utility function satisfying (2.4) can be obtained for specific distributions of X. However
this is just a partial limitation of this problem since, in real world cases, it can be difficult to
clearly identify the exact distribution of a risk. Moreover, insurance companies most often
cover many different types of risks, with different underlying distribution functions.

A more satisfying framework is obtained when the domain of the utility function is
bounded. Indeed, in this case, as shown by Example 3.4, it is possible to find utility functions
compatible with the idea of adding risks. With reference to the restriction of the domain of
the insurer’s utility function from R* to (0, ;] it should however be emphasized that this
is not a very strong assumption. As insurance companies cover potential losses, the most
favorable case is that no claim originates from the portfolio. The terminal wealth of the
insurance company then equals the initial capital plus the annual premium income. This
amount provides a natural upper bound on the domain of w.

4.2 Exponential utilities and ruin probabilities

Exponential utilities have often been used in the actuarial literature. These utilities are
also closely related to the “fallacy of large numbers”, equating the decreasingness in the
insolvency probability to less risk. An insurer with n = 10, 000 policies may be less likely to
become insolvent than an insurer with n = 1,000 policies but it may also generate a much
larger loss. Also, the variance which is a classical measure of risk, grows linearly with the
size of the portfolio. It is thus not obvious, as it may first seem to an actuary, that the
group of n contracts can be accepted if a single one is rejected. For instance, the probability
of insolvency may not decrease fast enough compared to the negative tail of this utility
function, for the collective to be accepted.



SAMUELSON (1963) established that if a utility function u rejects a risk X at all wealth
levels, then it will also reject any collective Y ", X; when the X;’s are independent copies of
X. This leads to a real world paradox since the probability of insolvency is often found to be
decreasing in n. ROss (1999) pointed out that the application of the result of SAMUELSON
(1963) is nevertheless limited since the only utilities rejecting the same risk at all wealth
levels are the linear and the exponential utility functions. In the latter case, (2.1) admits
the explicit solution

n[X] = %lnLX(a) (4.1)

where Lx(-) is the Laplace transform of X, that is, Lx(t) = E[exp(—tX)]. We thus see that
the compensating premium does not depend on the capital owned by the insurance company.
In this case, the analysis of SAMUELSON (1963) applies. Hence, if the premium charged to a
policyholder generating a net loss X is smaller than the compensating premium 7[X] in (4.1)
then no collective > | X; made of independent copies of X will be accepted by an insurer
with an exponential utility, no matter the number n of policies. Since (4.1) is additive for
independent losses, it is easily seen that such an insurer agrees to increase the size of the
portfolio as long as the premium charged to each contract is at least equal to (4.1). In this
case, there is no net diversification benefit.

Even if the kind of behavior expressed by the exponential utility is very particular, it is
worth to mention that (4.1) possesses an appealing interpretation in terms of ruin theory as
shown, e.g., in KAAS ET AL. (2008, Chapter 5). Specifically, let us decompose the annual
gain of an insurance company into the premium income p and the total claim amount .S,
that is,

Wy=W,1+p—=5, n=12... (4.2)

Here, S, is the sum of all the claims filed by the policies comprised in the portfolio during
year n, and we follow the path W;, W5, W3, ... of the insurer’s wealth over time, at the
end of year 1, 2, 3... starting with an initial capital Wy = k. Ruin occurs if U,, < 0 for
some n. We assume that the annual total claims S,, n = 1,2,..., are independent and
distributed as S. The following question then arises: how large should the initial capital
and the premium p be for ruin not to occur with high probability? The probability of ruin
is bounded from above by exp(—pr) where p denotes the adjustment coefficient, i.e. the root
of the equation exp(pp) = mg(p) where mg(-) is the moment generating function of S, that
is, mg(t) = Elexp(tS)]. If we set the upper bound equal to &, then p = @ Hence, we get
a ruin probability bounded by e by choosing the premium p as

1 1
p=—Inmg(p), where p= —|lne|. (4.3)
p K
Formally, this premium is the exponential premium (4.1) for S, with parameter p. However,

(4.3) is not derived from expected utility theory but from ruin theory and requires the
existence of the adjustment coefficient.

4.3 Eventual acceptance property

With the acceptance property discussed in Section 2, whatever the number of policies, adding
a new contract is beneficial. This may be considered as rather demanding and could be
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weakened to hold only in sufficiently large portfolios. This naturally leads to the concept of
eventual acceptance defined by Ross (1999) and further studied by HAMMARLID (2005).

In relation to SAMUELSON (1963), Ross (1999) found a class of utility functions, expo-
nentially bounded from below, that eventually accept sequences of losses provided a safety
loading is included in the premium. As demonstrated by Ross (1999), accepting a se-
quence of net losses with positive means while rejecting a single of them is generally valid
in expected utility theory. R0Ss (1999) considered independent risks, but not necessarily
bounded, or identically distributed. According to ROss (1999) a utility function u has the
eventual acceptance property (EAP), if, and only if, for each sequence Xi, Xs, ... of inde-
pendent random variables such that p = inf; u; > 0 there exists a finite n such that the
sum X; + ...+ X, is accepted by the insurer. Here, X; is the net loss E[L;] — L; plus some
positive safety loading. Theorem 3 in R0Oss (1999) establishes that a sufficient condition for
a non-decreasing concave utility function u to have the EAP for sequences with uniformly
bounded individual variances is that u be unbounded from above and that «(!) be bounded
from above, i.e. uM(x) /' m < 0o as x \, —oo. Intuitively speaking, as independent risks
with positive means are added to form a portfolio, the probability mass shifts to the right
and also spreads. If the left-tail of the utility function does not decline faster than the lin-
ear, then the law of large numbers will bound the negative contribution to expected utility
from losses. Hence, if the utility function is unbounded from above, expected utility will be
unbounded and the sequence eventually will be accepted.

EAP rules out the classical expected utility functions. In fact, a utility function with
decreasing absolute risk aversion (DARA) on the whole real line will not satisfy the EAP
since it will decrease at least as rapidly as an exponential in the lower tail. The EAP requires
that a utility function be less risk averse than the exponential in the lower tail.

HAMMARLID (2005) introduced another definition for the eventual acceptance, stressing
the dependence existing between the utility function and the sequence of risks. According
to HAMMARLID (2005), eventual acceptance is defined as a property of both the utility and
the sequence of risks: given a utility function u and a sequence of risks Xi, Xs, ..., the
pair (u,{X1, Xo,...}) has the eventual acceptance property (EAP) if there exists a finite
n such that S, is accepted. Thus, even if the single risks Xi, Xs,... are rejected, the
collective X7 + ... 4+ X,, will eventually be accepted for n large enough if the utility-risk
pair (u,{X1, Xs,...}) has the EAP. HAMMARLID (2005) investigated a class of utility-risk
in which the utility function has to be nonsatiated with a negative tail that decreases at a
slower rates than the tail-probability of the sequence of risks as assessed by large deviation
techniques.

4.4 Conclusion

Insurance companies like to add independent (and identically distributed) risks in their
portfolio in order to reduce the probability of insolvency. This attitude reveals implicit
properties of their utility function that partially conflict with those widely admitted for
the utility function of a risk averse decision-maker. As a result, the utility functions (e.g.,
exponential, logarithmic, power, etc.) that are so often used to analyze an insurer’s risk
management decisions may not be appropriate.

In this paper, we have analyzed in details the reasons for the opposition between the

10



“acceptance property” and the standard properties of the utility function. We have also
suggested an insurer’s utility function that accomodates both approaches. Finally, it is
shown that the sufficient conditions for adding risks that can be found in the literature need
to be refined by restricting the domain of definition of the insurer’s utility function.
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